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THE DUAL NOTION OF MULTIPLICATION MODULES

H. Ansari-Toroghy and F. Farshadifar

Abstract. Let R be a ring with an identity (not necessary commutative) and
let M be a left R-module. In this paper we will introduce the concept of a
comultiplication R-module and we will obtain some related results.

1. INTRODUCTION

Throughout this paper R will denote a ring with an identity (not necessarily
commutative) and all modules are assumed to be left R-modules. Further ”⊂” will
denote the strict inclusion and Z denote the ring of integers. Let M be a left R-
module and let S := EndR(M) be the endomorphism ring of M . Then M has a
structure as a right S-module so that M is an R − S bimodule. If f : M → M

and g : M → M , then fg : M → M defined by m(fg) = (mf)g. Also for a
submodule N of M ,

IN := {f ∈ S : Im(f) = Mf ⊆ N}

and
IN := {f ∈ S : N ⊆ Ker(f)}

are respectively a left and a right ideal of S. Further a submodule N of M is
called ([4]) an open (resp. a closed) submodule of M if N = N ◦, where N◦ =∑

f∈IN Im(f) (resp. N = N̄ , where N̄ = ∩f∈IN
Ker(f)). A left R-module M is

said to be self generated (resp. self cogenerated ) if each submodule of M is open
(resp. closed).

Let M be an R-module. M is said to be a multiplication (resp. openly multipli-
cation) R-module if for every submodule N of M there exists a two sided ideal I
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of R such that N = IM (resp. N ◦ = IM ). Recently a large body of research has
been done about the left mutiplication R-modules haveing right EndR(M)-modules
structures.

Now let M be an R-module. The purpose of this paper is to introduce the
concept of comultiplication (resp. closedly comultiplication) R-modules (the dual
notion of multiplication or openly multiplication R-modules). M is said to be a
comultiplication (resp. closedly comultiplication) R-module if for every submodule
N of M there exists a two sided ideal I of R such that N = (0 :M I) (resp.
N̄ = (0 :M I)). It is clear that every comultiplication R-module is closedly comul-
tiplicaion. It is shown that the converse is not true in general. Also we have shown
that M is a comultiplication R- module if and only if for each submodule N of M ,
N = (0 :M AnnR(N )). Furthermore, we will obtain another characterization for
comultiplication R-modules (see 3.10) and it is shown, among the other results, that
every submodule of a comultiplication R-module is a comultiplication R-module
(see 3.17) and that every cocyclic module over a commutative complete Noetherian
ring is a comultiplication module (see. 3.17).

2. AUXILARLY RESULTS

In this section we will provide the definitions and results which is necessary in
the next section.

Definition 2.1.

(a) M is said to be (see [6]) a multiplication module if for any submodule N of
M there exists a two sided ideal I of R such that IM = N .

(b) Let N be a non-zero submodule of M . Then N is said to be (see [1]) large or
essential (resp. small) if for every non-zero submodule L of M , N ∩ L �= 0
(resp. L + N = M implies that L = M ).

(c) M is said to be (see [1]) couniform if each of its non-zero submodules is
small.

(d) A submodule K of M is called fully invariant if Kf ⊆ K for every f ∈
EndR(M).

(e) Let R be a commutative ring. The non-zero submodule N of M is said to be
(see [10]) second submodule of M if for each a ∈ R the homothety N

a→ N
is either surjective or zero. This implies that AnnR(M) = P is a prime ideal
of R.

(f) A non-zero module M over a ring R is said to be (see [2]) prime if the
annihilator of M is the same as the annihilator of N for every non-zero
submodule N of M .
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(g) A non-zero module M over a ring R is said to be (see [2]) coprime if the
annihilator of M is the same as the annihilator of Q for every non-zero (left)
quotient Q of M .

(h) An R-module M is said to be distributive if the lattice of its submodule is
distributive, i.e. (X +Y )∩Z = (X∩Z)+(Y ∩Z) for any of its submodules
X , Y and Z.

(i) Let R be a commutative ring. An R-module L is said to be cocyclic (see [8]
and [9]) if L ⊆ E(R/P ) for some maximal ideal P of R.

