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STRONG CONVERGENCE THEOREMS BY MONOTONE HYBRID
METHOD FOR A FAMILY OF GENERALIZED NONEXPANSIVE

MAPPINGS IN BANACH SPACES

Chakkrid Klin-eam, Suthep Suantai* and Wataru Takahashi

Abstract. In this paper, we study monotone hybrid method for finding a common
fixed point of a family of generalized nonexpansive mappings and then prove a
strong convergence theorem for a family of generalized nonexpansive mappings in
Banach spaces. Using this theorem, we obtain some new results for a generalized
nonexpansive mapping and two generalized nonexpansive mappings in Banach
spaces. Moreover, we apply our main result to obtain a strong convergence theo-
rem for a family of nonexpansive mappings in a Hilbert space.

1. INTRODUCTION

Let E be a real Banach space with ‖·‖ and let C be a nonempty subset of E . Then a
mapping T of C intoE is called nonexpansive if ‖Tx−Ty‖ ≤ ‖x−y‖ for all x, y ∈ C.
We use F (T ) to denote the set of fixed points of T ; that is F (T ) = {x ∈ C : x = Tx}.
A mapping T of C into E is called quasi-nonexpansive if F (T ) is nonempty and
‖Tx − y‖ ≤ ‖x − y‖ for all x ∈ C and y ∈ F (T ). It is easy to see that if T is
nonexpansive with F (T ) �= ∅, then it is quasi-nonexpansive.
The theory of nonexpansive mappings is an important subject which can be applied

widely in applied areas, in particular, in image recovery and signal processing; see, for
instance, [1, 25]. However, the Picard’s sequence {T nx}∞n=1 of iterates of mapping T
at a point x ∈ C may not converge even in the weak topology. In 1953, Mann [15]
introduced an iterative scheme which is now known as Mann’s iteration process. This
iteration is defined as follows:

(1.1) xn+1 = αnxn + (1− αn)Txn, n ≥ 0,
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where the initial guess x0 ∈ C is chosen arbitrarily and the sequence {αn} is in the
interval [0, 1]. However, we note that Mann’s iteration has only weak convergence
even in a Hilbert space.
In 2003, Nakajo and Takahashi [20] proposed the following modification of Mann’s

iteration process (1.1), by using hybrid method in mathematical programming, for a
single nonexpansive mapping T in a Hilbert space H :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x1 = x ∈ C,

un = αnxn + (1− αn)Txn,

Cn = {z ∈ C : ‖z − un‖ ≤ ‖z − xn‖},
Qn = {z ∈ C : 〈xn − z, x− xn〉 ≥ 0},
xn+1 = ΠCn∩Qnx

(1.2)

for all n ∈ N, where {αn} ⊂ [0, 1] and Π is the metric projection of H onto Cn ∩Qn.
They proved that the sequence {xn} generated by (1.2) converges strongly to a fixed
point of T under an appropriate control condition on the sequence {αn}.
In 2008, Takahashi, Takeuchi and Kubota [30] proposed the following modification

of the iteration method (1.2) for a family of nonexpansive mappings {Tn} in a Hilbert
space H : ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x1 = x ∈ C,

un = αnxn + (1− αn)Tnxn,

Cn+1 = {z ∈ Cn : ‖z − un‖ ≤ ‖z − xn‖},
xn+1 = ΠCn+1x

(1.3)

for all n ∈ N, where {αn} ⊂ [0, 1]. They proved strong convergence of the sequence
{xn} generated by (1.3) under an appropriate control condition on the sequence {αn}
and under the condition that the family {Tn}∞n=1 satisfies NST-condition.
In 2008, Qin and Su [21] modified the iteration (1.2) by the following method

called the monotone hybrid method, for a nonexpansive mapping T in a Hilbert space,
as follows:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x1 = x ∈ C, C0 = Q0 = C,

un = αnxn + (1 − αn)Txn,

Cn = {z ∈ Cn−1 ∩ Qn−1 : ‖z − un‖ ≤ ‖z − xn‖},
Qn = {z ∈ Cn−1 ∩ Qn−1 : 〈xn − z, x− xn〉 ≥ 0},
xn+1 = ΠCn∩Qnx

(1.4)

for all n ∈ N, where {αn} ⊂ [0, 1]. By using this method, they proved a strong
convergence theorem under a control condition on the sequence {αn}, but the technic
they used in this paper is different from Nakajo and Takahashi [20]. More precisely,
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they showed that the sequence {xn} generated by (1.4) is a Cauchy sequence, without
the use of demiclosedness principle, Opial’s condition and the Kadec-Klee property.
Recently, by using generalized projections, Su, Wang and Shang [27] proposed the

following monotone hybrid method for a hemi-relatively noexpansive mapping T in a
Banach space:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x1 = x ∈ C, C0 = Q0 = C,

un = J−1
(
αnJxn + (1 − αn)JTxn

)
,

Cn = {z ∈ Cn−1 ∩ Qn−1 : φ(z, un) ≤ φ(z, xn)},
Qn = {z ∈ Cn−1 ∩ Qn−1 : 〈xn − z, Jx − Jxn〉 ≥ 0},
xn+1 = ΠCn∩Qnx

(1.5)

where J is the duality mapping on E and {αn} ⊂ [0, 1]. They proved that if
lim sup

n→∞
αn < 1, then the sequence {xn} generated by (1.5) converges strongly to

ΠF (T )x0, where ΠF (T ) is the generalized projection from C onto F (T ).
Employing the ideas of Qin and Su [21], Takahashi, Takeuchi and Kubota [30]

and Su, Wang and Shang [27], we modify iterations (1.3), (1.4) and (1.5) for finding a
common fixed point a countable family of generalized nonexpansive mappings by using
monotone hybrid method and then prove a strong convergence theorem in a Banach
space. Using this theorem, we obtain some new results for a generalized nonexpansive
mapping and two generalized nonexpansive mappings in Banach spaces. Moreover,
we apply our main result to obtain a strong convergence theorem for a family of
nonexpansive mappings in a Hilbert space.

