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WELL-POSEDNESS FOR VECTOR QUASIEQUILIBRIA

Lam Quoc Anh, Phan Quoc Khanh,
Dang Thi My Van and Jen-Chih Yao*

Abstract. We consider well-posedness under perturbations of vector quasiequi-
librium and bilevel-equilibrium problems. This kind of well-posedness relates
Hadamard and Tikhonov well-posedness notions to sensitivity analysis and we
apply largely techniques of the latter to establish sufficient conditions for well-
posedness under perturbations. We also propose several new semicontinuity
and quasiconvexity notions to weaken the imposed assumptions. Our results
are new or include as special cases recent existing results. Many examples are
provided for the illustration purpose.

1. INTRODUCTION

Well-posedness of optimization-related problems can be defined in two ways.
The first and oldest is Hadamard well-posedness [15], which means existence,
uniqueness and continuous dependence of the optimal solution and optimal value
from perturbed data. The second is Tikhonov well-posedness [36], which means
the existence and uniqueness of the solution and convergence of each minimizing
sequence to the solution. Just after the Tikhonov’s paper [36] dealing with un-
constrained problems, Levitin and Polyak [26] extended the notion to constrained
(scalar) optimization, allowing minimizing sequences {xn} to be outside of the
feasible set X0 and requiring d(xn, X0) (the distance from xn to X0) to tend to
zero. Since then, various definitions of well-posedness have been proposed, ex-
tending and blending the mentioned three notions, and intensively studied. In [6]
Hadamard well-posedness is extended, using Attouch-Wets topology τaw (known
also as the bounded Hausdorff topology or epi-distance topology) for perturbations
and convergence. It is proved in [6] that, under a constraint qualification, Tikhonov
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well-posed convex programs are τaw-Hadamard well-posed. Revalski [34] estab-
lishes the opposite implication, without constraint qualification. The Levitin and
Polyak well-posedness is generalized in [16, 23] for problems with explicit con-
straint g(x) ∈ K, where g is a continuous map between two metric spaces and
K is a closed set. For minimizing sequences {xn}, instead of d(xn, X0), here the
distance d(g(xn), K) is required to tend to zero. This generalization is appropriate
for penalty-type methods (e.g., penalty function methods, augmented Lagrangian
methods) with iteration processes terminating when d(g(xn), K) is small enough
(but d(xn, X0) may be large). [13] is the first paper to characterize well-posedness
by the Kuratowski measure of noncompactness of sets of approximately feasible and
approximately optimal points tending to zero. This approach is developed later for
various optimization-related problems in [11, 16, 17].

Since the data of mathematical models are approximately obtained from mea-
surements or statistical methods and since numerical algorithms for solving math-
ematical models produce minimizing sequences, only well-posed (in some sense)
problems are significant. Fortunately, [18, 19, 20] show that almost every usual
optimization problem (e.g. quadratic problem, convex program, semi-infinite pro-
gram, etc) is well-posed. Here “almost every” is in the Baire category sense or, in
the Euclidean space case, means having full Lebesgue measure. For such generic
well-posedness considerations, see also [21, 35]. To show also that well-posed
problems are very often met, [33] proves sufficient conditions for well-posedness
under lower sequential pseudocontinuity assumptions (weaker than lower sequential
semicontinuity).

The condition number of a unconstrained optimization problem is the Lipschitz
modulus of the unique minimizer as a vector function of the perturbing parameter.
Condition number theorems (known in the literature also as distance theorems) assert
that the condition number is the reciprocal of the distance of the objective function
(in a unconstrained problem) to the set of ill-posed problems. Condition number
theorems are investigated in connection with well-posedness in [10, 39, 40, 41].

Well-posedness for various problems related to optimization has been recently
intensively considered: for variational inequalities in [7, 9, 11, 27, 31], for Nash
equilibria in [29, 32], for fixed-point problems in [11, 24, 25], for inclusion problems
in [11, 24, 25] and for equilibrium problems in [22].

Well-posedness under perturbations (called also parametric well-posedness) is a
blending of Hadamard and Tikhonov notions, gives also links to stability theory and
seems well adapted to describe behaviors of solutions under perturbations. This issue
is investigated in [22, 24, 37, 38, 41]. Well-posed bilevel problems are developed in
[12, 22, 28, 29]. Recently, well-posedness for vector optimization-related problems
have been attracted the attention of many researchers, see e.g., [9, 17, 22]. Note
that for vector problems, both minimizing sequences and well-posedness can be
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understood in many different meanings.
In this paper we consider well-posedness under perturbations for rather general

vector quasiequilibrium problems. As far as we know, there is only reference [22]
to deal with equilibrium (not quasiequilibrium) problems. Moreover, we investigate
both problem settings: weak and strong (the latter is much less developed in the
literature). We pay attention on weakening semicontinuity and generalized convexity
assumptions for well-posedness. Hence in sections 2 and 4 we propose new cone
semicontinuity and cone quasiconvexity notions and consider their properties for
our use in establishing sufficient conditions for well-posedness in sections 3 and
5. However, we hope that these properties may be useful for other purposes as
well. In section 3 we demonstrate sufficient conditions for well-posedness under
perturbations for our two quasiequilibrium problems. These results are shown to
include properly those of the only paper on well-posedness of equilibrium we know
[22]. Since quasiequilibrium problems contain many optimization-related problems
as particular cases, our results have obvious consequences for such cases. As an
example, in section 5 we go in details to apply the theorems in section 3 only to well-
posedness for equilibrium problems with equilibrium constraints. These problems
are rather general kinds of bilevel optimization-related problems which have become
increasingly attracted to researchers recently.

Our notations are usual. R and R+ denote the real straight line (−∞, +∞) and
the nonnegative halfline [0, +∞), respectively. For a set A in a topological space,
intA and clA stand for the interior and closure, respectively, of A. A cone C in a
topological vector space is called pointed if C ∩ (−C) = {0} and called solid if
intC is nonempty. We will use partial orders defined by different solid convex cones
in vector spaces. The following notations written for cone C but may be used in
the sequel for different ordering cones, since the context ensures that no confusion
threatens.

x ≥ y ⇔ x − y ∈ C,

x > y ⇔ x − y ∈ intC,

x �≥ y ⇔ x − y /∈ C,

x �> y ⇔ x − y /∈ intC

and similarly for ≤, <, �≤, �<.
Recall that a multimap Q : X → Y between two topological spaces is said

to be upper semicontinuous (usc in short) at x ∈ X if, for each open superset
U ⊇ Q(x), there is a neighborhood N of x such that Q(N ) ⊆ U . Q is called lower
semicontinuous at x if, for each open subset U ⊆ Y with Q(x) ∩ U �= ∅, there is
a neighborhood N of x such that Q(x′) ∩ U �= ∅, for all x′ ∈ N . We also use the
following two equivalent formulations for lower semicontinuity:

(a) Q is lsc at x if, for all xα → x and y ∈ Q(x), there exists yα ∈ Q(xα) such
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that yα → y;
(b) Q is lsc at x if, for all xα → x, one has

Q(x) ⊆ liminfQ(xα),

where
liminfQ(xα) := {y ∈ Y : ∃yα ∈ Q(xα), yα → y}.

2. QUASI-SEMICONTINUITIES OF VECTOR FUNCTIONS

In this section we propose several kinds of quasi-semicontinuity of vector func-
tions and investigate their properties. These notions and properties will be in use
later for discussing well-posedness. Let, in this section, X be a Hausdorff topolog-
ical space, Y be a Hausdorff topological vector space, A ⊆ X be a nonempty open
subset and C ⊆ Y be a solid closed convex cone.

