TAIWANESE JOURNAL OF MATHEMATICS Vol. 16, No. 6, pp. 1971-1989, December 2012 This paper is available online at http://journal.taiwanmathsoc.org.tw

STRONG CONVERGENCE THEOREMS BY MONOTONE HYBRID METHOD FOR A FAMILY OF GENERALIZED NONEXPANSIVE MAPPINGS IN BANACH SPACES

Chakkrid Klin-eam, Suthep Suantai* and Wataru Takahashi

Abstract. In this paper, we study monotone hybrid method for finding a common fixed point of a family of generalized nonexpansive mappings and then prove a strong convergence theorem for a family of generalized nonexpansive mappings in Banach spaces. Using this theorem, we obtain some new results for a generalized nonexpansive mapping and two generalized nonexpansive mappings in Banach spaces. Moreover, we apply our main result to obtain a strong convergence theorem for a family of nonexpansive mappings in a Hilbert space.

1. INTRODUCTION

Let *E* be a real Banach space with $\|\cdot\|$ and let *C* be a nonempty subset of *E*. Then a mapping *T* of *C* into *E* is called *nonexpansive* if $||Tx-Ty|| \le ||x-y||$ for all $x, y \in C$. We use F(T) to denote the set of fixed points of *T*; that is $F(T) = \{x \in C : x = Tx\}$. A mapping *T* of *C* into *E* is called *quasi-nonexpansive* if F(T) is nonempty and $||Tx - y|| \le ||x - y||$ for all $x \in C$ and $y \in F(T)$. It is easy to see that if *T* is nonexpansive with $F(T) \neq \emptyset$, then it is quasi-nonexpansive.

The theory of nonexpansive mappings is an important subject which can be applied widely in applied areas, in particular, in image recovery and signal processing; see, for instance, [1, 25]. However, the Picard's sequence $\{T^n x\}_{n=1}^{\infty}$ of iterates of mapping T at a point $x \in C$ may not converge even in the weak topology. In 1953, Mann [15] introduced an iterative scheme which is now known as Mann's iteration process. This iteration is defined as follows:

(1.1)
$$x_{n+1} = \alpha_n x_n + (1 - \alpha_n) T x_n, \ n \ge 0,$$

Key words and phrases: Monotone hybrid method, Generalized nonexpansive mapping, NST-condition, Fixed point, Banach space.

*Corresponding author.

Received July 1, 2009, accepted February 16, 2012.

Communicated by Wataru Takahashi.

²⁰¹⁰ Mathematics Subject Classification: 47H05, 47H10.

where the initial guess $x_0 \in C$ is chosen arbitrarily and the sequence $\{\alpha_n\}$ is in the interval [0, 1]. However, we note that Mann's iteration has only weak convergence even in a Hilbert space.

In 2003, Nakajo and Takahashi [20] proposed the following modification of Mann's iteration process (1.1), by using hybrid method in mathematical programming, for a single nonexpansive mapping T in a Hilbert space H:

(1.2)
$$\begin{cases} x_1 = x \in C, \\ u_n = \alpha_n x_n + (1 - \alpha_n) T x_n, \\ C_n = \{ z \in C : \| z - u_n \| \le \| z - x_n \| \}, \\ Q_n = \{ z \in C : \langle x_n - z, x - x_n \rangle \ge 0 \}, \\ x_{n+1} = \Pi_{C_n \cap Q_n} x \end{cases}$$

for all $n \in \mathbb{N}$, where $\{\alpha_n\} \subset [0, 1]$ and Π is the metric projection of H onto $C_n \cap Q_n$. They proved that the sequence $\{x_n\}$ generated by (1.2) converges strongly to a fixed point of T under an appropriate control condition on the sequence $\{\alpha_n\}$.

In 2008, Takahashi, Takeuchi and Kubota [30] proposed the following modification of the iteration method (1.2) for a family of nonexpansive mappings $\{T_n\}$ in a Hilbert space H:

(1.3)
$$\begin{cases} x_1 = x \in C, \\ u_n = \alpha_n x_n + (1 - \alpha_n) T_n x_n, \\ C_{n+1} = \{ z \in C_n : \| z - u_n \| \le \| z - x_n \| \}, \\ x_{n+1} = \Pi_{C_{n+1}} x \end{cases}$$

for all $n \in \mathbb{N}$, where $\{\alpha_n\} \subset [0, 1]$. They proved strong convergence of the sequence $\{x_n\}$ generated by (1.3) under an appropriate control condition on the sequence $\{\alpha_n\}$ and under the condition that the family $\{T_n\}_{n=1}^{\infty}$ satisfies NST-condition.

In 2008, Qin and Su [21] modified the iteration (1.2) by the following method called the *monotone hybrid method*, for a nonexpansive mapping T in a Hilbert space, as follows:

(1.4)
$$\begin{cases} x_1 = x \in C, \ C_0 = Q_0 = C, \\ u_n = \alpha_n x_n + (1 - \alpha_n) T x_n, \\ C_n = \{ z \in C_{n-1} \cap Q_{n-1} : \| z - u_n \| \le \| z - x_n \| \}, \\ Q_n = \{ z \in C_{n-1} \cap Q_{n-1} : \langle x_n - z, x - x_n \rangle \ge 0 \}, \\ x_{n+1} = \Pi_{C_n \cap Q_n} x \end{cases}$$

for all $n \in \mathbb{N}$, where $\{\alpha_n\} \subset [0, 1]$. By using this method, they proved a strong convergence theorem under a control condition on the sequence $\{\alpha_n\}$, but the technic they used in this paper is different from Nakajo and Takahashi [20]. More precisely,

they showed that the sequence $\{x_n\}$ generated by (1.4) is a Cauchy sequence, without the use of demiclosedness principle, Opial's condition and the Kadec-Klee property.

Recently, by using generalized projections, Su, Wang and Shang [27] proposed the following monotone hybrid method for a hemi-relatively noexpansive mapping T in a Banach space:

(1.5)
$$\begin{cases} x_1 = x \in C, \ C_0 = Q_0 = C, \\ u_n = J^{-1} (\alpha_n J x_n + (1 - \alpha_n) J T x_n), \\ C_n = \{ z \in C_{n-1} \cap Q_{n-1} : \phi(z, u_n) \le \phi(z, x_n) \}, \\ Q_n = \{ z \in C_{n-1} \cap Q_{n-1} : \langle x_n - z, J x - J x_n \rangle \ge 0 \} \\ x_{n+1} = \Pi_{C_n \cap Q_n} x \end{cases}$$

where J is the duality mapping on E and $\{\alpha_n\} \subset [0,1]$. They proved that if $\limsup_{n\to\infty} \alpha_n < 1$, then the sequence $\{x_n\}$ generated by (1.5) converges strongly to $\Pi_{F(T)}^{n\to\infty} x_0$, where $\Pi_{F(T)}$ is the generalized projection from C onto F(T).

Employing the ideas of Qin and Su [21], Takahashi, Takeuchi and Kubota [30] and Su, Wang and Shang [27], we modify iterations (1.3), (1.4) and (1.5) for finding a common fixed point a countable family of generalized nonexpansive mappings by using monotone hybrid method and then prove a strong convergence theorem in a Banach space. Using this theorem, we obtain some new results for a generalized nonexpansive mapping and two generalized nonexpansive mappings in Banach spaces. Moreover, we apply our main result to obtain a strong convergence theorem for a family of nonexpansive mappings in a Hilbert space.