2. PRELIMINARIES

Throughout this paper, all linear spaces are real. Let N and R be the sets of all
positive integers and real numbers, respectively. Let E be a Banach space and let E∗

be the dual space of E . For a sequence {xn} of E and a point x ∈ E , the weak
convergence of {xn} to x and the strong convergence of {xn} to x are denoted by
xn ⇀ x and xn → x, respectively. The duality mapping J from E into 2E∗ is defined
by

Jx = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2}, ∀x ∈ E.

Let S(E) be the unit sphere centered at the origin of E . Then the space E is said
to be smooth if the limit

lim
t→0

‖x + ty‖ − ‖x‖
t

exists for all x, y ∈ S(E). It is also said to be uniformly smooth if the limit exists
uniformly in x, y ∈ S(E). A Banach space E is said to be strictly convex if ‖x+y

2 ‖ < 1
whenever x, y ∈ S(E) and x �= y. It is said to be uniformly convex if for each ε ∈ (0, 2],
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there exists δ > 0 such that ‖x+y
2 ‖ < 1 − δ whenever x, y ∈ S(E) and ‖x − y‖ ≥ ε.

From [28] we know the following:
(i) If E in smooth, then J is single-valued.
(ii) If E is reflexive, then J is onto.
(iii) If E is strictly convex, then J is one-to-one.
(iv) If E is strictly convex, then J is strictly monotone.
(v) If E is uniformly smooth, then J is uniformly norm-to-norm continuous on each

bounded subset of E .

Let E be a smooth Banach space. Throughout this paper, define the function
φ : E × E → R by

(2.1) φ(y, x) = ‖y‖2 − 2〈y, Jx〉+ ‖x‖2, ∀y, x ∈ E.

Observe that, in a Hilbert spaceH , (2.1) reduces to φ(x, y) = ‖x−y‖2 for all x, y ∈ H .
It is obvious from the definition of the function φ that for all x, y ∈ E ,

(P1) (‖x‖ − ‖y‖)2 ≤ φ(x, y) ≤ (‖x‖ + ‖y‖)2,
(P2) φ(x, y) = φ(x, z) + φ(z, y) + 2〈x− z, Jz − Jy〉,
(P3) φ(x, y) = 〈x, Jx − Jy〉 + 〈y − x, Jy〉 ≤ ‖x‖‖Jx − Jy‖ + ‖y − x‖‖y‖.

Let C be a closed subset of a Banach space E , and let T be a mapping from C

into E . We use F (T ) to denote the set of fixed points of T , that is, F (T ) = {x ∈ C :
x = Tx}. Recall that a mapping T : C → E is generalized nonexpansive if F (T ) �= ∅
and φ(Tx, u) ≤ φ(x, u) for all x ∈ C and u ∈ F (T ). Let R be a mapping from E
onto C. Then R is said to be a retraction if R2 = R. The mapping R from E onto C

is said to be sunny if R(Rx + t(x − Rx)) = Rx for all x ∈ E and t ≥ 0.
A nonempty closed subset C of a smooth Banach space E is said to be a sunny

generalized nonexpansive retract of E if there exists a sunny generalized nonexpansive
retraction R from E onto C. We know the following lemmas for sunny generalized
nonexpansive retractions.

Lemma 2.1. (Ibaraki and Takahashi [3]). Let C be a nonempty closed subset of
a smooth and strictly convex Banach space E and let R be a retraction from E onto
C. Then the following are equivalent:

(i) R is sunny generalized nonexpansive;
(ii) 〈x − Rx, Jy − JRx〉 ≤ 0, ∀x ∈ E, y ∈ C.

Lemma 2.2. (Ibaraki and Takahashi [3]). Let C be a nonempty closed sunny gen-
eralized nonexpansive retract of a smooth and strictly convex Banach space E . Then
the sunny generalized nonexpansive retraction from E onto C is uniquely determined.
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Lemma 2.3. (Ibaraki and Takahashi [3]). Let C be a nonempty closed subset of a
smooth and strictly convex Banach space E such that there exists a sunny generalized
nonexpansive retraction R from E onto C, let x ∈ E and z ∈ C. Then the following
hold:

(i) z = Rx if and only if 〈x− z, Jy − Jz〉 ≤ 0 for all y ∈ C;

(ii) φ(x, Rx) + φ(Rx, z) ≤ φ(x, z).

Lemma 2.4. (Kohsaka and Takahashi [13]). Let C be a nonempty closed subset
of a smooth, strictly convex and reflexive Banach space E . Then the following are
equivalent:

(i) C is a sunny generalized nonexpansive retract of E;

(ii) JC is closed and convex.

Lemma 2.5. (Kohsaka and Takahashi [13]). Let E be a smooth, strictly convex and
reflexive Banach space and let C be a nonempty closed sunny generalized nonexpansive
retract of E . Let R be the sunny generalized nonexpansive retraction from E onto
C, let x ∈ E and z ∈ C. Then the following are equivalent:

(i) z = Rx ;

(ii) φ(x, z) = miny∈C φ(x, y).

