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MODULES CHARACTERIZED BY THEIR SIMPLE SUBMODULES

Lixin Mao

Abstract. M is said to be a min-coherent (resp. PS, FS) module if its every
simple submodule is finitely presented (resp. projective, flat). In this article,
we study the properties of min-coherent, PS and FS modules. Some known
results are generalized.

1. INTRODUCTION

According to Nicholson and Watters [13], M is called a PS module if its every
simple submodule is projective, equivalently if its socle Soc(M) is projective. R is
said to be a left PS ring if RR is a PS module. Examples of PS modules include
nonsingular modules, regular modules in the sense of Zelmanowitz and modules
with zero socle. As a generalization of PS modules and PS rings, Liu and Xiao
introduced the concept of FS modules and FS rings in [9, 19]. Recall that M is
an FS module if every simple submodule of M is flat, equivalently if Soc(M) is
flat. R is called a left FS ring if RR is an FS module. PS and FS modules
(rings) have been studied extensively (see e.g. [9, 10, 11, 12, 13, 16, 19, 20]).
Although PS modules are FS, the converse is false (see [9, Example 2.2] or [19,
Example 1]). So it is important to further clarify the connection between PS and
FS modules.

In the present paper, we introduce the concept of min-coherent modules. We
will call a module min-coherent if its every simple submodule is finitely presented.
It is clear that M is a PS module if and only if M is a min-coherent and FS

module. On the other hand, recall that M is a coherent module [2] if its every
finitely generated submodule is finitely presented. So the definition of min-coherent
modules is a generalization of both PS and coherent modules. The main aim of
this paper is to characterize and investigate min-coherent, PS and FS modules.
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In Section 2, we show, among other things, that the following conditions are
equivalent for a left R-module M : (1) M is a min-coherent module. (2) If L is a
maximal left ideal of R, then either rM(L) = 0 or L is finitely generated. (3) If
K is a simple left R-module, then Hom(K, M) = 0 or K is finitely presented. We
also prove that the following conditions are equivalent for a left R-module M : (1)
M is a PS module. (2) Soc(RR)K = K for any simple submodule K of M . (3)
Soc(RR)Soc(RM) = Soc(RM).

In Section 3, we introduce the concept of M -min-flat and M -min-injective
modules. After several elementary properties of M -min-flat and M -min-injective
modules are obtained, we prove that the following conditions are equivalent for a
finitely presented left R-module M : (1) M is a min-coherent module. (2) The class
of M -min-flat right R-modules is closed under direct products. (3) Every right R-
module has an M -min-flat preenvelope. (4) A left R-module N is M -min-injective
if and only if N+ is M -min-flat. (5) The class of M -min-injective left R-modules
is closed under direct limits. We also show that a flat left R-module M is FS if
and only if the class of M -min-flat right R-modules is closed under submodules,
and a projective left R-module M is PS if and only if the class of M -min-injective
left R-modules is closed under quotient modules.

Throughout this paper, R is an associative ring with identity and all modules
are unitary. We denote by RM (resp. MR) a left (resp. right) R-module. For a
nonempty subset T of R and x ∈ RM , rM(T ) = {m ∈ M : tm = 0 for all t ∈ T},
lR(x) = {r ∈ R : rx = 0}. Soc(M) stands for the socle of M , and the character
module HomZ(M, Q/Z) of M is denoted by M+. Let M and N be R-modules.
Hom(M, N ) means HomR(M, N ) and M ⊗N denotes M ⊗R N . For unexplained
concepts and notations, we refer the reader to [1, 4, 8, 15, 18].

2. MIN-COHERENT AND PS MODULES

We start with the following definition.

Definition 2.1. Let R be a ring. A left R-module M is called min-coherent if
every simple submodule of M is finitely presented.

Remark 2.2.

(1) If Soc(M) = 0, then M is clearly a min-coherent module.
(2) PS modules are clearly min-coherent. But the converse is false in general.

For example, let R = Z4. Then R is a min-coherent R-module, but it is not
a PS R-module because the simple ideal {0, 2} is not projective.

(3) Coherent modules are obviously min-coherent, and the converse is not true in
general (see [6, p.110]). However, a semisimple module is min-coherent if
and only if it is coherent.



Modules Characterized by Their Simple Submodules 2339

(4) In [11, 12], the author introduced and studied min-coherent rings. R is called
a left min-coherent ring if every simple left ideal of R is finitely presented.
Clearly, R is a left min-coherent ring if and only if RR is a min-coherent
module if and only if Soc(RR) is a min-coherent left R-module.