There have been several notions of semicontinuity of vector functions in the
literature, but they may appear under slightly different terms. In this paper we
call h : A → Y to be C-lower semicontinuous (shortly, C-lsc) at x0 if for any
neighborhood U of h(x0), there is a neighborhood N of x0 such that h(N ) ⊆ U+C.
h is called C-upper semicontinuous (C-usc) at x0 if for any neighborhood U of
h(x0), there is a neighborhood N of x0 such that h(N ) ⊆ U − C.

We note the following simple relation to semicontinuity of scalar functions. Let
c ∈ C, f : A → R and h : A → Y defined by h(x) = f(x)c, for x ∈ A. If f is lsc
(usc, respectively) at x0, then h is C-lsc (C-usc, respectively) at x0. Furthermore,
relations to level sets are also easily obtained as follows. For b ∈ Y , we use the
following notations for level sets of h, for different orderings ≤ (by the context, no
confusion occurs).

L≤bh = {x ∈ A : h(x) ≤ b},
L�>bh = {x ∈ A : h(x) �> b}

and similarly for other level sets L�<bh, L≥bh, L�≤bh, L>bh, etc. Then it is not hard
to verify the following equivalent relations.

Proposition 2.1. Let h : A → Y .

(i) h is C-lsc at x0 if and only if L �>bh is closed at x0 for all b ∈ Y .
(ii) h is C-usc at x0 if and only if L �<bh is closed at x0 for all b ∈ Y .

This equivalence suggests the following natural properties weaker than C-
semicontinuities, by imposing requirements only at a given level. Here we propose
also similar definitions for other preorders ≤ and ≥.
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Definition 2.1. Let h : A → Y and b ∈ Y be given.

(i) h is called b-level C-lower semicontinuous ((b, C)-lsc) at x0 if L�>bh is closed
at x0.

(ii) h is called b-level C-upper semicontinuous ((b, C)-usc) at x0 if L�<bh is closed
at x0.

(iii) h is called b-level C-quasilower semicontinuous ((b, C)-qlsc) at x0 if L≤bh
is closed at x0.

(iv) h is called b-level C-quasiupper semicontinuous ((b, C)-qusc) at x0 if L≥bh

is closed at x0.

If a statement of (i)-(iv) holds for all b ∈ Y , we omit b in the corresponding
terminology.

To make these definitions clearer we present equivalent statements in terms of
neighborhoods as follows.

Proposition 2.2. Let h : A → Y and b ∈ Y be fixed.

(i) h is (b, C)-lsc at x0 if and only if there is a neighborhood N of x 0 with
h(N ) ⊆ b + intC whenever h(x0) ∈ b + intC.

(ii) h is (b, C)-usc at x0 if and only if there is a neighborhood N of x 0 with
h(N ) ⊆ b− intC whenever h(x0) ∈ b− intC.

(iii) h is (b, C)-qlsc at x0 if and only if there exists a neighborhood N of x 0 such
that h(N ) ∩ (b − C) = ∅ whenever h(x0) �∈ b − C.

(iv) h is (b, C)-qusc at x0 if and only if there exists a neighborhood N of x 0 such
that h(N ) ∩ (b + C) = ∅ whenever h(x0) �∈ b + C.

Proof. By the similarity we verify only (iii) as an example.
“Only if”. Suppose ad absurdum that h is (b, C)-qlsc at x0 and h(x0) �≤ b,

but for any neighborhood N of x0, there is x ∈ N such that, h(x) ≤ b, i.e., there
is a net xα → x0 with h(xα) ≤ b. Then, as h is (b, C)-qlsc at x0, we get the
contradiction that h(x0) ≤ b.

“If”. Let xα → x0 with h(xα) ≤ b. We show that h(x0) ≤ b. If h(x0) �≤ b, by
the assumption there is a neighborhood N of x0 such that, for all x ∈ N , h(x) �≤ b.
Since xα → x0, one can assume that xα ∈ N , i.e., h(xα) �≤ b, a contradiction.

The following relationships between C-semicontinuity and C- quasisemiconti-
nuity resemble those for the scalar counterparts, though not very clear from the
above definitions and discussions.

Proposition 2.3. Let h : A → Y .
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(i) If h is C-lsc at x0 then h is C-qlsc at x0.
(ii) If h is C-usc at x0 then h is C-qusc at x0.

Proof.

(i) Suppose that h is C-lsc at x0 and xα → x0 with h(xα) ≤ b for some b ∈ Y ,
but h(x0) ∈ Y \ (b−C). Since h is C-lsc at x0 and Y \ (b−C) is open, one
can assume that h(xα) ∈ Y \ (b−C)+C. So there are tα ∈ Y \ (b−C) and
cα ∈ C, such that h(xα) = tα + cα. As h(xα) ∈ b − C. There is c′α ∈ C,
such that h(xα) = b − c′α. Therefore, tα = b − c′α − cα ∈ b − C, which is
impossible as tα ∈ Y \ (b − C).

(ii) It may be checked similarly.

The following example shows that the converse of Proposition 2.3 is not true.

Example 2.1. Let X = R, Y = R2, A = R, C = R2
+, x0 = 0 and

h(x) =




(x, 1) if x ≤ 0,(
−1

x
,
1
x

)
otherwise.

Then h is both C-qlsc and C-qusc at 0. Indeed, by the similarity we check
only the latter property. For any sequence xn → 0 such that h(xn) ≥ b for some
b ∈ R and all n, there is a subsequence xnk

such that xnk
≤ 0, for all nk, (if for all

subsequences xnk
, xnk

> 0, since xnk
→ 0, one has h(xnk

) → (−∞, +∞) �≥ b).
h(xnk

) ≥ b means that xnk
≥ b1 and 1 ≥ b2, and hence 0 ≥ b1. Therefore,

h(x0) = (0, 1) ≥ b, i.e., h is (b, C)-qusc at 0. As b is arbitrary, h is C-qusc at 0.
However, h is neither C-lsc nor C-usc at 0. Indeed, we check only the latter.

Let b = (2, 2) and xn = 1
n . Then h(xn) �< b for large n. But h(0) = (0, 1) < b.

Consequently, h is not (b, C)-usc at 0.
The relations asserted in Proposition 2.3 cannot be similarly stated for a partic-

ular level b (unlike the scalar case) as ensured by the example below.

Example 2.2. Let X, Y, A, C and x0 = 0 be as in Example 2.1 and

h(x) =

{
(−1, 1) if x = 0,

(−1,−1) otherwise.

Then, for all x ∈ R, h(x) �> 0 and hence h is (0, C)-lsc at 0, since L �>0h is closed.
But h is not (0, C)-qlsc at 0, since L≤0h is not closed. Indeed, let xn = 1

n → 0.
Then h(xn) = (−1,−1) ≤ 0, but h(0) = (−1, 1) �≤ 0. So L≤0h is not closed.



Well-posedness for Vector Quasiequilibria 719

Now we modify h as
h(x) =

{
(−1, 1) if x = 0,

(1, 1) otherwise.

Then, for all x ∈ R, h(x) �< 0, whence h is (0, C)-usc at 0, since L �<0h is closed.
But h is not (0, C)-qusc at 0, since L≥0h is not closed. Indeed, let xn = 1

n . Then
h(xn) = (1, 1) ≥ 0, but h(0) = (−1, 1) �≥ 0. Hence, L≥0h is not closed.