Lemma 2.6. (Kamimura and Takahashi [9]). Let E be a uniformly convex and
smooth Banach space and let {xn} and {yn} be two sequences in E such that either
{xn} or {yn} is bounded. If limn→∞ φ(xn, yn) = 0, then limn→∞ ‖xn − yn‖ = 0.

Lemma 2.7. (Kamimura and Takahashi [9]). Let E be a uniformly convex and
smooth Banach space and let r > 0. Then there exists a strictly increasing, continuous
and convex function g : [0,∞) → [0,∞) such that g(0) = 0 and

g(‖x− y‖) ≤ φ(x, y)

for all x, y ∈ Br(0), where Br(0) = {z ∈ E : ‖z‖ ≤ 1}.

Lemma 2.8. (Zalinescu [31]). Let E be a uniformly convex Banach space and
let r > 0. Then there exists a strictly increasing, continuous and convex function
g : [0,∞) → [0,∞) such that g(0) = 0 and

‖tx + (1− t)y‖2 ≤ t‖x‖2 + (1− t)‖y‖2 − t(1 − t)g(‖x− y‖)

for all x, y ∈ Br(0) and t ∈ [0, 1], where Br(0) = {z ∈ E : ‖z‖ ≤ r}.
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Lemma 2.9. (Ibaraki and Takahashi [4]). Let E be a smooth and strictly convex
Banach space, let z ∈ E and let {ti}m

i=1 ⊂ (0, 1) with
∑m

i=1 ti = 1. If {xi}m
i=1 is a

finite sequence in E such that

φ
( m∑

i=1

tixi, z)
)

=
m∑

i=1

tiφ(xi, z),

then x1 = x2 = ... = xm.

3. NST-CONDITION

Let E be a real Banach space and C be a closed subset of E . Motivated by
Nakajo, Shimoji and Takahashi [19], we give the following definitions: Let {Tn}
and T be two families of generalized noexpansive mappings of C into E such that⋂∞

n=1 F (Tn) = F (T ) �= ∅, where F (Tn) is the set of all fixed points of Tn and
F (T ) is the set of all common fixed points of T . Then, {Tn} is said to satisfy the
NST-condition with T if for each bounded sequence {xn} ⊂ C,

lim
n→∞

‖xn − Tnxn‖ = 0 ⇒ lim
n→∞

‖xn − Txn‖ = 0, for all T ∈ T .

In particular, if T = {T}, i.e., T consists of one mapping T , then {Tn} is said to
satisfy the NST-condition with T . It is obvious that {Tn} with Tn = T for all n ∈ N

satisfies NST-condition with T = {T}.

Lemma 3.1. Let C be a subset of a uniformly smooth and uniformly convex
Banach space E and let T be a generalized nonexpansive mapping from C into E
with F (T ) �= ∅. Let {βn} ⊂ (0, 1) satisfy lim inf

n→∞
βn(1 − βn) > 0. For n ∈ N, define

the mapping Tn from C into E by

Tnx = βnx + (1 − βn)Tx,

for all x ∈ C. Then, {Tn} is a countable family of generalized nonexpansive mappings
satisfying the NST-condition with T .

Proof. First, we can easily show that F (Tn) = F (T ) for all n ∈ N. Then⋂∞
n=1 F (Tn) = F (T ). For x ∈ C and u ∈ F (Tn), we have

φ(Tnx, u) = φ(βnx + (1 − βn)Tx, u)

= ‖βnx + (1 − βn)Tx‖2 − 2〈βnx + (1 − βn)Tx, Ju〉+ ‖u‖2

≤ βn‖x‖2 + (1− βn)‖Tx‖2 − 2βn〈x, Ju〉 − 2(1− βn)〈Tx, Ju〉+ ‖u‖2

= βnφ(x, u) + (1 − βn)φ(Tx, u)

≤ βnφ(x, u) + (1 − βn)φ(x, u) = φ(x, u).
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Hence Tn is generalized nonexpansive. Next, we show that {Tn} satisfies the NST-
condition with T . To show this, suppose that {xn} is a bounded sequence in C such
that limn→∞ ‖xn −Tnxn‖ = 0. Since {xn} is bounded, we obtain that {Txn} is also
bounded. Put r = max{supn ‖xn‖, supn ‖Txn‖}. Then there exists r > 0 such that
{xn}, {Txn} ⊂ Br(0), where Br(0) = {z ∈ E : ‖z‖ ≤ r}. We have from Lemma 2.8
that for u ∈

⋂∞
n=1 F (Tn),

φ(Tnxn, u) = φ(βnxn + (1 − βn)Txn, u)

= ‖βnxn + (1 − βn)Txn‖2 − 2〈βnxn + (1− βn)Txn, Ju〉 + ‖u‖2

≤ βn‖xn‖2 + (1 − βn)‖Txn‖2 − 2βn〈xn, Ju〉 − 2(1 − βn)〈Txn, Ju〉

+ ‖u‖2 − βn(1 − βn)g(‖xn − Txn‖)
= βnφ(xn, u) + (1− βn)φ(Txn, u)− βn(1− βn)g(‖xn − Txn‖)

≤ βnφ(xn, u) + (1− βn)φ(xn, u)− βn(1− βn)g(‖xn − Txn‖)
= φ(u, xn)− βn(1− βn)g(‖xn − Txn‖),

where g : [0,∞) → [0,∞) is a continuous, strictly increasing and convex function
with g(0) = 0. So, we have

(3.1) βn(1− βn)g(‖xn − Txn‖) ≤ φ(xn, u)− φ(Tnxn, u).