2. PRELIMINARIES

Throughout this paper, all linear spaces are real. Let \mathbb{N} and \mathbb{R} be the sets of all positive integers and real numbers, respectively. Let E be a Banach space and let E^* be the dual space of E. For a sequence $\{x_n\}$ of E and a point $x \in E$, the *weak* convergence of $\{x_n\}$ to x and the *strong* convergence of $\{x_n\}$ to x are denoted by $x_n \rightarrow x$ and $x_n \rightarrow x$, respectively. The duality mapping J from E into 2^{E^*} is defined by

$$Jx = \{x^* \in E^* : \langle x, x^* \rangle = \|x\|^2 = \|x^*\|^2\}, \ \forall x \in E.$$

Let S(E) be the unit sphere centered at the origin of E. Then the space E is said to be *smooth* if the limit

$$\lim_{t \to 0} \frac{\|x + ty\| - \|x\|}{t}$$

exists for all $x, y \in S(E)$. It is also said to be *uniformly smooth* if the limit exists uniformly in $x, y \in S(E)$. A Banach space E is said to be *strictly convex* if $\|\frac{x+y}{2}\| < 1$ whenever $x, y \in S(E)$ and $x \neq y$. It is said to be *uniformly convex* if for each $\epsilon \in (0, 2]$,

there exists $\delta > 0$ such that $\left\|\frac{x+y}{2}\right\| < 1 - \delta$ whenever $x, y \in S(E)$ and $\|x-y\| \ge \epsilon$. From [28] we know the following:

- (i) If E in smooth, then J is single-valued.
- (ii) If E is reflexive, then J is onto.
- (iii) If E is strictly convex, then J is one-to-one.
- (iv) If E is strictly convex, then J is strictly monotone.
- (v) If E is uniformly smooth, then J is uniformly norm-to-norm continuous on each bounded subset of E.

Let E be a smooth Banach space. Throughout this paper, define the function $\phi: E \times E \to \mathbb{R}$ by

(2.1)
$$\phi(y,x) = \|y\|^2 - 2\langle y, Jx \rangle + \|x\|^2, \ \forall y, x \in E.$$

Observe that, in a Hilbert space H, (2.1) reduces to $\phi(x, y) = ||x-y||^2$ for all $x, y \in H$. It is obvious from the definition of the function ϕ that for all $x, y \in E$,

 $\begin{array}{l} (\mathrm{P1}) \ (\|x\| - \|y\|)^2 \leq \phi(x,y) \leq (\|x\| + \|y\|)^2, \\ (\mathrm{P2}) \ \phi(x,y) = \phi(x,z) + \phi(z,y) + 2\langle x - z, Jz - Jy \rangle, \\ (\mathrm{P3}) \ \phi(x,y) = \langle x, Jx - Jy \rangle + \langle y - x, Jy \rangle \leq \|x\| \|Jx - Jy\| + \|y - x\| \|y\|. \end{array}$

Let C be a closed subset of a Banach space E, and let T be a mapping from C into E. We use F(T) to denote the set of fixed points of T, that is, $F(T) = \{x \in C : x = Tx\}$. Recall that a mapping $T : C \to E$ is generalized nonexpansive if $F(T) \neq \emptyset$ and $\phi(Tx, u) \leq \phi(x, u)$ for all $x \in C$ and $u \in F(T)$. Let R be a mapping from E onto C. Then R is said to be a *retraction* if $R^2 = R$. The mapping R from E onto C is said to be sunny if R(Rx + t(x - Rx)) = Rx for all $x \in E$ and $t \geq 0$.

A nonempty closed subset C of a smooth Banach space E is said to be a sunny generalized nonexpansive retract of E if there exists a sunny generalized nonexpansive retraction R from E onto C. We know the following lemmas for sunny generalized nonexpansive retractions.

Lemma 2.1. (Ibaraki and Takahashi [3]). Let C be a nonempty closed subset of a smooth and strictly convex Banach space E and let R be a retraction from E onto C. Then the following are equivalent:

- (*i*) *R* is sunny generalized nonexpansive;
- (ii) $\langle x Rx, Jy JRx \rangle \le 0, \forall x \in E, y \in C.$

Lemma 2.2. (Ibaraki and Takahashi [3]). Let C be a nonempty closed sunny generalized nonexpansive retract of a smooth and strictly convex Banach space E. Then the sunny generalized nonexpansive retraction from E onto C is uniquely determined.

Lemma 2.3. (Ibaraki and Takahashi [3]). Let C be a nonempty closed subset of a smooth and strictly convex Banach space E such that there exists a sunny generalized nonexpansive retraction R from E onto C, let $x \in E$ and $z \in C$. Then the following hold:

- (i) z = Rx if and only if $\langle x z, Jy Jz \rangle \leq 0$ for all $y \in C$;
- (ii) $\phi(x, Rx) + \phi(Rx, z) \le \phi(x, z)$.

Lemma 2.4. (Kohsaka and Takahashi [13]). Let C be a nonempty closed subset of a smooth, strictly convex and reflexive Banach space E. Then the following are equivalent:

- (i) C is a sunny generalized nonexpansive retract of E;
- (ii) JC is closed and convex.

Lemma 2.5. (Kohsaka and Takahashi [13]). Let E be a smooth, strictly convex and reflexive Banach space and let C be a nonempty closed sunny generalized nonexpansive retract of E. Let R be the sunny generalized nonexpansive retraction from E onto C, let $x \in E$ and $z \in C$. Then the following are equivalent:

- (i) z = Rx;
- (*ii*) $\phi(x, z) = \min_{y \in C} \phi(x, y).$

Lemma 2.6. (Kamimura and Takahashi [9]). Let E be a uniformly convex and smooth Banach space and let $\{x_n\}$ and $\{y_n\}$ be two sequences in E such that either $\{x_n\}$ or $\{y_n\}$ is bounded. If $\lim_{n\to\infty} \phi(x_n, y_n) = 0$, then $\lim_{n\to\infty} \|x_n - y_n\| = 0$.

Lemma 2.7. (Kamimura and Takahashi [9]). Let *E* be a uniformly convex and smooth Banach space and let r > 0. Then there exists a strictly increasing, continuous and convex function $g : [0, \infty) \rightarrow [0, \infty)$ such that g(0) = 0 and

$$g(\|x - y\|) \le \phi(x, y)$$

for all $x, y \in B_r(0)$, where $B_r(0) = \{z \in E : ||z|| \le 1\}$.

Lemma 2.8. (Zalinescu [31]). Let E be a uniformly convex Banach space and let r > 0. Then there exists a strictly increasing, continuous and convex function $g: [0, \infty) \rightarrow [0, \infty)$ such that g(0) = 0 and

$$||tx + (1-t)y||^2 \le t||x||^2 + (1-t)||y||^2 - t(1-t)g(||x-y||)$$

for all $x, y \in B_r(0)$ and $t \in [0, 1]$, where $B_r(0) = \{z \in E : ||z|| \le r\}$.

Lemma 2.9. (Ibaraki and Takahashi [4]). Let E be a smooth and strictly convex Banach space, let $z \in E$ and let $\{t_i\}_{i=1}^m \subset (0,1)$ with $\sum_{i=1}^m t_i = 1$. If $\{x_i\}_{i=1}^m$ is a finite sequence in E such that

$$\phi\big(\sum_{i=1}^m t_i x_i, z)\big) = \sum_{i=1}^m t_i \phi(x_i, z),$$

then $x_1 = x_2 = ... = x_m$.

