TAIWANESE JOURNAL OF MATHEMATICS Vol. 11, No. 2, pp. 545-568, June 2007 This paper is available online at http://www.math.nthu.edu.tw/tjm/

ON HOLLOW-LIFTING MODULES

Nil Orhan, Derya Keskin Tütüncü and Rachid Tribak

Abstract. Let R be any ring and let M be any right R-module. M is called *hollow-lifting* if every submodule N of M such that M/N is hollow has a coessential submodule that is a direct summand of M. We prove that every amply supplemented hollow-lifting module with finite hollow dimension is lifting. It is also shown that a direct sum of two relatively projective hollow-lifting modules is hollow-lifting.

1. INTRODUCTION AND PRELIMINARIES

Throughout this paper R is a ring with identity and every R-module is a unitary right R-module. $A \le M$ will mean A is a submodule of M.

Let M be a module and A a submodule of M. A is called a *small submodule* of M (denoted by $A \ll M$) if for any $X \le M$, M = A + X implies X = M. Dually, A is called *essential* in M if for any $X \le M$, $A \cap X = 0$ implies X = 0. The module M is called *hollow* if every proper submodule is small in M. Dually, M is called *uniform* if every nonzero submodule is essential in M. For $A \le B \le M$, if A is essential in B, then B is called an *essential extension* of A in M. A submodule A is said to be *closed* in M, if A has no proper essential extension in M. Dually, for $A \le B \le M$, A is said to be *coclosed* in M (denoted by $A \le_{cc} M$), if A has no proper coessential submodule in M. Also, we will call A a *coclosure* of B in M, if A is a coesential submodule of B and A is coclosed in M.

Let M be a module. For $N, L \leq M$, N is a supplement of L in M if N is minimal with respect to M = N + L. Equivalently, M = N + L with $N \cap L \ll N$. If M = N + L with $N \cap L \ll M$, then N is called a *weak supplement* of L in M. A module M is called (*weakly*) supplemented if every submodule of M has a

Communicated by Shun-Jen Cheng.

Received March 22, 2005, accepted November 18, 2005.

²⁰⁰⁰ Mathematics Subject Classification: 16L99, 16D99.

Key words and phrases: Hollow-lifting module, h-Small projective module.

(weak) supplement in M. It is called *amply supplemented* if for every $A, B \le M$, M = A + B implies A has a supplement in M contained in B.

A module M is said to have finite hollow dimension, if there is an epimorphism $f: M \longrightarrow \bigoplus_{i=1}^{k} H_i$ with each H_i hollow and $Kerf \ll M$, and then we say that hollow dimension of M is k (denoted by h(M)=k). It is shown in [4] that h(M) = k if and only if M contains a finite coindependent family of submodules $\{N_1, \ldots, N_k\}$ such that $\bigcap_{i=1}^{k} N_i \ll M$ and M/N_i is a hollow module for every $1 \le i \le k$.

A module M is said to be *extending* if for every submodule N of M there exists a direct summand K of M such that N is essential in K. Dually, M is called *lifting* or *satisfies* (D_1) , if for every submodule N of M there exists a direct summand K of M such that K is a coessential submodule of N in M. M is said to *have* (D_3) , if for every direct summands A and B of M with M = A + B, $A \cap B$ is a direct summand of M. The module M is called *quasi-discrete* if it is lifting and has (D_3) .

Let M be a module. M is called *uniform-extending* if every uniform submodule of M is essential in a direct summand of M. Dually, M is called *hollow-lifting* if every submodule N of M with M/N hollow has a coessential submodule in Mthat is a direct summand of M (cf. [13]). Clearly, if M is hollow-lifting, then every coclosed submodule K of M with M/K hollow is a direct summand of M. The converse is true if M is amply supplemented by [10, Proposition 1.5].

Let M_1 and M_2 be modules. The module M_1 is small M_2 -projective (nearly M_2 -projective) if every homomorphism $f: M_1 \longrightarrow M_2/A$, where A is a submodule of M_2 and $\text{Im} f \ll M_2/A$ ($\text{Im} f \neq M_2/A$), can be lifted to a homomorphism $\varphi: M_1 \longrightarrow M_2$. Clearly, if M_1 is nearly M_2 -projective, then M_1 is small M_2 -projective, and if M_2 is hollow, then small M_2 -projectivity and nearly M_2 projectivity coincide. If M_1 is small (nearly) M_2 -projective and M_2 is small (nearly) M_1 -projective, then M_1 and M_2 are called relatively small (nearly) projective.

A decomposition $M = \bigoplus_{i \in I} M_i$ is said to *complement direct summands* if for any direct summand K of M there exists a subset $J \subseteq I$ such that $M = K \oplus (\bigoplus_{i \in J} M_i)$. Let M be any module. M is said to have the *(finite) exchange* property if for any (finite) index set I, whenever $M \oplus N = \bigoplus_{i \in I} A_i$ for modules N and A_i , then $M \oplus N = M \oplus (\bigoplus_{i \in I} B_i)$ for submodules $B_i \leq A_i$.

In Section 2 we introduce the notion of hollow-lifting modules. We begin by showing some general properties of hollow-lifting modules. We prove that for an indecomposable module M, the module M is hollow-lifting if and only if M is hollow, or else M has no hollow factor modules (Proposition 2.7). In Section 3 we will be concerned with hollow-lifting modules over commutative rings. In this way, it is shown that a finitely generated module over a commutative ring is hollow-lifting if and only if it is lifting (Corollary 3.4). In Section 4 we give some conditions

under which a direct sum of hollow modules is hollow-lifting. Let $M = \bigoplus_{i=1}^{n} H_i$ with all H_i hollow. If M has (D_3) , then the following are equivalent:

- (1) M is hollow-lifting;
- (2) M is lifting;
- (3) M is quasi-discrete;
- (4) H_i is H_j -projective for all $i \neq j$ (Theorem 4.10).

Section 5 is devoted to the study of hollow-lifting modules whose every direct summand is hollow-lifting. It is shown that if M is a hollow-lifting module, then M/U is hollow-lifting for every fully invariant submodule U of M (Lemma 5.5). In section 6 we give some sufficient conditions for a direct sum of two hollow-lifting modules to be hollow-lifting. We prove that if $M = M_1 \oplus M_2$ is a duo module, then M is hollow-lifting if and only if M_1 and M_2 are hollow-lifting (Theorem 6.3). It is also proved that any direct sum of two relatively projective hollow-lifting modules is hollow-lifting (Proposition 3.2).

2. Some Properties of Hollow-Lifting Modules

It is clear that hollow modules and semisimple modules are hollow-lifting. The following result gives other examples of hollow-lifting modules.

Proposition 2.1. Let H_1 and H_2 be hollow modules. The following are equivalent for the module $M = H_1 \oplus H_2$:

- (i) M is hollow-lifting;
- (*ii*) M is lifting.