Let {‖xnk
− Txnk

‖} be any subsequence of {‖xn − Txn‖}. Since {xnk
} is bounded,

there exists a subsequence {xn′
j
} of {xnk

} such that

lim
j→∞

φ(xn′
j
, u) = lim sup

k→∞
φ(xnk

, u) = a.

Using properties (P2) and (P3) of φ, we have

(3.2)

φ(xn′
j
, u)

= φ(xn′
j
, Tn′

j
xn′

j
) + φ(Tn′

j
xn′

j
, u) + 2〈xn′

j
− Tn′

j
xn′

j
, JTn′

j
xn′

j
− Ju〉

≤ φ(Tn′
j
xn′

j
, u) + ‖xn′

j
‖‖Jxn′

j
− JTn′

j
xn′

j
‖ + ‖xn′

j
− Tn′

j
xn′

j
‖‖Tn′

j
xn′

j
‖

+2‖xn′
j
− Tn′

j
xn′

j
‖‖JTn′

j
xn′

j
− Ju‖.

Since limn→∞ ‖xn − Tnxn‖ = 0 and E is a uniformly smooth, we have

lim
n→∞

‖Jxn − JTnxn‖ = 0.

It follows from (3.2) that

a = lim inf
j→∞

φ(xn′
j
, u) ≤ lim inf

j→∞
φ(Tn′

j
xn′

j
, u).
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On the other hand, since φ(Tnxn, u) ≤ φ(xn, u), we have

lim sup
j→∞

φ(Tn′jxn′
j
, u) ≤ lim sup

j→∞
φ(xn′

j
, u) = a.

Hence
lim

j→∞
φ(xn′

j
, u) = lim

j→∞
φ(Tn′

j
xn′

j
, u) = a.

Since lim infn→∞ βn(1 − βn) > 0, it follows from (3.1) that limn→∞ g(‖xn′
j
−

Txn′
j
‖) = 0. By properties of the function g, we have limj→∞ ‖xn′

j
− Txn′

j
‖ = 0

and hence limn→∞ ‖xn − Txn‖ = 0.

Lemma 3.2. Let C be a subset of a uniformly smooth and uniformly convex Banach
space E and let S and T be generalized nonexpansive mappings from C into E with
F (S) ∩ F (T ) �= ∅. Let {βn} ⊂ (0, 1) satisfy lim inf

n→∞
βn(1 − βn) > 0. For n ∈ N,

define the mapping Tn from C into E by

Tnx = βnSx + (1− βn)Tx

for all x ∈ C. Then, {Tn} is a countable family of generalized nonexpansive mappings
satisfying the NST-condition with T = {S, T}.

Proof. First, we can easily show that
⋂∞

n=1 F (Tn) = F (T ) and Tn are generalized
nonexpansive mappings for all n ∈ N. Indeed, note that

F (T ) = F (S) ∩ F (T ) ⊂
∞⋂

n=1

F (Tn).

Let u ∈ F (S) ∩ F (T ). We obtain that for any x ∈ C,

φ(Tnx, u) = φ(βnSx + (1− βn)Tx, u)

= ‖βnSx + (1− βn)Tx‖2 − 2〈βnSx + (1 − βn)Tx, Ju〉+ ‖u‖2

≤ βn‖Sx‖2 + (1 − βn)‖Tx‖2 − 2βn〈Sx, Ju〉 − 2(1− βn)〈Tx, Ju〉+ ‖u‖2

= βnφ(Sx, u) + (1− βn)φ(Tx, u)

≤ βnφ(x, u) + (1 − βn)φ(x, u)

= φ(x, u).

Then, for v ∈ F (Tn) we have

φ(v, u) = φ(Tnv, u)

= φ(βnSv + (1 − βn)Tv, u)

= ‖βnSv + (1 − βn)Tv‖2 − 2〈βnSv + (1− βn)Tv, Ju〉+ ‖u‖2
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≤ βn‖Sv‖2 + (1− βn)‖Tv‖2 − 2βn〈Sx, Ju〉 − 2(1− βn)〈Tv, Ju〉+ ‖u‖2

= βnφ(Sv, u) + (1 − βn)φ(Tv, u)

≤ βnφ(v, u) + (1− βn)φ(v, u)

= φ(v, u),

that is,

φ(βnSv + (1 − βn)Tv, u) = βnφ(Sv, u) + (1− βn)φ(Tv, u) = φ(v, u).

By Lemma 2.9, we have Sv = Tv. This implies that v = Tnv = Sv = Tv. So
F (Tn) ⊂ F (S) ∩ F (T ) for all n ∈ N. Hence

⋂∞
n=1 F (Tn) = F (T ). Next, we

show that {Tn} satisfies the NST-condition with {S, T}. Let {xn} be a bounded
sequence in C such that limn→∞ ‖xn − Tnxn‖ = 0. By Lemma 2.8, we have that for
u ∈

⋂∞
n=1 F (Tn),

φ(Tnxn, u)
= φ(βnSxn + (1 − βn)Txn, u)

= ‖βnSxn + (1 − βn)Txn‖2 − 2〈βnSxn + (1 − βn)Txn, Ju〉+ ‖u‖2

≤ βn‖Sxn‖2 + (1− βn)‖Txn‖2 − 2βn〈Sxn, u〉 − 2(1 − βn)〈Txn, u〉+ ‖u‖2

− βn(1 − βn)g(‖Sxn − Txn‖)
= βnφ(Sxn, u) + (1 − βn)φ(Txn, u)− βn(1− βn)g(‖Sxn − Txn‖)
≤ βnφ(xn, u) + (1− βn)φ(xn, u)− βn(1 − βn)g(‖Sxn − Txn‖)
= φ(xn, u)− βn(1− βn)g(‖Sxn − Txn‖),

where g : [0,∞) → [0,∞) is a continuous, strictly increasing and convex function
with g(0) = 0. So, we have

(3.3) βn(1− βn)g(‖Sxn − Txn‖) ≤ φ(xn, u)− φ(Tnxn, u).

