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Some Results on Skew Generalized Power Series Rings

Kamal Paykan* and Ahmad Moussavi

Abstract. Let R be a ring, (S,≤) a strictly ordered monoid and ω : S → End(R) a

monoid homomorphism. The skew generalized power series ring RJS, ωK is a common

generalization of (skew) polynomial rings, (skew) power series rings, (skew) Laurent

polynomial rings, (skew) group rings, and Mal’cev-Neumann Laurent series rings. In

this paper, we continue the study of skew generalized power series ring RJS, ωK. It

is shown that under suitable conditions, if R has a (flat) projective socle, then so

does RJS, ωK. Necessary and sufficient conditions are obtained for RJS, ωK to satisfy a

certain ring property which is among being local, semilocal, semiperfect, semiregular,

left quasi-duo, clean, exchange, right stable range one, projective-free, and I-ring,

respectively.

1. Introduction

Throughout this paper all monoids and rings are with identity element that is inherited

by submonoids and subrings and preserved under homomorphisms, but neither monoids

nor rings are assumed to be commutative.

A partially ordered set (S,≤) is called artinian if every strictly decreasing sequence

of elements of S is finite, and (S,≤) is called narrow if every subset of pairwise order-

incomparable elements of S is finite. Thus, (S,≤) is artinian and narrow if and only if

every nonempty subset of S has at least one but only a finite number of minimal elements.

An ordered monoid is a pair (S,≤) consisting of a monoid S and an order ≤ on S such

that for all a, b, c ∈ S, a ≤ b implies ca ≤ cb and ac ≤ bc. An ordered monoid (S,≤) is

said to be strictly ordered if for all a, b, c ∈ S, a < b implies ca < cb and ac < bc.

For a strictly ordered monoid S and a ring R, Ribenboim [31] defined the ring of gen-

eralized power series RJSK consisting of all maps from S to R whose support is artinian

and narrow with the pointwise addition and the convolution multiplication. This con-

struction provided interesting examples of rings (e.g., Elliott and Ribenboim, [4]; Riben-

boim, [29, 30]) and it was extensively studied by many authors. In [16], R. Mazurek and
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M. Ziembowski, introduced a “twisted” version of the Ribenboim construction and stud-

ied when it produces a von Neumann regular ring. Now we recall the construction of the

skew generalized power series ring introduced in [16]. Let R be a ring, (S,≤) a strictly

ordered monoid, and ω : S → End(R) a monoid homomorphism. For s ∈ S, let ωs denote

the image of s under ω, that is ωs = ω(s). Let A be the set of all functions f : S → R

such that the support supp(f) = {s ∈ S : f(s) 6= 0} is artinian and narrow. Then for any

s ∈ S and f, g ∈ A the set

Xs(f, g) = {(x, y) ∈ supp(f)× supp(g) : s = xy}

is finite. Thus one can define the product fg : S → R of f, g ∈ A as follows:

fg(s) =
∑

(u,v)∈Xs(f,g)

f(u)ωu(g(v)),

(by convention, a sum over the empty set is 0). With pointwise addition and multiplication

as defined above, A becomes a ring, called the ring of skew generalized power series with

coefficients in R and exponents in S (one can think of a map f : S → R as a formal

series
∑

s∈S rss, where rs = f(s) ∈ R) and denoted either by RJS≤, ωK or by RJS, ωK
(see [14–16,26,27]).

The skew generalized power series construction embraces a wide range of classical

ring-theoretic extensions, including skew polynomial rings, skew power series rings, skew

Laurent polynomial rings, skew group rings, Mal’cev-Neumann Laurent series rings and of

course the “untwisted” versions of all of these (for details see Section 2). Hence it can be

applied to unify various results known for particular extensions. We would like to stress

that using this general approach, in this paper we not only unified the already known

theorems, but also obtained many new results, for several constructions simultaneously.

