TAIWANESE JOURNAL OF MATHEMATICS

Vol. 13, No. 5, pp. 1451-1456, October 2009

This paper is available online at http://www.tjm.nsysu.edu.tw/

MODULES WITH C*-CONDITION

Y. Talebi and M. J. Nematollahi

Abstract. In this paper we investigate modules with the property C^* : namely, M has C^* if every submodule N of M contains a direct summand K of M such that N/K is cosingular. We prove that every right R-module M satisfies C^* if and only if every right R-module is the direct sum of an injective module and a cosingular module.

1. Introduction

Through this paper R is an associative ring with identity and all modules are unitary right R-modules. A submodule N of a module M is called S small in M (denoted by Nl-/M) if for every proper submodule L of M, $N+L \neq M$. M is called a small module if M is small in some modules [1]. In [1] Leonard has proved that a module M is a small module if and only if it is small in its injective hull. For a module M let $\overline{Z}(M) = Rej(M, S) = \bigcap \{Kerf \mid f: M \to S, S \in S\} = \bigcap \{U \subseteq M \mid M/U \in S\}$ where S denotes the class of all small modules. M is called S cosingular if S where S denotes the class of all small module is cosingular but in general the converse is not true. A module S has S if every submodule S of S contains a direct summand S of S such that S of S cosingular. Finally we recall that a module S is lifting if every submodule S of S contains a direct summand S of S such that S of S contains a direct summand S of S such that S of S contains a direct summand S of S such that S such that S of S such that S such that S of S such that S

2. Modules with C^*

Lemma 2.1. Suppose that A, B and A_i , $i \in I$, are R-modules. Then we have the following:

(1) If
$$A \subseteq B$$
, then $\overline{Z}(A) \subseteq \overline{Z}(B)$ and $\overline{Z}(B/A) \supseteq (\overline{Z}(B) + A)/A$;

Received March 19, 2007, accepted January 15, 2008.

Communicated by Wen-Fong Ke.

2000 Mathematics Subject Classification: 16D40, 16D50, 16D99.

Key words and phrases: Lifting module, Co-singular module, Projective module, Injective module.

- (2) If $f: B \to A$ is a homomorphism, then $f(\overline{Z}(B)) \subseteq \overline{Z}(A)$;
- (3) $\overline{Z}(A/\overline{Z}(A)) = 0$;
- $(4) \ \overline{Z}(\bigoplus_{i \in I} A_i) = \bigoplus_{i \in I} \overline{Z}(A_i);$
- (5) $\overline{Z}(\prod_{i\in I} A_i) \subseteq \prod_{i\in I} \overline{Z}(A_i);$
- (6) If A = B + S where S is a small module, then $\overline{Z}(A) = \overline{Z}(B)$;
- (7) $\overline{Z}(A)$ is the smallest submodule of A such that $A/\overline{Z}(A)$ is cosingular.

Proof. See [3, Proposition 2.7].

Proposition 2.2. Every cosingular module (and so every small module) satisfies C^* .

Proof. By Lemma 2.1, submodule of a cosingular module is cosingular, Hence the Proposition follows.

As every small submodule of a module M is a small module and hence a cosingular module, we get

Proposition 2.3. Every lifting module satisfies C^* .

Remarks. In general, the converses of the above two Propositions 2.2 and 2.3 are not true. For example let $M = Z_{p^{\infty}}$. It is easy to check that M has C^* but M is not cosingular. On the other hand Z has C^* , but it is not a lifting module [2, p.56].

Lemma 2.4. A module M is lifting if and only if every submodule A of M can be written as $A = N \oplus S$ such that N is a direct summand of M and Sl-/M.

Proof. See [2, Proposition 4.8].

Proposition 2.5. For an R-module M the following statements are equivalent:

- (1) M has C^* ;
- (2) For every submodule N of M there exists a decomposition $M = M_1 \oplus M_2$ such that $M_1 \leq N$ and $N \cap M_2$ is cosingular;
- (3) For every submodule N of M, N has a decomposition $N = N_1 \oplus N_2$ such that N_1 is a direct summand of M and N_2 is cosingular.

Proof. (1) \Rightarrow (2) Let $N \leq M$, by definition there exists a decomposition $M = M_1 \oplus M_2$ such that $M_1 \leq N$ and N/M_1 is cosingular. We have $N = M_1 \oplus (N \cap M_2)$ and $N \cap M_2 \simeq N/M_1$ is cosingular.

