
TAIWANESE JOURNAL OF MATHEMATICS

Vol. 22, No. 1, pp. 63–77, February 2018

DOI: 10.11650/tjm/8124

Inequalities for the Casorati Curvatures of Real Hypersurfaces in Some

Grassmannians

Kwang-Soon Park

Abstract. In this paper we obtain two types of optimal inequalities consisting of

the normalized scalar curvature and the generalized normalized δ-Casorati curvatures

for real hypersurfaces of complex two-plane Grassmannians and complex hyperbolic

two-plane Grassmannians. We also find the conditions on which the equalities hold.

1. Introduction

As we know, S. S. Chern [11] gave an open question in 1968, which deals with the existence

of minimal immersions into any Euclidean spaces. To solve such problems, B.-Y. Chen

[8] introduced the notion of Chen invariants (or δ-invariants) in 1993 and he obtained

some optimal inequalities consisting of intrinsic invariants and extrinsic invariants for

Riemannian submanifolds. It is the starting point of the theory of Chen invariants, which

are one of the most interesting topics in differential geometry (see [1, 9, 12,18,23]).

The Casorati curvature of a submanifold in a Riemannian manifold is the extrinsic

invariant, which is the normalized square of the second fundamental form. Some optimal

inequalities containing Casorati curvatures were obtained for submanifolds of real space

forms, complex space forms, and quaternionic space forms (see [10,13,17,21]). The notion

of Casorati curvature is the extended version of the notion of the principal curvatures of a

hypersurface of a Riemannian manifold. Hence, it is both important and very interesting

to obtain some optimal inequalities for the Casorati curvatures of submanifolds in ambient

Riemannian manifolds.

For the real hypersurfaces of both complex space forms and quaternionic space forms,

we see that by using the Codazzi equation, there does not exist any real hyersurface with

parallel shape operator.

The following are also well-known. A real hypersurface of a complex projective space

with a parallel second fundamental form is locally congruent to a tube over some totally

geodesic complex submanifold with some radius [16]. There does not exist any real Hopf

hypersurface with parallel Ricci tensor of a complex projective space [15].
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A real hypersurface of a quaternionic projective space with the shape operator to be

parallel with respect to some almost contact structure vector fields is locally congruent

to a tube over some quaternionic projective space with some radius [19]. After these

results had been introduced, many geometers studied real hypersurfaces of a complex

two-plane Grassmannian G2(Cm+2). We know that some natural two distributions of a

real hypersurface of G2(Cm+2) with m ≥ 3 are invariant under the shape operator if and

only if either it is an open part of a tube around a totally geodesic submanifold G2(Cm+1)

of G2(Cm+2) or it is an open part of a tube around a totally geodesic submanifold HPn

of G2(Cm+2) [4]. There does not exist any real hypersurface of G2(Cm+1) with parallel

second fundamental form [22].

As we know, both a complex two-plane Grassmannian G2(Cm+2) and a complex hy-

perbolic two-plane Grassmannian SU2,m/S(U2 ·Um) are examples of Hermitian symmetric

spaces with rank 2. Studying a real hypersurface of Hermitian symmetric spaces with

rank 2 is very important and one of the main topics in submanifold theory. Furthermore,

the classification of real hypersurfaces of Hermitian symmetric spaces with rank 2 is one

of the important subjects in differential geometry.

Many geometers obtained some results on SU2,m/S(U2 · Um). The maximal complex

subbundle and the maximal quaternionic subbundle of a real hypersurface of SU2,m/S(U2 ·
Um) are invariant under the shape operator if and only if it is locally congruent to an

open part of some particular type of hypersurfaces [5]. There does not exist any real

hypersurface in complex hyperbolic two-plane Grassmannian SU2,m/S(U2 · Um), m ≥ 3,

with commuting shape operator [20]. There does not exist any Hopf hypersurface in

complex hyperbolic two-plane Grassmannian SU2,m/S(U2 · Um), m ≥ 3, with commuting

shape operator on the complex maximal subbundle [20].

As the author knows, there are only examples of optimal inequalities for the submani-

folds of constant space forms (i.e., real space forms, complex space forms, and quaternionic

space forms). Therefore, the optimal inequalities, which are given here, are both mean-

ingful and very important.

