Translator Disclaimer
2009 CONVERGENCE OF THE g-NAVIER-STOKES EQUATIONS
Jaiok Roh
Taiwanese J. Math. 13(1): 189-210 (2009). DOI: 10.11650/twjm/1500405278

Abstract

The 2D $g$-Navier-Stokes equations have the following form, $$ \frac{\partial \mathbf u}{\partial t}-\nu\Delta { \mathbf u} + ( \mathbf u \cdot\nabla)\mathbf u +\nabla p = {\bf f}, \ \ \mbox{in} \ \Omega $$ with the continuity equation $$ \nabla\cdot (g {\mathbf u})= 0, \ \ \mbox{in} \ \Omega, $$ where $g$ is a smooth real valued function. We get the Navier-Stokes equations, for $g$ = $1$. In this paper, we investigate solutions $\{\mathbf u_g, p_g\}$ of the $g$-Navier-Stokes equations, as $g \to 1$ in some suitable spaces.

Citation

Download Citation

Jaiok Roh. "CONVERGENCE OF THE g-NAVIER-STOKES EQUATIONS." Taiwanese J. Math. 13 (1) 189 - 210, 2009. https://doi.org/10.11650/twjm/1500405278

Information

Published: 2009
First available in Project Euclid: 18 July 2017

zbMATH: 1179.35224
MathSciNet: MR2489313
Digital Object Identifier: 10.11650/twjm/1500405278

Subjects:
Primary: 34C35, 35Q30, 76D05
Secondary: 35K55

Rights: Copyright © 2009 The Mathematical Society of the Republic of China

JOURNAL ARTICLE
22 PAGES


SHARE
Vol.13 • No. 1 • 2009
Back to Top