For our well-posedness consideration in sections 3 and 4 we need to develop
sum rules for generalized semicontinuous and quasi-semicontinuous functions.

Proposition 2.4. Let X, Z be topological spaces, A ⊆ X and B ⊆ Z be
nonempty open sets, C ⊆ Y be a solid closed convex cone and f : A → Y, g :
B → Y , A ⊆ X, B ⊆ Z. If f and g are C-lsc (or C-usc) at x0 and y0, respectively,
then h = f + g is C-lsc (or C-usc) at (x0, y0).

Proof. By the similarity and symmetry we demonstrate only for the C-upper
semicontinuity. Let U be any open superset of f(x0) + g(y0). There are open
neighborhoods U1 and U2 of f(x0) and g(x0), respectively, such that U1 +U2 ⊆ U .
Since f and g are C-lsc, there are open neighborhoods N1 and N2 of x0 and y0,
respectively, such that f(x) ∈ U1−C and g(y) ∈ U2−C, for all (x, y) ∈ N1×N2.
Hence h(x, y) = f(x) + g(y) ∈ U1 + U2 − C ⊆ U − C, for all (x, y) ∈ N1 × N2,
i.e., h is C-usc at (x0, y0).

Unfortunately, Proposition 2.4 cannot be extended for C-quasi semicontinuous
functions as shown by the following example.

Example 2.3. Let X, Y, A, C and x0 be as in Example 2.1. Let Z = B = X ,
y0 = x0 and f be defined as h in Example 2.1. Let

g(x) =




(x, 1) if x ≤ 0,(
1
x
,−1

x

)
otherwise.

By similar arguments as those of Example 2.1, we see that f and g are C-qlsc at
0. Furthermore,

(f + g)(x) =




(2x, 2) if x ≤ 0,

(0, 0) otherwise.

For xn = 1
n → 0, one has (f + g)(xn) = (0, 0) ≤ (1, 1), but (f + g)(0) = (0, 2) �≤

(1, 1). So f + g is not C-qlsc at 0.
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Let us now modify f and g by setting

f(x) =




(x,−1) if x ≤ 0,(
−1

x
,
1
x

)
otherwise,

g(x) =




(x,−1) if x ≤ 0,(
1
x

,−1
x

)
otherwise.

Then f and g are C-qusc at 0. But

(f + g)(x) =

{
(2x,−2) if x ≤ 0,

(0, 0) otherwise

is not C-qusc at 0 because, for xn = 1
n → 0, we have (f + g)(xn) = (0, 0) ≥

(−1,−1), but (f + g)(0) = (0,−2) �≥ (−1,−1).

Proposition 2.5. Assume that X, Y, Z, A,B, C, f and g are as in Proposition
2.4.

(i) If f is C-qlsc at x0 and g is C-lsc at y0, then h=f+g is C-qlsc at (x0, y0).
(ii) If f is C-qusc at x0 and g is C-usc at y0, then h=f+g is C-qusc at (x0, y0).

Proof. By the similarity and symmetry we demonstrate only (i). For arbitrary
b ∈ Y , assume that (xα, yα) → (x0, y0) and h(xα, yα) ≤ b. For each e ∈ intC, as
g is C-lsc at y0, there is a subnet yβ such that g(yβ) > g(y0)− e, for all β. Hence

f(xβ) + g(y0)− e ≤ b.

As f is C-qlsc at x0,
f(x0) + g(y0)− e ≤ b,

Consequently, f(x0) + g(y0) ≤ b. Thus, h is (b, C)-qlsc at (x0, y0). By the
arbitrariness of b, h is C−qlsc at (x0, y0).

The following examples prevent us to state results similar to Prepositions 2.4
and 2.5 for a given fixed level b.

Example 2.4. Let A = R, Y = R2, C = R2
+, x0 = 0 and f, g : R → R2 be

defined by g(x) = (2,−1) for all x, and

f(x) =

{
(−1, 2) if x = 0,

(−3,−3) otherwise.
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Then f is (0, C)-lsc at 0, since L �>0f is closed. g is continuous, whence (0, C)-lsc
at 0. But

(f + g)(x) =

{
(1, 1) if x = 0,

(−1,−4) otherwise

is not (0, C)-lsc at 0, since L �>0h is not closed. Indeed, let xn = 1
n . Then h(xn) =

(−1,−4) �> 0, but h(0) = (1, 1) > 0. So L�>0h is not closed. Therefore, from the
fact that f is (b1, C)-lsc at x0 and g is (b2, C) lsc at x0, we cannot deduce that
f + g is (b1 + b2, C)-lsc at x0. If b1 = b2, f is (b, C)-lsc at x0 and g is even
continuous at x0, we do not have that f + g is (b, C)-lsc at x0.

To get an counterexample for (b, C)-upper semicontinuity we modify f and g
as follows. Put g(x) = (1,−2) and

f(x) =

{
(−2, 1) if x = 0,

(3, 3) otherwise.

Then f is (0, C)-usc at 0 and g is continuous (and hence (0, C)-usc) at 0. But

(f + g)(x) =

{
(−1,−1) if x = 0,

(4, 1) otherwise

is not (0, C)-usc at 0, since L �<0h is not closed. Indeed, let xn = 1
n → 0. Then

h(xn) = (4, 1) �< 0, but h(0) = (−1,−1) < 0, whence L�<0h is not closed. This
example shows that from f being (b, C)-usc and g being even continuous at x0, it
does not follow that f + g is (b, C)-usc at x0,

Passing to discussions for C-quasi semicontinuity we have similar counterex-
amples as follows.

Example 2.5. Let Y, A, C and x0 = 0 be as in Example 2.4. Let f, g : R → R2

be defined by g(x) = (2, 2) for all x, and

f(x) =

{
(−1,−1) if x = 0,

(−3,−3) otherwise.

Then f is (0, C)-qlsc and g is continuous (and hence (0, C)-lsc) at 0. But

(f + g)(x) =

{
(1, 1) if x = 0,

(−1,−1) otherwise

is not (0, C)-qlsc at 0 (to see this let xn = 1
n ).
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A similar assertion for (b, C)− quasi upper semicontinuity is seen by setting
g(x) = (−2,−2) and

f(x) =

{
(1, 1) if x = 0,

(3, 3) otherwise.

The following example indicates that, for a fixed level b, the sum of a continuous
function and a (b, C)-lsc function may not be (b, C)-qlsc.

Example 2.6. Let us modify from the previous example only f(x) = (2, 2) and

g(x) =

{
(−1,−1) if x = 0,

(−3,−3) otherwise.

Then, f is continuous and g is (0, C)-lsc at 0. But

(f + g)(x) =

{
(1, 1) if x = 0,

(−1,−1) otherwise

is not (0, C)-qlsc at 0.
Now let f(x) = (−2,−2), x0 = 0 and

g(x) =

{
(1, 1) if x = 0,

(3, 3) otherwise.

Then f is continuous and g is (0, C)-usc at 0. But

(f + g)(x) =

{
(−1,−1) if x = 0,

(1, 1) otherwise

is not (0, C)-qusc at 0.