2. Preliminaries

In this section we remind some notions, which will be used in the following sections.

Given an almost Hermitian manifold (N, g, J), i.e., N is a C∞-manifold, g is a Rie-

mannian metric on N , and J is a compatible almost complex structure on (N, g) (i.e.,

J ∈ End(TN), J2 = − id, g(JX, JY ) = g(X,Y ) for any vector fields X,Y ∈ Γ(TN)), we

call the manifold (N, g, J) Kähler if ∇J = 0, where ∇ is the Levi-Civita connection of g.

Let N be a 4m-dimensional C∞-manifold and let E be a rank 3 subbundle of End(TN)

such that for any point p ∈ N with a neighborhood U , there exists a local basis {J1, J2, J3}
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of sections of E on U satisfying for all α ∈ {1, 2, 3}

J2
α = − id, JαJα+1 = −Jα+1Jα = Jα+2,

where the indices are taken from {1, 2, 3}modulo 3. Then we call E an almost quaternionic

structure on N and (N,E) an almost quaternionic manifold [2].

Moreover, let g be a Riemannian metric on N such that for any point p ∈ N with a

neighborhood U , there exists a local basis {J1, J2, J3} of sections of E on U satisfying for

all α ∈ {1, 2, 3}

J2
α = − id, JαJα+1 = −Jα+1Jα = Jα+2,(2.1)

g(JαX, JαY ) = g(X,Y )(2.2)

for all vector fields X,Y ∈ Γ(TN), where the indices are taken from {1, 2, 3} modulo 3.

Then we call (N,E, g) an almost quaternionic Hermitian manifold [14].

For convenience, the above basis {J1, J2, J3} satisfying (2.1) and (2.2) is said to be a

quaternionic Hermitian basis.

Let (N,E, g) be an almost quaternionic Hermitian manifold. We call (N,E, g) a quater-

nionic Kähler manifold if there exist locally defined 1-forms ω1, ω2, ω3 such that for

α ∈ {1, 2, 3}
∇XJα = ωα+2(X)Jα+1 − ωα+1(X)Jα+2

for any vector field X ∈ Γ(TN), where the indices are taken from {1, 2, 3} modulo 3 [14].

If there exists a global parallel quaternionic Hermitian basis {J1, J2, J3} of sections

of E on N (i.e., ∇Jα = 0 for α ∈ {1, 2, 3}, where ∇ is the Levi-Civita connection of

the metric g), then (N,E, g) is said to be a hyperkähler manifold. Furthermore, we call

(J1, J2, J3, g) a hyperkähler structure on N and g a hyperkähler metric [6].

Let G2(Cm+2) be the set of all complex 2-dimensional linear subspaces of Cm+2. Then

we know that the complex two-plane Grassmannian G2(Cm+2) has some Riemannian

symmetric structure (see [3, 22]). Denote by g the corresponding metric. As we know, it

is the unique compact irreducible Riemannian manifold such that it has both a Kähler

structure J and a quaternionic Kähler structure E with J /∈ E. And G2(Cm+2) is the

unique compact irreducible Kähler quaternionic Kähler manifold such that it is not a

hyperkähler manifold.

Given a local quaternionic Hermitian basis {J1, J2, J3} of E, we have

(2.3) Ji ◦ J = J ◦ Ji

for Ji ∈ {J1, J2, J3} and the Riemannian curvature tensor R of (G2(Cm+2), g) is locally
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given by

R(X,Y )Z = g(Y, Z)X − g(X,Z)Y + g(JY, Z)JX − g(JX,Z)JY − 2g(JX, Y )JZ

+

3∑
α=1

{g(JαY,Z)JαX − g(JαX,Z)JαY − 2g(JαX,Y )JαZ}

+

3∑
α=1

{g(JαJY, Z)JαJX − g(JαJX,Z)JαJY }

(2.4)

for any vector fields X,Y, Z ∈ Γ(TG2(Cm+2)) (see [3, 22]).

Similarly, let SU2,m/S(U2 · Um) be the set of all complex two-dimensional linear sub-

spaces in indefinite complex Euclidean space Cm+2
2 . Then the complex hyperbolic two-

plane Grassmannian SU2,m/S(U2 ·Um) becomes a connected simply connected irreducible

Riemannian symmetric space with noncompact type and rank two [5]. Denote by g the

corresponding metric. It is the unique noncompact irreducible manifold with negative

scalar curvature such that it has a Kähler structure J and a quaternionic Kähler structure

E with J /∈ E [5].