Let {‖Sxnk
−Txnk

‖} be any subsequence of {‖Sxn−Txn‖}. Since {xnk
} is bounded,

there exists a subsequence {xn′
j
} of {xnk

} such that

lim
j→∞

φ(xn′
j
, u) = lim sup

k→∞
φ(xnk

, u) = a.

Using properties (P2) and (P3) of φ, we have

(3.4)

φ(xn′
j
, u)

= φ(xn′
j
, Tn′

j
xn′

j
) + φ(Tn′

j
xn′

j
, u) + 2〈xn′

j
− Tn′

j
xn′

j
, JTn′

j
xn′

j
− Ju〉

≤ φ(Tn′
j
xn′

j
, u) + ‖xn′

j
‖‖Jxn′

j
− JTn′

j
xn′

j
‖ + ‖Tn′

j
xn′

j
− xn′

j
‖‖Tn′

j
xn′

j
‖

+2‖xn′
j
− Tn′

j
xn′

j
‖‖JTn′

j
xn′

j
− Ju‖.
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Since limn→∞ ‖xn−Tnxn‖ = 0 and E is uniformly smooth, we have limn→∞ ‖Jxn−
JTnxn‖ = 0. It follows from (3.4) that

a = lim inf
j→∞

φ(xn′
j
, u) ≤ lim inf

j→∞
φ(Tn′

j
xn′

j
, u).

On the other hand, since φ(Tnxn, u) ≤ φ(xn, u), we have

lim sup
j→∞

φ(Tn′
j
xn′

j
, u) ≤ lim sup

j→∞
φ(xn′

j
, u) = a.

It follows that
lim

j→∞
φ(xn′

j
, u) = lim

j→∞
φ(Tn′

j
xn′

j
, u) = a.

Since lim infn→∞ βn(1 − βn) > 0, it follows from (3.3) that

lim
n→∞

g(‖Sxn′
j
− Txn′

j
‖) = 0.

By properties of the function g, we have limj→∞ ‖Sxn′
j
− Txn′

j
‖ = 0 and hence

limn→∞ ‖Sxn − Txn‖ = 0. Since

‖xn−Sxn‖ ≤ ‖xn−Tnxn‖+‖Tnxn−Sxn‖ = ‖xn−Tnxn‖+(1−βn)‖Sxn−Txn‖,

we obtain limn→∞ ‖xn − Sxn‖ = 0. Similarly, we have limn→∞ ‖xn − Txn‖ = 0.

4. STRONG CONVERGENCE THEOREMS

In this section, we prove a strong convergence theorem for a family of non-self
generalized nonexpansive mappings in a Banach space by using the monotone hybrid
method. Before proving it, we give the following lemma for non-self generalized
nonexpansive mappings in a Banach space.

Lemma 4.1. Let E be a smooth, strictly convex, and reflexive Banach space and let
C be a closed subset of E such that JC is closed and convex. Let T be a generalized
nonexpansive mapping from C into E . Then F(T) is closed and JF (T ) is closed and
convex.

Proof. First, let us show that JF (T ) is closed. Let {x∗
n} ⊂ JF (T ) such that

x∗
n → x∗ for some x∗ ∈ E∗. Since JC is closed, we have x∗ ∈ JC. Since E is
smooth, strictly convex and reflexive, J : E → E∗ is one-to-one and onto. Then, there
exist x ∈ C and {xn} ⊂ F (T ) such that x∗ = Jx and x∗

n = Jxn for all n ∈ N. Since
T is generalized nonexpansive and xn ∈ F (T ), we have that

φ(Tx, x) = ‖Tx‖2 − 2〈Tx, Jx〉+ ‖Jx‖2

= ‖Tx‖2 − 2〈Tx, x∗〉 + ‖x∗‖2

= lim
n→∞

(‖Tx‖2 − 2〈Tx, x∗
n〉 + ‖x∗

n‖2)
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= lim
n→∞

(‖Tx‖2 − 2〈Tx, Jxn〉 + ‖Jxn‖2)

= lim
n→∞

φ(Tx, xn)

≤ lim
n→∞

φ(x, xn)

= lim
n→∞

(‖x‖2 − 2〈x, x∗
n〉 + ‖x∗

n‖2)

= lim
n→∞

(‖x‖2 − 2〈x, x∗〉 + ‖x∗‖2)

= ‖x‖2 − 2〈x, Jx〉+ ‖x‖2

= φ(x, x) = 0.