Proposition 2.3. The class of min-coherent (PS, FS) left R-modules is closed
under extensions, direct products, direct sums and submodules.

Proof. First, we will prove that the class of min-coherent left R-modules is
closed under extensions.

Let 0 → A → B
g→ C → 0 be an exact sequence of left R-modules with A

and C min-coherent. Let N be a simple submodule of B. Then g(N ) = 0 or
g(N ) ∼= N .

(1) If g(N ) = 0, then N ⊆ ker(g) = A. So N is finitely presented since A is
min-coherent.

(2) If g(N ) ∼= N , then g(N ) is a simple submodule of C. Thus g(N ) is finitely
presented since C is min-coherent. Hence N is finitely presented.

It follows that B is a min-coherent module.
Now we will prove that the class of min-coherent left R-modules is closed under

direct products.
Let N be a simple submodule of Πi∈ΛMi, where every Mi is a min-coherent left

R-module. Let λ : N → Πi∈ΛMi be the inclusion and πi : Πi∈ΛMi → Mi be the
ith projection. We claim that there exists j ∈ Λ such that πjλ is a monomorphism.
Otherwise, if ker(πiλ) �= 0 for any i ∈ Λ, then πiλ = 0 since N is simple, and
so λ = 0, a contradiction. Thus N embeds in Mj for some j ∈ Λ. Hence N is
finitely presented. That is to say, Πi∈ΛMi is min-coherent.

The rest are similar.

As an immediate consequence of Proposition 2.3, we have

Corollary 2.4. R is a left min-coherent (resp. PS, FS) ring if and only if
every projective left R-module is min-coherent (resp. PS, FS).

Remark 2.5. If F : R-Mod → S-Mod defines a Morita equivalence, then by
[1, Lemma 21.3 and Proposition 21.8], a left R-module M is min-coherent if and
only if F (M) is min-coherent. In particular, R is a left min-coherent ring if and
only if S is a left min-coherent ring by Corollary 2.4 and [1, Proposition 21.6].

Proposition 2.6. Let R be a ring.

(1) Every simple left R-module is finitely presented if and only if every left R-
module is min-coherent.

(2) Every simple left R-module is flat if and only if every left R-module is FS.



2340 Lixin Mao

(3) R is a semisimple Artinian ring if and only if every left R-module is PS.

Proof. (1) “ ⇒ ” is obvious.
“ ⇐ ” Let K be any simple left R-module. Since K embeds in its injective

envelope E(K) and E(K) is min-coherent, K is finitely presented by hypothesis.
The proofs of (2) and (3) are similar.

Now we give several characterizations of min-coherent modules.

Theorem 2.7. The following conditions are equivalent for a left R-module M :

(1) M is a min-coherent module.
(2) If Rx is a simple submodule of M , then lR(x) is finitely generated.
(3) If L is a maximal left ideal of R, then either r M(L) = 0 or L is finitely

generated.
(4) If K is a simple left R-module, then Hom(K, M) = 0 or K is finitely

presented.

Proof.
(1) ⇔ (2) is clear.
(1) ⇒ (3) Let L be a maximal left ideal of R and rM(L) �= 0. Then there exists

0 �= x ∈ rM(L). Since L ⊆ lR(x) �= R, we have L = lR(x). So Rx ∼= R/lR(x) =
R/L is simple. By (1), Rx is finitely presented. Thus L is finitely generated.

(3) ⇒ (4) Let L be a maximal left ideal of R. Define α : Hom(R/L, M) →
rM(L) via α(f) = f(1) for f ∈ Hom(R/L, M), and define β : rM(L) →
Hom(R/L, M) via β(x)(t) = tx for x ∈ rM(L) and t ∈ R/L. It is easy to
verify that α and β are well-defined and Hom(R/L, M) ∼= rM(L). So (4) follows.

(4) ⇒ (1) Let K be any simple submodule of M . Then Hom(K, M) �= 0, and
so K is finitely presented by (4).

Corollary 2.8. The following conditions are equivalent for a ring R:

(1) R is a left min-coherent ring.
(2) If L is a maximal left ideal of R, then either r R(L) = 0 or L is finitely

generated.
(3) If K is a simple left R-module, then Hom(K, R) = 0 or K is finitely pre-

sented.
(4) R has a faithful min-coherent left R-module.