We also know that given a local quaternionic Hermitian basis {J1, J2, J3} of E, we

have

(2.5) Ji ◦ J = J ◦ Ji

for Ji ∈ {J1, J2, J3} and the Riemannian curvature tensor R of (SU2,m/S(U2 · Um), g) is

locally given by

R(X,Y )Z

= −1

2

[
g(Y,Z)X − g(X,Z)Y + g(JY, Z)JX − g(JX,Z)JY − 2g(JX, Y )JZ

+
3∑

α=1

{g(JαY, Z)JαX − g(JαX,Z)JαY − 2g(JαX,Y )JαZ}

+

3∑
α=1

{g(JαJY, Z)JαJX − g(JαJX,Z)JαJY }
]

(2.6)

for any vector fields X,Y, Z ∈ Γ(TSU2,m/S(U2 · Um)) [5].

Furthermore, we remind some notions, which will be used later. Let (N, gN ) be a

Riemannian manifold and M a submanifold of (N, gN ) with the induced metric gM . Then

the Gauss and Weingarten formula are given by

∇XY = ∇XY + h(X,Y )

for X,Y ∈ Γ(TM),

∇XN = −ANX +∇⊥XN
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for X ∈ Γ(TM) and N ∈ Γ(TM⊥), where ∇ and ∇ are the Levi-Civita connections of the

metrics gN and gM , respectively, h is the second fundamental form of M in N , A is the

shape operator of M in N , and ∇⊥ is the normal connection of M in N .

We denote by R and R the Riemannian curvature tensors of gN and gM , respectively.

Then the Gauss equation is given by

(2.7) R(X,Y, Z,W ) = R(X,Y, Z,W ) + gN (h(X,W ), h(Y,Z))− gN (h(X,Z), h(Y,W ))

for any vector fields X,Y, Z,W ∈ Γ(TM), where R(X,Y, Z,W ) := gN (R(X,Y )Z,W ) and

R(X,Y, Z,W ) := gM (R(X,Y )Z,W ).

Consider a local orthonormal tangent frame {e1, . . . , em} of the tangent bundle TM

of M and a local orthonormal normal frame {em+1, . . . , en} of the normal bundle TM⊥

of M in N . The scalar curvature τ of M is defined by

τ =
∑

1≤i<j≤m
K(ei ∧ ej),

where K(ei ∧ ej) := R(ei, ej , ej , ei) for 1 ≤ i < j ≤ m. The normalized scalar curvature ρ

of M is given by

ρ =
2τ

m(m− 1)
.

We denote by H the mean curvature vector field of M in N , i.e., H = 1
m

∑m
i=1 h(ei, ei).

Conveniently, let hαij := gN (h(ei, ej), eα) for i, j ∈ {1, . . . ,m} and α ∈ {m + 1, . . . , n}.
Then we have the squared mean curvature ||H||2 of M in N and the squared norm ||h||2

of h as follows:

||H||2 =
1

m2

n∑
α=m+1

(
m∑
i=1

hαii

)2

,

||h||2 =
n∑

α=m+1

m∑
i,j=1

(hαij)
2.

The Casorati curvature C of M in N is defined by

C :=
1

m
||h||2.

The submanifold M is said to be invariantly quasi-umbilical if there exists a local or-

thonormal normal frame {em+1, . . . , en} of M in N such that the shape operators Aeα
have an eigenvalue of multiplicity m− 1 for all α ∈ {m+ 1, . . . , n} and the distinguished

eigendirection of Aeα is the same for each α ∈ {m+ 1, . . . , n} [7].

Let L be a k-dimensional subspace of TpM , k ≥ 2, for p ∈M such that {e1, . . . , ek} is

an orthonormal basis of L. Then the scalar curvature τ(L) of the k-plane L is given by

τ(L) :=
∑

1≤i<j≤k
K(ei ∧ ej)
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and the Casorati curvature C(L) of the subspace L is defined by

C(L) :=
1

k

n∑
α=m+1

k∑
i,j=1

(hαij)
2.

