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A CRITICAL CASE ON THE DIRAC-KLEIN-GORDON EQUATIONS
IN ONE SPACE DIMENSION

Yung-Fu Fang and Hsiu-Chuan Huang

Abstract. We establish local and global existence results for a critical case of
Dirac-Klein-Gordon equations in one space dimension, employing a null form
estimate, a bilinear estimate and a fixed point argument.

0. INTRODUCTION AND MAIN RESULTS

In the present work, we like to study the Cauchy problem for the Dirac-Klein-
Gordon equations. The unknown quantities are a spinor field v : R x R! — C*
and a scalar field ¢ : R x R! — R. The evolution equations for the fields are given
below,

(0.1a) D) = p; (t,z) € R x R
(0.1b) O¢ = ¢u;

(0.1c) (0, 2) = tho(x),  ¢(0,2) = ¢o(x), &0, x) = ¢1 (),

where D is the Dirac operator, D := —iy*d,, u = 0,1, and «* are the Dirac
matrices, the wave operator (1 = —0; + Oy, and ¢ = wT 9 and 1 is the complex
conjugate transpose.

Besides demonstrating the usefulness of a null form estimate, the purpose of this
work is to show an existence result for a critical case of the system, i.e. ¥y € L?,
¢ € H %, and o1 € H ~3. We will take advantage of the null form structure
depicted in the nonlinear term v7) and a bilinear estimate, see [4, p, 4].
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For the DKG system, there are many conserved quantities which are not positive
definite, such as the energy,

[ mia®0,0) + 650 - 56 + Vo).

Therefore they are not applicable to derive a priori estimates. However the known
positive conserved quantity is the law of conservation of charge,

(0.2) /\w(t)\de = constant

which leads to the global existence result, once the local existence result is estab-
lished, see [3] and [8-10].

In *73, Chadam showed that the Cauchy problem for the DKG equations has
a global unique solution for ¥y € Hl, ¢y € Hl, ¢1 € L2, see [5]. In 93,
Zheng proved that there exists a global weak solution to the Cauchy problem of a
modified DKG equations, based on the technique of compensated compactness, with
Py € L% ¢o € H', ¢1 € L?, see [17]. In 00, Bournaveas derived a new proof of a
global existence for the DKG equations, based on a null form estimate, if 1)y € L?,
b0 € H', ¢1 € L2, see [1]. In *04, Fang gave a direct proof for (0.1), based on a
variant null form estimate, and obtain local solution for ¢y € H _iJ’E, oo € H %+5,
¢, € H 27, and global solution for v € L% ¢ € H2T, ¢, € H 2, see [9].
In 06, Bournaveas and Gibbeson obtained the result of global existence that lower
the regularity of scalar field ¢y € H”, ¢, € H" ', where i <r< %, while the
spinor field g € L?, see [4]. However the method they used does not apply to
the critical case. On the other hand, from the scaling invariant, we expect that the
regularity of the initial data is vg € H™!, ¢g € H _%, ¢ € H ~3. The scaling

t
group is ¢ (x,t) = A7'p(S, T) and ¢x(z,£) = A2p(%, —
. )\. A ) ATAL ) .
result for the local existence is 19 € H ™47 and (¢, ¢1) € H2T x H~27¢ while

1
for the global existence is 1o € L? and (¢, ¢1) € H" x H"~! with r > 1

The norm used in current paper and [9, 10] defines a version of Bourgain space
X*b whose norm is given by

1flxceo = 11T+ 1) (Il = €] + 1)* 2.

