TAIWANESE JOURNAL OF MATHEMATICS

Vol. 14, No. 2, pp. 447-451, April 2010

This paper is available online at http://www.tjm.nsysu.edu.tw/

FINITENESS RESULT FOR GENERALIZED LOCAL COHOMOLOGY MODULES

Abolfazl Tehranian

Abstract. Let R be a Noetherian ring, let M and N be finitely generated modules and let $\mathfrak a$ and $\mathfrak b$ be ideals of R. Let s be an integer such that $\mathfrak b_{\mathfrak p} \subseteq \sqrt{\operatorname{Ann} H^i_{\mathfrak a_{\mathfrak p}}(M_{\mathfrak p},N_{\mathfrak p})}$ for all $i \le s$ and all prime ideal $\mathfrak p$ of R. Then we show the following statements hold:

- (1) If $H^i_{\mathfrak{b}}(N) = 0$ for all i < s, then $H^i_{\mathfrak{a}}(M,N)$ is finitely generated for all
- $i \le s.$ (2) $\mathfrak{b} \subseteq \sqrt{\operatorname{Ann} \operatorname{H}_{\mathfrak{a}}^{2}(M, N)}.$

These statements generalize the corresponding results which are shown in [6] and [1] for standard local cohomology module.

1. Introduction

Throughout this note the ring R is commutative Noetherian with non–zero identity. Let M and N be R–modules and let $\mathfrak a$ be an ideal of R. Then the generalized local cohomology module

$$\mathrm{H}^i_{\mathfrak{a}}(M,N) = \varinjlim_n \mathrm{Ext}^i_R(M/\mathfrak{a}^n M,N)$$

was introduced by Herzog in [5] and studied further by Suzuki in [7] and Yassemi in [8]. Note that $H^i_{\mathfrak{a}}(R,N)=H^i_{\mathfrak{a}}(N)$.

Let M be a finitely generated R-module and let \mathfrak{a} , \mathfrak{b} be ideals of R. In [6] Raghavan proved the following statement:

Received February 12, 2008, accepted June 2, 2008.

Communicated by Wen-Fong Ke.

2000 Mathematics Subject Classification: 13D45, 13E99.

Key words and phrases: Local cohomology, Modules finite over a local homomorphism, Artinian module, Secondary representation.

Abolfazl Tehranian was supported in part by a grant from Islamic Azad University.

If $\mathfrak{b}_{\mathfrak{p}} \subseteq \sqrt{\operatorname{Ann} \mathrm{H}^1_{\mathfrak{a}_{\mathfrak{p}}}(M_{\mathfrak{p}})}$ for every prime ideal \mathfrak{p} of R, and $\mathfrak{b} \subseteq \sqrt{\operatorname{Ann} \mathrm{H}^0_{\mathfrak{a}}(M)}$, then $\mathfrak{b} \subseteq \sqrt{\operatorname{Ann} \mathrm{H}^1_{\mathfrak{a}}(M)}$. If, in addition, $\mathrm{H}^0_{\mathfrak{b}}(M) = \mathrm{H}^0_{\mathfrak{a}}(M) = 0$, then $\mathrm{H}^1_{\mathfrak{a}}(M)$ is finitely generated.

On the other hand in [1] Brodmann, Rotthaus, and Sharp proved the following statement:

If $\mathfrak{b}_{\mathfrak{p}} \subseteq \sqrt{\operatorname{Ann} \operatorname{H}^{i}_{\mathfrak{a}_{\mathfrak{p}}}(M_{\mathfrak{p}})}$ for all $i \leq 2$ and all prime ideal \mathfrak{p} of R then $\mathfrak{b} \subseteq \sqrt{\operatorname{Ann} \operatorname{H}^{i}_{\mathfrak{q}}(M)}$ for all $i \leq 2$.

In this note we generalize the above results for the generalized local cohomology modules, see Theorems 1 and 2.

2. Main Results

First we recall some known results which we will use in this paper.

Lemma A. ([1, Lemma 2.1]). Let L be an R-module such that the set of associated primes of L is finite and $\mathfrak{b}_{\mathfrak{p}} \subseteq \sqrt{Ann_{R_{\mathfrak{p}}}L_{\mathfrak{p}}}$ for all prime ideal \mathfrak{p} of R. Then $\mathfrak{b} \subseteq \sqrt{Ann_RL}$.