In this paper, we show that, if R has a projective socle, then so does RJS, ωK, where

(S,≤) is a positively quasitotally ordered monoid and ω : S → Aut(R) a monoid homo-

morphism. Furthermore, in the case where S is positively ordered, we characterize when

RJS, ωK is local, semilocal, semiperfect, semiregular, left quasi-duo, clean, exchange, I-

ring, and projective-free, respectively. In particular, we prove that RJS, ωK is isomorphic

to a full matrix ring over a local ring if and only if the ring R is isomorphic to a full

matrix ring over a local ring. Also, we prove that several properties, including the semi-

boolean, right stable range one and 2-good property, transfer between R and the extension

RJS, ωK. As an application, we provide (apparently) new examples of the aforementioned

ring constructions.
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2. Skew generalized power series rings over a ring with projective socle

Throughout this paper, all rings are associative. For a ring R, we denote by U(R) and

J(R) the multiplicative group of units, and the Jacobson radical of R, respectively. For a

nonempty subset X of R, rR(X) (resp. `R(X)) is used for the right (resp. left) annihilator

of X over R. We will denote by End(R) the monoid of ring endomorphisms of R, and by

Aut(R) the group of ring automorphisms of R. The left socle of R will be symbolized by

Soc(R). Also, we use Z, N, Q and R for the set of integers, the set of positive integers,

the field of rational numbers and the field of real numbers, respectively. We will use the

symbol 1 to denote the identity element of the monoid S, the ring R, and the ring RJS, ωK,
as well as the trivial monoid homomorphism 1: S → End(R) that sends every element of

S to the identity endomorphism.

To each r ∈ R and s ∈ S, we associate elements cr, es ∈ RJS, ωK defined by

cr(x) =

r x = 1,

0 x ∈ S \ {1} ,
es(x) =

1 x = s,

0 x ∈ S \ {s} .

It is clear that r 7→ cr is a ring embedding of R into RJS, ωK and s 7→ es is a monoid

embedding of S into the multiplicative monoid of the ring RJS, ωK, and escr = cωs(r)es.

The construction of skew generalized power series rings generalizes some classical ring

constructions such as polynomial rings (S = N ∪ {0} with usual addition, and trivial ≤
and ω), monoid rings (trivial ≤ and ω), skew polynomial rings (S = N ∪ {0} with usual

addition and trivial ≤), skew Laurent polynomial rings (S = Z with usual addition and

trivial ≤), skew monoid rings (trivial ≤), skew power series rings (S = N∪{0} with usual

addition and usual order), skew Laurent series rings (S = Z with usual addition and

usual order) (see [32]), the Mal’cev-Neumann construction ((S,≤) a totally ordered group

and trivial ω); (see [2, p. 528]), the Mal’cev-Neumann construction of twisted Laurent

series rings ((S,≤) a totally ordered group); (see [8, p. 242]), and generalized power series

rings RJSK (trivial ω; see [31, Section 4]), twisted generalized power series rings (see [16]

and [12, Section 2]).

Recall from [14] that an ordered monoid (S,≤) is called quasitotally ordered (and

that ≤ is a quasitotal order on S) if ≤ can be refined to an order � with respect to

which S is a strictly totally ordered monoid. The class of quasitotally ordered monoids is

quite large and important. For example, this class includes the linearly ordered monoids,

submonoids of a free group, and torsion-free nilpotent groups (see [25, Lemma 13.1.6 and

Corollary 13.2.8]). Also, every commutative, torsion-free, and cancellative ordered monoid

is quasitotally ordered monoid (e.g., see [28, 3.3]). We say that an ordered monoid (S,≤)

is positively ordered if 1 is the minimal element of S.
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A ring R is called a left PS-ring if the left socle, Soc(RR) is projective. These rings

were studied by Gordon in [6] and Nicholson and Watters in [23]. The concept of a PS-

ring is not left-right symmetric by [23, Example 2.7]. The class of rings with projective

socles includes all semiprime rings, nonsingular rings, V -rings (i.e., rings all of whose

simple right modules are injective) and PP rings (i.e., rings all of whose principal left

ideals are projective). In particular every Baer ring (i.e., rings in which every left (or

right) annihilator is generated by an idempotent) is a PS-ring. Nicholson and Watters

in [23] proved that R has a projective socle if and only if full matrix ring Mn(R) has a

projective socle by showing somewhat more. They proved that having a projective socle

is a Morita invariant. In [23, Theorem 3.1], they showed that if R has a projective socle,

then so does the polynomial ring R[x] (and the power series ring RJxK), but the converse is

false. In [13], Liu Zhongkui and Li Fang showed that the commutative PS-ring condition

is preserved by generalized power series ring RJS,≤K, where (S,≤) is a positively strictly

totally ordered monoid. The motivation of this section is to investigate the PS property

of the skew generalized power series rings.