Remark 2.2. (see [3]). Let R be a commutative Noetherian ring and let E be
an injective R-module. Then we have (0 :E (0 :R I)) = IE .

Lemma 2.3. Let R be a commutative ring and M an R-module. Let S =
EndR(M) be a domain. Then AnnR(M) is a prime ideal of R.

Proof. Let I and J be ideals of the ring R and IJ ⊆ AnnR(M). Then
IJM = 0. Now assume that JM �= 0 and IM �= 0. Hence there exist a ∈ I and
b ∈ J such that aM �= 0 and bM �= 0. Consider the homotheties M

fa→ M and
M

gb→ M defined respectively by m �→ am and m �→ bm. Then

m(fagb) = (mfa)gb = (am)gb = bam = 0.

Hence fagb = 0. Since S is a domain, fa = 0 or gb = 0. Therefore, aM = 0
or bM = 0. But this is a contradiction. Hence IM = 0 or JM = 0 so that
I ⊆ AnnR(M) or J ⊆ AnnR(M).

3. MAIN RESULTS

Definition 3.1. An R-module M is said to be a comultiplication module
if for any submodule N of M there exists a two sided ideal I of R such that
N = (0 :M I).

Example 3.2. Let p be a prime number and consider the Z-module M = Z(p∞)
(we recall that Z is the ring of integers). Choose N = Z(1/p + Z) and Set
I = Zpi, i ≥ 0. It is clear that N = (0 :M I). Therefore, M = Z(p∞) as a
Z-module is a comultiplication module.

Definition 3.3. An R-module M is said to be a closedly comultiplication
module if for any submodule N of M there exists a two sided ideal I of R such
that N̄ = (0 :M I).

Example 3.4 Let M be a duo R-module (i.e. every submodule of M is
fully invariant). Now IN is a two-sided ideal of S and it is easy to see that
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N̄ = (0 :M IN ). Hence M as a right S-module is a closedly comultiplication
S-module.

Remark 3.5. It is clear that every comultiplication module is a closedly co-
multiplication module. But the following example shows that the converse is not
true.

Example 3.6. As we will show in example 3.9, Z as a Z-module is not a
comultiplication Z-module. However since every non-zero endomorphism of Z is a
monomorphism, for every Z-submodule N of Z, we have N̄ = 0 or N̄ = N . This
shows that Z is a closedly comultiplication Z-module.

Lemma 3.7. An R module M is a comultiplication module if and only if for
each submodule N of M , N = (0 :M AnnR(N )).

Proof. The sufficiency is clear. Conversely, suppose that M is a comultiplica-
tion module. Then there exists a two sided ideal I of R such that N = (0 :M I).
Then we have I ⊆ AnnR(N ) so that (0 :M AnnR(N )) ⊆ (0 :M I) = N . This
implies that N = (0 :M AnnR(N )) as desired.

Example 3.8. Let R be a commutative semi-simple ring and let I be an ideal
of R. Then it is clear that R is both injective and Noetherian as R-module. Hence
by Remark 2.2, we have (0 :R AnnR(I)) = IR = I . Thus every semi-simple ring
as a module over itself is a comultiplication module by 3.7.

Example 3.9. Let M = Z (as a Z-module). For a submodule 2Z of Z we have
(0 : AnnZ(2Z)) = Z. Therefore, Z is not a comultiplication module.

Theorem 3.10. Let M be an R-module. Then the following are equivalent.

(a) M is a comultiplication module.
(b) For every submodule N of M and each two sided ideal C of R with N ⊂

(0 :M C), there exists a two sided ideal B of R such that C ⊂ B and
N = (0 :M B).

(c) For every submodule N of M and each two sided ideal C of R with N ⊂
(0 :M C), there exists a two sided ideal B of R such that C ⊂ B and
N ⊆ (0 :M B).

Proof. (a) ⇒ (b). Let N be a submodule of M and let C be a two sided ideal
of R such that N ⊂ (0 :M C). Since M is a comultiplication module, N = (0 :M
AnnR(N )). We set B = C + AnnR(N ). Since N = (0 :M AnnR(N )) ⊂ (0 :M
C), AnnR(N ) �⊂ C. Hence C ⊂ B and we have
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(0 :M B) = (0 :M C + Ann(RN )) = (0 :M C) ∩ (0 :M AnnR(N )) = N.