Proof. (i) \Rightarrow (ii) Let $N \leq M$. Consider the projections $\pi_1 : M \longrightarrow H_1$ and $\pi_2 : M \longrightarrow H_2$. If $\pi_1(N) \neq H_1$ and $\pi_2(N) \neq H_2$, then $N \ll M$. Now, assume that $\pi_1(N) = H_1$. Then $M = N + H_2$. Therefore, M/N is hollow. Hence there exists a direct summand K of M such that $K \leq N$ and $N/K \ll M/K$. Thus M is lifting.

(ii) \Rightarrow (i) Clear.

Example 2.2. Let p be any prime integer. Since the module $\frac{Z}{p^2 Z} \oplus \frac{Z}{p^3 Z}$ is lifting (see [12, Proposition A.7]), it is hollow-lifting. But the module $\frac{Z}{pZ} \oplus \frac{Z}{p^3 Z}$ is not hollow-lifting because it is not lifting (see [12, Proposition A.7]).

Let R be a ring and M an R-module. Let U and V be two submodules of M. We will say that V is a *strong supplement* of U in M if V is a supplement of U in M and $V \cap U$ is a direct summand of U (see [18]).

Proposition 2.3. Let U be a submodule of a module M. The following are equivalent:

- (i) U has a strong supplement in M;
- (ii) U has a coessential submodule that is a direct summand of M.

Proof. (i) \Rightarrow (ii) Let V be a strong supplement of U in M and let $W \leq M$ such that $(U \cap V) \oplus W = U$. Then $M = W \oplus V$. Moreover, if $\frac{U}{W} + \frac{X}{W} = \frac{M}{W}$ then U + X = M and $(U \cap V) + W + X = M$. Since $U \cap V \ll V$, we have W + X = M. Hence X = M. Therefore $\frac{U}{W} \ll \frac{M}{W}$ and the result is proved.

(ii) \Rightarrow (i) Let A be a coessential submodule of U that is a direct summand of M. Let B be a submodule of M with $M = A \oplus B$. Thus $U = A \oplus (B \cap U)$ and U + B = M. If $(U \cap B) + X = B$ then $A + (U \cap B) + X = M$. Hence U + X = M and $\frac{U}{A} + \frac{X+A}{A} = \frac{M}{A}$. Since $\frac{U}{A} \ll \frac{M}{A}$, we have X + A = M. But $X \leq B$, then X = B. Therefore $U \cap B$ is small in B. Consequently, B is a strong supplement of U in M.

Corollary 2.4. Let M be any module. The following are equivalent:

- (*i*) *M* is hollow-lifting;
- (ii) every submodule N of M such that $\frac{M}{N}$ is hollow has a strong supplement in M.

Proposition 2.5. Let M be an R-module. The following are equivalent:

- (*i*) *M* is hollow-lifting;
- (ii) every submodule N of M such that $\frac{M}{N}$ is hollow can be written as $N = K \oplus L$ with K is a direct summand of M and L is a small submodule of M.

Proof. (i) \Rightarrow (ii) Let N be a submodule of M such that $\frac{M}{N}$ is hollow. Since M is hollow-lifting, there exists a direct summand K of M such that $K \leq N$ and $\frac{N}{K} \ll \frac{M}{K}$. Let F be a submodule of M with $M = K \oplus F$. So $N = K \oplus (F \cap N)$. Further, if $X \leq F$ with $(F \cap N) + X = F$, then N + X = M. Since $\frac{N}{K} \ll \frac{M}{K}$, we have X + K = M. Hence X = F and $F \cap N \ll F$. It suffices to take $L = F \cap N$.

(ii) \Rightarrow (i) Let N be a submodule of M such that $\frac{M}{N}$ is hollow. Then N can be written as $N = K \oplus L$ with K is a direct summand of M and L is small in M. Let X be a submodule of M such that $K \leq X$ and $\frac{N}{K} + \frac{X}{K} = \frac{M}{K}$. Thus N + X = M. So K + L + X = M and K + X = M. But $K \leq X$. Then X = M and $\frac{N}{K} \ll \frac{M}{K}$. Therefore M is hollow-lifting.

Remark 2.6. It is clear that every module having no hollow factor modules is a hollow-lifting module.

Proposition 2.7. Let M be an indecomposable module. The following are equivalent:

- (i) M is hollow-lifting;
- (ii) M is hollow, or else M has no hollow factor modules.

Proof. (i) \Rightarrow (ii) Suppose that M has a hollow factor module. Then there exists a proper submodule N of M such that $\frac{M}{N}$ is hollow. Since M is hollow-lifting, there is K a direct summand of M such that $\frac{N}{K}$ is small in $\frac{M}{K}$. But M is indecomposable. Then K = 0 and N is small in M. Therefore M itself is a hollow module. (ii) \Rightarrow (i) Clear.

Corollary 2.8. Let M be a nonzero indecomposable module over a commutative noetherian ring R. The following are equivalent:

- (i) M is hollow-lifting;
- (*ii*) M is lifting;
- (iii) M is hollow.

Proof. (ii) \Leftrightarrow (iii) By [12, Corollary 4.9]. (iii) \Rightarrow (i) Clear.

(i) \Rightarrow (iii) By [15, Proposition 2.24 and Theorem 4.30], M has an artinian factor module. Since every artinian module has finite hollow dimension, M has a hollow factor module. Then M is hollow by Proposition 2.7.

Proposition 2.9. Let M_1, \ldots, M_n be modules having no hollow factor modules. Then $M = M_1 \oplus \cdots \oplus M_n$ is hollow-lifting.

Proof. Suppose that M has a submodule N such that $\frac{M}{N}$ is hollow. Since $\frac{M_1+N}{N} + \cdots + \frac{M_n+N}{N} = \frac{M}{N}$, there exists $i \in \{1, \ldots, n\}$ such that $\frac{M_i+N}{N} = \frac{M}{N}$ is hollow. So M_i has a hollow factor module, a contradiction. Therefore M is hollow-lifting.

Remark 2.10. Proposition 2.7 gives an idea to find an example of a hollowlifting module that is not a lifting module. In fact, it is clear that every indecomposable module M which has no hollow factor module is hollow-lifting but it is not a lifting module. On the other hand, let N be any indecomposable module having no hollow factor module and let K be a semisimple module. If L is a submodule of $M = N \oplus K$ such that $\frac{M}{L}$ is hollow, then we have N + L = M or K + L = M. Since N has no hollow factor modules and $\frac{N+L}{L} \cong \frac{N}{N\cap L}$, we have K + L = M. But K is semisimple. So there is a submodule E of K such that $K = E \oplus (K \cap L)$. Therefore $E \oplus L = M$. Hence L is a direct summand of M. Consequently, M is hollow-lifting. It is clear that M is not lifting (N is not hollow). In the same manner as in the proof of [18, Lemma 1.1], we can show the following result:

Lemma 2.11. Let M_0 be a direct summand of a module M such that M_0 has the finite exchange property. If $M_0 \leq U \leq M$ and U has a strong supplement in M, then $\frac{U}{M_0}$ has a strong supplement in $\frac{M}{M_0}$.

