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ON HYBRID PROXIMAL-TYPE ALGORITHMS
IN BANACH SPACES

L. C. Ceng1, A. Petruşel2* and S. Y. Wu3

Abstract. In this paper, we propose new hybrid proximal-type algorithms for
a maximal monotone operator in a Banach spaces and establish some strong
convergence results. An application to the problem of finding a minimizer of
a convex function is given.

1. INTRODUCTION

Let C be a nonempty closed convex subset of a real Banach spaceE . A mapping
S : C → C is called nonexpansive if ‖Sx−Sy‖ ≤ ‖x−y‖ for all x, y ∈ C. Denote
by F (S) the set of fixed points of S; that is, F (S) = {x ∈ C : Sx = x}. Whenever
E is a Hilbert space, Nakajo and Takahashi [16] proposed the following iterative
algorithm for a single nonexpansive mapping S : C → C

(1.1)



x0 ∈ C arbitrarily chosen,

yn = αnxn + (1 − αn)Sxn,

Cn = {v ∈ C : ‖yn − v‖ ≤ ‖xn − v‖},
Qn = {v ∈ C : 〈x0 − xn, xn − v〉 ≥ 0},

xn+1 = PCn∩Qnx0,

where PK denotes the metric projection from E onto a nonempty closed convex
subset K of E and proved that the sequence {xn} converges strongly to PF (S)x0.
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In 2006, Martinez-Yanes and Xu [14] introduced one iterative algorithm for a
nonexpansive mapping S : C → C, with C a bounded closed convex subset of a
real Hilbert space H

(1.2)



x0 ∈ C arbitrarily chosen,

zn = βnxn + (1− βn)Sxn,

yn = αnxn + (1 − αn)Szn,

Cn = {v ∈ C : ‖yn − v‖2 ≤ ‖xn − v‖2

+(1 − αn)(‖zn‖2 − ‖xn‖2 + 2〈xn − zn, v〉)},
Qn = {v ∈ C : 〈x0 − xn, xn − v〉 ≥ 0},

xn+1 = PCn∩Qnx0,

and also defined another iterative algorithm

(1.3)



x0 ∈ C arbitrarily chosen,

yn = αnx0 + (1− αn)Sxn,

Cn = {v ∈ C : ‖yn − v‖2 ≤ ‖xn − v‖2

+αn(‖x0‖2 + 2〈xn − x0, v〉)},
Qn = {v ∈ C : 〈x0 − xn, xn − v〉 ≥ 0},

xn+1 = PCn∩Qnx0,

where {αn}∞n=0 and {βn}∞n=0 are sequences in the interval [0, 1]. They proved
that both the sequence {xn} generated by algorithm (1.2) and the sequence {xn}
generated by algorithm (1.3), converge strongly to the same point PF (S)x0.

Very recently, utilizing Nakajo and Takahashi’s idea [16], Qin and Su [20] mod-
ified algorithms (1.2) and (1.3) for relatively nonexpansive mappings in a Banach
space E . They first introduced one iterative algorithm for a relatively nonexpansive
mapping S : C → C, with C a closed convex subset of a uniformly convex and
uniformly smooth Banach space E

(1.4)



x0 ∈ C arbitrarily chosen,

zn = J−1(βnJxn + (1 − βn)JSxn),

yn = J−1(αnJxn + (1− αn)JSzn),

Cn = {v ∈ C : φ(v, yn) ≤ αnφ(v, xn) + (1 − αn)φ(v, zn)},
Qn = {v ∈ C : 〈xn − v, Jx0 − Jxn〉 ≥ 0},

xn+1 = ΠCn∩Qnx0,
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where J is the single-valued normalized duality mapping on E , φ(x, y) = ‖x‖2 −
2〈x, Jy〉 + ‖y‖2 for all x, y ∈ E and ΠC : E → C is a mapping that assigns to
an arbitrary point x ∈ E the minimum point of the function φ(y, x). Second, they
also defined another iterative algorithm

(1.5)



x0 ∈ C arbitrarily chosen,

yn = J−1(αnJx0 + (1− αn)JSxn),

Cn = {v ∈ C : φ(v, yn) ≤ αnφ(v, x0) + (1 − αn)φ(v, xn)},
Qn = {v ∈ C : 〈xn − v, Jx0 − Jxn〉 ≥ 0},

xn+1 = ΠCn∩Qnx0.

They proved that under appropriate conditions both the sequence {xn} generated
by algorithm (1.4) and the sequence {xn} generated by algorithm (1.5), converge
strongly to the same point ΠF (S)x0.

On the other hand, let T : H → 2H be a maximal monotone operator in a real
Hilbert space H . The problem of finding an element x ∈ H such that 0 ∈ Tx is
very important in the area of optimization and related fields.

Example 1.1. If T = ∂f the subdifferential of a proper lower semicontinuous
convex function f : H → (−∞,∞], then T is a maximal monotone operator and
the inclusion 0 ∈ ∂f(x) is equivalent to f(x) = min{f(z) : z ∈ H}.

Example 1.2. LetC be a nonempty closed convex subset ofH . LetA : C → H
be a monotone and Lipschitz continuous mapping and NCv be the normal cone to
C at v ∈ C, i.e., NCv = {w ∈ H : 〈v − y, w〉 ≥ 0, ∀y ∈ C}. Consider the
following variational inequality problem (for short, VI(A, C)): find a x ∈ C such
that

〈Ax, y − x〉 ≥ 0 for all y ∈ C.

Define T : H → 2H as follows:

Tv =

{
Av + NCv, if v ∈ C,

∅, if v �∈ C.

Then T is maximal monotone and 0 ∈ Tv if and only if v is a solution of the
VI(A, C); see [23].