The normalized δ-Casorati curvatures δc(m− 1) and δ̂c(m− 1) of M in N are given by

[δc(m− 1)](p) :=
1

2
C(p) +

m+ 1

2m
inf{C(L) | L is a hyperplane of TpM},

[δ̂c(m− 1)](p) := 2C(p)− 2m− 1

2m
sup{C(L) | L is a hyperplane of TpM}.

We define the generalized normalized δ-Casorati curvatures δc(r,m − 1) and δ̂c(r,m − 1)

of M in N as follows:

[δc(r,m− 1)](p)

:= rC(p) +
(m− 1)(m+ r)(m2 −m− r)

rm
inf{C(L) | L is a hyperplane of TpM}

for 0 < r < m2 −m,

[δ̂c(r,m− 1)](p)

:= rC(p)− (m− 1)(m+ r)(r −m2 +m)

rm
sup{C(L) | L is a hyperplane of TpM}

for r > m2 −m.

Notice that [δc(
m(m−1)

2 ,m− 1)](p) = m(m− 1)[δc(m− 1)](p) and [δ̂c(2m(m− 1),m−
1)](p) = m(m− 1)[δ̂c(m− 1)](p) for p ∈M so that the generalized normalized δ-Casorati

curvatures δc(r,m − 1) and δ̂c(r,m − 1) are the generalized versions of the normalized

δ-Casorati curvatures δc(m− 1) and δ̂c(m− 1), respectively.

Throughout this paper, we will use the above notations.

3. Some optimal inequalities

In this section we will obtain some optimal inequalities consisting of the normalized scalar

curvature and the generalized normalized δ-Casorati curvatures for real hypersurfaces of

complex two-plane Grassmannians and complex hyperbolic two-plane Grassmannians.

Theorem 3.1. Let M be a real hypersurface of a complex two-plane Grassmannians

G2(Cm+2) with n = 4m− 1. Then we have

(a) The generalized normalized δ-Casorati curvature δc(r, n− 1) satisfies

(3.1) ρ ≤ δc(r, n− 1)

n(n− 1)
+
n+ 9

n

for any r ∈ R with 0 < r < n(n− 1).
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(b) The generalized normalized δ-Casorati curvature δ̂c(r, n− 1) satisfies

(3.2) ρ ≤ δ̂c(r, n− 1)

n(n− 1)
+
n+ 9

n

for any r ∈ R with r > n(n− 1).

Moreover, the equalities hold in the relations (3.1) and (3.2) if and only if M is an

invariantly quasi-umbilical submanifold with flat normal connection in G2(Cm+2) such that

with some orthonormal tangent frame {e1, . . . , en} of TM and orthonormal normal frame

{en+1 = e} of TM⊥, the shape operator Ae takes the following form

(3.3) Ae =



a 0 · · · 0 0

0 a · · · 0 0
...

...
. . .

...
...

0 0 · · · a 0

0 0 · · · 0 n(n−1)
r a


.

Proof. Since M is a real hypersurface of G2(Cm+2) with a unit normal vector field e, we

may choose a local orthonormal tangent frame {e1, . . . , en} of TM and an orthonormal

normal frame {en+1 = e} of TM⊥ such that

em+i = J1ei, e2m+i = J2ei, e3m+i = J3ei,

e4m−3 = ξ1 = −J1e, e4m−2 = ξ2 = −J2e, e4m−1 = en = ξ3 = −J3e

for 1 ≤ i ≤ m− 1, where {J1, J2, J3} is a local quaternionic Hermitian basis of E.

Let ξ := −Je.

Using (2.4) and (2.7), we get

2τ(p) = n(n− 1) + 3
n∑

i,j=1

g(ei, Jej)
2

+
3∑

α=1

n∑
i,j=1

{3g(ei, Jαej)
2 + g(ei, JαJei) · g(ej , JαJej)− g(ei, JαJej)

2}

+ n2||H||2 − ||h||2 for p ∈M.
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With some computations, we obtain

3
n∑

i,j=1

g(ei, Jej)
2 +

3∑
α=1

n∑
i,j=1

{3g(ei, Jαej)
2 + g(ei, JαJei) · g(ej , JαJej)− g(ei, JαJej)

2}

= 3

n∑
i,j=1

g(ei, Jej)
2 +

3∑
α=1

{
3(n− 1) +

( n∑
i=1

g(ei, JαJei)

)2

−
n∑

i,j=1

g(ei, Jej)
2 +

n∑
j=1

g(ξα, Jej)
2 −

n∑
j=1

g(e, Jej)
2

}

= 9(n− 1)− 3
n∑
j=1

g(e, Jej)
2 +

3∑
α=1

{( n∑
i=1

g(ei, JαJei)

)2

+
n∑
j=1

g(ξα, Jej)
2

}
.