Proof.
(1) ⇔ (2) ⇔ (3) follow from Theorem 2.7 by letting M = RR.
(1) ⇒ (4) is obvious.
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(4) ⇒ (2) Suppose that M is a faithful min-coherent left R-module. Let L be a
maximal left ideal of R and rR(L) �= 0. Then there exists 0 �= t ∈ rR(L). So there
is x ∈ M such that tx �= 0 since M is faithful. Thus L ⊆ lR(tx) �= R, and so
L = lR(tx). Hence R/L = R/lR(tx) ∼= R(tx) is finitely presented by hypothesis.
Thus L is finitely generated.

Example 2.9. Let A = ⊕∞
i=1Z2 be the direct sum of countably infinite copies of

Z2 and R = Z2 ∝ A =
{(

a b
0 a

)
: a ∈ Z2, b ∈ A

}
be the trivial extension of

Z2 by A. Then R is a commutative ring with Soc(R) = 0 ∝ A. Note that Soc(R)
is the unique maximal ideal (which is not finitely generated) and the annihilator
of Soc(R) in R is Soc(R) itself. Thus R is not an FS ring (see [21, p. 3328]).
Moreover we claim that R is not a min-coherent ring by Corollary 2.8.

The following theorem generalizes [13, Theorem 2.4] and [20, Proposition 1].

Theorem 2.10. Consider the following conditions for a left R-module M :
(1) M is a PS module.
(2) Soc(RR)K = K for any simple submodule K of M .
(3) Soc(RR)Soc(M) = Soc(M).

(4) If L is an essential maximal left ideal of R, then r M(L) = 0.
(5) If L is a maximal left ideal of R, then rM(L) = eM with e2 = e ∈ R.

Then (1) ⇔ (2) ⇔ (3) ⇒ (4) ⇒ (5). If M is faithful, then (5) ⇒ (1).

Proof. (1) ⇒ (2) We claim that Soc(RR)K �= 0 for any simple submod-
ule K of M . If not, then there exists a simple submodule Rx of M such that
Soc(RR)Rx = 0. Since M is a PS module, we have R = lR(x)⊕ I with I a left
ideal of R, and so Rx = Ix. But I ∼= R/lR(x) is simple. Thus Ix = 0, and hence
Rx = 0, a contradiction. Thus Soc(RR)K = K for any simple submodule K of
M since Soc(RR)K ⊆ K.

(2) ⇒ (1) Let K be any simple submodule of M . Then there exists a simple
left ideal I such that IK �= 0 by (2). So I �⊆ lR(x) for some 0 �= x ∈ K. Hence
R = lR(x) ⊕ I since lR(x) is a maximal left ideal of R. Thus K = Rx ∼= I is
projective. Therefore M is a PS module.

(2) ⇒ (3) is obvious.
(3) ⇒ (2) Let Soc(RM) = ⊕Ki with each Ki simple. By (3), Soc(RR)(⊕Ki) =

⊕Ki, and so ⊕(Soc(RR)Ki) = ⊕Ki. It is easy to check that each Soc(RR)Ki �= 0.
Thus Soc(RR)Ki = Ki.

(1) ⇒ (4) Let L be an essential maximal left ideal of R. By [20, Proposition
1], rM(L) = 0 or L = Rf with f2 = f ∈ R. But it is impossible that L = Rf .
So rM(L) = 0.
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(4) ⇒ (5) follows from the fact that a maximal left ideal is either essential or a
direct summand.

(5) ⇒ (1) Let L be a maximal left ideal of R. Then rM(L) = eM with
e2 = e ∈ R by (5). If there exists 0 �= x ∈ rM(L), we claim that 1 − e ∈ L.
For if not, R = L + R(1 − e) since L is maximal. So Rx = 0, a contradiction.
Thus R(1 − e) ⊆ L. On the other hand, since M is faithful, Le = 0, and so
L = L(1− e) ⊆ R(1− e). Therefore L = R(1− e), and hence M is a PS module
by [20, Proposition 1].

Corollary 2.11. R is a left PS ring if and only if (Soc( RR))2 = Soc(RR). In
this case, M is a PS left R-module if and only if Soc(RR)M = Soc(M).

Proof. The first statement is an immediate consequence of Theorem 2.10.
Now let M be a PS left R-module. By Theorem 2.10, we have

Soc(M) = Soc(RR)Soc(M) ⊆ Soc(RR)M.

In addition, Soc(RR)M ⊆ Soc(M) by [8, Exercise §6.12 (1)]. It follows that
Soc(RR)M = Soc(M).