A method for solving the inclusion 0 ∈ Tx is the proximal point algorithm.
Denote by I the identity operator on H . The proximal point algorithm generates,
for any initial point x0 = x ∈ H , a sequence {xn} in H , by the iterative scheme

(1.6) xn+1 = (I + rnT )−1xn, n = 0, 1, 2, ...,



2012 L. C. Ceng, A. Petruşel and S. Y. Wu

where {rn} is a sequence in the interval (0,∞). Note that (1.6) is equivalent to

(1.7) 0 ∈ Txn+1 +
1
rn

(xn+1 − xn), n = 0, 1, 2, ....

This algorithm was first introduced by Martinet [18] and generally studied by Rock-
afellar [24] in the framework of a Hilbert space. Later many authors studied the
convergence of (1.6) in a Hilbert space or a Banach space. See for instance, [7, 9,
10, 13, 21, 25] and the references therein. Rockafellar [24] proved that if T −10 �= ∅
and lim infn→∞ rn > 0, then the sequence generated by (1.6) converges weakly to
an element of T−10. Further, Rockafellar [24] posed an open question of whether
or not the sequence generated by (1.6) converges strongly to an element of T−10.
This question was solved by Güler [10], who introduced an example for which the
sequence generated by (1.6) converges weakly but not strongly. On the other hand,
Kamimura and Takahashi [11] and Solodov and Svaiter [26] recently modified the
proximal point algorithm to generate a strongly convergent sequence. Solodov and
Svaiter [26] introduced the following algorithm:

(1.8)



x0 ∈ H arbitrarily chosen,

0 = vn +
1
rn

(yn − xn), vn ∈ Tyn,

Hn = {v ∈ H : 〈v − yn, vn〉 ≤ 0},
Wn = {v ∈ H : 〈v − xn, x0 − xn〉 ≤ 0},

xn+1 = PHn∩Wnx0, n = 0, 1, 2, ...,

where PK denotes the metric projection from H onto a nonempty closed convex
subset K of H . They proved that if T−10 �= ∅ and lim infn→∞ rn > 0, then the
sequence generated by algorithm (1.8) converges strongly to PT−10x0.

Let E be a real Banach space with the dual E ∗. A multivalued operator T :
E → 2E∗ with domain D(T ) = {z ∈ E : Tz �= ∅} is called monotone if 〈x1 −
x2, y1 − y2〉 ≥ 0 for each xi ∈ D(T ) and yi ∈ Txi, i = 1, 2. A monotone operator
T is called maximal if its graph G(T ) = {(x, y) : y ∈ Tx} is not properly contained
in the graph of any other monotone operator. Recently, Kamimura and Takahashi
[12] introduced and studied the following proximal-type algorithm in a uniformly
convex and uniformly smooth Banach space E , which is an extension of (1.8):

(1.9)



x0 ∈ E arbitrarily chosen,

0 = vn +
1
rn

(Jyn − Jxn), vn ∈ Tyn,

Hn = {v ∈ E : 〈v − yn, vn〉 ≤ 0},
Wn = {v ∈ E : 〈v − xn, Jx0 − Jxn〉 ≤ 0},

xn+1 = ΠHn∩Wnx0, n = 0, 1, 2, ...,
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where {rn} is a sequence in the interval (0,∞) and J is the normalized duality
mapping on E . They derived a strong convergence theorem which extends and
improves Solodov and Svaiter’s result [26].

Let E be a real Banach space with the dual E ∗. Assume that T : E → 2E∗ is a
maximal monotone operator and S : E → E is a relatively nonexpansive mapping.
The purpose of this paper is to introduce and study two new hybrid proximal-type
algorithms (1.10) and (1.11) in a uniformly convex and uniformly smooth Banach
space E , which combine (1.4) with (1.9) and (1.5) with (1.9), respectively.

Algorithm I.

(1.10)



x0 ∈ E arbitrarily chosen,

0 = vn +
1
rn

(Jx̃n − Jxn), vn ∈ T x̃n,

zn = J−1(βnJx̃n + (1 − βn)JSx̃n),

yn = J−1(αnJx̃n + (1− αn)JSzn),

Hn = {v ∈ E : φ(v, yn) ≤ αnφ(v, x̃n)

+(1 − αn)φ(v, zn) and 〈v − x̃n, vn〉 ≤ 0},
Wn = {v ∈ E : 〈v − xn, Jx0 − Jxn〉 ≤ 0},

xn+1 = ΠHn∩Wnx0, n = 0, 1, 2, ...,

where {rn}∞n=0 is a sequence in (0,∞) and {αn}∞n=0, {βn}∞n=0 are sequences in
[0, 1].

Algorithm II.

(1.11)



x0 ∈ E arbitrarily chosen,

0 = vn +
1
rn

(Jx̃n − Jxn), vn ∈ T x̃n,

yn = J−1(αnJx0 + (1− αn)JSx̃n),

Hn = {v ∈ E : φ(v, yn) ≤ αnφ(v, x0)

+(1 − αn)φ(v, x̃n) and 〈v − x̃n, vn〉 ≤ 0},
Wn = {v ∈ E : 〈v − xn, Jx0 − Jxn〉 ≤ 0},

xn+1 = ΠHn∩Wnx0, n = 0, 1, 2, ...,

where {rn}∞n=0 is a sequence in (0,∞) and {αn}∞n=0 is a sequence in [0, 1].

In this paper, strong convergence results on these two hybrid proximal-type
algorithms are established; that is, under appropriate conditions, both the sequence
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{xn} generated by algorithm (1.10) and the sequence {xn} generated by algorithm
(1.11), converge strongly to the same point ΠT−10∩F (S)x0. Moreover, these new
results are applied to the problem of finding a minimizer of a convex function on
a uniformly convex and uniformly smooth Banach space. Our results represent the
improvement, generalization and development of the previously known results in the
literature including Solodov and Svaiter [12], Kamimura and Takahashi [12] and
Qin and Su [20].

Throughout this paper the symbol ⇀ stands for weak convergence and → for
strong convergence.