The implication (b) ⇒ (c) is obvious.
(c) ⇒ (a). Let N be a submodule of M and let

H = {D : D is a two sided ideal of R and N ⊂ (0 :M D)}
Clearly 0 ∈ H . Let {Bi }, i ∈ I , be any non-empty collection of two sided ideals
in H . By assumption,

∑
i∈I Bi ∈ H . By the Zorn’s Lemma, H has a maximal

member C so that N ⊆ (0 :M C). Assume that N �= (0 :M C). Then by part (c),
there exists a two sided ideal B with C ⊂ B and N ⊆ (0 :M B). But this is a
contradiction by the choice of C. Thus we have N = (0 :M C). This shows that
M is a comultiplication R-module.

Theorem 3.11. Let R be a commutative ring and let M be a comultiplication
R-module. Then

(a) M is a self-cogenerated R-module
(b) If N is a submodule of M such that AnnR(N ) is a prime ideal of R, then

N is a second submodule of M .

Proof.
(a) Let N be submodule of a comultiplication R-module M . Then there exists

an ideal I of R such that N = (0 :M I). For each a ∈ I , define the map
fa : M → M by m �→ am. Since R is a commutative ring, fa is an R-
endomorphism. It is clear that for each a ∈ I , N ⊆ Ker(fa) and we have

N̄ = ∩f∈IN
Ker(f) ⊆ ∩a∈IKer(fa) = N.

Hence N = N̄ as desired.
(b) Set P = AnnR(N ). Since M is a comultiplication R-module, N = (0 :M

P ). Let φa : N → N be the non-zero R-homomorphism defined by n �→ an.
Let K = Imφa = aN . It is clear that 0 �= K ⊆ N . By Theorem 3.10, there
exists a two sided ideal B of R such that P ⊂ B and K = (0 :M B). It
follows that Ba ⊆ AnnR(N ). Since AnnR(N ) is a prime ideal of R and
P ⊂ B, we have a ∈ AnnR(N ) so that aN = 0. This is a contradiction and
the proof is completed.

Corollary 3.12. Let R be a commutative ring and let M be an R-module. Then
M is a comultiplication module if and only if it is self cogenerated and closedly
comultiplication R-module.

Proof. This is an immediate consequence of 3.11 (a) and 3.5.

Corollary 3.13. Let R be a commutative ring and let M be a comultiplication
R-module. Futher let N be a submodule of M . Then The following are equivalent.
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(a) N is second submodule of M .
(b) AnnR(N ) is a prime ideal of R.

Proof. Use 3.11 (b) and 2.1 (e).

Proposition 3.14. Let M be a comultiplication R-module.

(a) Let {Mλ}, λ ∈ Λ, be a family of submodule of module M with ∩ λ∈ΛMλ = 0.
Then for every submodule N of M , we have

N = ∩λ∈Λ(N + Mλ).

(b) Let P be a minimal two sided ideal of R such that (0 : M P ) = 0. Then M

is cyclic.

Proof.

(a) Let N be a submodule of M . Then

N = (0 :M AnnR(N )) = (∩λ∈ΛMλ :M AnnR(N ))

= ∩λ∈Λ(Mλ :M AnnR(N )) ⊇ ∩λ∈Λ(N + Mλ) ⊇ N.

It follows that
N = ∩λ∈Λ(N + Mλ).

(b) Let 0 �= m ∈ M . Since M is a comultiplication R-module, there exists a two
sided ideal I of R such that Rm = (0 :M I) and hence

Rm = (0 :M I) = ((0 :M P ) :M I) = (0 :M PI).

Now since P is a minimal ideal of R and 0 ⊆ PI ⊆ P, we have PI = 0 or
PI = P . If PI = P, then

Rm = (0 :M PI) = (0 :M P ) = 0.

This implies that m = 0 which is a contradiction. Hence we have PI = 0 so
that Rm = M as desired.