3. WELL-POSEDNESS FOR QUASIEQUILIBRIUM PROBLEMS

We are concerned with the following quasiequilibrium problems, which are
perturbed. Let the decision space X be a Hausdorff topological space and the range
space Y be a Hausdorff topological vector space. Let A ⊆ X be a nonempty set
and the ordering cone C ⊆ Y be nonempty convex, closed, pointed and solid. Let
the constrained sets be depending on x ∈ X and defined by Ki : A → 2A, i = 1, 2.
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Let the machinery of the problems be expressed by f : A×A → Y . The following
two quasiequilibrium problems are concerned

(WQEP) Find x̄ ∈ K1(x̄) such that, for all y ∈ K2(x̄),

f(x̄, y) �< 0;

(SQEP) Find x̄ ∈ K1(x̄) such that, for all y ∈ K2(x̄),

f(x̄, y) ≥ 0.

The notations (WQEP) and (SQEP) mean “Weak Quasiequilibrium Problem” and
“Strong Quasiequilibrium Problem”, respectively. The solution sets of (WQEP) and
(SQEP) are denoted by Sw and Ss, respectively.

Now assume that these problems suffer perturbations, which are expressed in
terms of a perturbing parameter λ in a Hausdorff topological space Λ. This means
that our problems are embedded into the following families, for λ ∈ Λ,

(WQEPλ) Find x̄ ∈ K1(x̄, λ) such that, for all y ∈ K2(x̄, λ),

f(x̄, y, λ) �< 0;

(SQEPλ) Find x̄ ∈ K1(x̄, λ) such that, for all y ∈ K2(x̄, λ),

f(x̄, y, λ) ≥ 0.

Assume that the original problems are corresponding to λ = λ̄, i.e., (WQEP)
= (WQEPλ̄) and (SQEP) = (SQEPλ̄). We adapt the notions of asymptotically
minimizing sequences and well-posedness under perturbations introduced by Zolezzi
for unconstrained optimization in [37] and developed for various problem settings
in [22, 25, 38, 41] to our problems as follows.

Definition 3.1. Let {λα} ⊆ Λ be a net converging to λ̄. A net {xα} ⊆
K1(xα, λα) is said to be an asymptotically solving net for (WQEP) ((SQEP), re-
spectively) corresponding to {λα} if there exists a net {eα} ⊆ intC converging to
0 such that

f(xα, y, λα) + eα �< 0, for all y ∈ K2(xα, λα),

(f(xα, y, λα) + eα ≥ 0, for all y ∈ K2(xα, λα), respectively).

Definition 3.2. The problem (WQEP) ((SQEP), respectively) is said to be well-
posed under perturbations if:

(a) the solution set Sw of (WQEP) (Ss of (SQEP), respectively) is nonempty;
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(b) for any net {λα} ⊆ Λ converging to λ̄, every asymptotically solving net for
(WQEP) ((SQEP), respectively) corresponding to {λα} has a subnet converg-
ing to some point of Sw (Ss, respectively).

We consider also the following stronger property with the uniqueness require-
ment as in classical definitions.

Definition 3.3. The problem (WQEP) ((SQEP), respectively) is said to be
uniquely well-posed under perturbations if:

(a) there exists a unique solution x̄ to (WQEP) ((SQEP), respectively);
(b) for any net {λα} ⊆ Λ converging to λ̄, every asymptotically solving net for

(WQEP) ((SQEP), respectively) corresponding to {λα} converges to x̄.

From now on, for λ ∈ Λ and e ∈ intC, let E(λ) be the set of all fixed points
of K1(., λ), i.e., the set {x ∈ A : x ∈ K1(x, λ)}, and

Πw(λ, e) = {x ∈ K1(x, λ) : f(x, y, λ) + e �< 0, ∀y ∈ K2(x, λ)},

Πs(λ, ε) = {x ∈ K1(x, λ) : f(x, y, λ)+ e ≥ 0, ∀y ∈ K2(x, λ)}
(Πw(λ, e) and Πs(λ, e) are e-approximate solution sets of (WQEPλ) and ((SQEPλ),
respectively).

Remark 3.1.

(i) If (WQEP) (or (SQEP)) is (uniquely) well-posed under perturbations, it is
Tikhonov well-posed (simply take λα = λ̄ for all α).

(ii) The following facts are well-known and often used in sensitivity analysis (see
e.g., [1-4]): Let Q : X→2Y be a multimap between two topological spaces.

(iia) If Q(x̄) is compact, then Q(.) is usc at x̄ if and only if for any nets {x̄α} ⊆ X

with xα → x̄ and {yα} with yα ∈ Q(xα), there is a subnet {yβ} of {yα}
such that yβ → y for some y ∈ Q(x̄).

(iib) If, in addition, Q(x̄) = {ȳ} is a singleton then, for the above nets, one has
yα → ȳ.
Thus, the definition of well-posedness under perturbations and unique well-
posedness under perturbations encompass a form of upper semicontinuous
dependence of solutions on the parameter. Such a dependence is investigated
in stability (for recent results for quasiequilibrium problems see e.g., [1-4]).

(iii) In [22] the special case, where K1(x, λ) ≡ K2(x, λ) ≡ A is considered. The
definition of parametric well-posedness in [22] is different from Definitions
3.2 and 3.3, since the statements are for all λ ∈ Λ instead of for λ̄ correspond-
ing to the unperturbed problem. Our definitions are similar to those in [24,
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27, 38, 41] and describe more reasonably perturbations of an original prob-
lem. However, our results below can be easily restated for the well-posedness
defined in [22].

(iv) Well-posedness for vector problems have been defined in various ways. In
[9] for instance, for asymptotically solving nets, eα is restricted to being εαe

for εα being positive numbers and e ∈ intC, i.e., only fixed direction e is
allowed. [17] uses also the scalarizing function, for y ∈ Y ,

ξ(y) = inf{t : y ≤ te}

to define well-posedness (called well-posedness of type III there).

A sufficient condition for the well-posedness under perturbations of problem
(WQEP) is given by the following theorem. We see that the proof is based on
techniques of stability considerations (cf. e.g., [1-4]), since well-posedness under
perturbations has close links to stability.

Theorem 3.1. Assume for (WQEP) that Sw is nonempty and

(i) f is C-usc in A × A × {λ̄};
(ii) either of the following two conditions holds

(ii1) K1 is usc in A × {λ̄}, A is compact and K2 is lsc in A × {λ̄};
(ii2) E is usc at λ̄ and E(λ̄) is compact, and K2 is lsc in A × {λ̄}.

Then, (WQEP) is well-posed under perturbations. Furthermore, if S w is a singleton,
then this problem is uniquely well-posed under perturbations.

Proof. It suffices to consider the case (ii2), since the other case is similar and
simpler. We show first that Πw is usc at (λ̄, 0). Suppose the existence of an open
superset U of Πw(λ̄, 0), of nets {(λα, eα)} in Λ× intC with (λα, eα) → (λ̄, 0) and
of {xα} in Πw(λα, eα) such that xα /∈ U , for all α. By the upper semicontinuity
of E at λ̄ and compactness of E(λ̄) one can assume that xα → x0 for some
x0 ∈ E(λ̄). If x0 /∈ Πw(λ̄, 0) = Sw(λ̄) = Sw, then there is y0 ∈ K2(x0, λ̄) such
that f(x0, y0, λ̄) < 0. The lower semicontinuity of K2 in turn shows the existence
of yα ∈ K2(xα, λα) such that yα → y0. Since xα ∈ Πw(λα, eα), one has

f(xα, yα, λα) + eα �< 0.

Let I : C → C be the identity map. Then Proposition 2.4 yields the C-upper
semicontinuity of (x, y, λ, e)→ f(x, y, λ) + e at (x0, y0, λ̄, 0). Hence

f(x0, y0, λ̄) �< 0.
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which is a contradiction. Hence, x0 ∈ Πw(λ̄, 0) ⊆ U , which is again a contradiction,
since xα /∈ U , for all α. Thus, Πw is usc at (λ̄, 0).