The following characterization of a left PS-ring involving maximal left ideals has been

presented by Nicholson and Watters in [23, Theorem 2.4]. This lemma plays a fundamental

role to achieve our aim in this section.

Lemma 2.1. The following conditions are equivalent for a ring R:

(1) R is a left PS-ring.

(2) If I is a maximal left ideal of R, then rR(I) = eR, where e2 = e ∈ R.

Theorem 2.2. Let R be a ring and (S,≤) be a positively quasitotally ordered monoid.

Assume that ω : S → Aut(R) is a monoid homomorphism. If R is a right PS-ring, then

RJS, ωK is a right PS-ring.

Proof. We adapt the proof of [13, Theorem 4]. Let I be a maximal right ideal of A =

RJS, ωK. By the right-sides version of Lemma 2.1, it is enough to show that `A(I) = Ae

for some idempotent e ∈ A. By hypothesis, the order (S,≤) can be refined to a strict total

order � on S. For every 0 6= f ∈ A, since supp(f) is a nonempty artinian and narrow

subset of S, the set of minimal elements of supp(f) is finite and nonempty. Thus there

exists a unique minimal element of supp(f) under the total order �, which will be denoted

by π(f).

For every s ∈ S, set Is = {f(s) | f ∈ I, π(f) = s}, and I∗ =
⋃

s∈S Is. Let J be the

right ideal of R generated by I∗. If J = R, then there exist s1, . . . , sn ∈ S, f1, . . . , fn ∈ I,

and r1, . . . , rn ∈ R, such that

1 = f1(s1)r1 + · · ·+ fn(sn)rn
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and π(fi) = si, fi(si) ∈ Isi , i = 1, 2, . . . , n. Since ωsi is an automorphism, there exists ai

in R such that ωsi(ai) = ri, for i = 1, 2, . . . , n. So

(2.1) 1 = f1(s1)ωs1(a1) + · · ·+ fn(sn)ωsn(an).

Clearly we can assume that fi(si)ωsi(ai) 6= 0, for i = 1, 2, . . . , n. Thus (ficai)(si) 6= 0. For

any t ≺ si, if (ficai)(t) = fi(t)ωt(ai) 6= 0, then fi(t) 6= 0, a contradiction with π(fi) = si.

Hence π(ficai) = si. Suppose that h ∈ `A(I) and h 6= 0. Let π(h) = t. Since ficai ∈ I, we

have h(ficai) = 0. Thus

0 = (hficai)(tsi) =
∑

(u,v)∈Xtsi (h,ficai )

h(u)ωu(fi(v)ωv(ai)).

Since t and si are the minimal elements of supp(h) and supp(ficai), respectively, under

the total order �, if (u, v) ∈ Xtsi(h, ficai), then t � u and si � v. If t ≺ u, since � is a

strict order, tsi ≺ usi � uv = tsi, a contradiction. Thus u = t. Similarly, v = si. Hence

0 =
∑

(u,v)∈Xtsi (h,ficai )

h(u)ωu(fi(v)ωv(ai)) = h(t)ωt(fi(si)ωsi(ai)).

Thus ω−1t (h(t))fi(si)ωsi(ai) = 0, for i = 1, 2, . . . , n.

Multiplying (2.1) by ω−1t (h(t)) on the left-hand side, we obtain

ω−1t (h(t)) = ω−1t (h(t))f1(s1)ωs1(a1) + · · ·+ ω−1t (h(t))fn(sn)ωsn(an) = 0

which contradicts with h(t) 6= 0. Therefore h = 0, and so `A(I) = 0.

Now suppose that J 6= R. We show that J is a right maximal ideal of R. Let r ∈ R\J .

If cr ∈ I, then r = cr(1) ∈ I1, since π(cr) = 1, and so r ∈ J , a contradiction. Thus cr /∈ I.

So A = I + crA. It follows that there exist f ∈ I and g ∈ A such that c1 = f + crg. Thus

1 = c1(1) = f(1) + crg(1) = f(1) + rg(1).