Proposition 2.12. Let M_0 be a direct summand of a module M such that M_0 has the finite exchange property. If M is hollow-lifting, then $\frac{M}{M_0}$ is also hollow-lifting.

Proof. Let N be a submodule of M with $M_0 \leq N$ and $\frac{\frac{M}{M_0}}{\frac{N}{M_0}}$ is hollow. Thus $\frac{\frac{M}{N}}{\frac{N}{M_0}}$ is hollow. By Corollary 2.4, N has a strong supplement in M. By Lemma 2.11, $\frac{\frac{M}{N}}{\frac{M}{M_0}}$ has a strong supplement in $\frac{M}{M_0}$. Therefore $\frac{M}{M_0}$ is hollow-lifting by Corollary 2.4.

Proposition 2.13. Let M be a hollow-lifting module such that M has a nonsmall hollow submodule. Then M has a hollow direct summand.

Proof. Let H be a non-small hollow submodule of M. Then there is a proper submodule N of M such that M = H + N. Since M is hollow-lifting, there is a direct summand L of M such that $N/L \ll M/L$. Clearly M/L is hollow. Now $M = L \oplus K$ for some submodule K of M. Therefore K is a hollow direct summand of M.

Lemma 2.14. Let M be a hollow-lifting module having a maximal submodule N. Then M has a local direct summand.

Proof. Since M is hollow-lifting and $\frac{M}{N}$ is simple, there is a submodule K of M that is a strong supplement of N in M. Thus K is a direct summand of M, M = N + K and $\frac{K}{N \cap K} \cong \frac{M}{N}$ is simple. So K is local because $N \cap K$ is small in K.

Proposition 2.15. Let R be a right noetherian ring and M a finitely generated hollow-lifting right R-module. Then M is a finite direct sum of local modules.

Proof. By Lemma 2.14 M has a local direct summand H_1 . By [3, Theorem 4.2], $End(H_1)$ is local. So H_1 has exchange property. Then $\frac{M}{H_1}$ is hollow-lifting by Proposition 2.12. Hence we can get by induction that M is a direct sum of local modules.

Recall that a module M is called *coatomic* if every proper submodule of M is contained in a maximal submodule of M.

Proposition 2.16. Let M be a coatomic hollow-lifting module. Then M can be written as an irredundant sum of local direct summands of M.

Proof. The same proof of [7, Proposition 3.2].

Corollary 2.17. Let M be a coatomic module with Rad(M) = 0. The following are equivalent:

- (i) M is hollow-lifting;
- (ii) M is supplemented;
- (iii) M is semisimple.

Proof. (i) \Rightarrow (iii) By Proposition 2.16, M is a sum of local direct summands of M. But if H is a local direct summand of M, then H will be a simple module because Rad(H) = 0. Thus M is semisimple.

(iii) \Rightarrow (ii) Clear.

(ii) \Rightarrow (i) Let L be any submodule of M such that $\frac{M}{L}$ is hollow. Since M is supplemented, there exists a submodule H of M such that H is a supplement of L in M. But Rad(M) = 0. Thus $M = L \oplus H$. Hence M is hollow-lifting.

Let M be an amply supplemented module with finite hollow dimension. Then M has a coclosed submodule K with M/K hollow. For, since M has finite hollow dimension, there exists a submodule N of M such that M/N is hollow. Since M is amply supplemented, there is a coclosed submodule K of M such that $K \leq N$ and $N/K \ll M/K$ by [10, Proposition 1.5]. Therefore $(M/K)/(N/K) \cong M/N$ implies that M/K is hollow.

Lemma 2.18. Let M be an amply supplemented hollow-lifting module and $K \leq_{cc} M$ such that M/K has finite hollow dimension. Then K is a direct summand of M.

Proof. We give the proof by induction on hollow dimension of M/K. If hollow dimension of M/K is 1, then K is a direct summand of M since M is hollow-lifting. Assume that hollow dimension of M/K is n and for every coclosed submodule T of M such that M/T has hollow dimension less than n, T is a direct summand of M.

Let H/K be coclosed in M/K such that (M/K)/(H/K) is hollow. By [10, Lemma 1.4], H is coclosed in M. Hence $M = H \oplus H'$ for some submodule H' of Mas M is hollow-lifting. Then $K = H \cap (K \oplus H')$ and $M/K = H/K \oplus (K \oplus H')/K$. Therefore $(K \oplus H')/K$ is coclosed in M/K. Again, by [10, Lemma 1.4], $K \oplus H'$ is coclosed in M. By induction, $K \oplus H'$ is a direct summand of M, and so K is a direct summand of M.

Proposition 2.19. An amply supplemented module with finite hollow dimension is lifting if and only if it is hollow-lifting.

Proof. Suppose that M is hollow-lifting and let K be a coclosed submodule of M. Since M has finite hollow dimension, M/K has finite hollow dimension. Therefore by Lemma 2.18, K is a direct summand of M. Hence M is lifting by [10, Proposition 1.5].

3. HOLLOW-LIFTING MODULES OVER COMMUTATIVE RINGS

Let R denote a commutative ring. Let Ω be the set of all maximal ideal of R. If $m \in \Omega$, M an R-module, we denote as in [20, p. 53] by $K_m(M) = \{x \in M \mid x = 0 \text{ or the only maximal ideal over } Ann_R(x) \text{ is } m\}$ as the *m*-local component of M. We call M *m*-local if $K_m(M) = M$. In this case M is an R_m -module by the following operation: $(\frac{r}{s})x = rx'$ with x = sx' ($r \in R, s \in R - m$). The submodules of M over R and over R_m are identical.

For $K(M) = \{x \in M \mid Rx \text{ is supplemented}\}$ it is easily seen that $K(M) = \{x \in M \mid \frac{R}{Ann_R(x)} \text{ is semiperfect}\}$, and we always have the decomposition $K(M) = \bigoplus_{m \in \Omega} K_m(M)$ (see [20, Satz 2.3].

The next result shows that in studying of hollow-lifting or lifting modules M with M = K(M) over commutative rings, one may restrict to the case of modules over local rings.

Proposition 3.1. Let M be an R-module over the commutative ring R. Then: K(M) is (hollow-)lifting if and only if $K_m(M)$ is (hollow-)lifting for all $m \in \Omega$.

Proof. It is an immediate consequence of the fact that for every submodule N of K(M) we have $N = \bigoplus_{m \in \Omega} N \cap K_m(M)$.

Lemma 3.2. (see [18, Folgerung 3.3]) Let M be a finitely generated module over a commutative local ring R. The following are equivalent:

- (i) M is lifting;
- (ii) every submodule U of M such that $\frac{M}{U}$ is cyclic has a strong supplement in M.

Proposition 3.3. Let M be a finitely generated module over a commutative local ring R. The following are equivalent:

(i) M is hollow-lifting;

(*ii*) M is lifting.

Proof. (ii) \Rightarrow (i) Clear.