2. PRELIMINARIES

Let E be a Banach space with the dual E ∗. We denote by J the normalized
duality mapping from E to 2E∗ defined by

Jx = {f∗ ∈ E∗ : 〈x, f∗〉 = ‖x‖2 = ‖f∗‖2},

where 〈·, ·〉 denotes the generalized duality pairing. It is well known that if E is
smooth then J is single-valued and if E is uniformly smooth, then J is uniformly
norm-to-norm continuous on bounded subsets of E . We shall still denote the single-
valued duality mapping by J .

Recall that if C is a nonempty closed convex subset of a Hilbert space H and
PC : H → C is the metric projection of H onto C, then PC is nonexpansive.
This fact actually characterizes Hilbert spaces and hence, it is not available in more
general Banach spaces. Nevertheless , Alber [2] recently introduced a generalized
projection operator ΠC in a Banach space E which is an analogue of the metric
projection in Hilbert spaces.

Next, we assume that E is a smooth Banach space. Consider the functional
defined as in [1,2] by

(2.1) φ(x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2 for all x, y ∈ E.

It is clear that in a Hilbert spaceH , (2.1) reduces to φ(x, y) = ‖x−y‖2, ∀x, y ∈ H .
The generalized projectionΠC : E → C is a mapping that assigns to an arbitrary

point x ∈ E the minimum point of the functional φ(y, x); that is, ΠCx = x, where
x is the solution to the minimization problem

(2.2) φ(x, x) = min
y∈C

φ(y, x).

The existence and uniqueness of the operator ΠC follows from the properties of
the functional φ(x, y) and strict monotonicity of the mapping J (see, e.g., [3]). In
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a Hilbert space, ΠC = PC . From [2], in uniformly convex and uniformly smooth
Banach spaces, we have

(2.3) (‖y‖ − ‖x‖)2 ≤ φ(y, x) ≤ (‖y‖+ ‖x‖)2 for all x, y ∈ E.

Let C be a closed convex subset of E , and let S be a mapping from C into itself.
A point p in C is called an asymptotically fixed point of S [17] if C contains
a sequence {xn} which converges weakly to p such that Sxn − xn → 0. The
set of asymptotical fixed points of S will be denoted by F̂ (S). A mapping S
from C into itself is called relatively nonexpansive [4-6] if F̂ (S) = F (S) and
φ(p, Sx) ≤ φ(p, x) for all x ∈ C and p ∈ F (S).

A Banach space E is called strictly convex if ‖x+y
2 ‖ < 1 for all x, y ∈ E

with ‖x‖ = ‖y‖ = 1 and x �= y. It is said to be uniformly convex if xn −
yn → 0 for any two sequences {xn}, {yn} ⊂ E such that ‖xn‖ = ‖yn‖ = 1 and
limn→∞ ‖xn+yn

2 ‖ = 1. Let U = {x ∈ E : ‖x‖ = 1} be a unit sphere of E . Then
the Banach space E is called smooth if

lim
t→0

‖x + ty‖ − ‖x‖
t

exists for each x, y ∈ U . It is also said to be uniformly smooth if the limit is
attained uniformly for x, y ∈ U . Recall also that if E is uniformly smooth, then J
is uniformly norm-to-norm continuous on bounded subsets of E . A Banach space
is said to have the Kadec-Klee property if for any sequence {xn} ⊂ E , whenever
xn ⇀ x ∈ E and ‖xn‖ → ‖x‖, we have xn → x. It is known that if E is uniformly
convex, then E has the Kadec-Klee property; see [8,19] for more details.

Remark 2.1. [20]. If E is a reflexive, strictly convex and smooth Banach
space, then for any x, y ∈ E , φ(x, y) = 0 if and only if x = y. It is sufficient
to show that if φ(x, y) = 0 then x = y. From (2.3), we have ‖x‖ = ‖y‖. This
implies that 〈x, Jy〉 = ‖x‖2 = ‖y‖2. From the definition of J , we have Jx = Jy.
Therefore, we have x = y; see [8,19] for more details.

We need the following lemmas for the proof of our main results.

Lemma 2.1. (Kamimura and Takahashi [12]). Let E be a uniformly convex
and smooth Banach space and let {xn} and {yn} be two sequences of E . If
φ(xn, yn) → 0 and either {xn} or {yn} is bounded, then xn − yn → 0.

Lemma 2.2. (Alber [2]). Let C be a nonempty closed convex subset of a
smooth Banach space E and x ∈ E . Then, x0 = ΠCx if and only if

〈z − x0, Jx0 − Jx〉 ≥ 0 for all z ∈ C.
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Lemma 2.3. (Alber [2]). Let E be a reflexive, strictly convex and smooth
Banach space, let C be a nonempty closed convex subset of E and let x ∈ E . Then

φ(y, ΠCx) + φ(ΠCx, x) ≤ φ(y, x) for all y ∈ C.

Lemma 2.4. (Matsushita and Takahashi [15]). Let E be a strictly convex
and smooth Banach space, let C be a closed convex subset of E , and let S be
a relatively nonexpansive mapping from C into itself. Then F (S) is closed and
convex.

3. MAIN RESULTS

Throughout this section, unless otherwise stated, we assume that T : E → 2E∗

is a maximal monotone operator and S : E → E is a relatively nonexpansive
mapping. In this section, we study the following algorithm in a smooth Banach
space E , which is a combination of (1.4) with (1.9).

(3.1)



x0 ∈ E arbitrarily chosen,

0 = vn +
1
rn

(Jx̃n − Jxn), vn ∈ T x̃n,

zn = J−1(βnJx̃n + (1 − βn)JSx̃n),

yn = J−1(αnJx̃n + (1 − αn)JSzn),

Hn = {v ∈ E : φ(v, yn) ≤ αnφ(v, x̃n)

+(1 − αn)φ(v, zn) and 〈v − x̃n, vn〉 ≤ 0},
Wn = {v ∈ E : 〈v − xn, Jx0 − Jxn〉 ≤ 0},

xn+1 = ΠHn∩Wnx0, n = 0, 1, 2, ...,

where {rn}∞n=0 is a sequence in (0,∞) and {αn}∞n=0, {βn}∞n=0 are sequences in
[0, 1].

