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Primitive Submodules, Co-semisimple and Regular Modules

Mauricio Medina-Bárcenas* and A. Çiğdem Özcan

Abstract. In this paper, primitive submodules are defined and various properties of

them are investigated. Some characterizations of co-semisimple modules are given

and several conditions under which co-semisimple and regular modules coincide are

discussed.

1. Introduction

Let M be a module. Any module that is isomorphic to a submodule of some homomorphic

image of a direct sum of copies of M is called an M -subgenerated module. The full

subcategory of the category of all modules whose objects are all M -subgenerated modules

is denoted by σ[M ]. For a ring R, σ[M ] consists of all R-modules if and only if R ∈ σ[M ].

Let M and N be modules. M is called N -projective if for every epimorphism g : N → X

and homomorphism f : M → X, there exists a homomorphism h : M → N such that

g ◦ h = f . A module M is called projective in σ[M ] if M is N -projective for every

N ∈ σ[M ]. A module M is called quasi-projective if M is M -projective. In [29, 18.3] it is

proved that a finitely generated quasi-projective module is projective in σ[M ].

A module N ∈ σ[M ] is called M -singular [28] if there exists a short exact sequence

0 → K → L → N → 0 in σ[M ] such that K is essential in L. The largest M -singular

submodule of N is denoted by Z(N). If Z(N) = 0, then N is called non-M -singular.

Let M be a module and N and K be submodules of M . The product of N with K in

M is defined as follows [5]:

NMK =
∑
{f(N) | f ∈ HomR(M,K)}.

The product NMN will be denoted by N2 and N will be called an idempotent in M if

N2 = N . If every submodule of M is an idempotent, then M is called fully idempotent.

It is obvious that, for any left ideal I of a ring R, RI is an idempotent in RR if and only

if I is an idempotent left ideal. If every left ideal (resp., two-sided ideal) of the ring R is

an idempotent, then R is called a fully left idempotent (resp., fully idempotent) ring.
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Beachy proved in [4, Proposition 5.6] that if M is projective in σ[M ], then the product

of submodules is associative, i.e., (NMK)ML = NM (KML) for any submodules N , K and

L of M .

Definition 1.1. Let M be a nonzero module.

(1) A proper fully invariant submodule N of M is called prime in M [19] if KML ⊆ N ,

then K ⊆ N or L ⊆ N for any fully invariant submodules K, L of M . The module M is

called a prime module if 0 is a prime submodule in M . Note that if M has no nonzero

proper fully invariant submodules, then M is prime [19, Remark 20].

(2) A proper fully invariant submodule N of M is called semiprime in M [20] if

KMK ⊆ N , then K ⊆ N for any fully invariant submodule K of M . The module M

is called a semiprime module if 0 is a semiprime submodule in M . More information on

semiprime submodules can be found in [9].

By a fully invariant (resp., prime, semiprime) factor module of M , we mean a factor

module M/N for a fully invariant (resp., prime, semiprime) submodule N of M .

A module M is called regular if every cyclic submodule of M is a direct summand of

M (see [26] for more information). We should note that, Zelmanowitz in [32] defined a

regular module provided that for any m ∈ M there exists f ∈ HomR(M,R) such that

m = f(m)m, and he proved that every cyclic submodule of such a module is a direct

summand [32, Proposition 1.6]. But the converse is not true in general, e.g., consider the

abelian group Zp. In the ring case, they are the same notions (see [13, Theorem 1.1]) and

called a von Neumann regular ring. In this paper, we use the aforementioned definition

of regular modules.

The paper is organized as follows. In Section 2, we characterize regular modules in

terms of semiprime modules (Theorem 2.3). In Section 3, using the annihilator of a module

defined by Beachy in [4], we introduce primitive submodules inspired by left primitive ide-

als. Various basic properties of primitive submodules are investigated. If M is a projective

module in σ[M ], then any proper primitive submodule of M is prime; and maximal and

primitive submodules coincide if, in addition, M is quasi-duo (Proposition 3.9). Section 4

is devoted to modules whose primitive factors are artinian. We prove that every primitive

factor module of a projective fully-bounded Noetherian module is artinian and FI-simple,

i.e., it has no fully invariant submodules except 0 and M (Theorem 4.13).

In the final section, Section 5, we consider co-semisimple and regular modules and

determine some relations between them. A well-known theorem of Kaplansky states that

the concepts of von Neumann regular rings and V -rings coincide for commutative rings.

As a generalization of this result, Baccella proved in [3, Theorem] that if R is a ring whose

right primitive factor rings are artinian, then R is von Neumann regular if and only if R

is a right V -ring (i.e., RR is co-semisimple). But his proof is not correct, because in the
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proof he used the fact that “a prime fully idempotent ring is right and left nonsingular”

(see [2, Lemma 4.3]). We see that this fact is not true making use of an example due to

Bergman, see Remark 5.17. In this respect, we investigate some conditions under which

any co-semisimple module with every primitive factor module artinian is regular. We

prove that if M is finitely generated, quasi-projective, co-semisimple, fully bounded, and

every primitive factor module of M is artinian, then M is regular (Corollary 5.12). Also, if

M is finitely generated, quasi-projective, co-semisimple, and every essential submodule of

M is a finite intersection of maximal submodules and every primitive factor module of M

is artinian, then M is regular (Theorem 5.15). On the other hand, if HomR(M,S) 6= 0 for

every simple module in σ[M ], every primitive factor module of M is co-semisimple, and

M is regular, then M is cosemisimple (Theorem 5.7). Furthermore, Kaplansky’s result

was also extended to left quasi-duo rings by Yu [31]. In this section, we also provide the

module-theoretic version of Yu’s theorem (Proposition 5.13).