(i) \Rightarrow (ii) Let U be a submodule of M such that $\frac{M}{U}$ is cyclic. Since R is local, $\frac{M}{U}$ is a local module. Then U has a strong supplement in M by Corollary 2.4. Hence M is lifting by Lemma 3.2.

Corollary 3.4. Let *M* be a finitely generated module over a commutative ring *R*. The following are equivalent:

- (*i*) *M* is hollow-lifting;
- (ii) M is lifting.

Proof. Assume M is hollow-lifting. By Proposition 2.16, M is a finite sum of local submodules. So M is supplemented ([21, Lemma 1.3(c)]). Hence $\bigoplus_{m \in \Omega} K_m(M) = K(M) = M$ by [20, Satz. 1.6]. The result follows from Proposition 3.1 and Proposition 3.3.

Theorem 3.5. The following are equivalent for a commutative ring R with radical J:

- (1) R is artinian serial and $J^2 = 0$;
- (2) Every R-module is lifting;
- (3) Every *R*-module is hollow-lifting;
- (4) Every finitely generated *R*-module is lifting;
- (5) Every finitely generated *R*-module is hollow-lifting.

Proof. By [11, Theorem 3.15] and Corollary 3.4.

4. Some Conditions Under Which a Direct Sum of Hollow Modules is Hollow-Lifting

Theorem 4.1. Let $M = \bigoplus_{i \in I} M_i$, where all M_i are hollow and $\bigoplus_{i \in I} M_i$ complements direct summands. If M is hollow-lifting, then $\bigoplus_{i \neq j} M_i$ is nearly M_j projective.

Proof. Consider any proper submodule A of M_j , the homomorphism $f : \bigoplus_{i \neq j} M_i \longrightarrow M_j / A$ with $\operatorname{Im} f \neq M_j / A$ and the natural epimorphism $\pi : M_j \longrightarrow$

 M_j/A . Define $B = \{x + y \mid x \in \bigoplus_{i \neq j} M_i, y \in M_j \text{ and } f(x) = -\pi(y)\}$. Then $M = B + M_j, A \leq B$ and M/B is hollow. By hypothesis, there exists a direct summand D of M such that $D \leq B$ and $B/D \ll M/D$. Therefore M/D is hollow. Since the decomposition of M complements direct summands, $M = D \oplus M_k$ for some $k \in I$. As $B/D \ll M/D$, we have $M = D + M_j$. If $k \neq j$, then f is an epimorphism, a contradiction. Therefore k = j. So $M = D \oplus M_j$. Let $\alpha : M = D \oplus M_j \longrightarrow M_j$ be the projection and β the restriction of α to $\bigoplus_{i \neq j} M_i$. Clearly, f can be lifted to the homomorphism β . Therefore, $\bigoplus_{i \neq j} M_i$ is nearly M_j -projective.

Since the properties nearly and small projectivity are inherited by direct summands, we have the following fact.

Corollary 4.2. Let $M = \bigoplus_{i \in I} M_i$, where all M_i are hollow and $\bigoplus_{i \in I} M_i$ complements direct summands. If M is hollow-lifting, then for all $i \neq j$, M_i is nearly (small) M_j -projective.

Corollary 4.3. Let M_1 and M_2 be hollow modules with local endomorphism rings. If $M_1 \oplus M_2$ is hollow-lifting, then M_1 and M_2 are relatively nearly (small)-projective.

Proof. By [1, Corollary 12.7] and Theorem 4.1.

In [2], Baba and Harada define almost projective modules. Let M_1 and M_2 be two modules. M_1 is called *almost* M_2 -*projective*, if for every epimorphism $f : M_2 \longrightarrow K$ and every homomorphism $g : M_1 \longrightarrow K$, either there exists $h : M_1 \longrightarrow M_2$ with fh = g or there exists a nonzero direct summand N of M_2 and $\bar{h} : N \longrightarrow M_1$ with $g\bar{h} = f \mid_N$.

Lemma 4.4. Let M_1 be a hollow module and M_2 an indecomposable module. Assume that there is no epimorphism from M_2 to M_1 . Then M_1 is almost M_2 -projective if and only if M_1 is M_2 -projective.

Proof. Assume that M_1 is almost M_2 -projective. Let $f: M_1 \longrightarrow M_2/A$ be any homomorphism and let $\pi: M_2 \longrightarrow M_2/A$ be the natural epimorphism with $A \leq M_2$. If there exist a nonzero direct summand K of M_2 and a homomorphism $h: K \longrightarrow M_1$ with $fh = \pi \mid_K$, then $K = M_2$ since M_2 is indecomposable. Hence $h: M_2 \longrightarrow M_1$ is an epimorphism, because M_1 is hollow, a contradiction. Therefore there is a homomorphism $g: M_1 \longrightarrow M_2$ such that $\pi g = f$. The converse is clear.

Theorem 4.5. Let M_1 and M_2 be hollow modules with local endomorphism rings. Assume that there is no epimorphism between M_1 and M_2 . Then the following are equivalent for the module $M = M_1 \oplus M_2$:

- (1) M is hollow-lifting;
- (2) M is lifting;
- (3) *M* is quasi-discrete;
- (4) M_1 and M_2 are relatively projective;
- (5) M_1 and M_2 are relatively almost projective.

Proof. (1) \Leftrightarrow (2) Follows from Proposition 2.1. (4) \Leftrightarrow (5) Follows from Lemma 4.4. (5) \Leftrightarrow (2) By [2, Theorem 1]. (3) \Leftrightarrow (4) By [8, Corollary 13].

Corollary 4.6. Let M_1 and M_2 be hollow modules with local endomorphism rings. Assume that $Rad(M_1) = M_1$ and M_2 is local. Then the conditions (1)-(5) in Theorem 4.5 are equivalent for the module $M = M_1 \oplus M_2$.

Lemma 4.7. Let $M = M_1 \oplus M_2$ be a module. Assume that for every proper submodule N of M if $M = N + M_2$ then $M \neq N + M_1$. Then there is no epimorphism from M_1 to M_2 .

Proof. Assume that there is an epimorphism $f: M_1 \longrightarrow M_2$. Define $N = \{m_1 - f(m_1) \mid m_1 \in M_1\}$. Then $M = M_2 \oplus N$. Since f is epic, $M = M_1 + N$, this is a contradiction. Therefore there is no epimorphism from M_1 to M_2 .

Proposition 4.8. Let M_1 and M_2 be hollow modules with local endomorphism rings. Assume that $M = M_1 \oplus M_2$ and for every proper submodule N of M, if $M = N + M_i$, then $M \neq N + M_j$ $(i \neq j)$. Then the following are equivalent:

- (1) M is hollow-lifting;
- (2) M is lifting;
- (3) M_1 and M_2 are relatively projective;
- (4) M_1 and M_2 are relatively small projective;
- (5) M_1 and M_2 are relatively nearly projective;
- (6) M_1 and M_2 are relatively almost projective;
- (7) M is quasi-discrete.