Moreover,

n∑
j=1

g(e, Jej)
2 =

n∑
j=1

g(ξ, ej)
2 =

n+1∑
j=1

g(ξ, ej)
2 = ||ξ||2 = g(e, e) = 1,

n∑
i=1

g(ei, JαJei)

= −
n∑
i=1

g(Jαei, Jei)

= −
m−1∑
i=1

{g(Jαei, Jei) + g(JαJ1ei, JJ1ei) + g(JαJ2ei, JJ2ei) + g(JαJ3ei, JJ3ei)}

− (g(Jαξ1, Jξ1) + g(Jαξ2, Jξ2) + g(Jαξ3, Jξ3))

= 0− (g(JαJ1e, JJ1e) + g(JαJ2e, JJ2e) + g(JαJ3e, JJ3e)) (by (2.3))

= g(Jαe, Je) = g(ξα, ξ) (by (2.3)),

n∑
j=1

g(ξα, Jej)
2 =

n∑
j=1

g(Jξα, ej)
2 =

n+1∑
j=1

g(Jξα, ej)
2 − g(Jξα, e)

2

= ||Jξα||2 − g(ξα, ξ)
2 = 1− g(ξα, ξ)

2.

Hence,

9(n− 1)− 3
n∑
j=1

g(e, Jej)
2 +

3∑
α=1

{( n∑
i=1

g(ei, JαJei)

)2

+

n∑
j=1

g(ξα, Jej)
2

}
= 9(n− 1).

Therefore,

(3.4) 2τ(p) = (n+ 9)(n− 1) + n2||H||2 − nC.
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Conveniently, let hij := hn+1
ij = g(h(ei, ej), en+1) for i, j ∈ {1, 2, . . . , n}.

Consider the quadratic polynomial in the components of the second fundamental form

P := rC +
(n− 1)(n+ r)(n2 − n− r)

rn
C(L)− 2τ(p) + (n+ 9)(n− 1),

where L is a hyperplane of TpM .

Now, we deal with some linear algebraic properties of the quadratic polynomial P.

Without loss of generality, we may assume that L is spanned by e1, . . . , en−1.

With a simple calculation, by (3.4), we have

P =
r

n

n∑
i,j=1

h2ij +
(n+ r)(n2 − n− r)

rn

n−1∑
i,j=1

h2ij − 2τ(p) + (n+ 9)(n− 1)

=
n+ r

n

n∑
i,j=1

h2ij +
(n+ r)(n2 − n− r)

rn

n−1∑
i,j=1

h2ij −

(
n∑
i=1

hii

)2

=
n−1∑
i=1

[
n2 + n(r − 1)− 2r

r
h2ii +

n+ r

n
(h2in + h2ni)

]
+

(n+ r)(n− 1)

r

∑
1≤i 6=j≤n−1

h2ij −
∑

1≤i 6=j≤n
hiihjj +

r

n
h2nn.

(3.5)

From (3.5), the critical points hc = (h11, h12, . . . , hnn) of P are the solutions of the system

of linear homogeneous equations:

(3.6)



∂P
∂hii

= 2(n+r)(n−1)
r hii − 2

∑n
k=1 hkk = 0,

∂P
∂hnn

= 2r
n hnn − 2

∑n−1
k=1 hkk = 0,

∂P
∂hij

= 2(n+r)(n−1)
r hij = 0,

∂P
∂hin

= 2(n+r)
n hin = 0,

∂P
∂hni

= 2(n+r)
n hni = 0

for i, j ∈ {1, 2, . . . , n− 1} with i 6= j.

From (3.6), any solutions hc satisfy hij = 0 for i, j ∈ {1, 2, . . . , n} with i 6= j.