Throughout this paper, rings are associative with identity, and modules are left mod-

ules. Let R be a ring. We write RM for a left R-module M . The notation N ≤ M

(N ≤e M) means that N is an (essential) submodule of a module M . The Jacobson

radical and the socle of M are denoted by Rad(M) and Soc(M), respectively. We denote

by HomR(M,K) the R-homomorphisms from the module M to the module K, and by

EndR(M) the endomorphism ring of a module M over a ring R. We refer to [1,29] for all

undefined terminology in this paper.

2. Regular modules

Recall that a module M is called regular if every cyclic submodule of M is a direct

summand of M (see [26] for more information). In this section, we characterize regular

modules in terms of semiprime modules.

Note that any regular module is semiprime. For, let M be a regular module, N a

submodule of M and n ∈ N . Since Rn is a direct summand of M , n = π(n) ∈ NMN

where π : M → Rn is the canonical projection. Hence NMN = N . But semiprime modules

need not be regular, for example, consider the Z-module Z. We need the following two

results.

Lemma 2.1. Let M be an R-module and x ∈M . If there exists a morphism f : M → Rx

such that f(x) = x, then Rx is a direct summand of M .

Proof. Let x ∈ M and f : M → Rx be a morphism such that f(x) = x. Notice that

Rx ∩ Ker(f) = 0. If m ∈ M , then f(m) = rx = f(rx), so m − rx ∈ Ker(f). Thus

m = rx+ (m− rx) ∈ Rx⊕Ker(f).
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Proposition 2.2. An R-module M is regular if and only if for all x ∈M , there exists a

morphism f : M → Rx such that f(x) = x.

Proof. (⇒) Let x ∈ M . Since M is regular, M = Rx⊕K for some submodule K. Then

π(x) = x where π : M → Rx is the canonical projection of M .

(⇐) It is by Lemma 2.1.

According to Proposition 2.2, every submodule and every fully invariant factor module

of a regular module is regular. Also any regular module is fully idempotent.

Theorem 2.3. Let M be a nonzero projective module in σ[M ]. Consider the following:

(1) M is semiprime, the union of every chain of semiprime submodules in M is semiprime,

and every prime factor module of M is regular.

(2) M is regular.

Then (1) ⇒ (2). If M is finitely generated, then (2) ⇒ (1).

Proof. (2) ⇒ (1). We just note that the union of semiprime submodules is a proper

submodule of M since M is finitely generated.

(1) ⇒ (2). Let 0 6= x ∈M . Suppose Rx has no direct complements in M . Consider

Γ = {A ≤M | A is semiprime in M

and (Rx+A)/A has no direct complements in M/A}.

Γ 6= ∅ because 0 ∈ Γ. Let {Ai}I be a chain in Γ. By hypothesis A :=
⋃
I Ai is semiprime

in M . Now, suppose that
M

A
=
Rx+A

A
⊕ N

A
.

Consider the canonical projections ρ : M/A → (Rx + A)/A and π : M → M/A. Since M

is projective in σ[M ], there exists f : M → Rx such that the following diagram commutes:

M
f //

π
��

Rx

π|Rx

��
M/A

ρ // Rx+A/A

So, f(x) + A = π(f(x)) = ρ(π(x)) = x + A, hence f(x) − x ∈ A. Let j ∈ I such that

f(x)− x ∈ Aj . Since Aj is semiprime, then it is fully invariant, so f defines f : M/Aj →
(Rx + Aj)/Aj . Notice that f(x + Aj) = f(x) + Aj = x + Aj . Therefore, by Lemma 2.1,

(Rx+Aj)/Aj has a direct complement in M/Aj , which is a contradiction. Thus A ∈ Γ.

Then, by Zorn’s Lemma, there exists a semiprime submodule A of M maximal with

respect to the property that Rx+A/A has no direct complements in M/A. By hypothesis,
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A cannot be prime in M . So, we can assume that A = 0 and M is semiprime but not

prime. Hence, there exist nonzero fully invariant submodules B and C of M such that

BMC = 0. Let N = AnnM (C) (see Definition 3.1). Then 0 6= B ≤ N . Now, denote

K = AnnM (N). Since NMC = 0, CMN = 0 by [9, Lemma 1.19], so 0 6= C ≤ K, and by

construction KMN = 0. By [9, Lemma 1.19] N ∩ K = 0, and N and K are semiprime

by [9, Lemma 1.23]. Hence, by the choice of A, (Rx+N)/N has a direct complement in

M/N and (Rx+K)/K has a direct complement in M/K.

Let π : M → M/N , ρ : M → M/K, f : M/N → (Rx + N)/N and g : M/K → (Rx +

K)/K be the canonical projections. Since M is projective in σ[M ], there exist f : M → Rx

and g : M → Rx such that πf = fπ and ρg = gρ.

M

π
��

f

��

M

ρ

��
g

��

M/N

f
��

M/K

g

��
Rx

π // (Rx+N)/N Rx
ρ // (Rx+K)/K

Then x− f(x) ∈ N and x− g(x) ∈ K. On the other hand, ρgf(x) = gρf(x) = f(x) +K

because f(x) ∈ Rx. So gf(x)− f(x) ∈ K. Therefore,

x+ (gf − f − g)(x) = x− f(x) + g(f(x)− x) ∈ N

and

x+ (gf − f − g)(x) = x− g(x) + gf(x)− f(x) ∈ K.

Hence, x + (gf − f − g)(x) = 0. This implies that (gf − f − g)(x) = −x, and so

(g + f − gf)(x) = x. Thus M is regular by Proposition 2.2, a contradiction.

Corollary 2.4. Let M be a nonzero finitely generated quasi-projective module. Then M

is regular if and only if every nonzero fully invariant factor module of M is semiprime

and every prime factor module of M is regular.