). The current new

The case ¢ = 0 is critical in the following sense. Assuming that the initial data
(o, ¢1) are in H? x H™? does not imply that ¢(¢,-) is bounded. In fact, it is a
BMO function. One of the motivations due to the observation made by Grillakis for
proving the existence of global solution with low regularity, which is that the initial
data of (0.1): ¥ € L%, ¢y € H%, P1 € H_%, is a natural space for the problem
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from the point of view of Hamiltonian and it is the right space for the existence of
an invariant measure , see [1] and [15]. Also from the point of view of the energy,
we can have the following bound:

3 —

| [ 6B00ds| < 1601, 4 O,y < 16O, 3101

The outline of this paper is as follows. First we write down some solutions
representations via Fourier transform. Next we state some a priori estimates of
solutions for Dirac equation and for wave equation. Then we show a local result
for (0.1), employing the null form estimate, a bilinear estimate, and together with
other estimates derived previously, and a fixed point argument. Finally we show the
global existence by invoking the conservation law of charge.

The main result in this work is as follows.

Theorem 0.1. (Global Existence). If the initial data of (0.1) vg € L% ¢ €
1 1
Hz2, ¢1 € H™ 2, then there is a unique global solution for (0.1) with

1

b € C0([0,00), LA(R)); ¢ € C°([0,00), H2(R)) N C([0,00), H % (R)).

1. SOLUTION REPRESENTATION

In what follows, we denote by (¢, x) the time-space variables and by (7, &) the
dual variables with respect to the Fourier transform of a given function. We will
also often skip the constant in the inequalities. For convenience, we denote the
multipliers by

(1.1a) E(1,€) = 7]+ ¢ +1
(1.1b) 8(r,€) = |Irl = l¢l| +1
(1.1¢) W(r,&) =12 ¢
(1.1d) D(r, &) =+'1 +~%
(1.1¢) M(€) = ¢| +1

Notice that W and D are the symbols of the wave and Dirac operators respectively.
Consider the Dirac equation,

{ Dy =G, (t,z)eR xR
(1.2)

¥(0) = o.
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1
Let a(7) be a cut-off function and equal 1 if |7| < 5 and equal 0 if |7| > 1, and

denote by h(7) the Heaviside function. For simplicity, let us write

(1.32) G(r,€) = h(£r)alr ¥ [§))G(r,€),
(13b) @f(Tv 5) = @(7_7 5) - (@4—(77 5) + @—(7_7 5))7
(1.3¢) Dy := D(|¢|, ££).

Notice that G+ are supported in the regions {(r,8) : £7 > 0O, |t F [¢]| < 1}
respectively and the decomposition of the forcing term is

G=Gi+G,+G_.
Thus we can give a formula for 12, namely
14 9o =3 (P OA k0 + W (1 OA 40) + R (7€),
k=0

where 64 (7, &) are the delta functions supported on {7 = ||} respectively, 5
mean derivatives of the delta function, and

" D(r.€) » | (1—ay(r)D.C_  (1-a)D_C.
1.5 K(1,8):== G ,
(1.58) R S 13 ey ) RT3 [canuTa)
~ D ~ G —ag(\)G
(1.5b) Az o(8) ::%[Mo—/ f”i;"’;( ) |,
o~ D) _— k“ o~ o~
(159 Aus© = T2 [0 16" Ge + aBNG]an

where @g(7) = a(F)
Consider the wave equation,
{ O¢=F, (t,z)cR xR,

(1.6)
$(0) = ¢o, ¢:(0) = 1.

We can give an analogous formula for a, namely

W) an =Y (6P OB (&) +8P(r OB w(©) + L7, 9),
k=0

where 61 (7, ¢) and 6% are same as above, and

a T(r €)= Fy  (1—ag(r)F-  (1—de(r))Fy
e G CEC R CERE
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. - F —ag(\) E
(80 Baa©) = qig[ha+ [ LT

S [ OF I [+ a0 B

2. ESTIMATES
To localize the solution in time, let b(¢) be a cut-off function such that b(t)

equals 1 if |t| < L, and equals 0 if |t| > 1, and by (t) = b(t/T). For an arbitrary
function f(t,z), we have

(2.1) 16 fllr2 = [1brfll L2 < (b7l fII2-
Lemma 2.1. Let o = % —eand e > 0. If g € H™?, then we have

o)

(2.2) HZT ¥ [1\7—6@%&]‘

iy < (1ol + Hﬁ%i

For the proof please see [9, p, 7].
Consider two Dirac equations,

{ Dy =Gy, j=1,2,
¥ (0) = to;.