First we investigate the condition under which the algorithm (3.1) is well defined.
Rockafellar [23] proved the following result.

Lemma 3.1. [23]. Let E be a reflexive, strictly convex, and smooth Banach
space, and let T : E → 2E∗ be a monotone operator. Then T is maximal if and
only if R(J + rT ) = E∗ for all r > 0.

Utilizing this theorem, we can show the following result.
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Lemma 3.2. Let E be a reflexive, strictly convex, and smooth Banach space.
If T−10 ∩ F (S) �= ∅, then the sequence {xn} generated by algorithm (3.1) is well
defined.

Proof. For each n ≥ 0, define two sets Cn and Dn as follows:

Cn = {v ∈ E : φ(v, yn) ≤ αnφ(v, x̃n) + (1− αn)φ(v, zn)}
and Dn = {v ∈ E : 〈v − x̃n, vn〉 ≤ 0}.

It is obvious thatCn is closed andDn, Wn are closed convex sets for each n ≥ 0. Let
us show that Cn is convex. For v1, v2 ∈ Cn and t ∈ (0, 1), put v = tv1 +(1− t)v2.
It is sufficient to show that v ∈ Cn. Indeed, observe that

φ(v, yn) ≤ αnφ(v, x̃n) + (1− αn)φ(v, zn)

is equivalent to

2αn〈v, Jx̃n〉+2(1−αn)〈v, Jzn〉−2〈v, Jyn〉 ≤ αn‖x̃n‖2+(1−αn)‖zn‖2−‖yn‖2.

Note that there hold the following

φ(v, yn) = ‖v‖2 − 2〈v, Jyn〉+ ‖yn‖2, φ(v, x̃n) = ‖v‖2 − 2〈v, Jx̃n〉 + ‖x̃n‖2

and φ(v, zn) = ‖v‖2 − 2〈v, Jzn〉+ ‖zn‖2. Thus we have

2αn〈v, Jx̃n〉 + 2(1− αn)〈v, Jzn〉 − 2〈v, Jyn〉
= 2αn〈tv1 + (1 − t)v2, Jx̃n〉

+2(1− αn)〈tv1 + (1 − t)v2, Jzn〉 − 2〈tv1 + (1− t)v2, Jyn〉
= 2tαn〈v1, Jx̃n〉+ 2(1− t)αn〈v2, Jx̃n〉 + 2(1− αn)t〈v1, Jzn〉

+2(1− αn)(1− t)〈v2, Jzn〉 − 2t〈v1, Jyn〉 − 2(1 − t)〈v2, Jyn〉
≤ αn‖x̃n‖2 + (1 − αn)‖zn‖2 − ‖yn‖2.

This implies that v ∈ Cn. Therefore, Cn is convex and hence Hn = Cn ∩ Dn is
closed and convex.

On the other hand, let w ∈ T−10∩F (S) be arbitrarily chosen. Then w ∈ T−10
and w ∈ F (S). From (3.1), we have for w ∈ F (S)

φ(w, yn) = φ(w, J−1(αnJx̃n + (1 − αn)JSzn))

= ‖w‖2 − 2〈w, αnJx̃n + (1 − αn)JSzn〉 + ‖αnJx̃n + (1 − αn)JSzn‖2

≤ ‖w‖2 − 2αn〈w, Jx̃n〉 − 2(1− αn)〈w, JSzn〉 + αn‖x̃n‖2 + (1 − αn)‖Szn‖2

≤ αnφ(w, x̃n) + (1 − αn)φ(w, Szn)

≤ αnφ(w, x̃n) + (1 − αn)φ(w, zn).
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So w ∈ Cn for all n ≥ 0. Now, from Lemma 3.1 it follows that there exists
(x̃0, v0) ∈ E × E∗ such that 0 = v0 + 1

r0
(Jx̃0 − Jx0) and v0 ∈ T x̃0. Since T is

monotone, it follows that
〈x̃0 − w, v0〉 ≥ 0,

which implies that w ∈ D0 and hence w ∈ H0. Furthermore, it is clear that
w ∈ W0 = E . Then w ∈ H0 ∩W0, and therefore x1 = ΠH0∩W0x0 is well defined.
Suppose that w ∈ Hn−1 ∩Wn−1 and xn is well defined for some n ≥ 1. Again by
Lemma 3.1, we deduce that (x̃n, vn) ∈ E ×E∗ such that 0 = vn + 1

rn
(Jx̃n − Jxn)

and vn ∈ T x̃n. Then from the monotonicity of T we conclude that

〈x̃n − w, vn〉 ≥ 0

which implies that w ∈ Dn and hence w ∈ Hn. It follows from Lemma 2.4 that

〈w − xn, Jx0 − Jxn〉 = 〈w − ΠHn−1∩Wn−1x0, Jx0 − JΠHn−1∩Wn−1x0〉 ≤ 0,

which implies that w ∈ Wn. Consequently, w ∈ Hn ∩ Wn and so T−10 ∩ F (S) ⊂
Hn ∩ Wn. Therefore xn+1 = ΠHn∩Wnx0 is well defined. Then, by induction, the
sequence {xn} generated by (3.1) is well defined for each nonnegative integer n.

Remark 3.1. From the above proof, we obtain

T−10 ∩ F (S) ⊂ Hn ∩ Wn

for each nonnegative integer n.

Now we are in a position to prove the main theorems.

Theorem 3.1. Let E be a uniformly convex and uniformly smooth Banach
space. Let {rn}∞n=0 be a sequence in (0,∞) and {αn}∞n=0, {βn}∞n=0 be sequences
in [0, 1] such that

lim inf
n→∞ rn > 0, lim sup

n→∞
αn < 1 and lim

n→∞βn = 1.

Let T−10 ∩ F (S) �= ∅. If S is uniformly continuous, then the sequence {x n}
generated by algorithm (3.1) converges strongly to Π T−10∩F (S)x0.