Proof. (⇒) Since M is regular, NMN = N for every submodule N of M . Then every

proper fully invariant submodule of M is semiprime. Hence every nonzero fully invariant

factor module of M is semiprime.

(⇐) First note that M is projective in σ[M ] by [29, 18.3]. Let {Ai}I be a chain of

semiprime submodules of M . Since each Ai is proper and M is finitely generated,
⋃
I Ai is

a proper fully invariant submodule of M . By hypothesis M/
⋃
I Ai is a semiprime module.

Thus
⋃
I Ai is semiprime in M .
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3. Primitive submodules

In this section, we define primitive submodules and consider some of their basic properties.

First, recall the annihilator of a module.

Definition 3.1. [4] Let M and X be R-modules. The annihilator of X in M is defined

as

AnnM (X) =
⋂
{Ker(f) | f ∈ HomR(M,X)}.

This is also defined as RejM (X) in the literature (see [1]). Note that AnnR(X) = lR(X),

the usual left annihilator of X in R by [1, Proposition 8.22].

According to [4, Proposition 1.6], AnnM (X) is a fully invariant submodule of M and is

the greatest submodule of M such that AnnM (X)MX = 0. Also, notice that AnnM (X) =

M if and only if HomR(M,X) = 0.

Definition 3.2. Let M be a module and P a submodule of M . The module P is called

a primitive submodule of M if there exists a simple module S ∈ σ[M ] such that P =

AnnM (S). The module M is called primitive if 0 is a primitive submodule of M .

Remark 3.3. (1) Rad(M) ⊆ AnnM (S) for any moduleM and any simple module S ∈ σ[M ].

(2) The following are equivalent for an R-module M .

(i) Rad(M) = M .

(ii) AnnM (S) = M for every simple module S ∈ σ[M ].

(iii) HomR(M,S) = 0 for every simple module S ∈ σ[M ].

Indeed, if M has a maximal submodule M, then M has a proper primitive submodule,

namely P = AnnM (M/M). Hence every nonzero module has a primitive submodule.

Here, we should note that σ[M ] always has a simple module for any nonzero module M

(see [29]).

(3) Clearly, if M is a generator in σ[M ], then HomR(M,S) 6= 0 for every simple module

S ∈ σ[M ]. The converse is true if M is quasi-projective by [29, 18.5].

Proposition 3.4. Let M be projective in σ[M ]. Then any proper primitive submodule of

M is prime in M .

Proof. Let P = AnnM (S) be a proper primitive submodule of M where S ∈ σ[M ] is

simple. Let N and L be fully invariant submodules of M such that NML ≤ P . Then

(NML)MS = 0. Since M is projective in σ[M ], NM (LMS) = 0 by [4, Proposition 5.6].

On the other hand, LMS ≤ S gives that LMS = 0 or LMS = S. If LMS = 0, then we

have L ≤ P . If LMS = S, then 0 = NM (LMS) = NMS. It follows that N ≤ P . Hence P

is a prime submodule of M .
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Example 3.5. Let p ∈ Z be a prime number and let k be any positive integer. Then

the abelian group Zpk is self-projective. Since Zpk is finitely generated, it is projective

in σ[Zpk ] by [29, 18.3]. Note that Zpk/pZpk ∼= Zp. Since pZpk is fully invariant in Zpk ,

AnnZ
pk

(Zp) = pZpk by [6, Proposition 1.8]. Hence the primitive submodule AnnZ
pk

(Zp) =

pZpk is prime in Zpk .

Proposition 3.6. For any module M , Rad(M) =
⋂
{P ≤M | P is primitive}.

Proof. If M = 0, then there is nothing to prove. Assume that M 6= 0. Denote P =
⋂
{P ≤

M | P is primitive}. Since Rad(M) ⊆ AnnM (S) for every simple module S ∈ σ[M ], we

have that Rad(M) ⊆ P. On the other hand, if Rad(M) = M , then the only primitive

submodule of M is M by Remark 3.3. Hence P ⊆ Rad(M). Assume that Rad(M) 6= M ,

and let M be a maximal submodule of M . Then AnnM (M/M) ⊆ M because M is the

kernel of the natural epimorphism M → M/M. This implies that P ⊆ AnnM (M/M) ⊆
M. Hence again P ⊆ Rad(M).

Lemma 3.7. Let M be a module and P = AnnM (S) a proper primitive submodule of M

for some simple S ∈ σ[M ]. Then S ∈ σ[M/P ] and AnnM/P (S) = 0.

Proof. Since P = AnnM (S) is a proper submodule of M , there exists a nonzero homo-

morphism f : M → S. Then P ⊆ Ker(f) and so we have an epimorphism M/P →
M/Ker(f) ∼= S. It follows that S ∈ σ[M/P ].

Let x + P ∈ M/P be a nonzero element in AnnM/P (S). Since x /∈ P , there exists

a homomorphism g : M → S such that g(x) 6= 0. So P ⊆ Ker(g). This implies that

there exists a homomorphism g : M/P → S such that g = gπ where π : M →M/P is the

canonical epimorphism. Thus 0 6= g(x) = gπ(x) = g(x + P ) = 0, a contradiction. Hence

AnnM/P (S) = 0.

Definition 3.8. Let M be a module. M is a quasi-duo module if all maximal submodules

of M are fully invariant.

In [24, 3.25], quasi-duo modules were presented as quasi-invariant modules.

Proposition 3.9. Let M be projective in σ[M ]. Then M is quasi-duo if and only if the

maximal and proper primitive submodules of M are the same.

Proof. It is clear that if the maximal and primitive submodules coincide, then M is quasi-

duo.

LetM be a maximal submodule of M . Since M is quasi-duo, we haveMM (M/M) = 0

by [6, Proposition 1.8], so M ⊆ AnnM (M/M). Thus M = AnnM (M/M). Now, let

P = AnnM (S) be a proper primitive submodule for some simple module S in σ[M ].