Conversely, we assume Soc(RR)M = Soc(M). Since (Soc(RR))2 = Soc(RR),

Soc(RR)Soc(M) = Soc(RR)(Soc(RR)M) = Soc(RR)M = Soc(M).

Thus M is a PS left R-module by Theorem 2.10.

Proposition 2.12. Let R be a commutative ring. The following conditions are
equivalent for a projective R-module M :

(1) M is a PS module.
(2) M is an FS module.
(3) Every simple submodule of M is injective.
(4) Every simple submodule of M is a direct summand of M .

Proof. It is straightforward by the fact that a simple R-module N is injective
if and only if N is flat (see [17, Lemma 2.6]).

3. M -MIN-FLAT AND M -MIN-INJECTIVE MODULES

To obtain more properties of min-coherent, PS and FS modules, in this section,
we introduce and study M -min-flat and M -min-injective modules.

Definition 3.1. Let M be a left R-module. A right R-module N is said to
be M -min-flat if the sequence 0 → N ⊗ K → N ⊗ M is exact for any simple
submodule K of M .

A left R-module Q is called M -min-injective if every homomorphism from any
simple submodule K of M to Q extends to one from M to Q.
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Obviously, the concept of M -min-flat (resp. M -min-injective) modules is a
generalization of M -flat (resp. M -injective) modules.

The following lemmas are needed in the sequel.

Lemma 3.2. Let M be a left R-module. Then a right R-module N is M -min-
flat if and only if N + is M -min-injective.

Proof. Let K be a simple submodule of M . Then the sequence 0 → N⊗K →
N ⊗M is exact if and only if the sequence (N ⊗M)+ → (N ⊗K)+ → 0 is exact
if and only if the sequence Hom(M, N+) → Hom(K, N+) → 0 is exact. So N is
M -min-flat if and only if N+ is M -min-injective.

Let C be a class of modules and N a module. Following [3], a homomorphism
φ : N → F with F ∈ C is called a C-preenvelope of N if for any homomorphism
f : N → F

′ with F
′ ∈ C, there is a homomorphism g : F → F

′ such that gφ = f .
Dually we have the definition of a C-precover.

Lemma 3.3. Let M be a left R-module.

(1) The class of M -min-injective left R-modules is closed under direct summands,
direct sums and direct products.

(2) The class of M -min-flat right R-modules is closed under pure submodules,
pure quotient modules, direct summands, direct limits and direct sums. Con-
sequently, every right R-module has an M -min-flat precover.

Proof.

(1) is easy by definition.

(2) We will prove that the class of M -min-flat right R-modules is closed under
pure submodules and pure quotient modules. The rest are clear.

Let 0 → A → B → C → 0 be a pure exact sequence of right R-modules with
B M -min-flat. Then we get the split exact sequence 0 → C+ → B+ → A+ → 0.
By Lemma 3.2, B+ is M -min-injective. Thus A+ and C+ are M -min-injective by
(1). So A and C are M -min-flat by Lemma 3.2 again.

By [7, Theorem 2.5], every right R-module has an M -min-flat precover.

Lemma 3.4. Let M be a min-coherent left R-module.

(1) The class of M -min-flat right R-modules is closed under direct products.

(2) Every right R-module has an M -min-flat preenvelope.

(3) If a left R-module N is M -min-injective, then N + is M -min-flat.
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Proof. (1) Let {Ni} be a family of M -min-flat right R-modules and K be
any simple submodule of M . Then we have the following commutative diagram:

(
∏

Ni) ⊗ K
γ ��

α

��

(
∏

Ni) ⊗ M

��∏
(Ni ⊗ K)

β �� ∏(Ni ⊗ M).

By [4, Theorem 3.2.22], α is an isomorphism since K is finitely presented. Thus
γ is monic since β is monic. So

∏
Ni is M -min-flat.

(2) The result is a consequence of (1), Lemma 3.3 (2) and [14, Theorem 3.3].
(3) Let K be any simple submodule of M . Then we have the following com-

mutative diagram:

N+ ⊗ K
f ��

σK

��

N+ ⊗ M

σM

��
Hom(K, N )+

g �� Hom(M, N )+.

Since K is finitely presented, σK is an isomorphism by [15, Lemma 3.60]. Since
Hom(M, N ) → Hom(K, N ) is epic, g is monic. Thus f is a monomorphism, and
so (3) follows.

Next we characterize min-coherent modules in terms of M -min-flat and M -min-
injective modules.