For the solutions of (2.3), we have the following key estimate whose proof can be
found in [9, p, 9].

(2.3)

1
Lemma 2.2. (Null Form Estimate). Let o = 1 6°€ > 0, and 1, 2 be the
solutions for (2.3). If 1o; € H™®, we have

|G < o) (s + | ,.)

(2.4)

(oo + | 2] )

For the wave equation (1.6), we have the following estimate.
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Lemma 2.3. Let ¢ be the solution of (1.6). If ¢o € H' 2% and ¢, € H 2,
then

[or » (3772 ESy==3] |,

(2.5)

)'11)

< C<H¢0HH1—2a 1]l r2a + H

o)

MeFEaSe
For the proof, please see [9, p, 9].
Lemma 2.4. (Bournaveas & Gibbeson). Fix initial data g € H™

i(R
Hi(R), ¢ € H1(R), G € L'([0,T]; H1(R)), and F € L*([0,T); H
Let the 2-spinor field ¢ solve

)3 b0 €
“1(R)).

(2.6) D¢ =i,  ¢(0,-) =0,

where the scalar field ¢ and the 2-spinor field v solve

(273) DT/’ = G? 17/}(07 ) = 1/}07

(2.7b) O¢=F, ¢0,-)=do, &(0,)=¢r.

Then, for each t € [0, 7], we have
ICOzimy < OO0l gy + [ 165l gy 5]

ol + 10 gy [ 15l g 5]

For the proof please see [4, p, 4]. We will also need some technical lemmata.

(2.8)

Lemma 2.5. Let f(t,x) and g(t,z) be any functions such that f € L(L*(R))

~ 8 1 1
and S°§ € L*(L*(R)). Assume that § > 0, q = T B, and 2 <r
< 0o. Then we have

b *
2.9 1% I)| < Cllorfllozn,
(2.10) lgll 222y < CIISPGll L2 (r2)-

For the proof please see [9, p, 12].
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3. EXISTENCE

Now we are ready to prove the local existence for the (DKG) equations.

Theorem 3.1. (Local Existence). If the initial data of (0.1) 1y € L?, ¢o € H%,
1
¢1 € H™ 2, then there is a unique local solution for (0.1).

Proof. Consider the DKG problem
(3.1a) Dy = brénp;  (t,x) ERx R!

(3.1b) O = bpynp;

(3.1c) P(0,2) :==vo(z), ¢(0,2) =¢o(x), ¢:(0,7) = p1(x),

Iteration scheme induces a map 7 defined by

(3.2a) T(y*, o) = (M, o).
We want to show that 7 is a contraction under the norm
(3.2b) N, 9)= sup [[9@]]2 + ]| E25273)| .

For convenience, we call
(3.3) J(0) = llgoll .3 + lonll -y + Iloll7 +1.
First we apply (2.5) to compute
b
MiteEi—eGie

(3.4) H E355+5

L)

il <clio+|z

Then we use (2.4) to get

bT¢¢
MaSi

(3.5) H byt
| etz

By (2.8) and Sobolev inequality, we obtain

2
L2>'

GO e

(3-6) ‘ j\é/jTjgi - CHb;jj L¥(o,11.2%) ~ H T(W‘Ls([o ), 057

Thus we can bound

3.7) [prev]

< Clel? 11122 12y,

L8([0 T], L_4_ o L (L_4_
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1 5
where — 4+ — = —. Finally, we have
T1 T9 8

(3.8) H B335t

3], < (70 + TIERSEG, s [wio)f2),

where o > 0.
Next we want to bound the term involved with . First we compute

T T
10 g gyt < [ 160 02 e
(39) <6l sup le(lle

< T B3853] s sup [l

LYHT)
)22

and

T T
G10) [Nl gt < [ 1w d < Tsup ol

The estimate given in (2.8) implies that
T
1902 < (ol gy + [ 160054 gy 05

(100l gy + 1011ty + [ 003 )
(3.11) S(J(O +T7||E E3§3t ¢HL2 sup Hw Hp)
(70) + Tsup 1) 3

< C()(J(0) + TN, 6)) - (J(0) + TN (2, 9) ).
Hence, using (3.8) and (3.11), we have

(3.12) N(T (¢, ¢)) < C(J(0) + T N (¥, ¢)).