Theorem B. ([9, Theorem 2.1]). Let M and N be finitely generated R-modules. Let $s \in \mathbb{N}_0$ be such that $H^i_{\mathfrak{a}}(M,N)$ is finitely generated for all i < s. Then the set of associated primes of the module $H^s_{\mathfrak{a}}(M,N)$ is finite.

In the first step we prove an extension of Faltings' lemma cf. [3, Lemma 3] and [4, pp. 48-49], (see also [2, Prop. 9.1.2] and [2, Theorem 9.6.1]), in the context of generalized local cohomology modules.

Theorem 1. Let M and N be finitely generated R-modules and let $s \in \mathbb{N}$. Then the following statements are equivalent:

- (1) $H_{\mathfrak{a}}^{i}(M, N)$ is finitely generated for all i < s;
- (2) $H^i_{\mathfrak{g}_n}(M_{\mathfrak{p}}, N_{\mathfrak{p}})$ is finitely generated for all i < s and all prime ideal \mathfrak{p} of R;
- (3) $\mathfrak{a} \subseteq \sqrt{Ann H_{\mathfrak{a}}^{i}(M, N)}$ for all i < s.

Proof. We show that $(1)\Leftrightarrow(2)$ and $(1)\Leftrightarrow(3)$.

- $(1)\Rightarrow(2)$ is clear.
- (1) \Rightarrow (3): It follows from the fact that $\mathrm{H}^i_{\mathfrak{a}}(M,N)$ is finitely generated and \mathfrak{a} -torsion.
- (3) \Rightarrow (1): We use induction on s. For s=1 the assertion follows from the fact $\mathrm{H}^0_\mathfrak{a}(M,N)=\Gamma_\mathfrak{a}(\mathrm{Hom}\,(M,N).$ Let s>1. By induction hypothesis we know that

 $\mathrm{H}^i_{\mathfrak{a}}(M,N)$ is finitely generated for $0 \leq i \leq s-2$. Hence it remains to prove that $\mathrm{H}^{s-1}_{\mathfrak{a}}(M,N)$ is finitely generated. First assume that N is \mathfrak{a} -torsion free module. Let x be an element of \mathfrak{a} which is regular on N. Then $x^k\mathrm{H}^{s-1}_{\mathfrak{a}}(M,N)=0$ for all $k\gg 0$. It follows from [2, Lemma 9.1.1] and the long exact sequence on generalized local cohomology induced by $0\longrightarrow N\xrightarrow{x^k} N\longrightarrow N/x^kN\longrightarrow 0$ that $\mathfrak{a}\subseteq \sqrt{\mathrm{Ann}\,\mathrm{H}^i_{\mathfrak{a}}(M,N/x^kN)}$ for all i< s-1. Hence by induction hypothesis $\mathrm{H}^i_{\mathfrak{a}}(M,N/x^kN)$ is finitely generated for all i< s-1. Thus $\mathrm{H}^{s-1}_{\mathfrak{a}}(M,N)$ is finitely generated (since it is homomorphic image of $\mathrm{H}^{s-2}_{\mathfrak{a}}(M,N/x^kN)$).

Now let N be an arbitrary finitely generated R-module, and set $L = \Gamma_{\mathfrak{a}}(N)$, K = N/L. The exact sequence $0 \to L \to N \to K \to 0$ induces the exact sequence $\mathrm{H}^i_{\mathfrak{a}}(M,L) \to \mathrm{H}^i_{\mathfrak{a}}(M,N) \to \mathrm{H}^i_{\mathfrak{a}}(M,K) \to \mathrm{H}^{i+1}_{\mathfrak{a}}(M,L)$. By [9, Lemma 1.1] we know that $\mathrm{H}^i_{\mathfrak{a}}(M,L) = \mathrm{Ext}^i(M,L)$ for all i and so $\mathfrak{a} \subseteq \sqrt{\mathrm{Ann}\,\mathrm{H}^{i+1}_{\mathfrak{a}}(M,L)}$. Thus $\mathfrak{a} \subseteq \sqrt{\mathrm{Ann}\,\mathrm{H}^i_{\mathfrak{a}}(M,K)}$ for all i < s. Now since K is \mathfrak{a} -torsion free we have that $\mathrm{H}^i_{\mathfrak{a}}(M,K)$ is finitely generated for i < s and hence $\mathrm{H}^i_{\mathfrak{a}}(M,N)$ is finitely generated for i < s.