Let 0 6= f : M → S. Since Ker(f) is maximal, it is fully invariant in M . So 0 =

Ker(f)M (M/Ker(f)) ∼= Ker(f)MS. Thus Ker(f) = P .
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4. Modules whose primitive factors are artinian

In this section, we prove that every primitive factor module of a projective fully-bounded

Noetherian module is artinian FI-simple.

Let us first consider the modules whose primitive factors are artinian. Obviously, if

M/Rad(M) is artinian, then M/P is artinian for any primitive submodule P of M . On

the other hand, we will show that if M is a projective module in σ[M ] and M/P is artinian

for any primitive submodule P of M , then M/P is semisimple. To prove it, we need the

following.

Definition 4.1. A module M is called retractable [16] if HomR(M,N) 6= 0 for all 0 6=
N ≤M .

Lemma 4.2. Let M be projective in σ[M ]. If M is a semiprime module, then it is

retractable.

Proof. Let M be semiprime and N ≤ M . If Hom(M,N) = 0, then MMN = 0. But

NMN ⊆MMN = 0, and so N = 0.

Proposition 4.3. Let M be a projective module in σ[M ] and let P be a primitive sub-

module of M . If M/P is artinian, then M/P is semisimple.

Proof. Let M be a projective module in σ[M ] and P a primitive submodule of M such that

M/P is artinian. If P = M , then there is nothing to prove. Assume that P 6= M . Since

P is fully invariant, M/P is projective in σ[M/P ] (see [27, Lemma 9]) and it is a prime

module by Proposition 3.4 and [19, Proposition 18]. So M/P is retractable by Lemma 4.2.

Any retractable semiprime artinian module is semisimple by [9, Theorem 1.17]. Hence

M/P is semisimple.

Now, we give the following definitions generalizing the concept of left bounded (resp.,

fully bounded) rings given by Chatters and Hajarnavis in [11] to the module theory.

Definition 4.4. (1) A module M is bounded if any essential submodule of M contains a

fully invariant submodule of M which is an essential submodule.

(2) M is fully bounded if every prime factor module of M is bounded.

(3) M is an FBN-module if M is fully bounded and noetherian.

Example 4.5. If M is an artinian uniserial module (i.e., a module whose submodules are

linearly ordered), then Soc(M) is simple, fully invariant and essential in M . Since Soc(M)

is contained in all nonzero submodules of M , we have that M is bounded. Moreover, since

every factor module of an artinian uniserial module is artinian uniserial, M is also fully

bounded.



Primitive Submodules, Co-semisimple and Regular Modules 553

In the literature, there are many other generalizations of bounded (resp., fully bounded)

rings to modules, for example see [7, 15, 17, 23]. The definitions of bounded and fully

bounded modules given in [7, Definition 2.1] are very close to ours. For convenience of the

reader, we will give the definitions here and compare them with ours.

Definition 4.6. [7, Definition 2.1] Let M be a module and τ a hereditary torsion theory

in σ[M ]. A submodule N of M is τ -pure if M/N is τ -torsion-free. The module M is

τ -bounded if every τ -pure essential submodule of M contains a nonzero fully invariant

submodule of M . The module M is fully τ -bounded if for every prime submodule P in

M , the module M/P is τ -bounded.

It is clear that if M is a bounded module, then M is ξ-bounded, where ξ is the

hereditary torsion theory (0, σ[M ]). In general, the converse is not true, as the following

example shows.

Example 4.7. Consider the Z-module M = Q⊕Zp where p ∈ Z is a prime number. Note

that the submodule Z ⊕ Zp is essential in M . Now, we claim that M has no nontrivial

essential fully invariant submodules. In fact, if N ≤e M and fully invariant in M , then

0 6= N ∩ (Q⊕ 0), but Q has no nontrivial fully invariant submodules, hence N ∩ (Q⊕ 0) =

Q⊕ 0. On the other hand, since 0 6= N ∩ (0⊕Zp), then 0⊕Zp ⊆ N . Thus, N = M . Now,

if K ≤e M , then 0 6= K ∩ (0⊕ Zp). Hence 0⊕ Zp ⊆ K and 0⊕ Zp is fully invariant in M .

Thus, M is ξ-bounded but not bounded.

However, for the trivial hereditary torsion theory ξ = (0, σ[M ]) in σ[M ], fully ξ-

bounded and fully bounded modules are equivalent provided that M is projective in σ[M ].

Proposition 4.8. Let M be projective in σ[M ]. Then M is a fully bounded module if and

only if M is a fully ξ-bounded module.

Proof. (⇒) It is obvious.

(⇐) Let P be a prime submodule of M and consider the factor module M/P . Let

N ≤e M/P . Since M is fully ξ-bounded, then there exists a nonzero fully invariant

submoduleK ofM/P such thatK ⊆ N . SinceM/P is a prime module, by [10, Lemma 4.5]

(for a proof of this lemma see [9, Proposition 1.3]), every nonzero fully invariant submodule

is essential, hence K ≤e M/P . Thus, M/P is fully bounded.

Definition 4.9. A module M is called FI-simple [10], if it has no fully invariant submod-

ules except 0 and M .

Lemma 4.10. A module M is semisimple Artinian FI-simple if and only if M ∼= S(n)

where n is a natural number and S is a simple module.
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Proof. It follows from the facts that, if M is a semisimple module, then each homogeneous

component (i.e., the direct sum of all isomorphic simple submodules) of M is fully invariant

in M , and each fully invariant submodule F of M is the direct sum of the homogeneous

components of M such that each of which has nonzero intersection with F .