Proof. $(1)\Leftrightarrow(2)\Leftrightarrow(3)\Leftrightarrow(6)\Leftrightarrow(7)$ By Theorem 4.5 and Lemma 4.7. $(3)\Leftrightarrow(4)\Leftrightarrow(5)$ Clear by [9, Theorem 2.6].

Proposition 4.9. Let $M = \bigoplus_{i \in I} H_i$ with all H_i hollow. If M is hollow-lifting and has (D_3) , then for every $i \in I$, $\bigoplus_{i \neq j} H_j$ is H_i -projective.

Proof. Let N be a proper submodule of M with $M = N + H_i$. Since $M/N \cong H_i/N \cap H_i$ and $H_i/N \cap H_i$ is hollow, M/N is hollow. As M is hollow-lifting,

there exists a direct summand N^* of M such that $N^* \leq N$ and $N/N^* \ll M/N^*$. Therefore, $M = H_i + N^*$. Since M has (D_3) , $M = H_i \oplus N^*$. Hence $\bigoplus_{i \neq j} H_j$ is H_i -projective by [17, 41.14].

Theorem 4.10. Let $M = \bigoplus_{i=1}^{n} H_i$ with all H_i hollow. If M has (D_3) , then the following are equivalent:

- (1) M is hollow-lifting;
- (2) M is lifting;
- (3) M is quasi-discrete;
- (4) H_i is H_j -projective for all $i \neq j$.

Proof. (1) \Rightarrow (4) It is clear by Proposition 4.9. (3) \Leftrightarrow (4) By [10, Corollary 2.15]. (3) \Rightarrow (2) \Rightarrow (1) By definitions.

Proposition 4.11. Let $M = \bigoplus_{i \in I} H_i$ be a direct sum of hollow modules H_i such that the decomposition $\bigoplus_{i \in I} H_i$ complements direct summands and there is no epimorphism between H_i and H_j $(i \neq j)$. If M is hollow-lifting, then $\bigoplus_{j \neq i} H_j$ is H_i -projective for each $i \in I$.

Proof. Let X be a proper submodule of M such that $M = X + H_i$. It is clear that $\frac{M}{X}$ is hollow. Thus there exists a direct summand Y of M such that $Y \leq X$ and $\frac{X}{Y}$ is small in $\frac{M}{Y}$. Hence $M = Y + H_i$. Since the decomposition $\bigoplus_{i \in I} H_i$ complements direct summands and there is no epimorphism between H_i and H_j $(i \neq j)$, we have $M = Y \oplus H_i$. The result is proved by [17, 41.14].

Proposition 4.12. Let $M = \bigoplus_{i \in I} H_i$ be a direct sum of local modules H_i such that Rad(M) is small in M and there is no epimorphism between H_i and H_j $(i \neq j)$. The following are equivalent:

- (*i*) *M* is quasi-discrete;
- (ii) *M* is hollow-lifting and the decomposition $\bigoplus_{i \in I} H_i$ complements direct summands;
- (iii) H_i is H_j -projective for each i and j with $(i \neq j)$.

Proof. (i) \Leftrightarrow (iii) By [12, Theorem 4.48, Proposition 4.31 and Corollary 4.51]. (i) \Rightarrow (ii) By [12, Theorem 4.48].

(ii) \Rightarrow (iii) By Proposition 4.11 and [12, Proposition 4.32].

Corollary 4.13. Let $M = H_1 \oplus \cdots \oplus H_n$ be a direct sum of local modules H_i such that $End(H_i)$ is local and there is no epimorphism between H_i and H_j $(i \neq j)$. The following are equivalent:

- (*i*) *M* is quasi-discrete;
- (*ii*) *M* is hollow-lifting;
- (iii) H_i is H_j -projective for each i and j with $(i \neq j)$.

Proof. By Proposition 4.12 and [1, Corollary 12.7].

5. Completely Hollow-Lifting Modules

It would be desirable to find a hollow-lifting module which has a direct summand that is not hollow-lifting but we have not been able to do this. This is remained open in this paper. In this vein we will say that a module M is *completely hollow-lifting* if every direct summand of M is hollow-lifting.

In [5], L. Ganesan and N. Vanaja introduced the UCC-modules. A module M is a *UCC-module* if every submodule of M has a unique coclosure in M.

Proposition 5.1. Let M be a weakly supplemented UCC–module. If M is hollow-lifting, then M is completely hollow-lifting.

Proof. Let $M = N \oplus N'$. Let $A \leq N$ with N/A hollow. By [5, Corollary 3.6], M is amply supplemented. Hence N is amply supplemented. Then there exists a coclosed submodule A' of N such that $A' \leq A$ and $A/A' \ll N/A'$. Since N is coclosed in M, then A' is coclosed in M by [5, Lemma 2.6]. Since N' is coclosed in M, $A' \oplus N'$ is coclosed in M by [5, Theorem 3.16]. On the other hand, $(N/A')/(A/A') \cong N/A$ implies that N/A' is hollow. Therefore $M/(N' \oplus A')$ is hollow. Since M is hollow-lifting, $N' \oplus A'$ is a direct summand of M and hence A' is a direct summand of N.

Proposition 5.2. Let M be a hollow-lifting module having (D_3) . Then M is completely hollow-lifting.

Proof. Let N be a direct summand of M. Then $M = N \oplus N'$ for some submodule N' of M. Let $K \leq N$ such that N/K is hollow. Since $M/K = N/K \oplus (N' \oplus K)/K$, $M/(N' \oplus K)$ is hollow. By assumption, there exists a direct summand A of M such that $A \leq N' \oplus K$ and $(N' \oplus K)/A \ll M/A$. Then M = A + N. By [10, Lemma 1.3], $[N \cap (N' \oplus K)]/(A \cap N) \ll M/(A \cap N)$. So $K/(A \cap N) \ll M/(A \cap N)$. Since M has (D_3) , $A \cap N$ is a direct summand of M and so $A \cap N$ is a direct summand of N. Since $K/(A \cap N) \leq N/(A \cap N)$ and $N/(A \cap N)$ is a direct summand of $M/(A \cap N)$, we have $K/(A \cap N) \ll N/(A \cap N)$. Thus N is hollow-lifting.

Theorem 5.3. Let M be a hollow-lifting module having (D_3) . If M has finite hollow dimension, then M is lifting and it is a finite direct sum of hollow modules.

Proof. Let M be a hollow-lifting module having (D_3) . We first show that M is a finite direct sum of hollow modules. We use induction on h(M). If h(M) = 1, Mis hollow. Assume now 1 < n and assume that for every hollow-lifting module Nwith (D3) such that h(N) < n, N is a finite direct sum of hollow modules. Let Mbe a hollow-lifting module with h(M) = n. Suppose that M is indecomposable. Since M has finite hollow dimension, there exists a proper submodule A of Msuch that M/A is hollow. As M is hollow-lifting, there exists a direct summand B of M such that $B \le A$ and $A/B \ll M/B$. Then clearly M is hollow, a contradiction. Therefore we can assume that M is not indecomposable. So M has a decomposition $M = N \oplus L$ with N and L are nonzero submodules of M. Since h(M) = h(N) + h(L), h(N) and h(L) are less than n. Further, by Proposition 5.2, N and L are hollow-lifting modules. By hypothesis they are finite direct sum of hollow modules and so is M. By Theorem 4.10, M is lifting.