If f(1) = 0, then 1 ∈ rR and so R = J + rR. If f(1) 6= 0, then 1 ∈ supp(f). Since S is

positively ordered, we have π(f) = 1. Thus f(1) ∈ I1 ⊆ J , which implies that R = J+rR.

Hence J is a right maximal ideal of R.

Since R is a right PS-ring, there exists an idempotent e2 = e of R such that `R(J) =

Re. We will show that `A(I) = Ace. Clearly, ce is an idempotent of A.

If ceI * I, then A = I + ceI. So there exist f, g ∈ I such that c1 = f + ceg. Thus

1 = f(1) + eg(1). Since S is positively ordered and eJ = 0, it follows that 1 ∈ J , a

contradiction. Therefore ceI ⊆ I.

Suppose that f ∈ I. Then cef ∈ I. If cef 6= 0, then set π(cef) = t. So (cef)(t) 6= 0.

Hence (cef)(t) = ef(t) ∈ It ⊆ J . Thus e(ef(t)) = ef(t) = 0, which is a contradiction.

Therefore cef = 0. This follows that Ace ⊆ `A(I).
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Let g ∈ `A(I) and g 6= 0. Set π(g) = s. For any a ∈ J , there exist s1, . . . , sn ∈ S,

f1, . . . , fn ∈ I, and r1, . . . , rn ∈ R, such that a = f1(s1)r1 + · · ·+ fn(sn)rn, and π(fi) = si,

fi(si) ∈ Isi , i = 1, 2, . . . , n. Since ωsi is an automorphism, there exists ai in R such that

ωsi(ai) = ri, for i = 1, 2, . . . , n. So

(2.2) a = f1(s1)ωs1(a1) + · · ·+ fn(sn)ωsn(an).

Clearly we can assume that fi(si)ωsi(ai) 6= 0, for i = 1, 2, . . . , n. Thus (ficai)(si) 6= 0. For

any t ≺ si, if (ficai)(t) = fi(t)ωt(ai) 6= 0, then fi(t) 6= 0, a contradiction with π(fi) = si.

Hence π(ficai) = si.

Since ficai ∈ I, we have g(ficai) = 0. Therefore

0 = (gficai)(ssi) =
∑

(u,v)∈Xssi (g,ficai )

g(u)ωu(fi(v)ωv(ai)).

Since s and si are the minimal elements of supp(g) and supp(ficai), respectively, under

the total order �, if (u, v) ∈ Xssi(g, ficai), then s � u and si � v. If s ≺ u, since � is a

strict order, ssi ≺ usi � uv = ssi, a contradiction. Thus u = s. Similarly, v = si. Hence

0 =
∑

(u,v)∈Xssi (g,ficai )

g(u)ωu(fi(v)ωv(ai)) = g(s)ωs(fi(si)ωsi(ai)).

Since ωs is an automorphism, there exists ds such that ωs(ds) = g(s). Then dsfi(si)ωsi(ai)

= 0, for i = 1, 2, . . . , n. Hence (2.2) implies that dsa = 0. This follows that ds ∈ `R(J) =

Re. Therefore ds = dse. Hence g(s) = g(s)ωs(e).

We claim that for any u ∈ supp(g), g(u) = g(u)ωu(e). Suppose that u ∈ supp(g).

Assume that g(v) = g(v)ωv(e) for any v ∈ supp(g) with v ≺ u. We will show that

g(u) = g(u)ωu(e). Denote

gu(x) =

g(x) x ≺ u,

0 u � x.

Then π(g − gu) = u. By hypothesis it is easy to see that gu = guce ∈ Ace ⊆ `A(I).

Thus g − gu ∈ `A(I). By analogy with the proof above, it follows that (g − gu)(u) =

(g − gu)(u)ωu(e), which implies that g(u) = g(u)ωu(e). Thus our claim holds. It follows

that g = gce ∈ Ace. Therefore `A(I) = Ace, and so RJS, ωK is a right PS-ring, and the

proof is complete.

Corollary 2.3. [13, Theorem 4] Let R be a commutative ring and (S,≤) be a positively

totally ordered monoid. If R is a PS-ring, then the ring of generalized power series RJSK
is a PS-ring.

Corollary 2.4. Let R be a right PS-ring and α be an automorphism of R. Then the skew

power series ring RJx;αK is a right PS-ring.
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Any submonoid of the additive monoid N ∪ {0} is called a numerical monoid.