Moreover, we get the Hessian matrix H(P) of P as follows:

H(P) =


H1 0 0

0 H2 0

0 0 H3

 ,
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where

H1 =



2(n+r)(n−1)
r − 2 −2 · · · −2 −2

−2 2(n+r)(n−1)
r − 2 · · · −2 −2

...
...

. . .
...

...

−2 −2 · · · 2(n+r)(n−1)
r − 2 −2

−2 −2 · · · −2 2r
n


,

0 denotes the zero matrices with the corresponding sizes, and the diagonal matrices H2,

H3 are given by

H2 = diag

(
2(n+ r)(n− 1)

r
,
2(n+ r)(n− 1)

r
, . . . ,

2(n+ r)(n− 1)

r

)
,

H3 = diag

(
2(n+ r)

n
,
2(n+ r)

n
, . . . ,

2(n+ r)

n

)
.

Then we can find that the Hessian matrix H(P) has the following eigenvalues

λ11 = 0, λ22 =
2(n3 − n2 + r2)

rn
, λ33 = · · · = λnn =

2(n+ r)(n− 1)

r
,

λij =
2(n+ r)(n− 1)

r
, λin = λni =

2(n+ r)

n

for i, j ∈ {1, 2, . . . , n− 1} with i 6= j.

Thus, we know that P is parabolic and has a minimum P(hc) at any solution hc of the

system (3.6). Applying (3.6) to (3.5), we obtain P(hc) = 0. So, P ≥ 0 and this implies

2τ(p) ≤ rC +
(n− 1)(n+ r)(n2 − n− r)

rn
C(L) + (n+ 9)(n− 1).

Therefore, we get

(3.7) ρ ≤ r

n(n− 1)
C +

(n+ r)(n2 − n− r)
rn2

C(L) +
n+ 9

n

for any hyperplane L of TpM so that both inequalities (3.1) and (3.2) easily follow from

(3.7).

Furthermore, we see that the equalities hold at the relations (3.1) and (3.2) if and only

if

hij = 0 for i, j ∈ {1, 2, . . . , n} with i 6= j,

hnn =
n(n− 1)

r
h11 =

n(n− 1)

r
h22 = · · · = n(n− 1)

r
hn−1,n−1.

Therefore, we get that the equalities hold at (3.1) and (3.2) if and only if the submanifold

M is invariantly quasi-umbilical with flat normal connection in G2(Cm+2) such that the

shape operator takes the form (3.3) with respect to some orthonormal tangent and normal

frames.
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In the same way, by using (2.5) and (2.6), we obtain

Theorem 3.2. Let M be a real hypersurface of a complex hyperbolic two-plane Grass-

mannian SU2,m/S(U2 · Um) with n = 4m− 1. Then we have

(a) The generalized normalized δ-Casorati curvature δc(r, n− 1) satisfies

(3.8) ρ ≤ δc(r, n− 1)

n(n− 1)
− n+ 9

2n

for any r ∈ R with 0 < r < n(n− 1).

(b) The generalized normalized δ-Casorati curvature δ̂c(r, n− 1) satisfies

(3.9) ρ ≤ δ̂c(r, n− 1)

n(n− 1)
− n+ 9

2n

for any r ∈ R with r > n(n− 1).

Moreover, the equalities hold in the relations (3.8) and (3.9) if and only if M is an

invariantly quasi-umbilical submanifold with flat normal connection in SU2,m/S(U2 · Um)

such that with some orthonormal tangent frame {e1, . . . , en} of TM and orthonormal

normal frame {en+1 = e} of TM⊥, the shape operator Ae takes the following form

Ae =



a 0 · · · 0 0

0 a · · · 0 0
...

...
. . .

...
...

0 0 · · · a 0

0 0 · · · 0 n(n−1)
r a


.

Using the relations [δc(
n(n−1)

2 , n−1)](p) = n(n−1)[δc(n−1)](p) and [δ̂c(2n(n−1), n−
1)](p) = n(n− 1)[δ̂c(n− 1)](p) for p ∈M , we easily have

Corollary 3.3. Let M be a real hypersurface of a complex two-plane Grassmannians

G2(Cm+2) with n = 4m− 1. Then we get

(a) The normalized δ-Casorati curvature δc(n− 1) satisfies

ρ ≤ δc(n− 1) +
n+ 9

n
.