Theorem 3.5. The following conditions are equivalent for a finitely presented
left R-module M :

(1) M is a min-coherent module.
(2) The class of M -min-flat right R-modules is closed under direct products.
(3) Any direct product of copies of RR is M -min-flat.
(4) Every right R-module has an M -min-flat preenvelope.
(5) A left R-module N is M -min-injective if and only if N + is M -min-flat.
(6) The class of M -min-injective left R-modules is closed under direct limits.

Proof.
(1) ⇒ (2) follows from Lemma 3.4 (1). (2) ⇒ (3) is trivial.
(3) ⇒ (1) Let K be any simple submodule of M . Then we have the following

commutative diagram:

(
∏

RR) ⊗ K
γ ��

α

��

(
∏

RR) ⊗ M

β
��∏

K ��
∏

M.
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Since M is finitely presented, β is an isomorphism by [4, Theorem 3.2.22]. Since
γ is a monomorphism by (3), α is monic. But α is also epic by [4, Lemma
3.2.21]. Thus K is finitely presented by [4, Theorem 3.2.22] again. Hence M is
min-coherent.

(2) ⇔ (4) follows from Lemma 3.3 (2) and [14, Theorem 3.3].
(1) ⇒ (5) By Lemma 3.4 (3), it is enough to show that N is M -min-injective

if N+ is M -min-flat. Let K be any simple submodule of M . Then we have the
following commutative diagram:

N+ ⊗ K
f ��

σK

��

N+ ⊗ M

σM

��
Hom(K, N )+

g �� Hom(M, N )+.

Since K and M are finitely presented, σK and σM are isomorphisms by [15, Lemma
3.60]. Since f is a monomorphism, g is a monomorphism. Thus Hom(M, N ) →
Hom(K, N ) is an epimorphism, and so N is M -min-injective.

(5) ⇒ (6) Let K be any simple submodule of M and {Ni : i ∈ J} a family of
M -min-injective left R-modules, where J is a directed set. Then by [18, 33.9], we
get the pure exact sequence 0 → A → ⊕Ni → lim→ Ni → 0, which gives rise to the
split exact sequence

0 → (lim→ Ni)+ → (⊕Ni)+ → A+ → 0.

Since ⊕Ni is M -min-injective, (⊕Ni)+ is M -min-flat by (5). Hence (lim→ Ni)+ is
M -min-flat. So lim→ Ni is M -min-injective by (5) again.

(6) ⇒ (1) Let K be any simple submodule of M and {Ni : i ∈ J} be a
family of M -min-injective left R-modules, where J is a directed set. Then lim→ Ni

is M -min-injective by (6). Thus we have the following commutative diagram:

lim→ Hom(M, Ni)

β

��

�� lim→ Hom(K, Ni)

γ

��
Hom(M, lim→ Ni) α �� Hom(K, lim→ Ni).

Since α is epic and β is an isomorphism by [18, 25.4], γ is epic. But γ is also
monic by [18, 24.9]. So K is finitely presented by [18, 25.4] again. Thus M is
min-coherent.

Remark 3.6. The hypothesis “M is finitely presented” in Theorem 3.5 is not
superfluous. In fact, M = Soc(R) in Example 2.9 is not a min-coherent R-module.
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But every R-module is both M -min-flat and M -min-injective since M is semisim-
ple.

Corollary 3.7. The following conditions are equivalent for a finitely presented
left R-module M :

(1) Every simple submodule of M is a direct summand of M .
(2) Every left R-module is M -min-injective.
(3) Every right R-module is M -min-flat.

Proof. (1) ⇔ (2) is easy. (2) ⇒ (3) holds by Lemma 3.2.
(3) ⇒ (2) Since every right R-module is M -min-flat, the equivalent conditions

of Theorem 3.5 are satisfied. Let N be any left R-module. Then N+ is M -min-flat
by (3). So N is M -min-injective by Theorem 3.5 (5).

Lemma 3.8. If M is a finitely presented min-coherent left R-module, then the
class of M -min-injective left R-modules is closed under pure submodules and pure
quotient modules. As a consequence, every left R-module has an M -min-injective
precover.

Proof. Let 0 → A → B → C → 0 be a pure exact sequence of left R-modules
with B M -min-injective. Then we get the split exact sequence 0 → C+ → B+ →
A+ → 0. By Theorem 3.5, B+ is M -min-flat. Thus A+ and C+ are M -min-flat.
So A and C are M -min-injective. By [7, Theorem 2.5] and Lemma 3.3 (1), every
left R-module has an M -min-injective precover.