Proof. First of all, it follows from the definition of Wn that xn = ΠWnx0.
Since xn+1 = ΠHn∩Wnx0 ∈ Wn, we have

φ(xn, x0) ≤ φ(xn+1, x0) for all n ≥ 0.
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Thus {φ(xn, x0)} is nondecreasing. Also from xn = ΠWnx0 and Lemma 2.3, we
have that

φ(xn, x0) = φ(ΠWnx0, x0) ≤ φ(w, x0) − φ(w, xn) ≤ φ(w, x0)

for each w ∈ T−10 ∩ F (S) ⊂ Wn and for each n ≥ 0. Consequently, {φ(xn, x0)}
is bounded. Moreover, according to the inequality

(‖xn‖ − ‖x0‖)2 ≤ φ(xn, x0) ≤ (‖xn‖ + ‖x0‖)2,
we conclude that {xn} is bounded. Thus, we have that limn→∞ φ(xn, x0) exists.
From Lemma 2.3, we derive

φ(xn+1, xn) = φ(xn+1, ΠWnx0)

≤ φ(xn+1, x0) − φ(ΠWnx0, x0)

= φ(xn+1, x0) − φ(xn, x0)

for all n ≥ 0. This implies that φ(xn+1, xn) → 0. So it follows from Lemma 2.1
that xn+1 − xn → 0. Since xn+1 = ΠHn∩Wnx0 ∈ Hn, from the definition of Hn,
we also have

(3.2)
φ(xn+1, yn) ≤ αnφ(xn+1, x̃n)

+(1 − αn)φ(xn+1, zn) and 〈xn+1 − x̃n, vn〉 ≤ 0.

Observe that

(3.3)

φ(xn+1, zn) = φ(xn+1, J
−1(βnJx̃n + (1− βn)JSx̃n))

= ‖xn+1‖2 − 2〈xn+1, βnJx̃n + (1 − βn)JSx̃n〉
+‖βnJx̃n + (1 − βn)JSx̃n‖2

≤ ‖xn+1‖2 − 2βn〈xn+1, Jx̃n〉 − 2(1− βn)〈xn+1, JSx̃n〉
+βn‖x̃n‖2 + (1− βn)‖Sx̃n‖2

= βnφ(xn+1, x̃n) + (1− βn)φ(xn+1, Sx̃n).

At the same time,

φ(ΠHnxn, xn) − φ(x̃n, xn) = ‖ΠHnxn‖2 − ‖x̃n‖2 + 2〈x̃n − ΠHnxn, Jxn〉
≥ 2〈ΠHnxn − x̃n, Jx̃n〉 + 2〈x̃n − ΠHnxn, Jxn〉
= 2〈x̃n − ΠHnxn, Jxn − Jx̃n〉.

Since ΠHnxn ∈ Hn and vn = 1
rn

(Jxn − Jx̃n), it follows that

〈x̃n − ΠHnxn, Jxn − Jx̃n〉 = rn〈x̃n − ΠHnxn, vn〉 ≥ 0
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and hence that φ(ΠHnxn, xn) ≥ φ(x̃n, xn). Further, from xn+1 ∈ Hn, we have
φ(xn+1, xn) ≥ φ(ΠHnxn, xn), which yields

φ(xn+1, xn) ≥ φ(ΠHnxn, xn) ≥ φ(x̃n, xn).

Then it follows from φ(xn+1, xn) → 0 that φ(x̃n, xn) → 0. Hence it follows from
Lemma 2.1 that x̃n − xn → 0. Since from (3.2) we derive

φ(xn+1, x̃n) − φ(x̃n, xn)

= ‖xn+1‖2 − 2〈xn+1, Jx̃n〉+ ‖x̃n‖2 − (‖x̃n‖2 − 2〈x̃n, Jxn〉 + ‖xn‖2)

= ‖xn+1‖2 − ‖xn‖2 − 2〈xn+1, Jx̃n〉 + 2〈x̃n, Jxn〉
= ‖xn+1‖2 − ‖xn‖2 − 2〈xn+1 − x̃n, Jx̃n − Jxn〉

−2〈xn+1 − x̃n, Jxn〉 + 2〈x̃n, Jxn − Jx̃n〉
= ‖xn+1‖2 − ‖xn‖2 + 2rn〈xn+1 − x̃n, vn〉 − 2〈xn+1 − x̃n, Jxn〉

+2〈x̃n, Jxn − Jx̃n〉
≤ ‖xn+1‖2 − ‖xn‖2 − 2〈xn+1 − x̃n, Jxn〉 + 2‖x̃n‖‖Jxn − Jx̃n‖
≤ (‖xn+1‖−‖xn‖)(‖xn+1‖+‖xn‖)+2‖xn+1−x̃n‖‖xn‖+2‖x̃n‖‖Jxn−Jx̃n‖
≤ ‖xn+1 − xn‖(‖xn+1‖ + ‖xn‖) + 2(‖xn+1 − xn‖ + ‖xn − x̃n‖)‖xn‖,

we have

φ(xn+1, x̃n) ≤ φ(x̃n, xn) + ‖xn+1 − xn‖(‖xn+1‖+ ‖xn‖)
+2(‖xn+1 − xn‖ + ‖xn − x̃n‖)‖xn‖ + 2‖x̃n‖‖Jxn − Jx̃n‖.

Thus from φ(x̃n, xn) → 0, xn − x̃n → 0 and xn+1 − xn → 0, we know that
φ(xn+1, x̃n) → 0. Consequently from (3.3), φ(x̃n, xn) → 0 and βn → 1 it follows
that

(3.4) φ(xn+1, zn) → 0.

So it follows from (3.2), φ(xn+1, x̃n) → 0 and φ(xn+1, zn) → 0 that

(3.5) φ(xn+1, yn) → 0.

Utilizing Lemma 2.1 we obtain

(3.6) lim
n→∞ ‖xn+1 − yn‖ = lim

n→∞ ‖xn+1 − x̃n‖ = lim
n→∞ ‖xn+1 − zn‖ = 0.