- $(2)\Rightarrow (3)$ Let $M=M_1\oplus M_2$ with $M_1\leq N$. Then $N=M_1\oplus (N\cap M_2)$. Take $M_1=N_1$ and $N\cap M_2=N_2$.
- (3) \Rightarrow (1) Suppose $N \leq M$. We have $N = N_1 \oplus N_2$ with N_1 is a direct summand of M and N_2 cosingular. But $N/N_1 \simeq N_2$ is cosingular. M has C^* .

Proposition 2.6. Suppose that M satisfies C^* and every cosingular submodule of M is small in M. Then M is lifting.

Proof. Proof follows from Lemma 2.4 and Proposition 2.5.

Proposition 2.7. The class of all modules having C^* is closed under submodules.

Proof. Let M be an R-module satisfying C^* and $N \leq M$. For each $X \leq N$ we have $X \leq M$, hence there exists a direct summand K of M with $K \leq X$ and X/K cosingular. Since K is a direct summand of N, N has C^* .

Proposition 2.8. Let R be a ring. An injective right R-module M satisfies C^* if and only if every submodule of M is a direct sum of an injective module and a cosingular module.

Proof. Suppose that M is an injective module and satisfies C^* . By Proposition 2.5(3), every submodule of M is a direct sum of an injective module and a cosingular module.

Conversely, suppose that every submodule of M is a direct sum of an injective module and a cosingular module. Since an injective submodule is a direct summand, M has C^* by 2.5(3).

Theorem 2.9. The following statements are equivalent for a ring R:

- (1) Every right R-module satisfies C^* ;
- (2) Every injective right R-module satisfies C^* ;
- (3) Every right R-module is a direct sum of an injective module and a cosingular module.

Proof. (1) \Leftrightarrow (2) It is clear because every submodule of a module with C^* also has C^* .

 $(2) \Leftrightarrow (3)$ It follows by Proposition 2.8.

Theorem 2.10. Let $M = M_1 \oplus M_2$ where M_1 is semisimple and M_2 satisfies C^* . Then M satisfies C^* .

Proof. Let $M=M_1\oplus M_2$ where M_1 is semisimple and M_2 satisfies C^* . Let $N\leq M$. Then $M_1=(N\cap M_1)\oplus M'$ for some $M'\leq M_1$. Thus $M=(N\cap M_1)\oplus M'\oplus M_2$ and $N=(N\cap M_1)\oplus A$ where $A=N\cap (M'\oplus M_2)$. Since $(M_2\oplus M')/M'$ satisfies C^* , it follows that $(A+M')/M'=K/M'\oplus L/M'$ for some submodule K and L containing M' such that K/M' is a direct summand of $(M_2\oplus M')/M'$ and L/M' is cosingular. Thus K is a direct summand of M. As $K=M'\oplus (K\cap A)$, $K\cap A$ is also a direct summand of M. It is now clear that $(N\cap M_1)\oplus (K\cap A)$ is a direct summand of M. Moreover

$$N/((N \cap M_1) \oplus (K \cap A)) \simeq A/(K \cap A) \simeq (A+K)/K = (A+M')/K \simeq L/M'$$

is cosingular. It follows that M satisfies C^* .

It may be noted that the above Theorem is not true if we replace 'C*' by 'lifting'. For example, let $R = \mathbb{Z}$, $M_1 = \mathbb{Z}/2\mathbb{Z}$ and $M_2 = \mathbb{Z}/8\mathbb{Z}$.

Corollary 2.11. Let $M=M_1\oplus M_2$ where M_1 is semisimple and M_2 is cosingular. Then M satisfies C^* .

Let P and M be modules. P is said to be M-projective if for any module N with an epimorphism $\pi: M \to N$ and homomorphism $\theta: P \to N$, there exists a homomorphism $\theta': P \to M$ such that $\pi\theta' = \theta$. P is called projective if it is M-projective for every module M. If P is P-projective, P is called quasi-projective. A class of modules $\{P_i\}_{i\in I}$ is called relatively projective if P_i is P_j -projective for all distinct $i,j\in I$.

Lemma 2.12. Let M_1 and M_2 be modules and $M = M_1 \oplus M_2$. The following are equivalent:

- (1) M_1 is M_2 -projective;
- (2) For every submodule N of M such that $M = N + M_2$, there exists a submodule N' of N such that $M = N' \oplus M_2$.

Proposition 2.13. Suppose $M = M_1 \oplus M_2$ where M_i (i = 1,2), is M_2 projective and $M = L + M_2$.

- (1) If M_2 is a module satisfying C^* , then $M = K \oplus M_2'$ where $M_2' \leq M_2$, $K \leq L$ and $(L \cap M_2')$ is cosingular.
- (2) If M_2 is a lifting module, then $M = K \oplus M'_2$ where $M'_2 \leq M_2$, $K \leq L$ and $(L \cap M'_2)l /M$.