Thus we have φ(Tx, x) = 0. Since E is strictly convex, we have x = Tx. This implies
x∗ = Jx ∈ JF (T ). Next, we show that JF (T ) is convex. Let x∗, y∗ ∈ JF (T ) and
let α, β ∈ (0, 1) with α + β = 1. Then we have x, y ∈ F (T ) such that x∗ = Jx and
y∗ = Jy. Since x, y ∈ F (T ) and T is generalized nonexpansive, we have that

φ(TJ−1(αJx + βJy), J−1(αJx + βJy))

= ‖TJ−1(αJx + βJy)‖2 − 2〈TJ−1(αJx + βJy), αJx + βJy〉
+ ‖J−1(αJx + βJy)‖2 + α‖x‖2 + β‖y‖2 − (α‖x‖2 + β‖y‖2)

= αφ(TJ−1(αJx + βJy), x) + βφ(TJ−1(αJx + βJy), y)

+ ‖αJx + βJy‖2 − (α‖x‖2 + β‖y‖2)

≤ αφ(J−1(αJx + βJy), x) + βφ(J−1(αJx + βJy), y)

+ ‖αJx + βJy‖2 − (α‖x‖2 + β‖y‖2)

= α
{
‖αJx + βJy‖2 − 2〈J−1(αJx + βJy), Jx〉+ ‖x‖2

}

+ β
{
‖αJx + βJy‖2 − 2〈J−1(αJx + βJy), Jy〉 + ‖y‖2

}

+ ‖αJx + βJy‖2 − (α‖x‖2 + β‖y‖2)

= 2‖αJx + βJy‖2 − 2〈J−1(αJx + βJy), αJx + βJy〉
= 2‖αJx + βJy‖2 − 2‖αJx + βJy‖2 = 0.

Then we have TJ−1(αJx+βJy) = J−1(αJx+βJy) and hence J−1(αJx+βJy) ∈
F (T ). This implies that αJx + βJy ∈ JF (T ). Therefore JF (T ) is convex. Since
JF (T ) is closed and convex, JF (T ) is weakly closed. Furthermore, since J is norm
to weak continuous, F (T ) is closed. This completes the proof.

Using Lemma 2.4 and Lemma 4.1, we have the following lemma.

Lemma 4.2. Let E be a smooth, strictly convex, and reflexive Banach space and let
C be a closed subset of E such that JC is closed and convex. Let T be a generalized
nonexpansive mapping from C into E . Then F(T) is a sunny generalized nonexpansive
retract of E .
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Recall that an operator T in a Banach space is called closed, if xn → x and
Txn → y, then Tx = y.

Theorem 4.3. Let E be a uniformly smooth and uniformly convex Banach space
and let C be a nonempty closed subset of E such that JC is closed and convex. Let
{Tn} be a countable family of generalized nonexpansive mappings from C into E and
let T be a family of closed generalized nonexpansive mappings from C into E such
that

⋂∞
n=1 F (Tn) = F (T ) �= ∅. Suppose that {Tn} satisfies the NST-condition with

T . Let {xn} be the sequence generated by⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x1 = x ∈ C, C0 = Q0 = C,

un = αnxn + (1 − αn)Tnxn,

Cn = {z ∈ Cn−1 ∩ Qn−1 : φ(un, z) ≤ φ(xn, z)},
Qn = {z ∈ Cn−1 ∩ Qn−1 : 〈x − xn, Jxn − Jz〉 ≥ 0},
xn+1 = RCn∩Qnx

for all n ∈ N, where J is the duality mapping on E and {αn} ⊂ [0, 1] satisfies
lim inf
n→∞

(1 − αn) > 0. Then, {xn} converges strongly to RF (T )x, where RF (T ) is the
sunny generalized nonexpansive retraction from E onto F (T ).

Proof. We first show that JCn and JQn are closed and convex for each n ∈ N.
From the definitions of Cn and Qn, it is obvious that JCn is closed and JQn is
closed and convex for each n ∈ N. Next, we prove that JCn is convex. Since
φ(un, z) ≤ φ(xn, z) is equivalent to

0 ≤ ‖xn‖2 − ‖un‖2 − 2〈xn − un, Jz〉,

JCn is convex. Since J is one-to-one, we have J(Cn ∩ Qn) = JCn ∩ JQn is a
closed and convex for all n ∈ N. By Lemma 2.4, we obtain that Cn ∩ Qn is a sunny
generalized nonexpansive retract of E . It is obvious that F (T ) ⊂ C = C0 ∩Q0. Next,
we show that F (T ) ⊂ Cn ∩ Qn for all n ∈ N. Suppose that F (T ) ⊂ Ck−1 ∩ Qk−1

for some k ∈ N. Let u ∈ F (T ). Since Tn are generalized nonexpansive mappings for
all n ∈ N, we have

φ(uk, u) = φ(αkxk + (1 − αk)Tkxk, u)

= ‖αkxk + (1 − αk)Tkxk‖2 − 2〈αkxk + (1 − αk)Tkxk, Ju〉 + ‖u‖2

≤ αk‖xk‖2+(1−αk)‖Tkxk‖2−2αn〈xk, Ju〉−2(1−αk)〈Tkxk, Ju〉+ ‖u‖2

= αkφ(xk, u) + (1 − αk)φ(Tkxk, u)
≤ αkφ(xk, u) + (1 − αk)φ(xk, u)
= φ(xk, u).

This implies that F (T ) ⊂ Ck . From xk = RCk−1∩Qk−1
x, by Lemma 2.3 (i) we have
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〈x − xk, Jxk − Jz〉 ≥ 0, ∀z ∈ Ck−1 ∩ Qk−1.

Since F (T ) ⊂ Ck−1 ∩ Qk−1, we have

〈x − xk, Jxk − Jz〉 ≥ 0, ∀z ∈ F (T ).