(2) \Rightarrow (1): For s=1 it is clear. Let s>1. By the induction hypothesis we have $\mathrm{H}^i_\mathfrak{a}(M,N)$ is finitely generated for $0\leq i\leq s-2$ and hence $|\mathrm{Ass}\,\mathrm{H}^i_\mathfrak{a}(M,N)|<\infty$ for all $i\leq s-1$ by Theorem B. By Lemma A we have $\mathfrak{a}\subseteq\sqrt{\mathrm{Ann}\,\mathrm{H}^i_\mathfrak{a}(M,N)}$ for all i< s-1. Now the assertion follows from the equivalence between (1) and (3).

The following theorem is a generalization of the main result in [6].

Theorem 2. Let M and N be finitely generated modules and let \mathfrak{a} and \mathfrak{b} be ideals of R. If s is an integer such that $H^i_{\mathfrak{b}}(N) = 0$ for i < s, and $\mathfrak{b}_{\mathfrak{p}} \subseteq \sqrt{Ann\,H^i_{\mathfrak{a}_{\mathfrak{p}}}(M_{\mathfrak{p}},N_{\mathfrak{p}})}$ for all $i \leq s$ and all prime ideal \mathfrak{p} of R then $H^i_{\mathfrak{a}}(M,N)$ is finitely generated for all $i \leq s$.

Proof. We use induction on s. Assume that s=1. Since $\mathrm{H}^0_{\mathfrak{g}}(M,N)=\Gamma_{\mathfrak{a}}(\mathrm{Hom}\,(M,N))$ is finitely generated, the set of associated primes of $\mathrm{H}^1_{\mathfrak{a}}(M,N)$ is finite by Theorem B, and hence by Lemma A we have that $\mathfrak{b}\subseteq\sqrt{\mathrm{Ann}\,\mathrm{H}^1_{\mathfrak{a}}(M,N)}$. Therefore, there exists an integer k such that $\mathfrak{b}^k\mathrm{H}^1_{\mathfrak{a}}(M,N)=0$. Let x be an element of \mathfrak{b} that is regular on N. Since $x^k\mathrm{H}^1_{\mathfrak{a}}(M,N)=0$, it follows from the long exact sequence on generalized local cohomology induced by $0{\longrightarrow} N\xrightarrow{x^k}N\longrightarrow N/x^kN\longrightarrow 0$ that $\mathrm{H}^1_{\mathfrak{a}}(M,N)$ is a homomorphic image of $\mathrm{H}^0_{\mathfrak{a}}(M,N/x^kN)$ and hence is finitely generated.

Now let s>1. By induction hypothesis we have $\mathrm{H}^i_{\mathfrak{a}}(M,N)$ is finitely generated for all i< s and hence $\mathrm{Ass}\,\mathrm{H}^s_{\mathfrak{a}}(M,N)$ is a finite set by Theorem B. Let x be an element in \mathfrak{b} that is regular on N. By Lemma A we know that $x^k\mathrm{H}^s_{\mathfrak{a}}(M,N)=0$ for all $k\gg 0$. It follows from the long exact sequence on local cohomology induced by $0\longrightarrow N\xrightarrow{x^k} N\longrightarrow N/x^kN\longrightarrow 0$ that $H^i_{\mathfrak{b}}(N/x^kN)=0$ for all i< s-1. Now

it follows from the long exact sequence

$$\mathrm{H}^{i}_{\mathfrak{a}}(M,N) \longrightarrow \mathrm{H}^{i}_{\mathfrak{a}}(M,N/x^{k}N) \longrightarrow \mathrm{H}^{i+1}_{\mathfrak{a}}(M,N) \xrightarrow{x^{k}} \mathrm{H}^{i+1}_{\mathfrak{a}}(M,N)$$