Lemma 3.15. Let M be a faithful comultiplication module over a commutative
ring R. Then W (M) = Z(R), where

W (M) = {a ∈ R : the homothety M
a→ M is not surjective}

(here Z(R) denotes the set of zero divisors of R).
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Proof. Let a ∈ W (M) and suppose that the homothty M
a→ M defined by

m �→ am is not surjective. Then Since M is a comultiplication R-module, there
exists a two sided ideal I of R such that aM = (0 :M I). Hence we have IaM = 0
so that Ia ⊆ AnnR(M) = 0. Thus Ia = 0. It follows that a ∈ Z(R). Conversely
let a ∈ Z(R). Then there exists 0 �= b ∈ R such that ab = 0. Thus we have
(ab)M = (bR)(aM) = 0. This implies that aM ⊆ (0 :M bR) �= M because M is
faithful R-module. Therefore, aM �= M so that a ∈ W (M).

Lemma 3.16. Let R be a ring such that the lattice of two sided ideals of R

is distributive and let M be a comultiplication R-module such that for any two
sided ideal B and C of R, (0 :M B) + (0 :M C) = (0 :M B ∩ C) . Then M is a
distributive module.

Proof. Let X, Y, and Z be three submodules of M . Since M is a comultiplica-
tion module, there exist two sided ideals B, C and D of R such that X = (0 :M B),
Y = (0 :M C) and Z = (0 :M D). Then

(X + Y ) ∩ Z = ((0 :M B) + (0 :M C)) ∩ (0 :M D) = (0 :M B ∩ C) ∩ (0 :M D)

= (0 :M (B∩C)+D) = (0 :M (B+D)∩ (C+D)) = (0 :M B +D)+(0 :M C+D)

= ((0 :M B) ∩ (0 :M D)) + ((0 :M C) ∩ (0 :M D)) = (X ∩ Z) + (Y ∩ Z).

Theorem 3.17. Let M be a comultiplication R-module. Then the following
assertions hold.

(a) Every submodule of M is fully invariant.
(b) If R is a commutative ring, then EndR(M) is a commutative ring.
(c) If M is faithful, then M is divisible.
(d) Every submodule of M is a comultiplication module.
(e) If R is a complete Noetherian local ring, then every cocyclic R-module is a

comultiplication R-module.

Proof.

(a) Let N be a submodule of a comultiplication R-module M . Then there exists
a two sided ideal I of R such that N = (0 :M I). Suppose that f : M → M

be an endomorphism. Since IN = 0, I ⊆ AnnR(Nf) so that

(0 :M AnnR(Nf)) ⊆ (0 :M I) = N.

This implies that Nf ⊆ N .
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(b) Let f and g be two endomorphisms of M and let m ∈ M . Then we have
mf ∈ (Rm)f and mg ∈ (Rm)g. But by part (a), Rm(f) ⊆ Rm and
Rm(g) ⊆ Rm. Thus, mf, mg ∈ Rm. So there exist elements a, b ∈ R such
that mf = am and mg = bm. Hence we have

m(fg − gf) = mf(g)− mg(f) = am(g)− bm(f)

= bam − abm = abm − abm = 0.

It follows that EndR(M) is a commutative ring.
(c) Let c be a regular element. Then since M is a comultiplication R-module,

there exists a two sided ideal I of R such that cM = (0 :M I). Since M
is a faithful R-module, we have IcM = 0 so that Ic = 0. This implies that
I = 0 because c is a regular element. Therefore, cM = M .

(d) Let M be a comultiplication R- module and let N be a submodule of M . Let
K be a submodule of N . Then there exists a two sided ideal I of R such
that K = (0 :M I). But we have K = (0 :M I) = (0 :N I). Therefore, N is
a comultiplication module.

(e) Let P be the unique maximal ideal of R. Since every cocyclic R-module
is a submodule of ER(R/P ), by using part (d), it is enough to prove that
ER(R/P ) is a comultiplication R-module. Now by using 3.7, it is enough to
prove that for every submodule L of ER(R/P ), L = (0 :ER(R/P )AnnR(L)).
To see this, set R̄ = R/AnnR(L), P̄ = P/AnnR(L), Ē = ER̄E(R̄/P̄ ),
and H̄ = (0 :ER(R/P ) AnnR(L)). Then H̄ has a structure as R̄-module and
as such is isomorphic to Ē. Now, as R and R̄ module, L ⊆ H̄ and L is a
faithful R̄-module. Hence by applying HomR̄(−, Ē) to the exact sequence

0 → L → H̄ → H̄/L → 0

one can see, as in the proof of [6, 2.3], that

HomR̄(H̄/L, Ē) = 0.