Corollary 2.5. Let S be a numerical monoid, ≤ the usual natural order of N ∪ {0}. Let

R be a ring and ω : S → Aut(R) a monoid homomorphism. If R is a right PS-ring, then

RJS, ωK is a right PS-ring.

Corollary 2.6. Let S be a submonoid of (N ∪ {0})n (n ≥ 2), endowed with the order ≤
induced by the product order, or lexicographic order or reverse lexicographic order. Let

R be a right PS-ring and ω : S → Aut(R) a monoid homomorphism. Then RJS, ωK is a

right PS-ring.

Recall from [36] that R is a left FS-ring, if Soc(RR) is flat. This class includes all SF -

rings (i.e., rings whose simple modules are flat). Obviously PS-rings are FS-rings. Also,

the class of right FS-rings is closed under the polynomial extensions, direct products, and

excellent extensions (for more details see [11] and [36]).

By combining [36, Proposition 8] and Theorem 2.2, we obtain the following.

Corollary 2.7. Let R be a commutative ring and (S,≤) be a positively quasitotally ordered

monoid. Assume that ω : S → Aut(R) is a monoid homomorphism. If R is a FS-ring,

then RJS, ωK is a right FS-ring.

3. Skew generalized power series rings in some classes of rings

In this section, we study various properties and a variety of conditions and related prop-

erties that are inherited by the skew generalized powers series ring RJS, ωK from the ring

R. Recall that a ring R is local if R/J(R) is a division ring, and R is semilocal if R/J(R)

is a semisimple ring. In [18], R. Mazurek and M. Ziembowski examined which conditions

on a ring R and a strictly ordered monoid (S, · ,≤) are necessary and which are sufficient

for the generalized power series ring RJSK to be semilocal right Bézout or semilocal right

distributive. A ring R is said to be matrix local if R/J(R) is a simple Artinian ring. A

ring R is said to be semiperfect if R is a semilocal ring and all idempotents of the Artinian

ring R/J(R) can be lifted to idempotents of the ring R. Due to Nicholson, a ring R is

said to be an I-ring if every right ideal of the ring R not contained in J(R) contains a

nonzero idempotent and all idempotents of the ring R/J(R) can be lifted to idempotents

of the ring R. Recall from [21] that a ring R is semiregular if R/J(R) is a (von Neumann)

regular ring and idempotents can be lifted modulo J(R). According to Nicholson and

Zhou [24], a ring R is called a clean (uniquely clean) ring if every element r ∈ R can be

written (uniquely) in the form r = u+ e where u is a unit in R and e2 = e ∈ R.

In the proof of Theorems 3.2, 3.5 and Proposition 3.9, we will need the following

lemma. Statements (1) and (3) of the lemma are proved in [17, Lemma 1.3].
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Lemma 3.1. Let R be a ring and (S,≤) be a positively strictly ordered monoid. Assume

that ω : S → End(R) is a monoid homomorphism, and let A = RJS, ωK. Then

(1) f ∈ J(A) if and only if f(1) ∈ J(R).

(2) If f ∈ A such that f − f2 ∈ 〈B〉, then f(1) is an idempotent of the ring R and f −
cf(1) ∈ 〈B〉 ⊆ J(A), where 〈B〉 is the ideal generated by set B = {g ∈ A | g(1) = 0}
in A.

(3) The factor ring R/J(R) is naturally isomorphic to the factor ring A/J(A).

(4) All idempotents of the factor ring A/J(A) can be lifted to idempotents of the ring A

if and only if all idempotents of the factor ring R/J(R) can be lifted to idempotents

of the ring R.

Proof. (2) By part (1), 〈B〉 ⊆ J(A). The remaining assertions are directly verified.

(4) The result follows from parts (2) and (3).

Theorem 3.2. Let R be a ring and (S,≤) be a positively strictly ordered monoid. Assume

that ω : S → End(R) is a monoid homomorphism. Then

(1) RJS, ωK is a local ring if and only if R is a local ring.

(2) RJS, ωK is a semilocal ring if and only if R is a semilocal ring.

(3) RJS, ωK is a matrix local ring if and only if R is a matrix local ring.

(4) RJS, ωK is a semiperfect ring if and only if R is a semiperfect ring.