Moreover, the equality holds if and only if M is an invariantly quasi-umbilical sub-

manifold with flat normal connection in G2(Cm+2) such that with some orthonormal
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tangent frame {e1, . . . , en} of TM and orthonormal normal frame {en+1 = e} of

TM⊥, the shape operator Ae takes the following form

Ae =



a 0 · · · 0 0

0 a · · · 0 0
...

...
. . .

...
...

0 0 · · · a 0

0 0 · · · 0 2a


.

(b) The normalized δ-Casorati curvature δ̂c(n− 1) satisfies

ρ ≤ δ̂c(n− 1) +
n+ 9

n
.

Moreover, the equality holds if and only if M is an invariantly quasi-umbilical sub-

manifold with flat normal connection in G2(Cm+2) such that with some orthonormal

tangent frame {e1, . . . , en} of TM and orthonormal normal frame {en+1 = e} of

TM⊥, the shape operator Ae takes the following form

Ae =



2a 0 · · · 0 0

0 2a · · · 0 0
...

...
. . .

...
...

0 0 · · · 2a 0

0 0 · · · 0 a


.

Corollary 3.4. Let M be a real hypersurface of a complex hyperbolic two-plane Grass-

mannian SU2,m/S(U2 · Um) with n = 4m− 1. Then we obtain

(a) The normalized δ-Casorati curvature δc(n− 1) satisfies

ρ ≤ δc(n− 1)− n+ 9

2n
.

Moreover, the equality holds if and only if M is an invariantly quasi-umbilical sub-

manifold with flat normal connection in SU2,m/S(U2 · Um) such that with some or-

thonormal tangent frame {e1, . . . , en} of TM and orthonormal normal frame {en+1 =

e} of TM⊥, the shape operator Ae takes the following form

Ae =



a 0 · · · 0 0

0 a · · · 0 0
...

...
. . .

...
...

0 0 · · · a 0

0 0 · · · 0 2a


.
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(b) The normalized δ-Casorati curvature δ̂c(n− 1) satisfies

ρ ≤ δ̂c(n− 1)− n+ 9

2n
.

Moreover, the equality holds if and only if M is an invariantly quasi-umbilical sub-

manifold with flat normal connection in SU2,m/S(U2 · Um) such that with some or-

thonormal tangent frame {e1, . . . , en} of TM and orthonormal normal frame {en+1 =

e} of TM⊥, the shape operator Ae takes the following form

Ae =



2a 0 · · · 0 0

0 2a · · · 0 0
...

...
. . .

...
...

0 0 · · · 2a 0

0 0 · · · 0 a


.
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[14] S. Ianuş, R. Mazzocco and G. E. Vı̂lcu, Riemannian submersions from quaternionic

manifolds, Acta. Appl. Math. 104 (2008), no. 1, 83–89.

[15] M. Kimura, Real hypersurfaces of a complex projective space, Bull. Austral. Math.

Soc. 33 (1986), no. 3, 383–387.

[16] M. Kimura and S. Maeda, On real hypersurfaces of a complex projective space II,

Tsukuba J. Math. 15 (1991), no. 2, 547–561.

[17] J. Lee and G.-E. Vı̂lcu, Inequalities for generalized normalized δ-Casorati curvatures

of slant submanifolds in quaternionic space forms, Taiwanese J. Math. 19 (2015),

no. 3, 691–702.
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[21] V. Slesar, B. Şahin and G.-E. Vı̂lcu, Inequalities for the Casorati curvatures of slant

submanifolds in quaternionic space forms, J. Inequal. Appl. 2014, 2014:123, 10 pp.

[22] Y. J. Suh, Real hypersurfaces in complex two-plane Grassmannians with parallel shape

operator, Bull. Austral. Math. Soc. 67 (2003), no. 3, 493–502.

[23] G. E. Vı̂lcu, Slant submanifolds of quaternionic space forms, Publ. Math. Debrecen

81 (2012), no. 3-4, 397–413.

Kwang-Soon Park

Division of General Mathematics, Room 4-107, Changgong Hall, University of Seoul,

Seoul 02504, Republic of Korea

E-mail address: parkksn@gmail.com


	Introduction
	Preliminaries
	Some optimal inequalities