Next we check that Sw is compact by showing simply its closedness (as E(λ̄)
is compact). Let xα ∈ Sw with xα → x0. If x0 /∈ Sw, there exists y0 ∈ K2(x0, λ̄)
such that

f(x0, y0, λ̄) < 0.

The lower semicontinuity of K2 gives the existence of yα ∈ K2(xα, λ̄) such that
yα → y0. Since xα ∈ Sw for each α, one has

f(xα, yα, λ̄) �< 0.

The C-upper semicontinuity of f(., ., λ̄) now implies that

f(x0, y0, λ̄) �< 0,

which is impossible. Consequently, Sw is compact.
Finally, taking Remark 3.1 (iia) into account, we see that the upper semiconti-

nuity of Πw and the compactness of Sw together imply the well-posedness under
perturbations of (WQEP). In the particular case, where Sw is a singleton, the unique
well-posedness under perturbations is followed by Remark 3.1 (iib).

Remark 3.2. In the special case, where K1(x, λ) ≡ K2(x, λ) ≡ A, assumption
(i) of Theorem 3.1 can clearly be reduced to the C-upper semicontinuity of f(., y, .),
for each y ∈ A. Therefore, this theorem contains the well-posedness part of Theorem
3.3 and Corollary 3.1 of [22] (with abuse of the fact that the latter paper considers
well-posedness for all λ ∈ Λ, since such results can be obtained by modifying
Theorem 3.1). The other part of that theorem is about the existence of solutions
for all λ ∈ Λ. But in our approach both in the definition of well-posedness and
in Theorem 3.1, we need the existence of solutions only for λ̄. Moreover, in the
literature there have been many papers on the solution existence for quasiequilibrium
problems (unparametrized, or what is the same, depending on one fixed parameter
λ̄). Therefore, we focus on well-posedness, leaving our needed existence as an
assumption.

The following example shows that, even in the mentioned special case, the C-
upper semicontinuity in assumption (i) should be imposed with respect to (shortly,
wrt) both x and λ.

Example 3.1. Let X = Y = R, Λ = [0, 1], λ̄ = 0, A = [0, 1], C = R+, K1(x, λ)
= K2(x, λ) = [0, 1] and

f(x, y, λ) =

{
x − y if λ = 0,

y − x otherwise.
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Then assumption (ii1) is satisfied. As for (i), f is continuous wrt x but not
R+-usc wrt λ. Indeed, taking xn = 0, yn = 1, λn = 1

n and en = 0, we have
(xn, yn, λn, en) → (0, 1, 0, 0) and f(xn, yn, λn) + en = f(0, 1, 1

n) = 1 > 0, but
f(0, 1, 0) = −1 < 0. We see directly that S(0) = {1} and, for λn = 1

n , en = 1
n ,

the sequence {xn} in Π(λn, en), with xn = 0 for all n, is an asymptotically solving
sequence for (QEP) corresponding to λn and en. But xn → 0 /∈ S(0) and hence
(QEP) is not well-posed under perturbations.

For the strong problem (SQEP) we have the following result.

Theorem 3.2. Impose the assumptions of Theorem 3.1 except (i), which is
replaced by

(i’) f is C-qusc in A × A × {λ̄}.
Then, (SQEP) is well-posed under perturbations. Furthermore, if S s is a sin-

gleton, then (SQEP) is uniquely well-posed under perturbations.

Proof. The proof is technically similar to that of Theorem 3.1. We present it
shortly for the sake of completeness. To prove first the upper semicontinuity of Πs

by contraposition, suppose the existence of an open superset U of Πs(λ̄, 0) and nets
{(λα, eα)} and {xα} in Πs(λα, eα) such that (λα, eα) → (λ0, 0), and xα /∈ U , for
all α. By assumption (ii) one can assume that xα → x0 for some x0 ∈ Πs(λ̄, 0), a
contradiction. (Instead of Proposition 2.4, here we use the sum rule in Proposition
2.5 (ii) for C-qusc function f .)

Next suppose for xα ∈ Ss, one has xα → x0 but x0 /∈ Ss. Then, there exists
y0 ∈ K2(x0, λ̄) such that

f(x0, y0, λ̄) �≥ 0.

The lower semicontinuity of K2 and the C- quasi upper semicontinuity of f(., ., λ̄)
together imply the contradiction that

f(x0, y0, λ̄) ≥ 0.

Therefore, Ss is closed and hence compact.
Finally, by Remark 3.1 (ii), the upper semicontinuity of Πs and compactness or

being a singleton of Ss together complete the proof.

4. QUASICONVEXITY OF VECTOR FUNCTIONS

Now we discuss several generalized quasiconvexity notions for vector functions
and develop their properties in order to use them for our well-posedness study in
the next section. In this section let X be a vector space and Y be a topological
vector space partially ordered by a solid pointed closed convex cone C, A ⊆ X be
a convex set and h : A → Y . The following definition is known. (The relations ≤,
<, etc, are defined by C.)
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Definition 4.1. (i) h is called convex if, for every x1, x2 ∈ A and t ∈ [0, 1],

h(tx1 + (1− t)x2) ≤ th(x1) + (1 − t)h(x2).

(ii) h is said to be strictly convex if, for every x1, x2 ∈ A and t ∈ (0, 1),

h(tx1 + (1− t)x2) < th(x1) + (1 − t)h(x2).

(iii) h is said to be quasiconvex if, for every x1, x2 ∈ A and t ∈ [0, 1], either

h(tx1 + (1 − t)x2) ≤ h(x1) or h(tx1 + (1− t)x2) ≤ h(x2).

(iv) h is said to be strictly quasiconvex if, for every x1, x2 ∈ A and t ∈ (0, 1),
either

h(tx1 + (1 − t)x2) < h(x1) or h(tx1 + (1− t)x2) < h(x2).

For these definitions and for all later convexity-related definitions, by inverting
the inequalities we get the corresponding concavity notions. In other words, h is
concave (strictly concave, quasiconcave, etc) if and only if -h is convex (strictly
convex, quasiconvex, etc, respectively).

Remark 4.1. If Y = C ∪ −C, like for scalar functions, convexity (strict con-
vexity, respectively) implies quasiconvexity (strict quasiconvexity). However, this
is not true in general as shown by the following example.

Example 4.1. Let X = A = R, Y = R2, C = R2
+ and h(x) = (−1 −

2x,−3 + 3x). Then h is convex as it is linear. But h is not quasiconvex. Indeed,
for x1 = 0, x2 = 1, t = 1

2 , one has h(x1) = (−1,−3), h(x2) = (−3, 0),but
h( 1

2x1 + 1
2x2) = (−2,−3

2) �≤ h(x1) and �≤ h(x2). In [14, pp. 48-49] there
is the assertion that convexity implies quasiconvexity for general set-vector-valued
functions. This example shows that this assertion is not adequate even for the
single-valued case.

The following example shows that, for vector functions, even strict convexity
does not imply quasiconvexity.