(5) RJS, ωK is isomorphic to a full matrix ring over a local ring if and only if the ring

R is isomorphic to a full matrix ring over a local ring.

(6) RJS, ωK is an I-ring if and only if R is an I-ring.

(7) RJS, ωK is semiregular if and only if R is semiregular.

(8) RJS, ωK is a clean ring if and only if R is a clean ring.

Proof. (1), (2) and (3) follow from the fact that the ring R/J(R) is isomorphic to the ring

RJS, ωK/J(RJS, ωK) by Lemma 3.1(3).

(4) This result is a direct consequence of (2) and Lemma 3.1(4).

(5) By [8, Theorem 23.10], the class of all matrix local semiperfect rings coincides with

the class of all rings that are isomorphic to full matrix rings over local rings. Therefore,

part (5) follows from (3) and (4).
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(6) The result follows from [20, Proposition 1.4] and Lemma 3.1, since R is an I-ring

if and only if R/J(R) is an I-ring and all idempotents of the ring R/J(R) can be lifted to

idempotents of the ring R.

(7) This result is a consequence of Lemma 3.1(3) and Lemma 3.1(4).

(8) The result follows from [1, Proposition 7] and Lemma 3.1, since R is a clean ring

if and only if R/J(R) is a clean ring and all idempotents of the ring R/J(R) can be lifted

to idempotents of the ring R.

Let R be a ring, and consider the multiplicative monoid N≥1, endowed with the usual

order ≤. Then A = RJN≥1K is the ring of arithmetical functions with values in R, endowed

with the Dirichlet convolution:

fg(n) =
∑
d|n

f(d)g(n/d), for each n ≥ 1.

Corollary 3.3. Let R be a ring. Then the ring of arithmetical functions RJN≥1K is a

semiperfect (resp. semiregular) ring if and only if R is a semiperfect (resp. semiregular)

ring.

Let α and β be endomorphisms of R such that αβ = βα. Assume that S = (N∪{0})×
(N ∪ {0}) is endowed with the lexicographic order, or the reverse lexicographic order, or

the product order of the usual order of N ∪ {0}, and define ω : S → End(R) a monoid

homomorphism via ω(m,n) = αmβn for any m,n ∈ N∪{0}. Then RJS, ωK ∼= RJx, y;α, βK,
in which (axmyn)(bxpyq) = aαmβn(b)xm+pyn+q for any m,n, p, q ∈ N ∪ {0}.

Corollary 3.4. Let α and β be endomorphisms of a ring R such that αβ = βα. Then the

ring RJx, y;α, βK is a semiperfect (resp. semiregular) ring if and only if R is a semiperfect

(resp. semiregular) ring.

A ring R with unity is called right (left) quasi-duo if every maximal right (left) ideal

of R is two-sided or, equivalently, every right (left) primitive homomorphic image of R

is a division ring. Examples of right quasi-duo rings include, for instance, commutative

rings, local rings, rings in which every nonunit has a (positive) power that is central, endo-

morphism rings of uniserial modules, and power series rings and rings of upper triangular

matrices over any of the above-mentioned rings (see [37]). But the n by n full matrix rings

over right quasi-duo rings are not right quasi-duo (for more details see [9, 10,37]).

A ring R is said to be Dedekind finite if ab = 1 implies ba = 1 for any a, b ∈ R, and

R is stably finite if any matrix ring Mn(R) is Dedekind-finite (for more details see [19]).

Recall that a module RM has the (full) exchange property if for every module RA and

any two decompositions A = M ′ ⊕ N =
⊕

i∈I Ai with M ′ ∼= M , there exist submodules

A′i ⊆ Ai such that A = M ′ ⊕ (
⊕

i∈I A
′
i). A module RM has the finite exchange property
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if the above condition is satisfied whenever the index set I is finite. Warfield [34] called

a ring R an exchange ring if the left regular module RR has the finite exchange property

and showed that this definition is left-right symmetric.

According to P. Vámos [33], a ring R is said to be 2-good if every element is the sum

of two units. The ring of all n × n matrices over an elementary divisor ring is 2-good.

A (right) self-injective Von Neumann regular ring is 2-good provided it has no 2-torsion.