Choosing sufficiently large L, for suitable T', we have

(3.13) N, ¢) < L= N(T(¢,¢)) < L

provided that

(3.14) C(J(0) +T°L*) < L.
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Now we consider the difference 7 (¢, ¢) — T (¢', ¢'). Base on the observations

GIs) G- = L D)) + @)W )

(3.15b) B9 = 9 = 50— S+ ) + 36+ )W~ ),
Analogously, we get
(3.16) N(T@W -4, ¢—¢)) <CTL’N(yp— ', ¢ — ¢).

Therefore for suitable T, we obtain

(3.17) N(T(w =6~ 8)) < SN~ 6~ o),
provided that 1
(3.18) CT°L? < o8

We can conclude that the map 7 is indeed a contraction with respect to the norm
N, thus it has a unique fixed point. [ ]

We now prove the global existence.

Proof of Theorem 0.1. From the law of conservation of charge, we have

(3.19) sup [|¢(8)| 2 = ([0l 2
(0,71

To bound ¢, we apply Sobolev inequality and the energy estimate to compute

T
(3.20) le@I, e < 6@ 152e < J(0) + / [ (0)]] =apac dit.

Then we can get

T o T o
62 [ IOl e de < [ [0l de < Tl

Now we can estimate ¢ as follows. First we employ (2.10) and (2.5) to derive

16,3 < 161l s, < IE2S34G) 1
(3.22) =
Y o |
<90+ =z, < 10+ [ =
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Invoke (2.9) and Sobolev inequality, we obtain

(3.23) HM;;%SZ = HMZ —llz® 2 H¢¢‘ L8
' 2
H¢‘ L1 (LT4e 4e ‘w‘ L2(L2)
Finally we get
629 100l < IO+ (JO) + Tlwole) (T7ollsz)

where pis some positive number. The calculation for || ¢ (¢) HH_ 3 is analogous. Thus
the above bounds ensure us to proceed the construction of solution beyond 7. m

4. NuLL ForMm ESTIMATE

In this section, we sketch the proof of the key estimate. For more details, please
see [9, p. 17].

Lemma 2.2. (Null Form Estimate). Let o = i — € € >0, and Y1, 12 be the
solutions for the Dirac equations (2.3). If the initial data 1 o; € H™®, j = 1,2,
then we have

) iz < ool + || =S| )
(ol + || =] ,)-

The proof for the estimate is based on the duality argument and it will be given
in a number of steps. Without loss of generality, we assume that i); = 109, and
prove: if ¢ is a solution of the Dirac equation (1.2), then

) 2

The formula for w, as in (1.4), for the Dirac equation (1.2) is given by

42) H bTW

EoSe

, < O@)(Jlvollu- ”ngi

43 0= (P OA k0 + 0N (O A 4(0) + R (7€),

k=0

where 0. (7, £) are the delta functions supported on {7 = =£|¢|} respectively, 6(*)
mean derivatives of the delta function, and

D(r.€) ~  (1-ag(r))D,G_  (1-ae)D_G,
— G ,
e T 2l —1e) " 2Aer T

(4.4a) K(r,8):=
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G+ (1 —66()\))@;60\}

Bef o
s A Ao

s / (AF 16D G+ @6 (N G dA.