Example 4.2. Let X = A = R, Y = R2, C = R2
+ and h(x) = (4x2 +

2x − 1, 4x2 − 10x + 5) := (h1(x), h2(x)). Observe that both h1 and h2 are
strictly convex scalar functions. Hence, for all x1, x2 ∈ R, all t ∈ (0, 1) and for
xt = tx1 + (1 − t)x2, one has

h(xt) < th(x1) + (1− t)h(x2),

i.e., h is strictly convex. But h is not quasiconvex. Indeed, for x1 = 0, x2 = 1, t =
1
2 , one has h(x1) = (−1, 5), h(x2) = (5,−1) and h( 1

2x1 + 1
2x2) = (1, 1) �≤ h(x1)

and �≤ h(x2).
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Definition 4.2. Let b ∈ Y be fixed. If, for all x1, x2 ∈ A, all t ∈ (0, 1) and for
xt = (1− t)x1 + tx2,

(i) h(x1) �< b, h(x2) �≤ b implies h(xt) �≤ b, then h is called lev �≤b-convex;
(ii) h(x1) ≥ b, h(x2) > b implies h(xt) > b, then h is said to be lev>b-convex.

Note that, if Y = C ∪ −C, these two properties coincide. Furthermore, if
h is lev �≤b-convex (lev>b-convex, respectively), then L�≤bh (L>bh, respectively) is
convex, but not vice versa as shown by the following example.

Example 4.3. Let A = [−2, 2], Y = R, C = R+ and h(x) = max{0, x}
for x ∈ A. Then L�≤0h = (0, 2] is convex, but h is not lev�≤0-convex. Indeed,
let x1 = −1, x2 = 1 and t = 1

2 . Then h(x1) = 0 �< 0, h(x2) = 1 �≤ 0, but
h(xt) = h( 1

2x1 + 1
2x2) = h(0) = 0 ≤ 0.

Remark 4.2. If h is strictly quasiconcave, then h is lev�≤b-convex, for all b ∈ Y .
Indeed, let x1, x2 ∈ A be such that h(x1) �< b, h(x2) �≤ b. Suppose the existence of
c1 ∈ C such that h(xt)− b = −c1. Since h is strictly quasiconcave, h(xt) > h(x1)
or h(xt) > h(x2), for all t ∈ (0, 1). If h(xt) > h(x1), there is c2 ∈ intC with
h(xt) = h(x1) + c2. Hence, h(x1) − b = −c1 − c2 ∈ −intC, which is impossible
as h(x1) �< b. If h(xt) > h(x2) we have a similar contradiction.

Example 4.2 shows that lev �≤b-convexity does not follow neither from strict
concavity nor from strict convexity. Indeed, we know that h(x) = (4x2 + 2x −
1, 4x2 − 10x + 5) is strictly convex (and -h is strictly concave). For b = 0, x1 =
0, x2 = 1 and t = 1

2 , we have h(x1) = (−1, 5) �< 0, h(x2) = (5,−1) �≤ 0, but
h(x 1

2
) = (1, 1) ≤ 0. Similarly, -h is not lev�≤b-convex either. The next example

indicates that neither quasiconcavity nor quasiconvexity implies lev�≤b-convexity.

Example 4.4. Let X = Y = R, A = R, C = R+ and

h(x) =

{
0 if x ≤ 1,

x − 1 otherwise.

Then, h is both quasiconvex and quasiconcave. But h is not lev �≤0-convex, since
for x1 = 0, x2 = 2, one has h(x1) = 0 �≤ 1, h(x2) = 1 �< 1, but h(x 1

2
) = 0 �≤ 1.

Remark 4.3. If h is strictly quasiconcave or concave, then h is lev>b-convex
for all b ∈ Y . Indeed, assume that h is strictly quasiconcave and x1, x2 ∈ A
such that h(x1) ≥ b, h(x2) > b. For any t ∈ (0, 1), if h(xt) > h(x1), there is
c1 ∈ intC with h(xt) − h(x1) = c1. Since h(x1) ≥ b, there is c2 ∈ C with
h(x1) = b + c2. Consequently, h(xt) − b = c1 + c2 ∈ intC, i.e., h(xt) > b.
Similarly, h(xt) > b if h(xt) > h(x2). Thus, h is lev>b-convex. Now assume
that h is concave and x1, x2 ∈ A such that h(x1) ≥ b, h(x2) > b. Then, there
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is c1 ∈ C and c2 ∈ intC such that h(x1) = b + c1, h(x2) = b + c2. Since h is
concave, there exists c3 ∈ C such that h(xt)− th(x1)− (1− t)h(x2) = c3. Hence,
h(xt) − b = tc1 + (1 − t)c2 + c3 ∈ intC. Thus, h(xt) > b.

Example 4.4 shows also that neither quasiconcavity nor quasiconvexity yields
lev>b-convexity, since in this case lev�≤b-convexity coincides with lev>b-convexity.

5. WELL-POSEDNESS FOR EQUILIBRIUM PROBLEMS WITH EQUILIBRIUM CONSTRAINTS

Let X, Y and Z be Hausdorff topological vector spaces. K ⊆ X be a nonempty
convex subset, C ⊆ Y and D ⊆ Z are solid pointed convex cones, f : K×K → Y

and g : K × K → Z. Consider the following two equilibrium problems with
equilibrium constraints

(WEPEC) Find x̄ ∈ Sw
1 such that, for all y ∈ Sw

1 ,

g(x̄, y) �< 0,

where Sw
1 = {x ∈ K : f(x, y) �< 0, ∀y ∈ K};

(SEPEC) Find x̄ ∈ Ss
1 such that, for all y ∈ Ss

1,

g(x̄, y) ≥ 0,

where Ss
1 = {x ∈ K : f(x, y, λ) ≥ 0, ∀y ∈ K}.

These problems can be expressed otherwise as rewritten below (we write for
(WEPEC) only)

(WEPEC) Find the value x = x̄ such that

g(x, y) �< 0,

f(x, z) �< 0, f(y, z) �< 0,

z ∈ K.

Assume that the perturbations upon these problems can be expressed in terms
of a perturbing parameter λ which varies in a Hausdorff topological space Λ in the
way that we can embed our two problems into the corresponding parametric families
as follows. The constraint set K depends on λ as a multimap K : A × Λ → 2A,
where A ⊆ X is nonempty. The maps f and g now depend on λ. The parametric
families have the form:
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(WEPECλ) Find x̄ ∈ Sw
1 (λ) such that, for all y ∈ Sw

1 (λ),

g(x̄, y, λ) �< 0,

where Sw
1 (λ) = {x ∈ K(λ) : f(x, y, λ) �< 0, ∀y ∈ K(λ)}.

(SEPECλ) Find x̄ ∈ Ss
1(λ) such that, for all y ∈ Ss

1(λ),

g(x̄, y, λ) ≥ 0,

where Ss
1(λ) = {x ∈ K(λ) : f(x, y, λ) ≥ 0, ∀y ∈ K(λ)}.

Assume further that the original problems are corresponding to λ̄. We denote
the solutions sets of (WEPECλ) and (SEPECλ) by Sw

2 (λ) and Ss
2(λ), respectively.

As auxiliary problems we use also the following ”strict” versions of the constraints
Sw

1 and Ss
1, respectively, for λ ∈ Λ,

Sw
0 (λ) = {x ∈ K(λ) : f(x, y, λ) �≤ 0, ∀y ∈ K(λ)},

Ss
0(λ) = {x ∈ K(λ) : f(x, y, λ) > 0, ∀y ∈ K(λ)}.

We first establish a sufficient condition for the well-posedness of (WEPEC).