and using [2, Lemma 9.1.1], we have $\mathfrak{b}_{\mathfrak{p}} \subseteq \sqrt{\operatorname{Ann} \operatorname{H}^{i}_{\mathfrak{a}_{\mathfrak{p}}}(M_{\mathfrak{p}},(N/x^{k}N)_{\mathfrak{p}})}$ for all i < s. Therefore, by induction hypothesis $\operatorname{H}^{i}_{\mathfrak{a}}(M,N/x^{k}N)$ is finitely generated for all i < s and hence $\operatorname{H}^{s}_{\mathfrak{a}}(M,N)$ is finitely generated (since it is a homomorphic image of $\operatorname{H}^{s-1}_{\mathfrak{a}}(M,N/x^{k}N)$).

Corollary 3. Let M and N be finitely generated modules and let \mathfrak{a} and \mathfrak{b} be ideals of R. If $\mathfrak{b}_{\mathfrak{p}} \subseteq \sqrt{Ann} H^i_{\mathfrak{a}_{\mathfrak{p}}}(M_{\mathfrak{p}}, N_{\mathfrak{p}})$ for all $i \leq 2$ and all prime ideal \mathfrak{p} of R then $\mathfrak{b} \subseteq \sqrt{Ann} H^i_{\mathfrak{a}}(M, N)$ for all $i \leq 2$.

Proof. Set $N'=N/\Gamma_{\mathfrak{b}}(N)$. By using the same technique as [1, Remark 1.3(ii)], we have that $\mathfrak{b}_{\mathfrak{p}}\subseteq\sqrt{\operatorname{Ann} \operatorname{H}^{i}_{\mathfrak{a}_{\mathfrak{p}}}(M_{\mathfrak{p}},N'_{\mathfrak{p}})}$ for all $i\leq 2$ and all prime ideal \mathfrak{p} of R. Since $\operatorname{H}^{i}_{\mathfrak{b}}(N')=0$ for all i<1 we have $\operatorname{H}^{i}_{\mathfrak{a}}(M,N')$ is finitely generated for all $i\leq 1$ and hence $\operatorname{Ass} \operatorname{H}^{2}_{\mathfrak{a}}(M,N')$ is a finite set. Therefore, by Lemma A, $\mathfrak{b}\subseteq\sqrt{\operatorname{Ann} \operatorname{H}^{i}_{\mathfrak{a}}(M,N)}$ for all $i\leq 2$.

ACKNOWLEDGMENT

The author would like to thank the referee for his/her useful comments.

REFERENCES

- 1. M. Brodmann, Ch. Rotthaus and R. Y. Sharp, On annihilators and associated primes of local cohomology modules, *J. Pure Applied Algebra*, **153** (2000), 197-227
- 2. M. Brodmann and R. Sharp, *Local cohomology-an algebraic introduction with geometric applications*, Cambridge studies in advanced Mathematics No. **60**, Cambridge University Press, 1998.
- 3. G. Faltings, Über die Annulatoren lokaler Kohomologiegruppen, *Arch. Math.*, **30** (1978), 473-476.
- 4. G. Faltings, Der Endlichkeitssatz der lokalen kohomologie, *Math. Ann.*, **255** (1981), 45-56.
- 5. J. Herzog, *Komplexe, Auflösungen und dualität in der lokalen Algebra*, Preprint 1974, Univ. Regensburg.
- 6. K. N. Raghavan, *Local-global principle for annihilation of local cohomology*, Commutative algebra: syzygies, multiplicities, and birational algebra (South Hadley, MA, 1992), 329-331, Contemp. Math., 159, Amer. Math. Soc., Providence, RI, 1994.

- 7. N. Suzuki, On the generalized local cohomology and its duality, *J. Math. Kyoto Univ.*, **18** (1978), 71-85.
- 8. S. Yassemi, Generalized section functor, *J. Pure Applied Algebra*, **95** (1994), 103-
- 9. S. Yassemi, L. Khatami and T. Sharif, Associated primes of generalized local cohomology modules, *Comm. Algebra*, **30** (2002), 327-330.

Abolfazl Tehranian Science and Research Branch, Islamic Azad University, Tehran, Iran

E-mail: tehranian1340@yahoo.com