In [35], Yao Wang and Yanli Ren show that the 2-good property is preserved in extensions

such as skew power series rings, full matrix rings, formal triangular matrix rings, upper

triangular matrix rings, and trivial extension rings (for more details see [33,35]).

Recall that a ring R is semiboolean if and only if R/J(R) is Boolean and idempotents

of R lift modulo J(R). According to [24, Theorem 19], R is a Boolean ring if and only if

R is uniquely clean and J(R) = 0. By Lemma 3.1(1), RJS, ωK is not necessarily Boolean.

But we will show that RJS, ωK is semiboolean if and only if R is semiboolean.

Theorem 3.5. Let R be a ring and (S,≤) be a positively strictly ordered monoid. Assume

that ω : S → End(R) is a monoid homomorphism. Then

(1) RJS, ωK is a left quasi-duo ring if and only if R is a left quasi-duo ring.

(2) RJS, ωK is stably finite if and only if R is stably finite.

(3) RJS, ωK is an exchange ring if and only if R is an exchange ring.

(4) RJS, ωK is a 2-good if and only if R is a 2-good.

(5) RJS, ωK is semiboolean if and only if R is semiboolean.

Proof. We set A = RJS, ωK.
(1) The result follows from [37, Proposition 2.1] and Lemma 3.1(3), since a ring R is

left quasi-duo if and only if R/J(R) is.

(2) Let A be stably finite. Clearly, the subring R is also stably finite. Finally, suppose

that R is stably finite. Consider the ideal 〈B〉 generated by set B = {g ∈ A | g(1) = 0} in

A. By Lemma 3.1(1), 〈B〉 ⊆ J(A). We have A/〈B〉 ∼= R, so by [19, Lemma 2], the fact

that R is stably finite implies that A is stably finite.

(3) The result follows from [22, Corollary 2.4], Lemma 3.1(3) and (4), since R is an

exchange ring if and only if R/J(R) is an exchange ring and all idempotents of the ring

R/J(R) can be lifted to idempotents of R.

(4) Let R be 2-good and f ∈ A. Write f(1) = u+v, where u, v ∈ U(R). Set g = f−cv.

Then, by [16, Proposition 2.2], g, cv ∈ U(A). So A is 2-good. Conversely, if A is 2-good,

then by analogy with the proof of (2), we can show that the ring R is a homomorphic
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image of A. By [35, Proposition 2.15], every homomorphic image of a 2-good ring is again

2-good, and therefore, the result follows.

(5) The result follows from Lemma 3.1(3) and Lemma 3.1(4).

The following corollaries will give more examples of quasi-duo (resp. exchange) rings.

Corollary 3.6. Let (S1,≤1), . . . , (Sn,≤n) be strictly positively ordered monoids. Denote

by (lex ≤) and (relex ≤) the lexicographic order, the reverse lexicographic order, respec-

tively, on the ordered monoid S1×· · ·×Sn. If R is a ring and ω : S1×· · ·×Sn → End(R)

is a monoid homomorphism, then the following statements are equivalent.

(1) RJS1 × · · · × Sn, ω, lex ≤K is a left quasi-duo (resp. exchange) ring;

(2) RJS1 × · · · × Sn, ω, relex ≤K is a left quasi-duo (resp. exchange) ring;

(3) R is a left quasi-duo (resp. exchange) ring.

Corollary 3.7. Let R be a left quasi-duo (resp. exchange) ring. Let S be any of the

additive monoids Q+ = {a ∈ Q | a ≥ 0} or R+ = {a ∈ R | a ≥ 0}, where ≤ is the usual

order. Assume that ω : S → End(R) is a monoid homomorphism. Then the ring RJS, ωK
is left quasi-duo (resp. exchange) ring.

Corollary 3.8. Let α and β be endomorphisms of a ring R such that αβ = βα. Then

the ring RJx, y;α, βK is a left quasi-duo (resp. exchange) ring if and only if R is a left

quasi-duo (resp. exchange) ring.

Two elements a and b in a ring R are said to be conjugate if there exists an invertible

element u ∈ R such that b = uau−1.

Proposition 3.9. Let R be a ring and (S,≤) be a positively strictly ordered monoid. As-

sume that ω : S → End(R) is a monoid homomorphism. Then any idempotent of RJS, ωK
is conjugate to an idempotent of R.