Definition 4.11. [8] Let M be an R-module. A left annihilator in M is a submodule of

the form

AX =
⋂
{Ker(f) | f ∈ X}

for some X ⊆ EndR(M).

The following result will be used to prove the main theorem.

Proposition 4.12. [10, Proposition 2.11] Let M be projective in σ[M ] with nonzero socle.

If M is a prime module satisfying ACC (ascending chain condition) on left annihilators,

then M is semisimple artinian and FI-simple.

We are now going to prove the main theorem of this section. Note that the ring version

was proved in [14, Proposition 8.4].

Theorem 4.13. Let M be projective in σ[M ]. If M is an FBN-module, then M/P is

artinian and FI-simple for every primitive submodule P of M .

Proof. Assume that M 6= 0. For any proper primitive submodule P of M , M/P is pro-

jective in σ[M/P ] (see [27, Lemma 9]), FBN and prime. Hence without loss of generality,

we can assume P = 0. According to Proposition 4.12, the proof will be completed if

Soc(M) 6= 0. Let S be simple in σ[M ] such that P = AnnM (S) = 0. Then MMS 6= 0 and

so there exists a nonzero morphism f : M → S. Now we claim that Ker(f) is not essential

in M . Since M is bounded, it is enough to prove that Ker(f) has no nonzero fully invariant

submodule of M . Assume on the contrary that N is a nonzero fully invariant submodule of

M such that N ⊆ Ker(f). Then there is an epimorphism M/N →M/Ker(f) ∼= S. By [4,

Lemma 5.4], there exists an epimorphism NM (M/N)→ NMS. Since N is fully invariant

in M , NM (M/N) = 0 by [6, Proposition 1.8]. Hence NMS = 0. Since AnnM (S) = 0,

N = 0. This proves the claim. Then there exists 0 6= K ≤ M such that Ker(f) ∩K = 0.

Since Ker(f) is a maximal submodule of M , we conclude that M = Ker(f) ⊕ K. Thus

K ∼= S, and so Soc(M) 6= 0.

Recall that a module M is called Kasch if every simple module in σ[M ] can be em-

bedded in M .

Proposition 4.14. Let M be projective in σ[M ]. If M is a Kasch and an FBN-module,

then M/Rad(M) is semisimple artinian.
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Proof. First notice that since M is noetherian, Rad(M) 6= M . Since M is Kasch, every

simple module in σ[M ] can be embedded in Soc(M), and since M is noetherian, Soc(M)

is finitely generated. Then the set of simple modules in σ[M ] is finite up to isomorphism.

Hence the set of primitive submodules of M is finite, say P1, . . . , Pn. This implies that

Rad(M) = P1 ∩ · · · ∩ Pn by Proposition 3.6. Then by the monomorphism M/Rad(M)→
M/P1 ⊕ · · · ⊕M/Pn defined by m+ Rad(M) 7→ (m+P1, . . . ,m+Pn) and Theorem 4.13,

we obtain that M/Rad(M) is semisimple artinian.

5. Co-semisimple and regular modules

Dual to semisimple modules are the co-semisimple modules which were introduced by

Fuller [12] and also called V-modules by Ramamurthi [21].

Definition 5.1. A module M is co-semisimple if each simple module (in σ[M ]) is M -

injective. If RR is co-semisimple, we call R a left V -ring.

Notice that any simple module not belonging to σ[M ] is M -injective, and semisim-

ple modules are co-semisimple (see [29, p. 190]). It is well known that co-semisimple

and regular modules are independent notions (see [29, Example 23.6]). In this section,

we investigate some conditions under which regular modules and co-semisimple modules

coincide.

The following characterization of co-semisimple modules was given in [12, Proposi-

tion 3.1], for further characterizations see [29, 23.1].

Proposition 5.2. The following are equivalent for a module M :

(1) M is co-semisimple.

(2) Any proper submodule of M is an intersection of maximal submodules.

Furthermore, we recall the following lemma.

Lemma 5.3. [10, Lemma 1.1] Let M be projective in σ[M ], K ≤M , and {Xi}I a family

of modules in σ[M ]. Then

KM

(∑
I

Xi

)
=
∑
I

(KMXi).

Proposition 5.4. [10, Proposition 4.4] Let M be a projective module in σ[M ]. If M is

co-semisimple, then it is fully idempotent.
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Proof. Let N be a submodule of M and suppose that NMN ⊂ N . According to Proposi-

tion 5.2, there exists a maximal submodule M of M such that NMN ⊆M but N *M.

Hence M = N +M. Therefore, by Lemma 5.3,

N ⊆ NMM = NM (M+N) = NMM+NMN ⊆M,

a contradiction. Thus NMN = N2 = N .

Proposition 5.5. Let M be a nonzero co-semisimple module. Then M has a proper

primitive submodule.

Proof. Let L be a nonzero finitely generated submodule of M . Since L has a maximal

submodule, there exists an epimorphism L→ S for some simple module S ∈ σ[M ]. Since

M is co-semisimple, S is M -injective. So there exists a nonzero morphism M → S. Then

HomR(M,S) 6= 0, and hence AnnM (S) is the proper primitive submodule of M .

Theorem 5.6. Let M be projective in σ[M ]. Then the following are equivalent:

(1) M is co-semisimple.

(2) M is a generator in σ[M ], fully idempotent, and every primitive factor module of

M is co-semisimple.

Proof. (1) ⇒ (2). Since M is co-semisimple, it is fully idempotent by Proposition 5.4.

The result 23.8 in [29] states that if M is M -projective and co-semisimple, then M is a

generator in σ[M ]. So every primitive submodule of M is proper by Remark 3.3(3). Now,

let P be a primitive submodule of M and S ∈ σ[M/P ] be simple. Since σ[M/P ] ⊆ σ[M ],

S is simple in σ[M ]. Then S is M -injective, and so it is M/P -injective. Hence M/P is

co-semisimple.