This implies that H/L = 0 as desired.

Proposition 3.18. Let M be an R-module. Then the following assertions
hold.

(a) If M is a comultiplication prime R-module, then M is a simple module.

(b) If M is a multiplication coprime R-module, then M is a simple module.

(c) Let R be a domain and let M be a faithful multiplication and comultiplication
R- module. Then M is simple.
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Proof.

(a) Let N be a non-zero submodule of M . Since M is a prime module, we have
AnnR(N ) = AnnR(M). Thus (0 :M AnnR(N )) = (0 :M AnnR(M)).
Now by using Lemma 3.7 we have

N = (0 :M AnnR(N )) = (0 :M AnnR(M)) = M.

Therefore, M is a simple module.
(b) Let M be a proper submodule of M . Since M is a coprime module, we have

AnnR(M) = AnnR(M/N ). Thus AnnR(M)M = AnnR(M/N )M . But
AnnR(M/N )M = N by [5]. Hence M is a simple module.

(c) Let N be a submodule of a faithful multiplication and comultiplication R-
module M . Then, there exist two sided ideals I and J of R such that
N = (0 :M J) and N = IM . It follows that JN = 0 so that JIM = 0.
This implies that JI ⊆ AnnR(M) = 0. So we have JI = 0. Since R is a
domain, I = 0 or J = 0. Therefore, N = M or N = 0.

Theorem 3.19. Let M be a closedly comultiplication R-module and S =
EndR(M). Then we have the following.

(a) If N is a non-zero fully invariant second submodule of M , then I N is a prime
ideal of S.

(b) If S is a domain and N is a closed submodule of M , then I N = S or IN is
a prime ideal of S.

Proof.

(a) Since IdM ∈ S and IdM �∈ IN , IN �= S. Further since N is a fully invariant
submodule of M , IN is a two sided ideal of S. Now let fSg ⊆ IN , where
f, g ∈ S. Then fg ∈ IN . There exist two sided ideals I and J of R such
that Kerf = (0 :M I) and Kerg = (0 :M J). Now fg ∈ IN implies that
N ⊆ Kerfg. so that N (fg) = 0. Hence Nf ⊆ Kerg = (0 :M J). It
follows that 0 = J(Nf) so that

JN ⊆ Kerf = (0 :M I).

This implies that IJN = 0 so that IJ ⊆ AnnR(N ). So we have J ⊆
AnnR(N ) or I ⊆ AnnR(N ) because AnnR(N ) is a prime ideal of R by 2.1
(e). From this we have

N ⊆ (0 :M J) = Kerg or N ⊆ (0 :M I) = Kerf.

Therefore, f ∈ IN or g ∈ IN as desired.
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(b) Let IN �= S. Then we show that IN is a prime ideal of S. To see this let
fSg ⊆ IN . Since 1 ∈ S, fg ∈ IN . It implies that (M)fg ⊆ N . Also
there exist two sided ideals I, J, and K of R such that N = (0 :M I),
Ker(f) = (0 :M J), and Ker(g) = (0 :M K). Hence we have

M(fg) ⊆ N = (0 :M I).

Thus I(M(fg)) = ((IM)f)g = 0. This implies that

(IM)f ⊆ Ker(g) = (0 :M K).

Hence we have (KIM)f = 0 so that

(KIM) ⊆ Ker(f) = (0 :M J).

It follows that JKI ⊆ AnnR(M). Since S is a domain, AnnR(M) is a prime
ideal of R so that I ⊆ AnnR(M) or J ⊆ AnnR(M) or K ⊆ AnnR(M).
Hence N = M or (0 :M J) = M or (0 :M K) = M . So we have IN = S

or Ker(f) = M or Ker(g) = M . Since IN �= S, we have Ker(f) = M
or Ker(g) = M . If Ker(f) = M , then Mf = 0 ⊆ N , so f ∈ IN . If
Ker(g)=M , then Mg=0⊆N , so g∈IN . Hence IN is a prime ideal of S.