3. NST-CONDITION

Let E be a real Banach space and C be a closed subset of E. Motivated by Nakajo, Shimoji and Takahashi [19], we give the following definitions: Let $\{T_n\}$ and \mathcal{T} be two families of generalized noexpansive mappings of C into E such that $\bigcap_{n=1}^{\infty} F(T_n) = F(\mathcal{T}) \neq \emptyset$, where $F(T_n)$ is the set of all fixed points of T_n and $F(\mathcal{T})$ is the set of all common fixed points of \mathcal{T} . Then, $\{T_n\}$ is said to satisfy the *NST-condition* with \mathcal{T} if for each bounded sequence $\{x_n\} \subset C$,

$$\lim_{n \to \infty} \|x_n - T_n x_n\| = 0 \Rightarrow \lim_{n \to \infty} \|x_n - T x_n\| = 0, \text{ for all } T \in \mathcal{T}.$$

In particular, if $\mathcal{T} = \{T\}$, i.e., \mathcal{T} consists of one mapping T, then $\{T_n\}$ is said to satisfy the NST-condition with T. It is obvious that $\{T_n\}$ with $T_n = T$ for all $n \in \mathbb{N}$ satisfies NST-condition with $\mathcal{T} = \{T\}$.

Lemma 3.1. Let C be a subset of a uniformly smooth and uniformly convex Banach space E and let T be a generalized nonexpansive mapping from C into E with $F(T) \neq \emptyset$. Let $\{\beta_n\} \subset (0,1)$ satisfy $\liminf_{n \to \infty} \beta_n(1-\beta_n) > 0$. For $n \in \mathbb{N}$, define the mapping T_n from C into E by

$$T_n x = \beta_n x + (1 - \beta_n) T x,$$

for all $x \in C$. Then, $\{T_n\}$ is a countable family of generalized nonexpansive mappings satisfying the NST-condition with T.

Proof. First, we can easily show that $F(T_n) = F(T)$ for all $n \in \mathbb{N}$. Then $\bigcap_{n=1}^{\infty} F(T_n) = F(T)$. For $x \in C$ and $u \in F(T_n)$, we have

$$\begin{split} \phi(T_n x, u) &= \phi(\beta_n x + (1 - \beta_n) T x, u) \\ &= \|\beta_n x + (1 - \beta_n) T x\|^2 - 2\langle \beta_n x + (1 - \beta_n) T x, J u \rangle + \|u\|^2 \\ &\leq \beta_n \|x\|^2 + (1 - \beta_n) \|T x\|^2 - 2\beta_n \langle x, J u \rangle - 2(1 - \beta_n) \langle T x, J u \rangle + \|u\|^2 \\ &= \beta_n \phi(x, u) + (1 - \beta_n) \phi(T x, u) \\ &\leq \beta_n \phi(x, u) + (1 - \beta_n) \phi(x, u) = \phi(x, u). \end{split}$$

Hence T_n is generalized nonexpansive. Next, we show that $\{T_n\}$ satisfies the NSTcondition with T. To show this, suppose that $\{x_n\}$ is a bounded sequence in C such that $\lim_{n\to\infty} ||x_n - T_n x_n|| = 0$. Since $\{x_n\}$ is bounded, we obtain that $\{Tx_n\}$ is also bounded. Put $r = \max\{\sup_n ||x_n||, \sup_n ||Tx_n||\}$. Then there exists r > 0 such that $\{x_n\}, \{Tx_n\} \subset B_r(0)$, where $B_r(0) = \{z \in E : ||z|| \le r\}$. We have from Lemma 2.8 that for $u \in \bigcap_{n=1}^{\infty} F(T_n)$,

$$\begin{split} \phi(T_n x_n, u) &= \phi(\beta_n x_n + (1 - \beta_n) T x_n, u) \\ &= \|\beta_n x_n + (1 - \beta_n) T x_n\|^2 - 2\langle \beta_n x_n + (1 - \beta_n) T x_n, J u \rangle + \|u\|^2 \\ &\leq \beta_n \|x_n\|^2 + (1 - \beta_n) \|T x_n\|^2 - 2\beta_n \langle x_n, J u \rangle - 2(1 - \beta_n) \langle T x_n, J u \rangle \\ &+ \|u\|^2 - \beta_n (1 - \beta_n) g(\|x_n - T x_n\|) \\ &= \beta_n \phi(x_n, u) + (1 - \beta_n) \phi(T x_n, u) - \beta_n (1 - \beta_n) g(\|x_n - T x_n\|) \\ &\leq \beta_n \phi(x_n, u) + (1 - \beta_n) \phi(x_n, u) - \beta_n (1 - \beta_n) g(\|x_n - T x_n\|) \\ &= \phi(u, x_n) - \beta_n (1 - \beta_n) g(\|x_n - T x_n\|), \end{split}$$

where $g: [0,\infty) \to [0,\infty)$ is a continuous, strictly increasing and convex function with g(0) = 0. So, we have

(3.1)
$$\beta_n (1 - \beta_n) g(||x_n - Tx_n||) \le \phi(x_n, u) - \phi(T_n x_n, u)$$

Let $\{\|x_{n_k} - Tx_{n_k}\|\}$ be any subsequence of $\{\|x_n - Tx_n\|\}$. Since $\{x_{n_k}\}$ is bounded, there exists a subsequence $\{x_{n'_i}\}$ of $\{x_{n_k}\}$ such that

$$\lim_{j \to \infty} \phi(x_{n'_j}, u) = \limsup_{k \to \infty} \phi(x_{n_k}, u) = a.$$

Using properties (P2) and (P3) of ϕ , we have

(3.2)

$$\begin{aligned} \phi(x_{n'_{j}}, u) &= \phi(x_{n'_{j}}, T_{n'_{j}} x_{n'_{j}}) + \phi(T_{n'_{j}} x_{n'_{j}}, u) + 2\langle x_{n'_{j}} - T_{n'_{j}} x_{n'_{j}}, JT_{n'_{j}} x_{n'_{j}} - Ju \rangle \\ &\leq \phi(T_{n'_{j}} x_{n'_{j}}, u) + \|x_{n'_{j}}\| \|Jx_{n'_{j}} - JT_{n'_{j}} x_{n'_{j}}\| + \|x_{n'_{j}} - T_{n'_{j}} x_{n'_{j}}\| \|T_{n'_{j}} x_{n'_{j}}\| \\ &+ 2\|x_{n'_{j}} - T_{n'_{j}} x_{n'_{j}}\| \|JT_{n'_{j}} x_{n'_{j}} - Ju\|. \end{aligned}$$

Since $\lim_{n\to\infty} ||x_n - T_n x_n|| = 0$ and E is a uniformly smooth, we have

$$\lim_{n \to \infty} \|Jx_n - JT_n x_n\| = 0.$$

It follows from (3.2) that

$$a = \liminf_{j \to \infty} \phi(x_{n'_j}, u) \le \liminf_{j \to \infty} \phi(T_{n'_j} x_{n'_j}, u).$$

On the other hand, since $\phi(T_n x_n, u) \leq \phi(x_n, u)$, we have

$$\limsup_{j\to\infty}\phi(T_{n'j}x_{n'_j},u)\leq\limsup_{j\to\infty}\phi(x_{n'_j},u)=a.$$

Hence

$$\lim_{j\to\infty}\phi(x_{n'_j},u)=\lim_{j\to\infty}\phi(T_{n'_j}x_{n'_j},u)=a.$$

Since $\liminf_{n\to\infty} \beta_n(1-\beta_n) > 0$, it follows from (3.1) that $\lim_{n\to\infty} g(||x_{n'_j} - Tx_{n'_j}||) = 0$. By properties of the function g, we have $\lim_{j\to\infty} ||x_{n'_j} - Tx_{n'_j}|| = 0$ and hence $\lim_{n\to\infty} ||x_n - Tx_n|| = 0$.

Lemma 3.2. Let C be a subset of a uniformly smooth and uniformly convex Banach space E and let S and T be generalized nonexpansive mappings from C into E with $F(S) \cap F(T) \neq \emptyset$. Let $\{\beta_n\} \subset (0,1)$ satisfy $\liminf_{n\to\infty} \beta_n(1-\beta_n) > 0$. For $n \in \mathbb{N}$, define the mapping T_n from C into E by

$$T_n x = \beta_n S x + (1 - \beta_n) T x$$

for all $x \in C$. Then, $\{T_n\}$ is a countable family of generalized nonexpansive mappings satisfying the NST-condition with $T = \{S, T\}$.