(2) ⇒ (1). Let S be a simple module in σ[M ] and Ŝ = EM (S) the M -injective

hull of S in σ[M ]. Denote P := AnnM (S). Since M is a generator in σ[M ], P 6= M

(see Remark 3.3(3)). Then M/P is co-semisimple by hypothesis. Now, assume that

P = AnnM (Ŝ). By [7, Proposition 1.5], Ŝ ∈ σ[M/P ]. Since M/P is co-semisimple, S is

injective in σ[M/P ] by Lemma 3.7. So S is a direct summand of Ŝ, and hence S = Ŝ is

injective in σ[M ]. In this case M is co-semisimple.

Assume that P 6= AnnM (Ŝ). Then there exists a morphism f : M → Ŝ such that

f(P ) 6= 0. Since S ≤e Ŝ, S ⊆ f(P ). Let p ∈ P be such that S = Rf(p). Then

S = f(Rp) = f(RpMRp) ⊆ RpMf(Rp) ⊆ PMS = 0. Hence S = 0, a contradiction.

Theorem 5.7. Let M be a module. Assume that HomR(M,S) 6= 0 for every simple module

in σ[M ], and every primitive factor module of M is co-semisimple. If M is regular, then

M is cosemisimple.
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Proof. Let S be a simple module in σ[M ] and consider the proper primitive submodule

P = AnnM (S) of M . By hypothesis, M/P is co-semisimple. By Lemma 3.7, S ∈ σ[M/P ],

and then S is M/P -injective. Now, we claim that S is M -injective. Let N ≤ M and

f : N → S be a morphism. Since M is fully idempotent, N ∩ P = N ∩ (PMP ), so let

n = f1(p1) + · · · + fk(pk) ∈ N ∩ P where each fi ∈ Hom(M,P ). Since M is regular,

Rn is a direct summand of M , and then we have the canonical projection π : M → Rn.

Therefore, n = π(n) = π(f1(p1) + · · ·+ fk(pk)) = πf1(p1) + · · ·+ πfk(pk). Thus

f(n) = f(πf1(p1) + · · ·+ πfk(pk)) = fπf1(p1) + · · ·+ fπfk(pk) = 0

because fπfi : M → S for all 1 ≤ i ≤ k. Then, we have a well-defined morphism f : (N +

P )/P → S. Since S is M/P -injective, there exists f ′ : M/P → S such that f ′|(N+P )/P =

f . Thus, if ρ : M → M/P is the canonical epimorphism, f ′(ρ(N)) = f ′((N + P )/P ) =

f(ρ(N)) = f(N). Hence S is M -injective. Thus M is co-semisimple.

Corollary 5.8. Consider the following conditions for a ring R:

(1) R is von Neumann regular, and every left primitive factor ring of R is a left V -ring.

(2) R is fully left idempotent, and every left primitive factor ring of R is a left V -ring.

(3) R is a left V -ring.

Then (1) ⇒ (2) ⇔ (3).

Proof. This follows from [26, Proposition 22.2] and Theorems 5.6 and 5.7.

Lemma 5.9. (1) If M is projective in σ[M ] and a prime module, then E = EndR(M)

is a prime ring.

(2) [9, Corollary 1.10] If M is retractable and E = EndR(M) is a prime ring, then M

is a prime module.

Proof. (1) Let I and J be ideals of E such that IJ = 0. We can assume that I and J are

cyclic. On the other hand, since M is M -projective, J = HomR(M,JM) by [29, 18.4].

Now, assume that J 6= 0. Then there exists a nonzero morphism g : M → JM such

that fg = 0 for all f ∈ I. Also since I = HomR(M, IM), we have g(M)MIM = 0. By

hypothesis, M is prime and projective in σ[M ], and so IM = 0 by [6, Proposition 1.11].

Thus I = 0.

Lemma 5.10. If M is projective in σ[M ], semiprime, and bounded, then it is non-M -

singular.
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Proof. Suppose that Z(M) 6= 0. Then there exists 0 6= f ∈ Hom(M,Z(M)) by Lemma 4.2.

Since Z(M) is M -singular and M is projective in σ[M ], Ker(f) ≤e M by [7, Proposi-

tion 1.2]. Since M is bounded, there exists a fully invariant submodule N of M such that

N ⊆ Ker(f) and N ≤e M . By [4, Lemma 5.4], there is an epimorphism

NM (M/N)→ NM (M/Ker(f)).

Since N is fully invariant, NM (M/N) = 0 by [6, Proposition 1.8]. It follows that

NMf(M) ∼= NM (M/Ker(f)) = 0. Since (N ∩ f(M))M (N ∩ f(M)) ⊆ NMf(M) = 0

and M is semiprime, we have that N ∩ f(M) = 0. But N ≤e M , this is a contradiction.

Thus M is non-M -singular.

A module M is called Goldie [22] if it satisfies the ACC on left annihilators and has

finite uniform dimension.

Theorem 5.11. Let M be finitely generated, quasi-projective, co-semisimple, and non-

M -singular with E := EndR(M) prime. If every primitive factor module of M is artinian,

then M is semisimple artinian.

Proof. First we claim that M is a prime Goldie module.

Assume that M 6= 0. Since M is co-semisimple, it is semiprime and then it is re-

tractable by Lemma 4.2. So M is prime by Lemma 5.9.

On the other hand, T := EndR(M̂) is the maximal ring of quotients of E by [30, 11.1

and 11.5] where M̂ is the M -injective hull of M . Let {Nn : n ∈ N} be an independent

family of submodules of M̂ . Then {HomR(M̂,Nn) : n ∈ N} is an independent family of

right ideals of T . Since EE is essential in T by [30, 11.5], we have an independent family

of cyclic right ideals of E, say gnE (n ∈ N), such that all gnT (n ∈ N) is independent in T .