Lemma 5.4. Let M be a module. If $M = M_1 \oplus M_2$, then $M/A = (A + M_1)/A \oplus (A + M_2)/A$ for every fully invariant submodule A of M.

Proof. Let A be a fully invariant submodule of M. Then $A = (A \cap M_1) \oplus (A \cap M_2)$. Hence $(A + M_1) \cap (A + M_2) \leq (M_1 + M_2 + A) \cap A + (M_1 + A + A) \cap M_2 = A + [M_1 + (A \cap M_1) \oplus (A \cap M_2)] \cap M_2 = A$. Therefore $M/A = (A + M_1)/A \oplus (A + M_2)/A$.

Lemma 5.5. Let M be a module. If M is hollow-lifting, then M/U is hollow-lifting for every fully invariant submodule U of M.

Proof. Let A/U be a submodule of M/U with $(M/U)/(A/U) \cong M/A$ hollow. Since M is hollow-lifting, there exists a direct summand B of M such that $B \leq A$, $A/B \ll M/B$ and $M = B \oplus B'$ for some submodule B' of M. By [12, Lemma 4.2(3)], $(A+U)/(B+U) = A/(B+U) \ll M/(B+U)$. Now it suffices to prove that (B+U)/U is a direct summand of M/U. Since $M = B \oplus B'$, $M/U = (B+U)/U \oplus (B'+U)/U$ by Lemma 5.4. This completes the proof.

A module M is called a *duo-module*, if every submodule of M is fully invariant.

Corollary 5.6. Let M be a duo hollow-lifting module. Then M is completely hollow-lifting.

Proposition 5.7. Let $M = \bigoplus_{i \in I} M_i$ be a direct sum of modules M_i such that $End(M_i)$ is local and the decomposition $\bigoplus_{i \in I} M_i$ complements direct summands. If M is hollow-lifting, then M is completely hollow-lifting.

Proof. By [12, Theorem 2.25 and Lemma 3.20], every direct summand of M has the exchange property. The result is proved by Proposition 2.12.

Corollary 5.8. Let $M = \bigoplus_{i=1}^{n} M_i$ be a direct sum of modules M_i such that $End(M_i)$ is local. If M is hollow-lifting, then M is completely hollow-lifting.

Proof. By Proposition 5.7 and [1, Corollary 12.7].

6. Sufficient Conditions for a Direct Sum of Two Hollow-Lifting Modules to be Hollow-Lifting

Direct sum of two hollow-lifting modules need not be a hollow-lifting module as we see in the following example.

Example 6.1.

- (i) Let M be the Z-module Z/2Z ⊕ Z/8Z. Since Z/2Z and Z/8Z are hollow, they are hollow-lifting. But M is not hollow-lifting (see Example 2.2). Note that Z/2Z is not Z/8Z-projective.
- (ii) Let R be a discrete valuation ring with field of fractions K, let P be the unique maximal ideal of R. Let M be the R-module K/R ⊕ R/P. Since K/R and R/P are hollow, they are hollow-lifting. By [12, Proposition A.7], M is not lifting. Therefore by Proposition 2.1, M is not hollow-lifting.

Proposition 6.2. Let M be an R-module. Suppose that $M = N \oplus K$, N and K both are hollow-lifting and N and K are relatively projective. Then M is hollow-lifting.

Proof. Let L be a submodule of M such that $\frac{M}{L}$ is hollow. Then M = N + L or M = K + L. Suppose that M = N + L (the case M=K+L being analogous). Hence $\frac{N}{L \cap N}$ is hollow. Since K is N-projective, there exists a direct summand G of L such that $M = N \oplus G$ ([17, 41.14]). Then $L = (N \cap L) \oplus G$. Since N is hollow-lifting, there exists a direct summand X of N such that $X \leq L \cap N$ and $\frac{L \cap N}{X} \ll \frac{N}{X}$. Thus $X \oplus G$ is a direct summand of M and $X \oplus G \leq (L \cap N) \oplus G$. Let F be a submodule of M with $X \oplus G \leq F$ and $\frac{(L \cap N) \oplus G}{X \oplus G} + \frac{F}{X \oplus G} = \frac{M}{X \oplus G}$. Then $(L \cap N) + G + F = M$. So $(L \cap N) + F = M$. Hence F = M (because $\frac{L \cap N}{X} \ll \frac{N}{X}$). Thus $X \oplus G$ is a coessential submodule of $(L \cap N) \oplus G = L$ in M.

Theorem 6.3. Let $M = M_1 \oplus M_2$ be a duo module. Then M is hollow-lifting if and only if M_1 and M_2 are hollow-lifting.

Proof. (\Rightarrow :) It is clear by Corollary 5.6. (\Leftarrow :) Let A be submodule of M with M/A hollow. By Lemma 5.4, $M/A = (A + M_1)/A \oplus (A + M_2)/A$. Since M/A is hollow, we can assume that $(A + M_2)/A$.

 $M_1)/A = M/A$. Then $M_2 \leq A$. Since $(A + M_1)/A \cong M_1/(A \cap M_1)$ and M_1 is hollow-lifting, there exists a direct summand B_1 of M_1 such that $B_1 \leq A \cap M_1$ and $(A \cap M_1)/B_1 \ll M_1/B_1$. Since $A = (A \cap M_1) \oplus (A \cap M_2)$, we get $A/(B_1 \oplus M_2) \ll M/(B_1 \oplus M_2)$. Moreover, it is easily seen that $B_1 \oplus M_2$ is a direct summand of M. Thus M is hollow-lifting.

Corollary 6.4. Let $M = M_1 \oplus \cdots \oplus M_n$ be a duo module. Then M is hollow-lifting if and only if M_i is hollow-lifting for all i = 1, 2, ..., n.

Proof. The proof is by induction on n and it is based on the fact that any direct summand of a duo module is duo.

The following example shows that in Theorem 6.3, Duo is essential:

Example 6.5. Consider the \mathbb{Z} -module M in Example 6.1(i). Then M is not duo. For, let $f : \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/8\mathbb{Z} \longrightarrow \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/8\mathbb{Z}$ be the homomorphism defined by $f(\overline{p},\overline{q}) = (\overline{p+q},\overline{2q})$. Then $f(0 \oplus \mathbb{Z}/8\mathbb{Z}) \not\subseteq 0 \oplus \mathbb{Z}/8\mathbb{Z}$ $(f(\overline{0},\overline{1}) = (\overline{1},\overline{2}))$.