Proof. Let f2 = f be an idempotent of RJS, ωK. Then f = cf(1) + g, where g = f − cf(1).
Since S is positively ordered, f(1) is an idempotent of R. Hence cf(1) is an idempotent of

RJS, ωK. By Lemma 3.1(1), we have g ∈ J(RJS, ωK). Now, [7, Corollary 11] implies that

f and cf(1) are conjugate.

Due to P. M. Cohn [2], a ring R is said to be projective-free if every finitely generated

projective left (equivalently right) R-module is free of unique rank. According to [2, Propo-

sition 0.4.5], a ring is projective-free when it has invariant basis number (IBN for short)

and every idempotent matrix is conjugate to a matrix of the form diag(1, . . . , 1, 0, . . . , 0).
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Assume that S is a monoid and ω : S → End(R) a monoid homomorphism. For s ∈ S,

let ωs : Mn(R) → Mn(R) be the map obtained by applying ωs to every entry of a given

matrix in Mn(R). We thereby obtain a monoid homomorphism ω : S → End(Mn(R)).

Furthermore, with using a similar method as in [31, 4.3], we can show that the mapping

Φ: Mn(R)JS, ωK → Mn(RJS, ωK), given by Φ(f) = (fij), where fij(s) = (f(s))ij for all

s ∈ S and (f(s))ij is the (i, j)-th entry of f(s), is an isomorphism.

Theorem 3.10. Let R be a projective-free ring and (S,≤) be a positively strictly ordered

monoid. Assume that ω : S → End(R) is a monoid homomorphism. Then RJS, ωK is a

projective-free ring.

Proof. We use the method employed in the proof of [7, Theorem 22]. Since R has the IBN

property and is a homomorphic image of RJS, ωK, the ring RJS, ωK has the IBN property as

well. By [2, Proposition 0.4.5], it is enough to show that, for any n ≥ 1, every idempotent

matrix e ∈Mn(RJS, ωK) is conjugate to a matrix of the form diag(1, . . . , 1, 0, . . . , 0). Then

by the above argument T = Mn(R)JS, ωK is isomorphic to the ring Mn(RJS, ωK). Thus, by

Proposition 3.9, the idempotent e is conjugate in T to an idempotent of Mn(R) which, in

turn, is conjugate in Mn(R) ⊆ T with an idempotent of the form diag(1, . . . , 1, 0, . . . , 0),

as R is projective-free, and the result follows.

Corollary 3.11. Let R be a projective-free ring and α be an endomorphism of R. Then

skew power series ring RJx;αK is a projective-free ring.

Corollary 3.12. [3, Theorem 7] and [7, Theorem 22] Let R be a projective-free ring. Then

the power series ring RJxK is a projective-free ring.

Corollary 3.13. Let R be a projective-free ring. Then the ring of arithmetical functions

RJN≥1K is a projective-free ring.

Corollary 3.14. Let S be a submonoid of (N ∪ {0})n (n ≥ 2), endowed with the order ≤
induced by the product order, or lexicographic order or reverse lexicographic order. Let R

be a ring and ω : S → End(R) a monoid homomorphism. If R is projective-free ring, then

RJS, ωK is a projective-free ring.

A ring R is said to have right stable range one if, whenever aR+ bR = R, for a, b ∈ R,

there exists d ∈ R such that a+ bd ∈ U(R). The stable range one condition is especially

interesting because of Evans’ Theorem [5], which states that a module M cancels from

direct sums whenever EndR(M) has stable range one.

Proposition 3.15. Let R be a ring and (S,≤) be a positively strictly ordered monoid.

Assume that ω : S → End(R) is a monoid homomorphism. Then RJS, ωK has right stable

range one if and only if R has right stable range one.
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Proof. Assume that f, g ∈ A = RJS, ωK are such that fA + gA = A. Therefore f(1)R +

g(1)R = R, and hence there exists d ∈ R such that f(1) + g(1)d ∈ U(R). Thus f + gcd ∈
U(A), by [16, Proposition 2.2]. Conversely, suppose that a, b ∈ R are such that aR+bR =

R. Thus caA + cbA = A, and hence there exists f ∈ A such that ca + cbf ∈ U(A). Thus

a+ bf(1) ∈ U(R), and the result follows.
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