Since J is uniformly norm-to-norm continuous on bounded subsets of E we have

(3.7a) lim
n→∞ ‖Jxn+1 − Jyn‖ = lim

n→∞ ‖Jxn+1 − Jx̃n‖ = 0.
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On the other hand, we have

‖xn − zn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − zn‖.

It follows from xn+1 − xn → 0 and xn+1 − zn → 0 that

(3.7b) lim
n→∞ ‖xn − zn‖ = 0.

Noticing that

‖Jxn+1 − Jyn‖ = ‖Jxn+1 − (αnJx̃n + (1− αn)JSzn)‖
= ‖αn(Jxn+1 − Jx̃n) + (1 − αn)(Jxn+1 − JSzn)‖
= ‖(1 − αn)(Jxn+1 − JSzn) − αn(Jx̃n − Jxn+1)‖
≥ (1 − αn)‖Jxn+1 − JSzn‖ − αn‖Jx̃n − Jxn+1‖,

we have

‖Jxn+1 − JSzn‖ ≤ 1
1− αn

(‖Jxn+1 − Jyn‖ + αn‖Jx̃n − Jxn+1‖).

From (3.7) and lim supn→∞ αn < 1, we obtain

lim
n→∞ ‖Jxn+1 − JSzn‖ = 0.

Since J−1 is also uniformly norm-to-norm continuous on bounded subsets of E∗,
we obtain

(3.7c) lim
n→∞ ‖xn+1 − Szn‖ = 0.

Observe that

‖xn − Sxn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − Szn‖ + ‖Szn − Sxn‖.

Since S is uniformly continuous, it follows from (3.7b), (3.7c) and xn+1 − xn → 0
that xn − Sxn → 0.

Finally we prove that xn → ΠT−10∩F (S)x0. Indeed, assume that {xni} is a
subsequence of {xn} such that xni ⇀ x̃ ∈ E , then x̃ ∈ F (S). Now let us show
that x̃ ∈ T−10. Since xn − x̃n → 0, we have that x̃ni ⇀ x̃. Moreover, since J is
uniformly norm-to-norm continuous on bounded subsets of E and lim infn→∞ rn >
0, we obtain

vn =
1
rn

(Jxn − Jx̃n) → 0.
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It follows from vn ∈ T x̃n and the monotonicity of T that

〈z − x̃n, z′ − vn〉 ≥ 0

for all z ∈ D(T ) and z′ ∈ Tz. This implies that

〈z − x̃, z′〉 ≥ 0

for all z ∈ D(T ) and z′ ∈ Tz. Thus from the maximality of T , we infer that
x̃ ∈ T−10. Therefore x̃ ∈ T−10 ∩ F (S).

Next let us show that x̃ = ΠT−10∩F (S)x0 and convergence is strong. Put
x = ΠT−10∩F (S)x0. From xn+1 = ΠHn∩Wnx0 and x ∈ T−10∩F (S) ⊂ Hn ∩Wn,
we have φ(xn+1, x0) ≤ φ(x, x0). Now from weakly lower semicontinuity of the
norm, we derive

φ(x̃, x0) = ‖x̃‖2 − 2〈x̃, Jx0〉 + ‖x0‖2

≤ lim inf
i→∞

(‖xni‖2 − 2〈xni , Jx0〉 + ‖x0‖2)

= lim inf
i→∞

φ(xni , x0)

≤ lim sup
i→∞

φ(xni , x0)

≤ φ(x, x0).

It follows from the definition of ΠT−10∩F (S)x0 that x̃ = x and hence

lim
i→∞

φ(xni , x0) = φ(x, x0).

So we have limi→∞ ‖xni‖ = ‖x‖. Utilizing the Kadec-Klee property of E , we
conclude that {xni} converges strongly to ΠT−10∩F (S)x0. Since {xni} is an arbi-
trarily weakly convergent sequence of {xn}, we know that {xn} converges strongly
to ΠT−10∩F (S)x0. This completes the proof.

Corollary 3.1. (Kamimura and Takahashi [12, Theorem 8]). Let E be a
uniformly convex and uniformly smooth Banach space. If T −10 �= ∅ and {rn}∞n=0 ⊂
(0,∞) satisfies lim infn→∞ rn > 0, then the sequence {xn} generated by the
following algorithm

(3.8)



x0 ∈ E arbitrarily chosen,

0 = vn +
1
rn

(Jx̃n − Jxn), vn ∈ T x̃n,

Hn = {v ∈ E : 〈v − x̃n, vn〉 ≤ 0},
Wn = {v ∈ E : 〈v − xn, Jx0 − Jxn〉 ≤ 0},

xn+1 = ΠHn∩Wnx0, n = 0, 1, 2, ...,
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converges strongly to ΠT−10x0.

Proof. In Theorem 3.1, we take αn = 0 and βn = 1 for all n, and S = I the
identity mapping of E . Then x̃n = zn = yn for all n, and hence Hn = {v ∈ E :
〈v − x̃n, vn〉 ≤ 0}. Thus algorithm (3.1) reduces to algorithm (3.8). By Theorem
3.1 we obtain the desired result.

We remark that Theorem 3.1 covers [20, Theorem 2.1] as a special case.

Theorem 3.2. Let E be a uniformly convex and uniformly smooth Banach
space. Let T : E → 2E∗ be a maximal monotone operator and S : E → E be
a relatively nonexpansive mapping. Assume that {r n}∞n=0 is a sequence in (0,∞)
satisfying lim infn→∞ rn > 0 and that {αn}∞n=0 is a sequence in (0, 1) satisfying
limn→∞ αn = 0. Define a sequence {xn} by the following algorithm

(3.10)



x0 ∈ E arbitrarily chosen,

0 = vn +
1
rn

(Jx̃n − Jxn), vn ∈ T x̃n,

yn = J−1(αnJx0 + (1− αn)JSx̃n),

Hn = {v ∈ E : φ(v, yn) ≤ αnφ(v, x0)

+(1 − αn)φ(v, x̃n) and 〈v − x̃n, vn〉 ≤ 0},
Wn = {v ∈ E : 〈v − xn, Jx0 − Jxn〉 ≤ 0},

xn+1 = ΠHn∩Wnx0, n = 0, 1, 2, ...,

where J is the single-valued duality mapping on E . Let T −10∩F (S) �= ∅. If S is
uniformly continuous, then {xn} converges strongly to ΠT−10∩F (S)x0.