This together with definition of Qk implies that F (T ) ⊂ Qk and hence F (T ) ⊂
Ck ∩ Qk. By induction, we obtain F (T ) ⊂ Cn ∩ Qn for all n ∈ N. This implies
that {xn} is well defined. From definition of Qn, we have xn = RQnx. From
xn+1 = RCn∩Qnx ∈ Cn ∩ Qn ⊂ Qn, we have

φ(x, xn) ≤ φ(x, xn+1), ∀n ≥ 0.

Therefore, {φ(x, xn)} is nondecreasing. It follows from Lemma 2.3 (ii) and xn =
RQnx that

φ(x, xn) = φ(x, RQnx) ≤ φ(x, u)− φ(RQnx, u) ≤ φ(x, u)

for all u ∈ F (T ) ⊂ Qn. Therefore, {φ(x, xn)} is bounded. Moreover, by definition
of φ, we know that {xn} is bounded. So, the limit of {φ(x, xn)} exists. From
xn = RQnx, we have that for any positive integer k

φ(xn, xn+k) = φ(RQnx, xn+k) ≤ φ(x, xn+k)−φ(x, RQnx) = φ(x, xn+k)−φ(x, xn).

This implies that lim
n→∞

φ(xn, xn+k) = 0. Using Lemma 2.7, we have that, form, n ∈ N

with m > n,

g(‖xn − xm‖) ≤ φ(xn, xm) ≤ φ(x, xm)− φ(x, xn),

where g : [0,∞) → [0,∞) is a continuous, strictly increasing and convex function with
g(0) = 0. Then the property of the function g yields that {xn} is a Cauchy sequence
in C. So there exists w ∈ C such that xn → w. In view of xn+1 = RCn∩Qnx ∈ Cn

and definition of Cn, we also have

φ(un, xn+1) ≤ φ(xn, xn+1).

It follows that lim
n→∞

φ(un, xn+1) = lim
n→∞

φ(xn, xn+1) = 0. Since E is uniformly
convex and smooth, we have from Lemma 2.6 that

lim
n→∞

‖xn − xn+1‖ = lim
n→∞

‖un − xn+1‖ = 0.

So, we have lim
n→∞

‖xn − un‖ = 0. On the other hand, we have

‖xn+1 − un‖ = ‖xn+1 − αnxn − (1 − αn)Tnxn‖
= ‖αn(xn+1 − xn) + (1− αn)(xn+1 − Tnxn)‖
= ‖(1− αn)(xn+1 − Tnxn) − αn(xn − xn+1)‖
≥ (1− αn)‖xn+1 − Tnxn‖ − αn‖xn − xn+1‖.
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It follows that

‖xn+1 − Tnxn‖ ≤ 1
1 − αn

(
‖xn+1 − un‖ + αn‖xn − xn+1‖

)
.

Since lim inf
n→∞

(1 − αn) > 0, we obtain that lim
n→∞

‖xn+1 − Tnxn‖ = 0. From

‖xn − Tnxn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − Tnxn‖,
we have

lim
n→∞

‖xn − Tnxn‖ = 0.

Since {Tn} satisfies the NST-condition with T , we have that
lim

n→∞
‖xn − Txn‖ = 0, ∀T ∈ T .

Since xn → w and T is closed, it follows that w is a fixed point of T . From Lemma
2.3 (ii), we have

φ(x, RF (T )x) ≤ φ(x, RF (T )x) + φ(RF (T )x, w) ≤ φ(x, w).

Since xn+1 = RCn∩Qnx and w ∈ F (T ) ⊂ Cn ∩Qn, we get from Lemma 2.3 (ii) that

φ(x, xn+1) ≤ φ(x, xn+1) + φ(xn+1, RF (T )x) ≤ φ(x, RF (T )x).

Since xn → w, it follows that φ(x, w)≤φ(x, RF (T )x). Hence φ(x, w)=φ(x, RF (T )x).
Therefore, it follows from the uniqueness of the RF (T )x that w = RF (T )x. This com-
pletes the proof.

5. DEDUCED RESULTS

In this section, using Theorem 4.3, we obtain some new strong convergence theo-
rems for a generalized nonexpansive mapping and two generalized nonexpansive map-
pings in a Banach space.

Theorem 5.1. Let E be a uniformly convex and uniformly smooth Banach space
and let C be a nonempty closed subset of E such that JC is closed and convex. Let
T be a closed generalized nonexpansive mapping of C into E such that F (T ) �= ∅.
Let {xn} be the sequence generated by

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x1 = x ∈ C, C0 = Q0 = C,

un = αnxn + (1 − αn)Txn,

Cn = {z ∈ Cn−1 ∩ Qn−1 : φ(un, z) ≤ φ(xn, z)},
Qn = {z ∈ Cn−1 ∩ Qn−1 : 〈x − xn, Jxn − Jz〉 ≥ 0},
xn+1 = RCn∩Qnx

for all n ∈ N, where J is the duality mapping on E and {αn} ⊂ [0, 1] satisfies
lim inf
n→∞

(1 − αn) > 0. Then, {xn} converges strongly to RF (T )x, where RF (T ) is the
sunny generalized nonexpansive retraction from E onto F (T ).
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Proof. Put Tn = T for all n ∈ N. It obvious that {Tn} satisfies the NST-condition
with T . So, we obtain the desired result from Theorem 4.3.