Proof. First, we can easily show that $\bigcap_{n=1}^{\infty} F(T_n) = F(\mathcal{T})$ and T_n are generalized nonexpansive mappings for all $n \in \mathbb{N}$. Indeed, note that

$$F(\mathcal{T}) = F(S) \cap F(T) \subset \bigcap_{n=1}^{\infty} F(T_n).$$

Let $u \in F(S) \cap F(T)$. We obtain that for any $x \in C$,

$$\begin{split} \phi(T_n x, u) &= \phi(\beta_n S x + (1 - \beta_n) T x, u) \\ &= \|\beta_n S x + (1 - \beta_n) T x\|^2 - 2\langle \beta_n S x + (1 - \beta_n) T x, J u \rangle + \|u\|^2 \\ &\leq \beta_n \|S x\|^2 + (1 - \beta_n) \|T x\|^2 - 2\beta_n \langle S x, J u \rangle - 2(1 - \beta_n) \langle T x, J u \rangle + \|u\|^2 \\ &= \beta_n \phi(S x, u) + (1 - \beta_n) \phi(T x, u) \\ &\leq \beta_n \phi(x, u) + (1 - \beta_n) \phi(x, u) \\ &= \phi(x, u). \end{split}$$

Then, for $v \in F(T_n)$ we have

$$\begin{split} \phi(v,u) &= \phi(T_n v, u) \\ &= \phi(\beta_n S v + (1 - \beta_n) T v, u) \\ &= \|\beta_n S v + (1 - \beta_n) T v\|^2 - 2\langle \beta_n S v + (1 - \beta_n) T v, J u \rangle + \|u\|^2 \end{split}$$

$$\leq \beta_n \|Sv\|^2 + (1 - \beta_n) \|Tv\|^2 - 2\beta_n \langle Sx, Ju \rangle - 2(1 - \beta_n) \langle Tv, Ju \rangle + \|u\|^2$$
$$= \beta_n \phi(Sv, u) + (1 - \beta_n) \phi(Tv, u)$$
$$\leq \beta_n \phi(v, u) + (1 - \beta_n) \phi(v, u)$$
$$= \phi(v, u),$$

that is,

$$\phi(\beta_n Sv + (1 - \beta_n)Tv, u) = \beta_n \phi(Sv, u) + (1 - \beta_n)\phi(Tv, u) = \phi(v, u).$$

By Lemma 2.9, we have Sv = Tv. This implies that $v = T_n v = Sv = Tv$. So $F(T_n) \subset F(S) \cap F(T)$ for all $n \in \mathbb{N}$. Hence $\bigcap_{n=1}^{\infty} F(T_n) = F(T)$. Next, we show that $\{T_n\}$ satisfies the NST-condition with $\{S, T\}$. Let $\{x_n\}$ be a bounded sequence in C such that $\lim_{n\to\infty} ||x_n - T_n x_n|| = 0$. By Lemma 2.8, we have that for $u \in \bigcap_{n=1}^{\infty} F(T_n),$

$$\begin{split} \phi(T_n x_n, u) &= \phi(\beta_n S x_n + (1 - \beta_n) T x_n, u) \\ &= \|\beta_n S x_n + (1 - \beta_n) T x_n\|^2 - 2\langle \beta_n S x_n + (1 - \beta_n) T x_n, J u \rangle + \|u\|^2 \\ &\leq \beta_n \|S x_n\|^2 + (1 - \beta_n) \|T x_n\|^2 - 2\beta_n \langle S x_n, u \rangle - 2(1 - \beta_n) \langle T x_n, u \rangle + \|u\|^2 \\ &- \beta_n (1 - \beta_n) g(\|S x_n - T x_n\|) \\ &= \beta_n \phi(S x_n, u) + (1 - \beta_n) \phi(T x_n, u) - \beta_n (1 - \beta_n) g(\|S x_n - T x_n\|) \\ &\leq \beta_n \phi(x_n, u) + (1 - \beta_n) \phi(x_n, u) - \beta_n (1 - \beta_n) g(\|S x_n - T x_n\|) \\ &= \phi(x_n, u) - \beta_n (1 - \beta_n) g(\|S x_n - T x_n\|), \end{split}$$

where $g: [0,\infty) \to [0,\infty)$ is a continuous, strictly increasing and convex function with g(0) = 0. So, we have

(3.3)
$$\beta_n(1-\beta_n)g(\|Sx_n-Tx_n\|) \le \phi(x_n,u) - \phi(T_nx_n,u).$$

Let $\{\|Sx_{n_k} - Tx_{n_k}\|\}$ be any subsequence of $\{\|Sx_n - Tx_n\|\}$. Since $\{x_{n_k}\}$ is bounded, there exists a subsequence $\{x_{n_j'}\}$ of $\{x_{n_k}\}$ such that

$$\lim_{j \to \infty} \phi(x_{n'_j}, u) = \limsup_{k \to \infty} \phi(x_{n_k}, u) = a.$$

Using properties (P2) and (P3) of ϕ , we have

``

(3.4)

$$\begin{aligned} \phi(x_{n'_{j}}, u) &= \phi(x_{n'_{j}}, T_{n'_{j}} x_{n'_{j}}) + \phi(T_{n'_{j}} x_{n'_{j}}, u) + 2\langle x_{n'_{j}} - T_{n'_{j}} x_{n'_{j}}, JT_{n'_{j}} x_{n'_{j}} - Ju \rangle \\ &\leq \phi(T_{n'_{j}} x_{n'_{j}}, u) + \|x_{n'_{j}}\| \|Jx_{n'_{j}} - JT_{n'_{j}} x_{n'_{j}}\| + \|T_{n'_{j}} x_{n'_{j}} - x_{n'_{j}}\| \|T_{n'_{j}} x_{n'_{j}}\| \\ &+ 2\|x_{n'_{j}} - T_{n'_{j}} x_{n'_{j}}\| \|JT_{n'_{j}} x_{n'_{j}} - Ju\|. \end{aligned}$$

Since $\lim_{n\to\infty} ||x_n - T_n x_n|| = 0$ and E is uniformly smooth, we have $\lim_{n\to\infty} ||Jx_n - JT_n x_n|| = 0$. It follows from (3.4) that

$$a = \liminf_{j \to \infty} \phi(x_{n'_j}, u) \le \liminf_{j \to \infty} \phi(T_{n'_j} x_{n'_j}, u).$$

On the other hand, since $\phi(T_n x_n, u) \leq \phi(x_n, u)$, we have

$$\limsup_{j \to \infty} \phi(T_{n'_j} x_{n'_j}, u) \le \limsup_{j \to \infty} \phi(x_{n'_j}, u) = a.$$

It follows that

$$\lim_{n \to \infty} \phi(x_{n'_j}, u) = \lim_{j \to \infty} \phi(T_{n'_j} x_{n'_j}, u) = a.$$

Since $\liminf_{n\to\infty} \beta_n(1-\beta_n) > 0$, it follows from (3.3) that

$$\lim_{n \to \infty} g(\|Sx_{n'_j} - Tx_{n'_j}\|) = 0.$$

By properties of the function g, we have $\lim_{j\to\infty} ||Sx_{n'_j} - Tx_{n'_j}|| = 0$ and hence $\lim_{n\to\infty} ||Sx_n - Tx_n|| = 0$. Since

 $||x_n - Sx_n|| \le ||x_n - T_n x_n|| + ||T_n x_n - Sx_n|| = ||x_n - T_n x_n|| + (1 - \beta_n) ||Sx_n - Tx_n||,$ we obtain $\lim_{n \to \infty} ||x_n - Sx_n|| = 0$. Similarly, we have $\lim_{n \to \infty} ||x_n - Tx_n|| = 0$.