Proof. For each n ≥ 0, define two sets Cn and Dn as follows:

Cn = {v ∈ E : φ(v, yn) ≤ αnφ(v, x0) + (1 − αn)φ(v, x̃n)}
and Dn = {v ∈ E : 〈v − x̃n, vn〉 ≤ 0}.

It is obvious that Cn is closed and Dn, Wn are closed convex sets for each n ≥ 0.
Let us show that Cn is convex and soHn = Cn∩Dn is closed and convex. Similarly
to the proof of Lemma 3.2, since

φ(v, yn) ≤ αnφ(v, x0) + (1− αn)φ(v, x̃n)

is equivalent to

2αn〈v, Jx0〉+2(1−αn)〈v, Jx̃n〉−2〈v, Jyn〉 ≤ αn‖x0‖2+(1−αn)‖x̃n‖2−‖yn‖2,
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we know that Cn is convex and so is Hn = Cn ∩ Dn. Next, let us show that
T−10 ∩ F (S) ⊂ Cn for each n ≥ 0. Indeed, we have, for each w ∈ F (S)

φ(w, yn) = φ(w, J−1(αnJx0 + (1 − αn)JSx̃n))

= ‖w‖2− 2〈w, αnJx0 + (1−αn)JSx̃n〉 + ‖αnJx0 + (1−αn)JSx̃n‖2

≤ ‖w‖2 − 2αn〈w, Jx0〉 − 2(1− αn)〈w, JSx̃n〉
+αn‖x0‖2 + (1− αn)‖Sx̃n‖2

≤ αnφ(w, x0) + (1 − αn)φ(w, Sx̃n)

≤ αnφ(w, x0) + (1 − αn)φ(w, x̃n).

So w ∈ Cn for all n ≥ 0 and F (S) ⊂ Cn. As in the proof of Lemma 3.2, we can
obtain w ∈ Dn and hence w ∈ Hn. It follows from Lemma 2.4 that

〈w − xn, Jx0 − Jxn〉 = 〈w − ΠHn−1∩Wn−1x0, Jx0 − JΠHn−1∩Wn−1x0〉 ≤ 0,

which implies that w ∈ Wn. Consequently, w ∈ Hn ∩ Wn and so T−10 ∩ F (S) ⊂
Hn ∩ Wn for all n ≥ 0. Therefore, the sequence {xn} generated by (3.10) is well
defined. As in the proof of Theorem 3.1, we can obtain φ(xn+1, xn) → 0. Since
xn+1 = ΠHn∩Wnx0 ∈ Hn, from the definition of Hn we also have

φ(xn+1, yn) ≤ αnφ(xn+1, x0)+(1−αn)φ(xn+1, x̃n) and 〈xn+1− x̃n, vn〉 ≤ 0.

As in the proof of Theorem 3.1, we can deduce not only from φ(xn+1, xn) → 0 that
φ(x̃n, xn) → 0 but also from φ(x̃n, xn) → 0, xn − x̃n → 0 and xn+1 − xn → 0
that

(3.11) lim
n→∞φ(xn+1, x̃n) = 0.

Since xn+1 = ΠHn∩Wnx0 ∈ Hn, from the definition of Hn, we also have

φ(xn+1, yn) ≤ αnφ(xn+1, x0) + (1 − αn)φ(xn+1, x̃n).

It follows from (3.11) and αn → 0 that

(3.12) lim
n→∞φ(xn+1, yn) = 0.

Utilizing Lemma 2.1 we have

(3.13) lim
n→∞ ‖xn+1 − yn‖ = lim

n→∞ ‖xn+1 − xn‖ = lim
n→∞ ‖xn+1 − x̃n‖ = 0.

Since J is uniformly norm-to-norm continuous on bounded subsets of E we have

(3.14) lim
n→∞ ‖Jxn+1−Jyn‖ = lim

n→∞ ‖Jxn+1−Jxn‖ = lim
n→∞ ‖Jxn+1−Jx̃n‖ = 0.
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Note that
‖JSx̃n − Jyn‖ = ‖JSx̃n − (αnJx0 + (1 − αn)JSx̃n)‖

= αn‖Jx0 − JSx̃n‖.
Therefore, we have

lim
n→∞ ‖JSx̃n − Jyn‖ = 0.

Since J−1 is also uniformly norm-to-norm continuous on bounded subsets of E∗,
we obtain

(3.15) lim
n→∞ ‖Sx̃n − yn‖ = 0.

It follows that

(3.16) ‖xn−Sxn‖ ≤ ‖xn−xn+1‖+‖xn+1−yn‖+‖yn−Sx̃n‖+‖Sx̃n−Sxn‖.
Since S is uniformly continuous, it follows from (3.13) and (3.15) that xn−Sxn→0.

