Open Access
2012 BOUNDEDNESS FOR SEMILINEAR DUFFING EQUATIONS AT RESONANCE
Xiumei Xing, Yiqian Wang
Taiwanese J. Math. 16(5): 1923-1949 (2012). DOI: 10.11650/twjm/1500406805

Abstract

In this paper, we prove the boundedness of all solutions for the equation $x'' + n^2x + \phi(x) + g''(x) q(t) = 0$, where $n \in \mathbb{N}$, $q(t) = q(t+2\pi)$, $\phi(x)$ and $g(x)$ are bounded.

Citation

Download Citation

Xiumei Xing. Yiqian Wang. "BOUNDEDNESS FOR SEMILINEAR DUFFING EQUATIONS AT RESONANCE." Taiwanese J. Math. 16 (5) 1923 - 1949, 2012. https://doi.org/10.11650/twjm/1500406805

Information

Published: 2012
First available in Project Euclid: 18 July 2017

zbMATH: 1272.34044
MathSciNet: MR2970693
Digital Object Identifier: 10.11650/twjm/1500406805

Subjects:
Primary: 35A24 , 70H08

Keywords: boundedness of solutions , canonical transformation , Hamiltonian system , Moser's small twist theorem

Rights: Copyright © 2012 The Mathematical Society of the Republic of China

Vol.16 • No. 5 • 2012
Back to Top