Let M_1 and M_2 be modules. The module M_1 is called *h*-small M_2 -projective if every homomorphism $f: M_1 \longrightarrow M_2/A$, where $A \le M_2$, M_2/A is hollow and $\operatorname{Im} f \ll M_2/A$, can be lifted to a homomorphism $\varphi: M_1 \longrightarrow M_2$. Obviously, if M_1 is small M_2 -projective, then M_1 is h-small M_2 -projective.

Lemma 6.6. Let M_1 and M_2 be modules and $M = M_1 \oplus M_2$. The following are equivalent:

- (i) M_1 is h-small M_2 -projective;
- (ii) For every submodule N of M such that M/N is hollow and $M \neq M_1 + N$, there exists a submodule N' of N such that $M = N' \oplus M_2$.

Proof. By the same proof of [10, Lemma 2.4].

Lemma 6.7. Let $M_1 = K \oplus L$ and M_2 be two modules. If M_1 is h-small M_2 -projective, then K is h-small M_2 -projective.

Proof. Let X be a submodule of M_2 such that $\frac{M_2}{X}$ is hollow and let $f: K \longrightarrow \frac{M_2}{X}$ be an homomorphism with $Imf \ll \frac{M_2}{X}$. Let $\pi: M_2 \longrightarrow \frac{M_2}{X}$ be the natural epimorphism and let $g: M_1 \longrightarrow K$ be the canonical projection. Then $fg: M_1 \longrightarrow \frac{M_2}{X}$ is a homomorphism with $Im(fg) = Imf \ll \frac{M_2}{X}$. Since M_1 is h-small M_2 -projective, there exists a homomorphism $\varphi: M_1 \longrightarrow M_2$ such that $\pi\varphi = fg$. It is clear that $\pi(\varphi_{/K}) = f$ where $\varphi_{/K}$ is the restriction of φ to K. Therefore K is h-small M_2 -projective.

Lemma 6.8. If M is h-small $(M_1 \oplus M_2)$ -projective, then M is h-small M_i -projective for i = 1, 2.

Proof. Let N_1 be a submodule of M_1 such that $\frac{M_1}{N_1}$ is hollow. Let $f: M \longrightarrow \frac{M_1}{N_1}$ be a homomorphism such that $Imf \ll \frac{M_1}{N_1}$. Let $h: \frac{M_1}{N_1} \longrightarrow \frac{M_1 \oplus M_2}{N_1 \oplus M_2}$ be the natural isomorphism defined by $h(m_1 + N_1) = m_1 + (N_1 \oplus M_2)$. Since M is h-small $(M_1 \oplus M_2)$ -projective and $Imhf \ll \frac{M_1 \oplus M_2}{N_1 \oplus M_2}$, there is a homomorphism $\varphi: M \longrightarrow M_1 \oplus M_2$ such that $\pi \varphi = hf$ where $\pi: M_1 \oplus M_2 \longrightarrow \frac{M_1 \oplus M_2}{N_1 \oplus M_2}$ is the canonical epimorphism. Let $\alpha: M_1 \longrightarrow \frac{M_1}{N_1}$ and $\beta: M_1 \oplus M_2 \longrightarrow M_1$ be the canonical epimorphisms. It is clear that $\alpha\beta\varphi = f$ and $\beta\varphi$ is a homomorphism from M to M_1 . Therefore M is h-small M_1 -projective.

Proposition 6.9. Let M be any module and let H_1 and H_2 be two hollow modules. Assume that M is small H_1 -projective and small H_2 -projective. Then M is small $(H_1 \oplus H_2)$ -projective.

Proof. Let $f: M \longrightarrow B$ be any homomorphism and $g: H_1 \oplus H_2 \longrightarrow B$ be any epimorphism, where B is any module. Assume $Imf \ll B$. Since g is epic, $g(H_1) + g(H_2) = B$. It is easy to see that f can be lifted to a homomorphism from M to $H_1 \oplus H_2$ if $g(H_1) = B$ or $g(H_2) = B$. Now assume $g(H_1) \neq$ B and $g(H_2) \neq B$. Let $\pi: B \longrightarrow B/g(H_2)$ be the natural epimorphism and $\bar{g}: H_1 \longrightarrow B/g(H_2)$ be the epimorphism defined by $\bar{g}(h_1) = g(h_1) + g(H_2)$. Clearly, $(\pi f)(M) \ll B/g(H_2)$. Since M is small H_1 -projective, there exists a homomorphism $h_1: M \longrightarrow H_1$ such that $\bar{g}h_1 = \pi f$. Since for every $x \in M$ $f(x) - gh_1(x) \in g(H_2)$, consider the homomorphism $\bar{f} = f - gh_1: M \longrightarrow g(H_2)$. Now we prove that $Im\bar{f} \ll g(H_2)$. Since H_2 is hollow, $g(H_2)$ is hollow. Therefore it is sufficient to show that $Im\bar{f} \neq g(H_2)$. If $Im\bar{f} = g(H_2)$, then $g(H_1) = B$ since $f(M) \ll B$, this is a contradiction. Thus $Im\bar{f} \neq g(H_2)$. Since M is small H_2 -projective there exists a homomorphism $h_2: M \longrightarrow H_2$ such that $gh_2 = \bar{f}$. Now let h be the homomorphism defined by $h = h_1 + h_2: M \longrightarrow H_1 \oplus H_2$. Clearly f lifts to the homomorphism h.

Lemma 6.10. Let M_1 be any module and $M_2 = \bigoplus_{i=1}^n H_i$ be a finite direct sum of hollow modules. Then M_1 is h-small M_2 -projective if and only if it is small M_2 -projective.

Proof. (\e:)Clear.

(⇒:) Assume M_1 is h-small M_2 -projective. Let $i \in \{1, 2,, n\}$. Clearly, M_1 is h-small H_i -projective (see Lemma 6.8) and hence M_1 is small H_i -projective. Therefore M_1 is small M_2 -projective by Proposition 6.9.

Lemma 6.11. Let M_1 be any module, M_2 a hollow-lifting module and let $M = M_1 \oplus M_2$. If M_1 is h-small M_2 -projective, then every coclosed submodule K of M such that M/K is hollow and $(K + M_1)/K \ll M/K$ is a direct summand of M.

Proof. Let K be a coclosed submodule of M such that M/K is hollow and $(K + M_1)/K \ll M/K$. By Lemma 6.6, there exists a submodule N' of K such that $M = N' \oplus M_2$. Now M/N' is hollow-lifting, K/N' is coclosed in M/N' and $\frac{M}{K}$ is hollow. Therefore K/N' is a direct summand of M/N'. Hence K is a direct summand of M.

Theorem 6.12. Let M_1 and M_2 be hollow-lifting modules and let M = $M_1 \oplus M_2$ be an amply supplemented module. If one of the following conditions holds, then M is hollow-lifting.

- (i) M_1 is h-small M_2 -projective and every coclosed submodule K of M with M/K hollow and $M = K + M_1$ is a direct summand of M;
- (ii) M_1 and M_2 are relatively h-small projective and every coclosed submodule K of M with M/K hollow and $M = K + M_1 = K + M_2$ is a direct summand of M;
- (iii) M_2 is M_1 -projective and M_1 is h-small M_2 -projective;
- (iv) M_1 is semisimple and h-small M_2 -projective.