Corollary 3.20. Let M be a closedly comultiplication second R-module. Then
S = EndR(M) is a prime ring.

Proof. It is enough to prove that the zero ideal of S is a prime ideal. But by
Theorem 3.19, IM = 0 is a prime ideal of S as desired.

Corollary 3.21. Let R be a commutative ring and M be a comultiplication
R-module. Then the following are equivalent.

(a) S = EndR(M) is a domain.
(b) AnnR(M) is a prime ideal of R.

Proof. Use 2.3, 3.20 and 3.17 (b).

Definition 3.22. Let M be a comultiplication R-module and let I is a two
sided ideal of R. Then (0 :M I) is said to be coidempotent if (0 :M I) = (0 :M I2).

Example 3.23. Let R be a Noetherian ring and I be an ideal of R. Then
there exists a positive integer h such that (0 :R Ih) = (0 :R Ih+i) for all i ≥ 0.
Set Ih = J . Then we have (0 :R J) = (0 :R J2). Hence R has a coidempotent
R-submodule.

Theorem 3.24. Let M be a comultiplication R-module and let S = End R(M)
be a domain. Then we have the following.



The Dual Notion of Multiplication Modules 1199

(a) Each non-zero endomorphism of M is an epimorphism.
(b) M doesn’t have any nontrivial open submodule.
(c) If R is a commutative ring, then M is a couniform R-module.
(d) Each closed maximal submodule of M is coidempotent.

Proof.
(a) Let 0 �= f : M → M be an endomorphism of M . Then there exist two sided

ideals I and J of R such that Mf = (0 :M I) and Ker(f) = (0 :M J). So
we have

0 = I(0 :M I) = I(Mf) = (IM)f.

This implies that
IM ⊆ Ker(f) = (0 :M J).

Therefore, JIM ⊆ (0 :M J)J = 0 so that JI ⊆ AnnR(M). Since S is a
domain by 2.3, we have J ⊆ AnnR(M) or I ⊆ AnnR(M). Now by using
3.7, Ker(f) = (0 :M J) = M or Mf = (0 :M I) = M . Since f �= 0,
Mf = M .

(b) Suppose that N be a non-zero open submodule of M . Then we have

N = N ◦ =
∑

f∈IN

Im(f).

Since 0 �= N , there exists 0 �= f ∈ S such that 0 �= Mf ⊆ N . But by part
(a) Mf = M . So N = M .

(c) Let N + K = M , where, N and K are proper submodule of M . But since
every comultiplication module over a commutative ring is a self cogenerated
by 3.11 (a), there exist 0 �= f, g ∈ S such that N ⊆ Ker(f) and K ⊆ Ker(g).
Now we have fg �= 0 because S is a domain and f, g �= 0. Now we have

(N + K)(fg) = N (fg) + K(fg) = M(fg).

It follows that K(fg) = M(fg) so that

M(fg) = K(fg) ⊆ Kg = 0.

So we have fg = 0. But this is a contradiction. Hence N = M or K = M

as desired.
(d) Let N be a closed maximal submodule of M . Then we have,

M �= N = N̄ = ∩f∈IN
Ker(f).

So there exists 0 �= f ∈ S such that N ⊆ Ker(f). But Ker(f) �= M implies
that N = Ker(f) because N is a maximal closed submodule of M . On the
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other hand Kerf ⊆ Kerf2 ⊆ M yields that Kerf2 = M or Kerf2 =
Kerf . But since S is a domain, Kerf2 �= M . Thus, Kerf2 = Kerf . Now
suppose that I is a two sided ideal of R such that Kerf = (0 :M I). Then
we have Kerf2 = (0 :M I2) because

m ∈ Kerf2 ⇔ m(f2) = 0 ⇔ mf ∈ Kerf = (0 :M I) ⇔

I(mf) = 0 ⇔ Im ⊆ Kerf

⇔ I2m = 0 ⇔ m ∈ (0 :M I2).

Hence (0 :M I) = Kerf = Kerf2 = (0 :M I2). This implies that N is a
coidempotent submodule of M .

Question 3.25. Let R a commutative ring and let M be a cocyclic R-module.
Is M a comultiplicatin R-module?
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