Proof. (1) As M_2 satisfies C^* , there exists a decomposition $M_2=M_2''\oplus M_2'$ with $M_2''\leq L\cap M_2$ and $((L\cap M_2)\cap M_2')=(L\cap M_2')$ a cosingular module. Hence we have

$$M = L + M_2 = L + M_2'$$

As $M_2'' \leq L$,

$$L = M_2'' \oplus ((M_2' \oplus M_1) \cap L).$$

Put $N=M_1\oplus M_2'$. Then $L=M_2''\oplus (N\cap L)$. Since $M=L+M_2'$, $N=(N\cap L)+M_1$. As M_1 is M_2' -projective, by 2.12, there exists a decomposition $N=T\oplus M_2'$ where $T\leq (N\cap L)$. Since $T\leq (N\cap L)$ and $L=M_2''\oplus (N\cap L)$, we have $(M_2''\oplus T)\leq L$. Put $K=M_2''\oplus T$. Then $M=K\oplus M_2'$, $K\leq L$ and $L\cap M_2'$ is a cosingular module.

(2) Proof is similar to the proof of (1) and hence is omitted.

Theorem 2.14. Let M be a quasi-projective module and $M = M_1 \oplus M_2$. M satisfies C^* if and only if both M_1 and M_2 satisfy C^* .

Proof. Suppose M satisfies C^* . By Proposition 2.7 both M_1 and M_2 satisfy C^* .

Suppose M_1 and M_2 satisfy C^* . Let $L \leq M$. In the sequel π will denote the obvoious projections. Since M_1 satisfies C^* , there exists a decomposition $M = M_1' \oplus M_1''$ such that $M_1' \leq \pi_{M_1}(L)$ and $\pi_{M_1}(L) \cap M_1''$ is a cosingular module. Put $L' = (M_1'' \oplus M_2) \cap L$. Since M_2 satisfies C^* , there exists a decomposition $M_2 = M_2' \oplus M_2''$ such that $M_2' \leq \pi_{M_2}(L')$ and $\pi_{M_2}(L') \cap M_2''$ is a cosingular module.

Set
$$L'' = (M_1'' \oplus M_2'') \cap L$$
. Then

$$\pi_{M_1''}(L'') \leq M_1'' \cap \pi_{M_1}(L) \text{ and } \pi_{M_2''}(L'') \leq M_2'' \cap \pi_{M_2}(L').$$

Also

$$L'' \le \pi_{M_1''}(L'') \oplus \pi_{M_2''}(L'').$$

Now $M_1'' \cap \pi_{M_1}(L)$ and $M_2'' \cap \pi_{M_2}(L')$ are cosingular modules. As cosingular modules are closed under direct sums and submodules (see 2.1) L'' is a cosingular module. Also

$$M = \pi_{M_1}(L) + M_1'' + M_2$$

$$= L + M_1'' + M_2$$

$$= L + M_1'' + \pi_{M_2}(L') + M_2''$$

$$= L + M_1'' + L' + M_2''$$

$$= L + (M_1'' \oplus M_2'')$$

By hypothesis, $M_1' \oplus M_2'$ is $(M_1'' \oplus M_2'')$ -projective. By Proposition 2.13, there is a decomposition $M = U \oplus V$ with $U \leq L$ and $L \cap V$ a cosingular module. Now Proposition 2.5 implies that M satisfies C^* .

Corollary 2.15. Let $M = M_1 \oplus M_2$ be a projective module. M satisfies C^* if and only if M_1 and M_2 satisfy C^* .

Corollary 2.16. Let R be a ring. Then R as a right R-module satisfies C^* if and only if every finitely generated projective R-module satisfies C^* .

REFERENCES

- 1. W. W. Leonard, Small Modules, Proc. Amer. Math. Soc., 17 (1966), 527-531.
- 2. S. H. Mohamed and B. J. Muller, *Continuous and Discrete Modules*, London Math. Soc. LN. 147, Cambridge University Press, New York Sydney, 1990.
- 3. Y. Talebi and N. Vanaja, The Torsion Theory Cogenerated by M-Small Modules, *Comm. Algebra.*, **30** (2002), 1449-1460.
- 4. R. Wisbauer, *Foundations of Module and Ring Theory*, Gordon and Breach Science Publishers, Philadelphia, 1991.

Y. Talebi

Department of Mathematics, University of Mazandaran,

Babolsar,

Iran

E-mail: talebi@umz.ac.ir

M. J. Nematollahi

Islamic Azad University - Arsanjan branch,

Iran

Member of Young Research Club, Arsanian branch

E-mail: mj.nematollahi@umz.ac.ir