(4.4c) Ay (€)= T

Moreover we write

~

~ Dj: ~
4.5) A r(§) == §)s
(€)= g Ter(®)
and split K= I?l + I?g, where
. D . D.G_+b,D_G
(4.6) R, = 2n9a Gy Ry DG T 0D Gy
W(r,€) ES

and b1, by are bounded functions. The Fourier transform of the quadratic expression,

¥1p = 1 % 1, can be written as the sum of the following terms.

(4.7a) Z (5$)j:|:,k) * (5$)A\ﬂ:,l)7
k,l

(4.7b) S (s )+ (60 As),
k,l

(4.7¢) Z ((SEFk)ji’k) * (I?l + I?Q) + (%1 + %g) *Z (5£|:k) A\:l:,k‘)v
k k

(4.7d) Fl*}?l —I—Fl*}?g—l—Fg*I?l —I—FQ*I?Q.

Notice that

(4.82) Al (&) = A (€) FLu(6) = Fl (-9,
= D o~ ~
@8b)  Aup(€) = fL (-9 ‘ ;‘E 0 K(1,€) = K'(—7,—£)"",
and
49 Uno =3 ((Wr oA ke + 6P A k() + K (r,8),

k=0



1056 Yung-Fu Fang and Hsiu-Chuan Huang

1
Lemma 4.1. Let a < T The following estimate holds

HZT * (0841 0) * (67 Az) |
EoSe
<Ok +1+ DT 2 fapll g ol frill o

(4.10) L2

1
Lemma 4.2. Let o < 1 The following estimate holds

/I;T* (ég)ji,k) * ((Si)ﬁi,l) ‘
EaSa

(4.11) L

< Ok +1+D)TH72 oyl gl il o

Lemma 4.3. Let 0 > 0. The following estimates hold

/\

(4120 Izl < (ol + =25 .).
G
(4.12b) I f - <Ck,HA =5l

The proof for the Lemma 4.3 is straight forward so that we skip it. Notice that, in
the (4.12b), S ~ 1 on the support of G.

Lemma 4.4. With the notation above, the following estimate holds

@.13) HbT*Kl*Kl‘

EaSe

Il

The estimates for the remaining cases are given in the following Lemma.

Lemma 4.5. For j =1,2and k=0,1,2,---. The following estimates hold

by (004 ) + (R;) G
(@140) | s | = Cte+ DTS ekl | =
/b\T%j * (5£|:k)le\i’k) @
@) [T < O DT el =
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o [ProFufe) <o Eo,
(4.14d) H%‘ CH@@}; 2

The proof of Lemma 4.5 is a repetition of the arguments in Lemmas 4.1, 4.2, and
4.4.

5. PSEUDOSCALAR 1Y%

Consider the Dirac-Klein-Gordon equations with the pseudoscalar nonlinear
term:

(5.1a) D) = p; (t,z) € R x R
(5.1b) O¢ = vy ¢;
(5.1¢) ¥(0,2) :==vo(z), ¢(0,2) =do(z), ¢:(0,2)=¢1(),

where the matrix 7% = 4%y1~v273. From the point of view of the null form estimate,
Lemma 2.2, it is essentially same as the scalar term 7/ for the space dimension
n=1,2,3. Since

(523) ’YSFYM - _FYMFYSv o= 07 17 27 37
(5.2b) D_(€)7*y°D(n) = +*D_(£)y°D(n),
(5.2¢) D(1 + 0,6 +0)7°*y°D(r,n) = ¥°D(7 + 0,& + n)7°D(7, ).

1
Lemma 5.1. (Null Form Estimate). Let o = 1 6°¢€ > 0, and 1, 2 be the
solutions for (2.9). If 1o; € H™®, we have

(5.3) ‘% 12 SC(T)OWMHH ot HM 5Tl )
| (Ioall—o + || 25 ,):

Use the above method can prove the same result for the pseudoscalar case.

Theorem 5.1. If the initial data 1o € H™5V€, ¢y € H3+e, ¢y € H™37C, then
we have a unique local solution for (5.1). If the initial data 1o € L? ¢o € H",
&1 € H™Y, where i <r< % then we have a unique global solution for (5.1).
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