Proposition 3.9. The following conditions are equivalent for a finitely presented
min-coherent left R-module M :

(1) RR is M -min-injective.
(2) Every right R-module has a monic M -min-flat preenvelope.
(3) Every left R-module has an epic M -min-injective precover.

Proof. (1) ⇒ (2) Let N be any right R-module. Then N has an M -min-flat
preenvelope f : M → F by Lemma 3.4 (2). Since there exists an exact sequence
0 → M → Π(RR)+, M embeds in an M -min-flat right R-module by Theorem 3.5.
Thus f is monic.

(2) ⇒ (1) By (2), the injective right R-module (RR)+ is M -min-flat. So RR

is M -min-injective by Theorem 3.5.
(1) ⇒ (3) Let M be a left R-module, then M has an M -min-injective precover

g by Lemma 3.8. On the other hand, there is an exact sequence ⊕RR → M → 0.
Since ⊕RR is M -min-injective by (1) and Lemma 3.3 (1), g is an epimorphism.

(3) ⇒ (1) Let f : N → RR be an epic M -min-injective precover. Then RR is
isomorphic to a direct summand of N , and so RR is M -min-injective.
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Finally, we give some new characterizations of FS and PS modules.

Theorem 3.10. If M is an FS left R-module, then the class of M -min-flat
right R-modules is closed under submodules. The converse holds if M is flat.

Proof. Let A be a submodule of an M -min-flat right R-module B and K be
a simple submodule of M . Then we have the following commutative diagram:

A ⊗ K
γ ��

α

��

A ⊗ M

��
B ⊗ K

β �� B ⊗ M.

Since K is flat and B is M -min-flat, α and β are monomorphisms, and so γ is a
monomorphism. Thus A is M -min-flat.

Conversely, assume that every submodule of any M -min-flat right R-module is
M -min-flat and M is flat. Let K be a simple submodule of M and I a right ideal
of R. Then we have the following commutative diagram:

I ⊗ K
f ��

g

��

R ⊗ K

��
I ⊗ M

h �� R ⊗ M.

Since I is M -min-flat and M is flat, g and h are monomorphisms. Thus f is monic
and so K is flat.

Theorem 3.11. Consider the following conditions for a min-coherent left R-
module M :

(1) M is a PS module.
(2) M is an FS module.
(3) Every right R-module has an epic M -min-flat preenvelope.

Then (1) ⇔ (2) ⇒ (3). If M is flat, then (3) ⇒ (2).

Proof. (1) ⇔ (2) is clear.
(2) ⇒ (3) For any right R-module N , there is an M -min-flat preenvelope

f : N → F by Lemma 3.4 (2). Note that im(f) is M -min-flat by Theorem 3.10,
and so N → im(f) is an epic M -min-flat preenvelope.

(3) ⇒ (2) Let A be any submodule of an M -min-flat right R-module B. Since
A has an epic M -min-flat preenvelope by (3), A is M -min-flat. So M is an FS

module by Theorem 3.10.
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Theorem 3.12. Consider the following conditions for a left R-module M :

(1) M is a PS module.
(2) The class of M -min-injective left R-modules is closed under quotient mod-

ules.
(3) Every left R-module has a monic M -min-injective precover.

Then (1) ⇒ (2) ⇔ (3). If M is projective, then (2) ⇒ (1).

Proof. (1) ⇒ (2) Let X be any M -min-injective left R-module and N any
submodule of X . We will show that X/N is M -min-injective. Let K be a simple
submodule of M , i : K → M the inclusion and π : X → X/N the canonical
map. For any f : K → X/N , there exists g : K → X such that πg = f since
K is projective by (1). Hence there is h : M → X such that hi = g since X is
M -min-injective. It follows that (πh)i = f , and so X/N is M -min-injective.

(2) ⇔ (3) holds by [5, Proposition 4] and Lemma 3.3 (1).
(2) ⇒ (1) Let N be a submodule of an injective left R-module E and π :

E → E/N the canonical map. Suppose that K is a simple submodule of M , and
f : K → E/N is any homomorphism. Since E/N is M -min-injective by (2), there
exists g : M → E/N such that f = gι where ι : K → M is the inclusion. Since M
is projective, there exists h : M → E such that g = πh. Hence f = (πh)ι = π(hι)
and so K is projective by [15, Lemma 4.22]. Thus M is a PS module.
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