4. Strong Convergence Theorems

In this section, we prove a strong convergence theorem for a family of non-self generalized nonexpansive mappings in a Banach space by using the monotone hybrid method. Before proving it, we give the following lemma for non-self generalized nonexpansive mappings in a Banach space.

Lemma 4.1. Let E be a smooth, strictly convex, and reflexive Banach space and let C be a closed subset of E such that JC is closed and convex. Let T be a generalized nonexpansive mapping from C into E. Then F(T) is closed and JF(T) is closed and convex.

Proof. First, let us show that JF(T) is closed. Let $\{x_n^*\} \subset JF(T)$ such that $x_n^* \to x^*$ for some $x^* \in E^*$. Since JC is closed, we have $x^* \in JC$. Since E is smooth, strictly convex and reflexive, $J: E \to E^*$ is one-to-one and onto. Then, there exist $x \in C$ and $\{x_n\} \subset F(T)$ such that $x^* = Jx$ and $x_n^* = Jx_n$ for all $n \in \mathbb{N}$. Since T is generalized nonexpansive and $x_n \in F(T)$, we have that

$$\phi(Tx, x) = ||Tx||^2 - 2\langle Tx, Jx \rangle + ||Jx||^2$$

= $||Tx||^2 - 2\langle Tx, x^* \rangle + ||x^*||^2$
= $\lim_{n \to \infty} (||Tx||^2 - 2\langle Tx, x^*_n \rangle + ||x^*_n||^2)$

$$= \lim_{n \to \infty} (\|Tx\|^2 - 2\langle Tx, Jx_n \rangle + \|Jx_n\|^2)$$

$$= \lim_{n \to \infty} \phi(Tx, x_n)$$

$$\leq \lim_{n \to \infty} \phi(x, x_n)$$

$$= \lim_{n \to \infty} (\|x\|^2 - 2\langle x, x_n^* \rangle + \|x_n^*\|^2)$$

$$= \lim_{n \to \infty} (\|x\|^2 - 2\langle x, x^* \rangle + \|x^*\|^2)$$

$$= \|x\|^2 - 2\langle x, Jx \rangle + \|x\|^2$$

$$= \phi(x, x) = 0.$$

Thus we have $\phi(Tx, x) = 0$. Since E is strictly convex, we have x = Tx. This implies $x^* = Jx \in JF(T)$. Next, we show that JF(T) is convex. Let $x^*, y^* \in JF(T)$ and let $\alpha, \beta \in (0, 1)$ with $\alpha + \beta = 1$. Then we have $x, y \in F(T)$ such that $x^* = Jx$ and $y^* = Jy$. Since $x, y \in F(T)$ and T is generalized nonexpansive, we have that

$$\begin{split} \phi(TJ^{-1}(\alpha Jx + \beta Jy), J^{-1}(\alpha Jx + \beta Jy)) \\ &= \|TJ^{-1}(\alpha Jx + \beta Jy)\|^2 - 2\langle TJ^{-1}(\alpha Jx + \beta Jy), \alpha Jx + \beta Jy \rangle \\ &+ \|J^{-1}(\alpha Jx + \beta Jy)\|^2 + \alpha \|x\|^2 + \beta \|y\|^2 - (\alpha \|x\|^2 + \beta \|y\|^2) \\ &= \alpha \phi(TJ^{-1}(\alpha Jx + \beta Jy), x) + \beta \phi(TJ^{-1}(\alpha Jx + \beta Jy), y) \\ &+ \|\alpha Jx + \beta Jy\|^2 - (\alpha \|x\|^2 + \beta \|y\|^2) \\ &\leq \alpha \phi(J^{-1}(\alpha Jx + \beta Jy), x) + \beta \phi(J^{-1}(\alpha Jx + \beta Jy), y) \\ &+ \|\alpha Jx + \beta Jy\|^2 - (\alpha \|x\|^2 + \beta \|y\|^2) \\ &= \alpha \{\|\alpha Jx + \beta Jy\|^2 - 2\langle J^{-1}(\alpha Jx + \beta Jy), Jx \rangle + \|x\|^2 \} \\ &+ \beta \{\|\alpha Jx + \beta Jy\|^2 - 2\langle J^{-1}(\alpha Jx + \beta Jy), Jy \rangle + \|y\|^2 \} \\ &+ \|\alpha Jx + \beta Jy\|^2 - (\alpha \|x\|^2 + \beta \|y\|^2) \\ &= 2\|\alpha Jx + \beta Jy\|^2 - 2\langle J^{-1}(\alpha Jx + \beta Jy), \alpha Jx + \beta Jy \rangle \\ &= 2\|\alpha Jx + \beta Jy\|^2 - 2\|\alpha Jx + \beta Jy\|^2 = 0. \end{split}$$

Then we have $TJ^{-1}(\alpha Jx + \beta Jy) = J^{-1}(\alpha Jx + \beta Jy)$ and hence $J^{-1}(\alpha Jx + \beta Jy) \in F(T)$. This implies that $\alpha Jx + \beta Jy \in JF(T)$. Therefore JF(T) is convex. Since JF(T) is closed and convex, JF(T) is weakly closed. Furthermore, since J is norm to weak continuous, F(T) is closed. This completes the proof.

Using Lemma 2.4 and Lemma 4.1, we have the following lemma.

Lemma 4.2. Let E be a smooth, strictly convex, and reflexive Banach space and let C be a closed subset of E such that JC is closed and convex. Let T be a generalized nonexpansive mapping from C into E. Then F(T) is a sunny generalized nonexpansive retract of E.

Recall that an operator T in a Banach space is called *closed*, if $x_n \to x$ and $Tx_n \to y$, then Tx = y.

Theorem 4.3. Let E be a uniformly smooth and uniformly convex Banach space and let C be a nonempty closed subset of E such that JC is closed and convex. Let $\{T_n\}$ be a countable family of generalized nonexpansive mappings from C into E and let T be a family of closed generalized nonexpansive mappings from C into E such that $\bigcap_{n=1}^{\infty} F(T_n) = F(T) \neq \emptyset$. Suppose that $\{T_n\}$ satisfies the NST-condition with T. Let $\{x_n\}$ be the sequence generated by

$$\begin{cases} x_1 = x \in C, \ C_0 = Q_0 = C, \\ u_n = \alpha_n x_n + (1 - \alpha_n) T_n x_n, \\ C_n = \{ z \in C_{n-1} \cap Q_{n-1} : \phi(u_n, z) \le \phi(x_n, z) \}, \\ Q_n = \{ z \in C_{n-1} \cap Q_{n-1} : \langle x - x_n, J x_n - J z \rangle \ge 0 \}, \\ x_{n+1} = R_{C_n \cap Q_n} x \end{cases}$$

for all $n \in \mathbb{N}$, where J is the duality mapping on E and $\{\alpha_n\} \subset [0,1]$ satisfies $\liminf_{n\to\infty} (1-\alpha_n) > 0$. Then, $\{x_n\}$ converges strongly to $R_{F(\mathcal{T})}x$, where $R_{F(\mathcal{T})}$ is the sunny generalized nonexpansive retraction from E onto $F(\mathcal{T})$.