Theorem 5.1. Assume for (WEPEC) that Sw
2 (λ̄), Sw

0 (λ̄) are nonempty and

(i) K is continuous at λ̄ and K(λ̄) is convex and compact;
(ii) g is C-usc in A × A × {λ̄};
(iii) in A × A × {λ̄}, f is 0-level C-qlsc and 0-level C-usc;
(iv) for all y ∈ A, L �<0f(., y, λ̄) is convex and f(., y, λ̄) is lev �≤0-convex.

Then, (WEPEC) is well-posed under perturbations. Furthermore, if the solution set
Sw

2 (λ̄) is a singleton, then (WEPEC) is uniquely well-posed under perturbations.

Proof. To apply Theorem 3.1 we need to verify only assumption (ii2) with
K1(.) = K2(.) = Sw

1 (.) = E(.). Let us show first the compactness of Sw
1 . As

K(λ̄) is compact, we have to show only the closedness. Let xα ∈ Sw
1 be such that

xα → x. For each y ∈ K(λ̄), we have

f(xα, y, λ̄) �< 0.

By the closedness of L�<0f(., y, λ̄), f(x0, y, λ̄) �< 0, i.e., x ∈ Sw
1 , and hence Sw

1 is
closed.

Next we prove that Sw
1 (.) is usc at λ̄. Suppose the existence of nets {λα} with

λα → λ̄ and {xα} with xα ∈ Sw(λα), of a superset U of Sw(λ̄) such that xα �∈ U ,
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for all α. By the upper semicontinuity of K(.) and the compactness of K(λ̄) one
can assume that xα → x, for some x ∈ K(λ̄). If x �∈ Sw

1 (λ̄), there is y ∈ K(λ̄)
such that f(x, y, λ̄) < 0. Since K is lsc at λ̄, there exists yα ∈ K(λα) such that
yα → y. Since xα ∈ Sw

1 (λα),

f(xα, yα, λα) �< 0.

As f is 0-level C-usc, f(x, y, λ̄) �< 0, which is impossible. Thus, x ∈ Sw
1 (λ̄) ⊆ U ,

which is again a contradiction, since xα /∈ U , for all α.
To verify now the lower semicontinuity of Sw

1 (.) we prove first that Sw
0 (.) is

lsc at λ̄. Suppose to the contrary that there exist x0 ∈ Sw
0 (λ̄) and λα → λ̄ such

that, for all xα ∈ Sw
0 (λα), xα �→ x0. Since K is lsc at λ̄, there exists xα ∈ K(λα)

such that xα → x0. By the above contradiction assumption, we can assume that
xα /∈ Sw

0 (λα) for all α, i.e., for some yα ∈ K(λα),

f(xα, yα, λα) ≤ 0. (1)

By assumption (i) we can assume that yα → y0 for some y0 ∈ K(λ̄). The closedness
of L≤0f and (1) together yield that f(x0, y0, λ̄) ≤ 0, which is impossible since
x0 ∈ Sw

0 (λ̄).
Now let us check that

Sw
1 (λ̄) ⊆ clSw

0 (λ̄). (2)

Let x1 ∈ Sw
1 (λ̄), x0 ∈ Sw

0 (λ̄), t ∈ (0, 1) and xt = (1 − t)x1 + tx0. Since K(λ̄)
is convex, xt ∈ K(λ̄). We show that xt ∈ Sw

0 (λ̄). For each y ∈ K(λ̄), we have
f(x0, y, λ̄) �≤ 0 and f(x1, y, λ̄) �< 0. Since f(., y, λ̄) is lev �≤0-convex,

f(xt, y, λ̄) �≤ 0,

i.e., xt ∈ Sw
0 (λ̄). Therefore (2) holds. By the lower semicontinuity of Sw

0 at λ̄, if
λα → λ̄ we have

Sw
1 (λ̄) ⊆ clSw

0 (λ̄) ⊆ lim inf Sw
0 (λα) ⊆ lim inf Sw

1 (λα),

i.e., Sw
1 is lsc at λ̄.

Finally, applying Theorem 3.1 completes the proof.

Since the assumptions of Theorem 5.1 look complicated we provide now exam-
ples showing their essentialness.

Example 5.1. ((i) is essential). Let X = Y = R, A = [−1, 1], Λ = [0, 1], C =
R+, λ̄ = 0,

K(λ) =

{
[−1, 1] if λ = 0,

[0, 1] otherwise,
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and f(x, y, λ) = x + y + 2, g(x, y, λ) = x + y + λ. It is clear that K(λ) is usc
at 0, K(0) is compact, assumptions (ii)-(iv) hold since f and g are continuous
and f(., y, λ) is convex. We have Sw

1 (0) = [−1, 1], Sw
2 (0) = {1} and, for all

λ ∈ (0, 1], Sw
1 (λ) = [0, 1] = Sw

2 (λ) (Sw
2 (λ) is the solution set of (WEPECλ)).

Taking λn = en = 1
n we see that xn = 0 is an asymptotically solving sequence for

(WEPEP) corresponding to λn and en. But xn → 0 /∈ Sw
2 (0) and hence (WEPEC)

is not well-posed under perturbations. The reason is that (i) is not satisfied, since
K is not lsc at 0.

Example 5.2. ((ii) cannot be dropped) Let X = Y = R, A = [−1, 1], Λ =
[0, 1], C = R+, λ̄ = 0, K(λ) = [−1, 1], f(x, y, λ) = x and

g(x, y, λ) =

{
x − y if λ = 0,

y − x otherwise.

Assumptions (i), (iii) and (iv) evidently hold. We see that Sw
2 (0) = {1} and

Sw
2 (λ) = {0} for all λ ∈ (0, 1]. xn = 0 is clearly an asymptotically solving

sequence for (WEPEP) corresponding to λn = en = 1
n . Then, (WEPEC) is not

well-posed under perturbations as xn → 0 /∈ Sw
2 (0). The reason is that (ii) is

violated. Indeed, let xn = 0, yn = 1 and λn = 1
n . Then, (xn, yn, λn) → (0, 1, 0)

and g(xn, yn, λn) = 1 ≥ 0, but g(0, 1, 0) = −1 < 0.

Example 5.3. ((iii) cannot be dispensed) Let X = Y = R, A = [−1, 1], Λ =
[0, 1], C = R+, λ̄ = 0, K(λ) = [−1, 1], g(x, y, λ) = 1 and

f(x, y, λ) =

{
−1 if x ≤ 0,

1 otherwise.

It is obvious that assumptions (i), (ii) and (iv) hold. We see that Sw
2 (λ) = (0, 1]

for all λ ∈ [0, 1], and xn = 1
n is an asymptotically solving sequence for (WEPEP)

corresponding to λn = en = 1
n . But xn → 0 /∈ Sw

2 (0) and hence (WEPEC) is
not well-posed under perturbations. This is not surprising since (iii) is not fulfilled.
Indeed, let xn = 1

n , yn = 1 and λn = 1
n . Then, (xn, yn, λn) → (0, 1, 0) and

f(xn, yn, λn) = 1 ≥ 0, but f(0, 1, 0) = −1 < 0, and hence f is not (0, C)-usc at
(0, 1, 0).