Theorem 5.2. Let E be a uniformly convex and uniformly smooth Banach space
and let C be a nonempty closed subset of E such that JC is closed and convex. Let
T be a closed generalized nonexpansive mapping of C into E such that F (T ) �= ∅.
Let {xn} be the sequence generated by

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x1 = x ∈ C, C0 = Q0 = C,

un = αnxn + (1 − αn)(βnxn + (1 − βn)Txn),
Cn = {z ∈ Cn−1 ∩ Qn−1 : φ(un, z) ≤ φ(xn, z)},
Qn = {z ∈ Cn−1 ∩ Qn−1 : 〈x − xn, Jxn − Jz〉 ≥ 0},
xn+1 = RCn∩Qnx

for all n ∈ N, where J is the duality mapping on E and {αn} and {βn} are sequences
in [0, 1] satisfying lim inf

n→∞
(1 − αn) > 0 and lim inf

n→∞
βn(1 − βn) > 0. Then, {xn}

converges strongly to RF (T )x, where RF (T ) is the sunny generalized nonexpansive
retraction from E onto F (T ).

Proof. Define Tnx = βnx + (1 − βn)Tx for all n ∈ N and x ∈ C. By Lemma
3.1, we know that {Tn} satisfies the NST-condition with T . So, we obtain the desired
result from Theorem 4.3.

Theorem 5.3. Let E be a uniformly convex and uniformly smooth Banach space
and let C be a nonempty closed subset of E such that JC is closed and convex.
Let S and T be closed generalized nonexpansive mappings of C into E such that
F (S) ∩ F (T ) �= ∅. Let {xn} be a sequence generated by

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x1 = x ∈ C, C0 = Q0 = C,

un = αnxn + (1 − αn)(βnSxn + (1− βn)Txn),
Cn = {z ∈ Cn−1 ∩ Qn−1 : φ(un, z) ≤ φ(xn, z)},
Qn = {z ∈ Cn−1 ∩ Qn−1 : 〈x − xn, Jxn − Jz〉 ≥ 0},
xn+1 = RCn∩Qnx

for all n ∈ N, where J is the duality mapping on E and {αn} and {βn} are se-
quences in [0, 1] satisfying lim inf

n→∞
(1 − αn) > 0 and lim inf

n→∞
βn(1 − βn) > 0. Then,

{xn} converges strongly to RF (S)∩F (T )x, where RF (S)∩F (T ) is the sunny generalized
nonexpansive retraction from E onto F (S) ∩ F (T ).

Proof. Define Tnx = βnSx + (1− βn)Tx for all n ∈ N and x ∈ C. By Lemma
3.2, we know that {Tn} satisfies the NST-condition with T = {S, T}. So, we obtain
the desired result from Theorem 4.3.
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Using our results, we finally get results in Hilbert spaces. In a Hilbert space,
we know that φ(x, y) = ‖x − y‖2 for all x, y ∈ H and J = I , where I is an
identity mapping and every nonexpansive mapping with a fixed point is generalized
nonexpansive. As direct consequences of Lemma 3.1 and Lemma 3.2, we get the
following two lemmas obtained by Takahashi, Takeuchi and Kubota [30]

Lemma 5.4. ([30, Lemma 2.1]). Let C be a closed and convex subset of a Hilbert
space H and let T be a nonexpansive mapping from C into H with F (T ) �= ∅. Let
{βn} ⊂ [0, 1] satisfy lim inf

n→∞
βn(1− βn) > 0. For n ∈ N, define the mapping Tn of C

into itself by
Tnx = βnx + (1 − βn)Tx,

for all x ∈ C. Then, {Tn} is a countable family nonexpansive mappings satisfying the
NST-condition with T .

Lemma 5.5. ([30, Lemma 2.3]). Let C be a closed and convex subset of a
Hilbert space H and let S and T be nonexpansive mappings from C into H with
F (S) ∩ F (T ) �= ∅. Let {βn} ⊂ [0, 1] satisfying lim inf

n→∞
βn(1 − βn) > 0. For n ∈ N,

define the mapping Tn of C into itself by

Tnx = βnSx + (1− βn)Tx

for all x ∈ C. Then, {Tn} is a countable family of nonexpansive mappings satisfying
the NST-condition with {S, T}.

We can also get the following new result for a countable family of nonexpansive
non-self mappings in a Hilbert space by using Theorem 4.3.

Theorem 5.6. Let H be a Hilbert space and let C be a nonempty closed and
convex subset of H . Let {Tn} and T be families of nonexpansive mappings of C into
H such that

⋂∞
n=1 F (Tn) = F (T ) �= ∅. Suppose that {Tn} satisfies the NST-condition

with T . Let {xn} be the sequence generated by
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 = x ∈ C, C0 = Q0 = C,

un = αnxn + (1 − αn)Tnxn,

Cn = {z ∈ Cn−1 ∩ Qn−1 : ‖z − un‖ ≤ ‖z − xn‖},
Qn = {z ∈ Cn−1 ∩ Qn−1 : 〈xn − z, x− xn〉 ≥ 0},
xn+1 = PCn∩Qnx

for all n ∈ N, where {αn} ⊂ [0, 1] satisfies lim inf
n→∞

(1−αn) > 0. Then, {xn} converges
strongly to PF (T )x, where PF (T ) is the metric projection from C onto F (T ).
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Proof. In a Hilbert space, we know that φ(x, y) = ‖x−y‖2 for all x, y ∈ H and
J = I , where I is an identity mapping and a nonexpansive mapping T : C → H with
a fixed point is also a generalized nonexpansive mapping. By using Theorem 4.3, we
are able to obtain the desired conclusion.
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