Since E is a prime ring, there exists hn ∈ E (n ∈ N) such that zn := gnhn−1gn−1 . . . h1g1 6=
0. So, we have a descending chain of left ideals Tz1 ⊇ · · · ⊇ Tzn ⊇ · · · . Since T is a regular

ring, there exist nonzero idempotents fn ∈ T such that Tzn = Tfn for all n ∈ N. Then

there is an ascending chain (1− f1)T ⊆ · · · ⊆ (1− fn)T ⊆ · · · . Consider the R-submodule

K :=

(⋃
n>0

(1− fn)T

)
M̂

of M̂ .

If M ⊆ K, then M ⊆ (1 − fn)TM̂ ⊆ K ⊆ M̂ for some n because M is finitely

generated. Then (1 − fn)TM̂ ≤e M̂ , but (1 − fn)M̂ ∩ fnM̂ = 0 gives a contradiction.

Thus K ⊂ M̂ and M * K. Since M is co-semisimple, so is M̂ . Then there exists a

maximal submodule M of M̂ such that K ⊆M and M *M.
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Assume that j : M → M̂ and π : M̂ → M̂/M are the canonical inclusion and projection

respectively. Since M * M, πj 6= 0. This implies that P = AnnM (M̂/M) is a proper

primitive submodule of M . Notice that TP ⊆ M, in fact, if α ∈ T , then πα(P ) =

παj(P ) = 0 because παj : M → M̂/M. Thus TP ⊆M.

By hypothesis M/P is artinian, hence Soc(M/P ) 6= 0, therefore by Propositions 4.3

and 4.12, M/P is FI-simple. Hence P is a maximal fully invariant submodule of M . On

the other hand, TP ∩M is a fully invariant submodule of M containing P , so P = TP ∩M
or TP ∩M = M . But, since M *M, we have P = TP ∩M .

We now claim that zn(M) * P for all n. Suppose that zn(M) ⊆ P for some n. By

construction, write fn = αzn for some α ∈ T . Then fn(M) = αzn(M) ⊆ α(P ) ⊆ M.

Thus fn(M) ⊆ M. But (1 − fn)(M) ⊆ M, then M ⊆ (1 − fn)(M) + fn(M) ⊆ M, a

contradiction. Now, since zn(M) ⊆ gn(M), then gn(M) * P for all n.

Since T = Qmax(E), by [13, Lemma 9.7] there exist orthogonal idempotents en ∈ T
such that gnT = enT . We claim that en(M) * TP for all n. Assume to the contrary that

en(M) ⊆ TP for some n. Then gnE(M) = engnE(M) ⊆ TP ∩M = P , and so gn(M) ⊆ P ,

a contradiction. This enables us to define the canonical projection ρ : M̂ → M̂/TP with

ρ(en(M)) 6= 0 for all n. Now let ρ(e1(m)) ∈ ρ(e1(M)) ∩
∑

i 6=1 ρ(ei(M)), then e1(m) =

e2(m2) + · · ·+ ek(mk) + x with x ∈ TP . Since en’s are orthogonal idempotents, e1(m) =

e1(x) ∈ TP . Thus ρ(e1(m)) = 0. This implies that {ρ(en(M))} is an independent family of

submodules of M̂/TP . Notice that we have a monomorphism η : M/P → M̂/TP given by

η(m+P ) = m+TP . Since gn = engn, gnE(M) ⊆ en(M) and we have that gnE(M) * P .

So {ρ(gnE(M))} is an independent family of nonzero submodules of η(M/P ) ∼= M/P .

This is a contradiction because M/P is artinian.

Thus M̂ has finite uniform dimension, then so does M . Now, M is a prime Goldie

module by [9, Theorem 2.8].

Since M is co-semisimple Goldie, the only prime submodule in M is 0 by [10, Proposi-

tion 4.6 and Corollary 4.8]. Since M has a proper primitive submodule by Proposition 5.5

and proper primitive submodules are prime, 0 is primitive. According to the hypothesis, M

is artinian. Any retractable semiprime artinian module is semisimple by [9, Theorem 1.17].

Thus M is semisimple.

Corollary 5.12. Let M be finitely generated, quasi-projective, co-semisimple, and fully

bounded. If every primitive factor module of M is artinian, then M is regular.

Proof. Let M be prime. By hypothesis, M is bounded, and thus non-M -singular by

Lemma 5.10. According to Lemma 5.9 and Theorem 5.11, M is semisimple, hence it is

regular.

Assume that M is not prime and P is a prime submodule of M . Then M/P is a

nonzero prime module. Since M/P satisfies all the conditions of the hypothesis, it is
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semisimple artinian by the argument above. This implies that every prime factor module

of M is regular. Since M is co-semisimple, every proper fully invariant submodule of M

is semiprime. Thus M is regular by Corollary 2.4.

This corollary will enable us to prove a module theoretic version of Theorem 2.7 of [31].

Recall that a module M is called duo (see [18]) if every submodule of M is fully

invariant in M .

Proposition 5.13. Let M be finitely generated quasi-projective. If M is quasi-duo, then

the following are equivalent.

(1) M is co-semisimple.

(2) M is regular, duo, and a generator in σ[M ].

(3) M is regular and a generator in σ[M ].

(4) M is fully idempotent and a generator in σ[M ].

Proof. (1) ⇒ (2). Since M is co-semisimple and projective in σ[M ], it is a generator in

σ[M ] by [29, 23.8]. Let N ≤ M , and write N =
⋂
i∈I Ni for some maximal submodules

Ni of M . Then f(Ni) ⊆ Ni for any endomorphism f of M . This implies that f(N) ⊆ N ,

hence M is duo. Since M is quasi-projective, every factor module of M is duo by [18,

Proposition 1.4]. On the other hand, obviously every duo module is bounded. It follows

that M is fully bounded. Thus M is regular by Proposition 3.9 and Corollary 5.12.