Example 5.4. ((iv) is essential) Let X = Y = R, A = [−1, 3], Λ = [0, 1], C =
R+, λ̄ = 0, K(λ) = [−1, 3], f(x, y, λ) = −x(x2 − 1 − λ) and g(x, y, λ) =
x + y + λ. Assumptions (i)-(iv) are apparently fulfilled. We easily compute that
Sw

1 (0) = {−1} ∪ [0, 1], Sw
2 (0) = {1} and, for all λ ∈ (0, 1], Sw

1 (λ) = [0,
√

1 + λ]
and Sw

2 (λ) = [0,
√

1 + λ]. Taking λn = en = 1
n one sees that xn = 0 is an

asymptotically solving sequence for (WEPEP) corresponding to λn = en = 1
n . But
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xn → 0 /∈ Sw
2 (0), whence (WEPEC) is not well-posed under perturbations. The

reason is that (iv) is violated. Indeed, taking x1 = −1, x2 = 1
2 , t = 2

3 and y = 0, we
see that f(x1, y, 0) = 0, f(x2, y, 0) = 3

8 , but f(xt, y, 0) = f(−1
2 , y, 0) = −3

8 < 0.

Theorem 5.2. Assume for (SEPEC) that Ss
2(λ̄), Ss

0(λ̄) are nonempty and as-
sume further that

(i) K is continuous at λ̄ and K(λ̄) is convex and compact;
(ii) g is C-qusc in A × A × {λ̄};
(iii) in A × A × {λ̄}, f is 0-level C-lsc and 0-level C-qusc;
(iv) for all y ∈ A, f(., y, λ̄) is lev>0-convex.

Then, (SEPEC) is well-posed under perturbations. Furthermore, if the solution set
Ss

2(λ̄) is a singleton, then (SEPEC) is uniquely well-posed under perturbations.

Proof. We have to verify only assumption (ii2) of Theorem 3.2 in order to
apply it. First, the compactness of Ss

1 is checked similarly as that of Sw
1 , but using

the 0-level C-quasi upper semicontinuity of f . Next, the upper semicontinuity of
Ss

1 is verified analogously as the counterpart of Sw
1 . For the lower semicontinuity

of Ss
1, we show first this property for the map Ss

0. Then, via proving the inclusion

Ss
1(λ) ⊆ clSs

0(λ)

by using the assumed lev>0-convexity of f(., y,λ̄) we get the required semiconti-
nuity.
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15. J. Hadamard, Sur le problèmes aux dérivees partielles et leur signification physique,
Bull. Univ. Princeton, 13 (1902), 49-52.

16. X. X. Huang and X. Q. Yang, Gereralized Levitin-Polyak well-posedness in con-
strained optimization, SIAM J. Optim., 17 (2006), 243-258.

17. X. X. Huang and X. Q. Yang, Levitin-Polyak well-posedness of constrained vector
optimization problems, J. Glob. Optim., 37 (2007), 287-304.

18. A. Ioffe and R. E. Lucchetti, Typical convex program is very well-posed, Math.
Prog., Ser. B, 104 (2005), 483-499.



736 Lam Quoc Anh, Phan Quoc Khanh, Dang Thi My Van and Jen-Chih Yao

19. A. Ioffe, R. E. Lucchetti and J. P. Revalski, A variational principle for problems with
functional constraints, SIAM J. Optim., 12 (2001), 461-478.

20. A. Ioffe, R. E. Lucchetti and J. P. Revalski, Almost every convex or quadratic pro-
gramming problem is well-posed, Math. Oper. Res., 29 (2004), 369-382.

21. P. S. Kenderov and J. P. Revalski, Generic well-posedness of optimization problems
and Banach-Mazur game, in: Recent Developments in Well-Posed Variational Prob-
lems, R. Lucchetti and J. P. Revalski eds, Math. Appl., 331, Kluwer Academic,
Dordrecht, Netherlands, 1995, 117-136.

22. K. Kimura, Y. C. Liou, S. Y. Wu and J. C. Yao, Well-posedness for parametric vector
equilibbrium problems with applications, J. Indust. Manag. Optim., to appear.

23. A. S. Konsulova and J. P. Revalski, Constrained convex optimization problems -
well-posedness and stability, Numer. Funct. Anal. Optim., 15 (1994), 889-907.

24. B. Lemaire, C. Ould Ahmed Salem and J. P. Revalski, Well-posedness of variational
problems with applications to staircase methods, C. R. Acad. Sci. Paris, 332, ser. 1
(2001), 943-948.

25. B. Lemaire, C. Ould Ahmed Salem and J. P. Revalski,
Well-posedness by perturbations of variational problems, J. Optim. Theory Appl.,
115 (2002), 345-368.

26. E. S. Levitin and B. T. Polyak, Convergence of minimizing sequences in conditional
extremum problems, Soviet Math. Dokl. 7 (1966), 764-767.

27. M. B. Lignola, Well-posedness and L-well-posedness for quasivariational inequalities,
J. Optim. Theory Appl., 128 (2006), 119-138.

28. M. B. Lignola and J. Morgan, Well-posedness for optimization problems with con-
straints defined by variational inequalities having a unique solution, J. Glob. Optim.,
16 (2000), 57-67.

29. M. B. Lignola and J. Morgan, α-Well-posedness for Nash equilibria and for opti-
mization problems with Nash equilibrium constraints, J. Glob. Optim., 36 (2006),
439-459.

30. R. Lucchetti and F. Patrone, A characterization of Tikhonov well-posedness for min-
imum problems, with applications to variational inequalities, Numer. Funct. Anal.
Optim., 3 (1981), 461-476.

31. R. Lucchetti and F. Patrone, Hadamard and Tikhonov well-posedness of a certain
class of convex functions, J. Math. Anal. Appl., 88 (1982), 204-215.

32. M. Margiocco, F. Patrone and L. Pusillo Chicco, A new approach to Tikhonov well-
posedness for Nash equilibria, Optim., 40 (1997), 385-400.

33. J. Morgan and V. Scalzo, Discontinuous but well-posed optimization problems, SIAM
J. Optim., 17 (2006), 861-870.

34. J. P. Revalski, Hadamard and strong well-posedness for convex programs, SIAM J.
Optim., 7 (1997), 519-526.



Well-posedness for Vector Quasiequilibria 737

35. J. P. Revalski, Gereric properties concerning well-posed optimization problems, C.
R. Acad. Bulgaria Sci., 38 (1985), 1431-1434.

36. A. N. Tikhonov, On the stability of the functional optimization problem, Soviet Com-
put. Math. Math. Phys., 6 (1966), 28-33.

37. T. Zolezzi, Well-posedness criteria in optimization with applications to the calculus
of variations, Nonlinear Anal. TMA, 25 (1995), 437-453.

38. T. Zolezzi, Well-posedness and optimization under perturbations, Annals Oper. Res.,
101 (2001), 351-361.

39. T. Zolezzi, On the distance theorem in quadratic optimization, J. Convex Anal., 9
(2002), 693-700.

40. T. Zolezzi, Condition number theorems in optimization, SIAM J. Optim., 14 (2003),
507-516.

41. T. Zolezzi, On well-posedness and conditioning in optimization, ZAMM Z. Angew.
Math. Mech., 84 (2004), 435-443.

L. Q. Anh
Department of Mathematics,
Teacher College,
Cantho University,
Cantho City, Vietnam
E-mail: quocanh@ctu.edu.vn

P. Q. Khanh
Department of Mathematics,
International University of Hochiminh City,
Linh Trung, Thu Duc,
Hochiminh City, Vietnam
E-mail: pqkhanh@hcmiu.edu.vn

D. T. M. Van
Department of Mathematics,
Cantho College, Cantho City, Vietnam
E-mail: dangthimyvan@gmail.com

J.-C. Yao
Department of Applied Mathematics,
National Sun Yat-sen University,
Kaohsiung, Taiwan
E-mail: yaojc@math.nsysu.edu.tw