Proof. We first show that JC_n and JQ_n are closed and convex for each $n \in \mathbb{N}$. From the definitions of C_n and Q_n , it is obvious that JC_n is closed and JQ_n is closed and convex for each $n \in \mathbb{N}$. Next, we prove that JC_n is convex. Since $\phi(u_n, z) \leq \phi(x_n, z)$ is equivalent to

$$0 \le ||x_n||^2 - ||u_n||^2 - 2\langle x_n - u_n, Jz \rangle,$$

 JC_n is convex. Since J is one-to-one, we have $J(C_n \cap Q_n) = JC_n \cap JQ_n$ is a closed and convex for all $n \in \mathbb{N}$. By Lemma 2.4, we obtain that $C_n \cap Q_n$ is a sunny generalized nonexpansive retract of E. It is obvious that $F(\mathcal{T}) \subset C = C_0 \cap Q_0$. Next, we show that $F(\mathcal{T}) \subset C_n \cap Q_n$ for all $n \in \mathbb{N}$. Suppose that $F(\mathcal{T}) \subset C_{k-1} \cap Q_{k-1}$ for some $k \in \mathbb{N}$. Let $u \in F(\mathcal{T})$. Since T_n are generalized nonexpansive mappings for all $n \in \mathbb{N}$, we have

$$\begin{split} \phi(u_k, u) &= \phi(\alpha_k x_k + (1 - \alpha_k) T_k x_k, u) \\ &= \|\alpha_k x_k + (1 - \alpha_k) T_k x_k\|^2 - 2\langle \alpha_k x_k + (1 - \alpha_k) T_k x_k, Ju \rangle + \|u\|^2 \\ &\leq \alpha_k \|x_k\|^2 + (1 - \alpha_k) \|T_k x_k\|^2 - 2\alpha_n \langle x_k, Ju \rangle - 2(1 - \alpha_k) \langle T_k x_k, Ju \rangle + \|u\|^2 \\ &= \alpha_k \phi(x_k, u) + (1 - \alpha_k) \phi(T_k x_k, u) \\ &\leq \alpha_k \phi(x_k, u) + (1 - \alpha_k) \phi(x_k, u) \\ &= \phi(x_k, u). \end{split}$$

This implies that $F(\mathcal{T}) \subset C_k$. From $x_k = R_{C_{k-1} \cap Q_{k-1}}x$, by Lemma 2.3 (i) we have

$$\langle x - x_k, Jx_k - Jz \rangle \ge 0, \quad \forall z \in C_{k-1} \cap Q_{k-1}.$$

Since $F(\mathcal{T}) \subset C_{k-1} \cap Q_{k-1}$, we have

$$\langle x - x_k, Jx_k - Jz \rangle \ge 0, \quad \forall z \in F(\mathcal{T}).$$

This together with definition of Q_k implies that $F(\mathcal{T}) \subset Q_k$ and hence $F(\mathcal{T}) \subset C_k \cap Q_k$. By induction, we obtain $F(\mathcal{T}) \subset C_n \cap Q_n$ for all $n \in \mathbb{N}$. This implies that $\{x_n\}$ is well defined. From definition of Q_n , we have $x_n = R_{Q_n}x$. From $x_{n+1} = R_{C_n \cap Q_n}x \in C_n \cap Q_n \subset Q_n$, we have

$$\phi(x, x_n) \le \phi(x, x_{n+1}), \qquad \forall n \ge 0.$$

Therefore, $\{\phi(x, x_n)\}$ is nondecreasing. It follows from Lemma 2.3 (ii) and $x_n = R_{Q_n}x$ that

$$\phi(x, x_n) = \phi(x, R_{Q_n} x) \le \phi(x, u) - \phi(R_{Q_n} x, u) \le \phi(x, u)$$

for all $u \in F(\mathcal{T}) \subset Q_n$. Therefore, $\{\phi(x, x_n)\}$ is bounded. Moreover, by definition of ϕ , we know that $\{x_n\}$ is bounded. So, the limit of $\{\phi(x, x_n)\}$ exists. From $x_n = R_{Q_n}x$, we have that for any positive integer k

$$\phi(x_n, x_{n+k}) = \phi(R_{Q_n}x, x_{n+k}) \le \phi(x, x_{n+k}) - \phi(x, R_{Q_n}x) = \phi(x, x_{n+k}) - \phi(x, x_n).$$

This implies that $\lim_{n\to\infty} \phi(x_n, x_{n+k}) = 0$. Using Lemma 2.7, we have that, for $m, n \in \mathbb{N}$ with m > n,

$$g(\|x_n - x_m\|) \le \phi(x_n, x_m) \le \phi(x, x_m) - \phi(x, x_n),$$

where $g: [0, \infty) \to [0, \infty)$ is a continuous, strictly increasing and convex function with g(0) = 0. Then the property of the function g yields that $\{x_n\}$ is a Cauchy sequence in C. So there exists $w \in C$ such that $x_n \to w$. In view of $x_{n+1} = R_{C_n \cap Q_n} x \in C_n$ and definition of C_n , we also have

$$\phi(u_n, x_{n+1}) \le \phi(x_n, x_{n+1}).$$

It follows that $\lim_{n\to\infty} \phi(u_n, x_{n+1}) = \lim_{n\to\infty} \phi(x_n, x_{n+1}) = 0$. Since E is uniformly convex and smooth, we have from Lemma 2.6 that

$$\lim_{n \to \infty} \|x_n - x_{n+1}\| = \lim_{n \to \infty} \|u_n - x_{n+1}\| = 0.$$

So, we have $\lim_{n \to \infty} ||x_n - u_n|| = 0$. On the other hand, we have

$$\begin{aligned} \|x_{n+1} - u_n\| &= \|x_{n+1} - \alpha_n x_n - (1 - \alpha_n) T_n x_n\| \\ &= \|\alpha_n (x_{n+1} - x_n) + (1 - \alpha_n) (x_{n+1} - T_n x_n)\| \\ &= \|(1 - \alpha_n) (x_{n+1} - T_n x_n) - \alpha_n (x_n - x_{n+1})\| \\ &\ge (1 - \alpha_n) \|x_{n+1} - T_n x_n\| - \alpha_n \|x_n - x_{n+1}\|. \end{aligned}$$

It follows that

$$|x_{n+1} - T_n x_n|| \le \frac{1}{1 - \alpha_n} (||x_{n+1} - u_n|| + \alpha_n ||x_n - x_{n+1}||).$$

Since $\liminf_{n\to\infty} (1-\alpha_n) > 0$, we obtain that $\lim_{n\to\infty} ||x_{n+1} - T_n x_n|| = 0$. From

$$||x_n - T_n x_n|| \le ||x_n - x_{n+1}|| + ||x_{n+1} - T_n x_n||,$$

we have

$$\lim_{n \to \infty} \|x_n - T_n x_n\| = 0$$

Since $\{T_n\}$ satisfies the NST-condition with \mathcal{T} , we have that

$$\lim_{n \to \infty} \|x_n - Tx_n\| = 0, \ \forall T \in \mathcal{T}$$

Since $x_n \to w$ and T is closed, it follows that w is a fixed point of T. From Lemma 2.3 (ii), we have

$$\phi(x, R_{F(\mathcal{T})}x) \le \phi(x, R_{F(\mathcal{T})}x) + \phi(R_{F(\mathcal{T})}x, w) \le \phi(x, w).$$

 $\phi(x, R_{F(\mathcal{T})}x) \leq \phi(x, R_{F(\mathcal{T})}x) + \phi(R_{F(\mathcal{T})}x, w) \leq \phi(x, w).$ Since $x_{n+1} = R_{C_n \cap Q_n}x$ and $w \in F(\mathcal{T}) \subset C_n \cap Q_n$, we get from Lemma 2.3 (ii) that

$$\phi(x, x_{n+1}) \le \phi(x, x_{n+1}) + \phi(x_{n+1}, R_{F(\mathcal{T})}x) \le \phi(x, R_{F(\mathcal{T})}x).$$

Since $x_n \to w$, it follows that $\phi(x, w) \leq \phi(x, R_{F(\mathcal{T})}x)$. Hence $\phi(x, w) = \phi(x, R_{F(\mathcal{T})}x)$. Therefore, it follows from the uniqueness of the $R_{F(\mathcal{T})}x$ that $w = R_{F(\mathcal{T})}x$. This completes the proof.