Finally, we prove that xn → ΠT−10∩F (S)x0. Indeed, assume that {xni} is a
subsequence of {xn} such that xni ⇀ x̃ ∈ E , then x̃ ∈ F (S). Now let us show
that x̃ ∈ T−10. Since xn − x̃n → 0, we have that x̃ni ⇀ x̃. Moreover, since J is
uniformly norm-to-norm continuous on bounded subsets of E and lim infn→∞ rn >
0, we obtain that vn = 1

rn
(Jxn − Jx̃n) → 0. It follows from vn ∈ T x̃n and the

monotonicity of T that 〈z − x̃n, z′ − vn〉 ≥ 0 for all z ∈ D(T ) and z′ ∈ Tz.
This implies that 〈z − x̃, z ′〉 ≥ 0 for all z ∈ D(T ) and z′ ∈ Tz. Thus from the
maximality of T , we infer that x̃ ∈ T−10. Therefore x̃ ∈ T−10 ∩ F (S). Now,
put x = ΠT−10∩F (S)x0. From xn+1 = ΠHn∩Wnx0 and x ∈ T−10 ∩ F (S) ⊂
Hn ∩ Wn, we have φ(xn+1, x0) ≤ φ(x, x0). On the other hand, from weak lower
semicontinuity of the norm, we obtain

φ(x̃, x0) = ‖x̃‖2 − 2〈x̃, Jx0〉 + ‖x0‖2

≤ lim inf
i→∞

(‖xni‖2 − 2〈xni , Jx0〉 + ‖x)‖2)

= lim inf
i→∞

φ(xni , x0)

≤ lim sup
i→∞

φ(xni , x0)

≤ φ(x, x0).

It follows from the definition ofΠT−10∩F (S)x0 that x̃ = x and hence limi→∞ φ(xni , x0) =
φ(x, x0). So, we have limi→∞ ‖xni‖ = ‖x‖. Utilizing the Kadec-Klee property
of E , we know that {xni} converges strongly to ΠT−10∩F (S)x0. Since {xni} is
an arbitrary weakly convergent sequence of {xn}, we know that {xn} converges
strongly to ΠT−10∩F (S)x0. This completes the proof.

We remark that Theorem 3.2 covers [20, Theorem 2.2] as a special case.
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4. APPLICATION

Let f : E �→ (−∞,∞] be a proper convex lower semicontinuous function.
Then the subdifferential ∂f of f is defined by

∂f(z) = {v ∈ E∗ : f(y) ≥ f(z) + 〈y − z, v〉, ∀y ∈ E} for all z ∈ E.

Using Theorems 3.1 and 3.2, we consider the problem of finding a minimizer of
the function f .

Theorem 4.1. Let E be a uniformly convex and uniformly smooth Banach
space. Let f : E → (−∞,∞] be a proper convex lower semicontinuous function
and S : E → E be a relatively nonexpansive mapping. Assume that {r n}∞n=0 ⊂
(0,∞) satisfies lim infn→∞ rn > 0 and that {αn}∞n=0, {βn}∞n=0 are sequences in
[0, 1] such that lim supn→∞ αn < 1 and limn→∞ βn = 1. Let {xn} be the sequence
generated by

(4.1)



x0 ∈ E arbitrarily chosen,

x̃n = argminz∈E{f(z) +
1

2rn
‖z‖2 − 1

rn
〈z, Jxn〉},

0 = vn +
1
rn

(Jx̃n − Jxn), vn ∈ ∂f(x̃n),

zn = J−1(βnJx̃n + (1 − βn)JSx̃n),

yn = J−1(αnJx̃n + (1 − αn)JSzn),

Hn = {v ∈ E : φ(v, yn) ≤ αnφ(v, x̃n)

+(1 − αn)φ(v, zn) and 〈v − x̃n, vn〉 ≤ 0},
Wn = {v ∈ E : 〈v − xn, Jx0 − Jxn〉 ≤ 0},

xn+1 = ΠHn∩Wnx0, n = 0, 1, 2, ...,

where J is the single-valued duality mapping on E . Let (∂f)−10 ∩ F (S) �= ∅. If
S is uniformly continuous, then {xn} converges strongly to the minimizer of f .

Proof. Since f : E �→ (−∞,∞] is a proper convex lower semicontinuous
function, by Rockafellar [22], the subdifferential ∂f of f is a maximal monotone
operator. We also know that

x̃n = argminz∈E{f(z) +
1

2rn
‖z‖2 − 1

rn
〈z, Jxn〉}

is equivalent to
0 ∈ ∂f(x̃n) +

1
rn

Jx̃n − 1
rn

Jxn.
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Thus, we have vn ∈ ∂f(x̃n) such that 0 = vn + 1
rn

(Jx̃n − Jxn). By Theorem 3.1
we obtain the desired result.

We remark that Theorem 4.1 covers [12, Theorem 9] as a special case.

Theorem 4.2. Let E be a uniformly convex and uniformly smooth Ba-
nach space. Let f : E → (−∞,∞] be a proper convex lower semicontinuous
function and S : E → E be a relatively nonexpansive mapping. Assume that
{rn}∞n=0 ⊂ (0,∞) satisfies lim infn→∞ rn > 0 and that {αn}∞n=0 ⊂ (0, 1) satisfies
limn→∞ αn = 0. Let {xn} be the sequence generated by

(4.3)



x0 ∈ E arbitrarily chosen,

x̃n = argminz∈E{f(z) +
1

2rn
‖z‖2 − 1

rn
〈z, Jxn〉},

0 = vn +
1
rn

(Jx̃n − Jxn), vn ∈ ∂f(x̃n),

yn = J−1(αnJx0 + (1 − αn)JSx̃n),

Hn = {v ∈ E : φ(v, yn) ≤ αnφ(v, x0)

+(1 − αn)φ(v, x̃n) and 〈v − x̃n, vn〉 ≤ 0},
Wn = {v ∈ E : 〈v − xn, Jx0 − Jxn〉 ≤ 0},

xn+1 = ΠHn∩Wnx0, n = 0, 1, 2, ...,

where J is the single-valued duality mapping on E . Let (∂f)−10 ∩ F (S) �= ∅. If
S is uniformly continuous, then {xn} converges strongly to the minimizer of f .

Proof. As in the proof of Theorem 4.1, we know that

x̃n = argminz∈E{f(z) +
1

2rn
‖z‖2 − 1

rn
〈z, Jxn〉}

is equivalent to

0 ∈ ∂f(x̃n) +
1
rn

Jx̃n − 1
rn

Jxn.

Thus, we have vn ∈ ∂f(x̃n) such that 0 = vn + 1
rn

(Jx̃n − Jxn). By Theorem 3.2
we obtain the desired result.
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Department of Applied Mathematics,
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