(2) ⇒ (3) ⇒ (4). They are obvious.

(4) ⇒ (1). It follows by Proposition 3.9 and Theorem 5.6.

Proposition 5.14. Let M be projective in σ[M ]. Suppose that M is prime but not prim-

itive, and every essential submodule of M is a finite intersection of maximal submodules.

Then M is non-M -singular.

Proof. We will show that M is bounded. Let N ≤e M . By hypothesis, there exists a finite

family of maximal submodules M1, . . . ,Mn such that N =
⋂n
i=1Mi. Hence there exists

a monomorphism M/N ↪→
⊕n

i=1M/Mi. Let Pi = AnnM (M/Mi) for i = 1, . . . , n. Since

M is prime but not primitive, each Pi 6= 0 and Pi ≤e M , so P1 ∩ · · · ∩ Pn 6= 0 and

(P1 ∩ · · · ∩ Pn)M

n⊕
i=1

M/Mi = 0.

This implies that

(P1 ∩ · · · ∩ Pn)MM/N = 0.

Hence P1 ∩ · · · ∩Pn ⊆ N . Since P1 ∩ · · · ∩Pn is essential and fully invariant in M , we have

that M is bounded. Thus the proof is completed by Lemma 5.10.
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Theorem 5.15. Let M be finitely generated and quasi-projective. Suppose that every

primitive factor module of M is artinian, and every essential submodule is a finite inter-

section of maximal submodules. If M is co-semisimple, then M is regular.

Proof. Suppose that M is primitive. By hypothesis, it is Artinian. Since M is co-

semisimple, it is semiprime by Proposition 5.4. Hence, M is semisimple by [9, Theo-

rem 1.17].

Suppose that M is not primitive. If M is prime, then M is non-M -singular by Propo-

sition 5.14. So M is semisimple artinian by Lemma 5.9 and Theorem 5.11.

Assume that M is not prime. We will use Corollary 2.4 to show the regularity of M .

Since M is co-semisimple, every nonzero fully invariant factor module of M is semiprime.

Now take a proper prime submodule P of M and consider the prime module M/P . We

claim that M/P is regular. If M/P is primitive, then M/P is semisimple Artinian by

hypothesis and Proposition 4.3. Assume that M/P is not primitive. Note the fact that

M/P satisfies all of the conditions in the hypothesis. Indeed, every primitive factor

module of M/P is artinian, M/P is co-semisimple, and for any essential submodule N/P

of M/P , N is an intersection of maximal submodules M1, . . . ,Mn of M since N ≤e M .

This implies that N/P is the finite intersection of maximal submodules M1/P, . . . ,Mn/P

of M/P . Hence, M/P is semisimple artinian as was in the case of M above. As a

result, in all cases, every prime factor module of M is regular. Thus M is regular by

Corollary 2.4.

Corollary 5.16. Let R be a ring such that every left primitive factor ring is artinian.

Assume that every essential left ideal of R is a finite intersection of maximal left ideals.

If R is a left V -ring, then R is von Neumann regular.

We end the paper with the following remark.

Remark 5.17. Recall that a ring R is fully idempotent if every two-sided ideal is idempo-

tent. In [2, Lemma 4.3], Baccella proved the following:

“A prime fully idempotent ring is right and left nonsingular.”

But this lemma is false. Consider the ring R constructed by G. M. Bergman which is

presented in detail in [11, p. 27]. This ring is a prime (in fact, primitive), uniform ring

and has a unique proper two-sided ideal U . The ideal U is idempotent and U = Zr(R),

the right singular ideal of R. Thus R is a prime fully idempotent ring and it is not right

nonsingular. Moreover, it can be seen that R is not left nonsingular. This implies that R

is neither right nor left V -ring by [25, Proposition 4.5].

On the other hand, in [3, Theorem], it was proved that if R is a ring whose right

primitive factor rings are artinian, then R is a right V -ring if and only if R is fully right
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idempotent if and only if R is von Neumann regular. But in that proof, it was used the

fact that any prime right V -ring is right nonsingular by citing [2, Lemma 4.3]. Therefore

the truth of [3, Theorem] is not certain now. Accordingly, we proved in Corollary 5.12

that if R is a right V -ring and right fully bounded ring whose right primitive factor rings

are artinian, then R is von Neumann regular.

In the literature some authors frequently use “any prime right V -ring is right non-

singular” based on [2, Lemma 4.3]. But now it turns out to be a problem and we do

not have a proof or a counterexample. Some approaches to this are Lemma 5.10 and

Proposition 5.14. The next proposition is another approximation.

Proposition 5.18. Let M be projective in σ[M ]. If M is prime, co-semisimple and

Soc(M) 6= 0, then M is non-M -singular and primitive.

Proof. Assume that Z(M) 6= 0. Since M is prime, any nonzero fully invariant submodule

of M is essential in M . Then Soc(M) ∩ Z(M) 6= 0. So there exists a simple M -singular

submodule S of M . Since S is M -injective, it is a direct summand of M . Thus S is

projective in σ[M ] and M -singular, a contradiction.

Let S be a simple submodule of M . Since AnnM (S)MS = 0 and M is prime,

AnnM (S) = 0. Thus M is primitive.

Corollary 5.19. If R is a prime left V -ring such that Soc(RR) 6= 0, then R is a left

nonsingular left primitive ring.
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[18] A. Ç. Özcan, A. Harmanci and P. F. Smith, Duo modules, Glasg. Math. J. 48 (2006),

no. 3, 533–545.
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