5. DEDUCED RESULTS

In this section, using Theorem 4.3, we obtain some new strong convergence theorems for a generalized nonexpansive mapping and two generalized nonexpansive mappings in a Banach space.

Theorem 5.1. Let E be a uniformly convex and uniformly smooth Banach space and let C be a nonempty closed subset of E such that JC is closed and convex. Let T be a closed generalized nonexpansive mapping of C into E such that $F(T) \neq \emptyset$. Let $\{x_n\}$ be the sequence generated by

$$\begin{cases} x_1 = x \in C, \ C_0 = Q_0 = C, \\ u_n = \alpha_n x_n + (1 - \alpha_n) T x_n, \\ C_n = \{ z \in C_{n-1} \cap Q_{n-1} : \phi(u_n, z) \le \phi(x_n, z) \}, \\ Q_n = \{ z \in C_{n-1} \cap Q_{n-1} : \langle x - x_n, J x_n - J z \rangle \ge 0 \}, \\ x_{n+1} = R_{C_n \cap Q_n} x \end{cases}$$

for all $n \in \mathbb{N}$, where J is the duality mapping on E and $\{\alpha_n\} \subset [0,1]$ satisfies $\liminf(1-\alpha_n) > 0$. Then, $\{x_n\}$ converges strongly to $R_{F(T)}x$, where $R_{F(T)}$ is the sunny generalized nonexpansive retraction from E onto F(T).

Proof. Put $T_n = T$ for all $n \in \mathbb{N}$. It obvious that $\{T_n\}$ satisfies the NST-condition with T. So, we obtain the desired result from Theorem 4.3.

Theorem 5.2. Let E be a uniformly convex and uniformly smooth Banach space and let C be a nonempty closed subset of E such that JC is closed and convex. Let T be a closed generalized nonexpansive mapping of C into E such that $F(T) \neq \emptyset$. Let $\{x_n\}$ be the sequence generated by

$$\begin{cases} x_1 = x \in C, \ C_0 = Q_0 = C, \\ u_n = \alpha_n x_n + (1 - \alpha_n)(\beta_n x_n + (1 - \beta_n)Tx_n), \\ C_n = \{z \in C_{n-1} \cap Q_{n-1} : \phi(u_n, z) \le \phi(x_n, z)\}, \\ Q_n = \{z \in C_{n-1} \cap Q_{n-1} : \langle x - x_n, Jx_n - Jz \rangle \ge 0\} \\ x_{n+1} = R_{C_n \cap Q_n} x \end{cases}$$

for all $n \in \mathbb{N}$, where J is the duality mapping on E and $\{\alpha_n\}$ and $\{\beta_n\}$ are sequences in [0,1] satisfying $\liminf_{n\to\infty} (1-\alpha_n) > 0$ and $\liminf_{n\to\infty} \beta_n(1-\beta_n) > 0$. Then, $\{x_n\}$ converges strongly to $R_{F(T)}x$, where $R_{F(T)}$ is the sunny generalized nonexpansive retraction from E onto F(T).

Proof. Define $T_n x = \beta_n x + (1 - \beta_n)Tx$ for all $n \in \mathbb{N}$ and $x \in C$. By Lemma 3.1, we know that $\{T_n\}$ satisfies the NST-condition with T. So, we obtain the desired result from Theorem 4.3.

Theorem 5.3. Let E be a uniformly convex and uniformly smooth Banach space and let C be a nonempty closed subset of E such that JC is closed and convex. Let S and T be closed generalized nonexpansive mappings of C into E such that $F(S) \cap F(T) \neq \emptyset$. Let $\{x_n\}$ be a sequence generated by

$$\begin{cases} x_1 = x \in C, \ C_0 = Q_0 = C, \\ u_n = \alpha_n x_n + (1 - \alpha_n)(\beta_n S x_n + (1 - \beta_n) T x_n), \\ C_n = \{z \in C_{n-1} \cap Q_{n-1} : \phi(u_n, z) \le \phi(x_n, z)\}, \\ Q_n = \{z \in C_{n-1} \cap Q_{n-1} : \langle x - x_n, J x_n - J z \rangle \ge 0\}, \\ x_{n+1} = R_{C_n \cap Q_n} x \end{cases}$$

for all $n \in \mathbb{N}$, where J is the duality mapping on E and $\{\alpha_n\}$ and $\{\beta_n\}$ are sequences in [0,1] satisfying $\liminf_{n\to\infty} (1-\alpha_n) > 0$ and $\liminf_{n\to\infty} \beta_n(1-\beta_n) > 0$. Then, $\{x_n\}$ converges strongly to $R_{F(S)\cap F(T)}x$, where $R_{F(S)\cap F(T)}$ is the sunny generalized nonexpansive retraction from E onto $F(S) \cap F(T)$.

Proof. Define $T_n x = \beta_n S x + (1 - \beta_n) T x$ for all $n \in \mathbb{N}$ and $x \in C$. By Lemma 3.2, we know that $\{T_n\}$ satisfies the NST-condition with $\mathcal{T} = \{S, T\}$. So, we obtain the desired result from Theorem 4.3.

Using our results, we finally get results in Hilbert spaces. In a Hilbert space, we know that $\phi(x, y) = ||x - y||^2$ for all $x, y \in H$ and J = I, where I is an identity mapping and every nonexpansive mapping with a fixed point is generalized nonexpansive. As direct consequences of Lemma 3.1 and Lemma 3.2, we get the following two lemmas obtained by Takahashi, Takeuchi and Kubota [30]

Lemma 5.4. ([30, Lemma 2.1]). Let C be a closed and convex subset of a Hilbert space H and let T be a nonexpansive mapping from C into H with $F(T) \neq \emptyset$. Let $\{\beta_n\} \subset [0,1]$ satisfy $\liminf_{n\to\infty} \beta_n(1-\beta_n) > 0$. For $n \in \mathbb{N}$, define the mapping T_n of C into itself by

$$T_n x = \beta_n x + (1 - \beta_n) T x,$$

for all $x \in C$. Then, $\{T_n\}$ is a countable family nonexpansive mappings satisfying the NST-condition with T.

Lemma 5.5. ([30, Lemma 2.3]). Let C be a closed and convex subset of a Hilbert space H and let S and T be nonexpansive mappings from C into H with $F(S) \cap F(T) \neq \emptyset$. Let $\{\beta_n\} \subset [0,1]$ satisfying $\liminf_{n\to\infty} \beta_n(1-\beta_n) > 0$. For $n \in \mathbb{N}$, define the mapping T_n of C into itself by

$$T_n x = \beta_n S x + (1 - \beta_n) T x$$

for all $x \in C$. Then, $\{T_n\}$ is a countable family of nonexpansive mappings satisfying the NST-condition with $\{S, T\}$.

We can also get the following new result for a countable family of nonexpansive non-self mappings in a Hilbert space by using Theorem 4.3.

Theorem 5.6. Let H be a Hilbert space and let C be a nonempty closed and convex subset of H. Let $\{T_n\}$ and \mathcal{T} be families of nonexpansive mappings of C into H such that $\bigcap_{n=1}^{\infty} F(T_n) = F(\mathcal{T}) \neq \emptyset$. Suppose that $\{T_n\}$ satisfies the NST-condition with \mathcal{T} . Let $\{x_n\}$ be the sequence generated by

$$\begin{cases} x_1 = x \in C, \ C_0 = Q_0 = C, \\ u_n = \alpha_n x_n + (1 - \alpha_n) T_n x_n, \\ C_n = \{ z \in C_{n-1} \cap Q_{n-1} : \| z - u_n \| \le \| z - x_n \| \}, \\ Q_n = \{ z \in C_{n-1} \cap Q_{n-1} : \langle x_n - z, x - x_n \rangle \ge 0 \}, \\ x_{n+1} = P_{C_n \cap Q_n} x \end{cases}$$

for all $n \in \mathbb{N}$, where $\{\alpha_n\} \subset [0, 1]$ satisfies $\liminf_{n \to \infty} (1 - \alpha_n) > 0$. Then, $\{x_n\}$ converges strongly to $P_{F(\mathcal{T})}x$, where $P_{F(\mathcal{T})}$ is the metric projection from C onto $F(\mathcal{T})$.

Proof. In a Hilbert space, we know that $\phi(x, y) = ||x - y||^2$ for all $x, y \in H$ and J = I, where I is an identity mapping and a nonexpansive mapping $T : C \to H$ with a fixed point is also a generalized nonexpansive mapping. By using Theorem 4.3, we are able to obtain the desired conclusion.

ACKNOWLEDGMENTS

The authors would like to thank the Center of Excellence in Mathematics, the Commission on Higher Education for the financial support.

REFERENCES

- 1. C. Byrne, A unified treatment of some iterative algorithms in signal processing and image reconstruction, *Inverse Problems*, **20** (2004), 103-120.
- 2. B. Halpern, Fixed points of nonexpanding maps, Bull. Amer. Math. Soc., 73 (1967), 957-961.
- 3. T. Ibaraki and W. Takahashi, A new projection and convergence theorems for the projections in Banach spaces, J. Approx. Theory, 149 (2007), 1-14.
- 4. T. Ibaraki and W. Takahashi, Block iterative methods for finite family of generalized nonexpansive mappings in Banach spaces, *Numer. Funct. Anal. Optim.*, **29** (2008), 362-375.
- 5. T. Ibaraki and W. Takahashi, *Generalized nonexpansive mappings and a proximal-type algorithm in Banach spaces*, Contemp. Math., **513**, Amer. Math. Soc., Providence, RI, 2010, pp. 169-180.
- 6. W. Inthakon, S. Dhompongsa and W. Takahashi, Strong convergence theorems for maximal monotone operators and generalized nonexpansive mappings in Banach spaces, *J. Nonlinear Convex Anal.*, **11** (2010), 45-63.
- G. Inoue, W. Takahashi and K. Zembayashi, Strong convergence theorems by hybrid methods for maximal monotone operator and relatively nonexpansive mappings in Banach spaces, J. Convex Anal., 16 (2009), 791-806.
- 8. S. Kamimura and W. Takahashi, Approximating solutions of maximal monotone operators in Hilbert spaces, *J. Approx. Theory*, **106** (2000), 226-240.
- 9. S. Kamimura and W. Takahashi, Strong convergence of proximal-type algorithm in a Banach space, *SIAM J. Optim.*, **13** (2002), 938-945.
- 10. S. Kamimura, F. Kohsaka and W. Takahashi, Weak and strong convergence theorems for maximal monotone operators in a Banach space, *Set-valued Anal.*, **12** (2004), 417-429.
- 11. F. Kohsaka and W. Takahashi, Strong convergence of an iterative sequence for maximal monotone operators in a Banach space, *Abstr. Appl. Anal.*, **2004** (2004), 239-249.
- 12. F. Kohsaka and W. Takahashi, *Block iterative methods for a finite family of relatively nonexpansive mappings in Banach spaces*, Fixed Point Theory Appl., Vol. 2007, Article ID 21972, 18 pages, 2007.

- 13. F. Kohsaka and W. Takahashi, Generalized nonexpansive retractions and a proximal-type algorithm in Banach spaces, *J. Nonlinear Convex Anal.*, **8** (2007), 197-209.
- 14. F. Kohsaka and W. Takahashi, Existence and approximation of fixed points of firmly nonexpansive type mappings in Banach space, *SIAM J. Optim.*, **19** (2008), 824-835.
- 15. W. R. Mann, Mean Vauled methods in iteration, Proc. Amer. Math. Soc., 4 (1953), 506-510.
- 16. C. Martinez-Yanes and H. K. Xu, Strong convergence of the CQ method for fixed point iteration processes, *Nonlinear Anal.*, **64** (2006), 2400-2411.
- 17. S. Matsushita and W. Takahashi, Weak and strong convergence theorems for relatively nonexpansive mappings in Banach space, *Fixed Point Theory Appl.*, **2004** (2004), 37-47.
- 18. S. Matsushita and W. Takahashi, A strong convergence theorem for relatively nonexpansive mappings in a Banach space, J. Approx. Theory, **134** (2005), 257-266.
- K. Nakajo, K. Shimoji and W. Takahashi, Strong convergence theorems to common fixed points of families of nonexpansive mappings in Banach spaces, *J. Nonlinear Convex Anal.*, 8 (2007), 11-34.
- 20. K. Nakajo and W. Takahashi, Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups, J. Math. Anal. Appl., 279 (2003), 372-379.
- 21. X. Qin and Y. Su, Strong convergence of monotone hybrid method for fixed point iteration processes, *J. Syst. Sci. and Complexity*, **21** (2008), 474-482.
- 22. X. Qin and Y. Su, Strong convergence theorems for relatively nonexpansive mappings in a Banach space, *Nonlinear Anal.*, **67** (2007), 1958-1965.
- 23. R. T. Rockafellar, On the maximality of sums of nonlinear monotone operators, *Trans. Amer. Math. Soc.*, **194** (1970), 75-88.
- 24. R. T. Rockafellar, Monotone operators and the proximal point algorithm, *SIAM J. Control Oprim.*, **14** (1976), 877-898.
- 25. M. I. Sezan and H. Stark, Applications of convex projection theory to image recovery in tomography and related areas, in: *Image Recovery Theory and Applications*, Academic Press, Orlando, 1987, pp. 415-562.
- M. V. Solodov and B. F. Svaiter, Forcing strong convergence of proximal point iterations in a Hilbert space, *Math. Program.*, 87 (2000), 189-202.
- Y. Su, D. Wang and M. Shang, Strong convergence of monotone hybrid algorithm for hemi-relatively nonexpansive mappings, Fixed Point Theory Appl., Vol. 2008, Article ID 284613, 8 pages, 2008.
- 28. W. Takahashi, *Nonlinear Functional Analysis Fixed Point Theory and its Applications*, Yokohama Publishers Inc, Yokohama, 2000.
- 29. W. Takahashi, *Convex Analysis and Application of Fixed Points*, Yokohama Publishers inc, Yokohama, 2000, (Japanese).

- W. Takahashi, Y. Takeuchi and R. Kubota, Strong convergence theorems by hybrid methods for families of nonexpansive mappings in Hilbert spaces, *J. Math. Anal. Appl.*, 341 (2008), 276-286.
- 31. C. Zalinescu, On uniformly convex functions, J. Math. Anal. Appl., 95 (1983), 344-374.

Chakkrid Klin-eam Department of Mathematics Faculty of Science Naresuan University Phitsanulok 65000 and Centre of Excellence in Mathematics CHE, Si Ayutthaya Road Bangkok 10400 Thailand E-mail: chakkridk@nu.ac.th

Suthep Suantai Department of Mathematics Faculty of Science Chiang Mai University Chiang Mai, 50200 and Centre of Excellence in Mathematics CHE, Si Ayutthaya Road Bangkok 10400 Thailand E-mail: scmti005@chiangmai.ac.th

Wataru Takahashi Department of Mathematical and Computing Sciences Tokyo Institute of Technology Tokyo 152-8552 Japan E-mail: wataru@is.titech.ac.jp