Proof. (i) and (ii) By Lemma 6.11 and [10, Proposition 1.5].

(iii) Let K be a coclosed submodule of M with M/K hollow and $M = K + M_1$. Since M_2 is M_1 -projective, there exists a direct summand K' of K such that $M = K' \oplus M_1$ by [17, 41.14]. By the same proof of Lemma 6.11, we conclude that K is a direct summand of M. The result follows from (i).

(iv) Follows from (iii).

Lemma 6.13. Let M_1 and M_2 be two modules. Suppose that $M = M_1 \oplus M_2$ is a hollow-lifting module having (D_3) . Then M_1 and M_2 are relatively h-small projective.

It suffices to prove that M_1 is h-small M_2 -projective. Let N be a Proof. submodule of M with M/N hollow and $M \neq N + M_1$. Then $M = N + M_2$. As M is hollow-lifting, there exists a direct summand K of M such that $K \leq N$ and $N/K \ll M/K$. Then $M = K + M_2$. Since M has (D3), $K \cap M_2$ is a direct summand of M. Let L be a submodule of K with $K = (K \cap M_2) \oplus L$. Hence $M = L + M_2$. But $L \cap M_2 = L \cap K \cap M_2 = 0$. Then $M = L \oplus M_2$. By Lemma 6.6, M_1 is h-small M_2 -projective.

Theorem 6.14. Let $M = M_1 \oplus M_2$ be an amply supplemented module having (D_3) such that M_1 is semisimple and M_2 is a lifting module that is a finite direct sum of hollow modules. Then following are equivalent:

- (i) M is lifting;
- (ii) M is hollow-lifting;
- (iii) M_1 is h-small M_2 -projective;
- (iv) M_1 is small M_2 -projective.

Proof. (i) \Rightarrow (ii) It is clear. (iii) \Leftrightarrow (iv) By Lemma 6.10. (ii) \Rightarrow (iii) By Lemma 6.13. (iv) \Rightarrow (i) By [10, Theorem 2.8].

Let R be any ring and let M be an R-module. M is called a *radical* module if $\operatorname{Rad}(M) = M$. By P(M) we denote the sum of all radical submodules of M. If P(M) = 0, M is called *reduced*. It is easy to see that P(M) is a fully invariant submodule of M and it is always radical. So by Lemma 5.5, if M is hollow-lifting, then $\frac{M}{P(M)}$ is hollow-lifting. On the other hand, if M is a supplemented module, [21, Lemma 1.5 (c)] shows that $\frac{M}{P(M)}$ is coatomic.

Proposition 6.15. Let M be an R-module. Suppose that M is hollow-lifting. If P(M) is a direct summand of M, then P(M) and $\frac{M}{P(M)}$ both are hollow-lifting.

Proof. We only need to show that P(M) is hollow-lifting. Let N be a submodule of M with $M = P(M) \oplus N$. Let L be a submodule of P(M) such that $\frac{P(M)}{L}$ is hollow. Thus $\frac{M}{L \oplus N}$ is hollow. Since M is hollow-lifting, there exists a submodule X of M such that X is a strong supplement of $L \oplus N$ in M. Hence $(L \oplus N) + X = M$ and $\frac{P(M)}{L} \cong \frac{M}{L \oplus N} \cong \frac{X}{(L \oplus N) \cap X}$. Therefore X is hollow radical and $X \leq P(M)$. Hence P(M) = L + X. Since $X \cap L = (L \oplus N) \cap X$, $X \cap L$ is a direct summand of L. So X is a strong supplement of L in P(M). Consequently, P(M) is hollow-lifting.

Proposition 6.16. Let M be an R-module. Suppose that $M = N \oplus K$, N is radical, K is coatomic, N and K both are hollow-lifting and N and K are relatively h-small projective. Then M is hollow-lifting.

Proof. Let L be a submodule of M such that $\frac{M}{L}$ is hollow. Then M = N + L or M = K + L. If M = K + L = N + L, then $\frac{M}{L} \cong \frac{N}{N \cap L} \cong \frac{K}{K \cap L}$. Hence $\frac{K}{K \cap L}$ is coatomic and radical. Thus $\frac{K}{K \cap L} = 0$ and L = M, a contradiction. Therefore we have M = N + L and $M \neq K + L$ or $M \neq N + L$ and M = K + L. Since N and K are relatively h-small projective, the rest of the proof is the same as the proof of Proposition 6.2 (See Lemma 6.6).

Proposition 6.17. Let M be an R-module. If $M = P(M) \oplus K$ for some coatomic submodule K of M and M is hollow-lifting, then P(M) and K are relatively h-small projective.

Proof. Let L be a submodule of M with $M \neq P(M) + L$ and $\frac{M}{L}$ hollow. Then M = K + L. Hence $\frac{M}{L} \cong \frac{K}{L \cap K}$ and $\frac{M}{L}$ is local. Since M is hollow-lifting, there exists a direct summand E of M such that $E \leq L$ and $\frac{L}{E} \ll \frac{M}{E}$. Then M = E + K and $\frac{M}{E}$ is local. Let F be a submodule of M with $M = E \oplus F$. So $P(M) = P(E) \oplus P(F)$. Thus P(F) is a radical direct summand of F. Therefore F is reduced because F is local. This gives $P(M) = P(E) \leq E$. Hence $P(M) \leq L$. Since $M = P(M) \oplus K$, P(M) is h-small K-projective.

Now, let L be a submodule of M with $M \neq K + L$ and $\frac{M}{L}$ is hollow. Then M = P(M) + L, $\frac{M}{L} \cong \frac{P(M)}{L \cap P(M)}$ and $\frac{M}{L}$ is radical. Since M is hollow-lifting, there exists a direct summand B of M such that $B \leq L$ and $\frac{L}{B} \ll \frac{M}{B}$. It is clear that $\frac{M}{B}$ is hollow radical. Let A be a submodule of M with $M = A \oplus B$. Then $P(M) = P(A) \oplus P(B)$ and $P(M) = A \oplus P(B)$ because A is radical. Since P(B) is a direct summand of B, there exists a submodule C of B such that $B = P(B) \oplus C$. Then $M = A \oplus B = A \oplus P(B) \oplus C$. Thus $M = P(M) \oplus C$. Since $C \leq L$, K is h-small P(M)-projective.

Theorem 6.18. Let M be an R-module. Suppose that $M = P(M) \oplus K$ for some coatomic submodule K of M. Then M is hollow-lifting if and only if P(M) and K are relatively h-small projective and P(M) and K both are hollow-lifting.

Proof. By Proposition 6.17, Proposition 6.16 and Proposition 6.15.

Corollary 6.19. Let $M = M_1 \oplus M_2$ be an *R*-module such that M_1 is radical and M_2 is semisimple. Then *M* is hollow-lifting if and only if M_1 is hollow-lifting and M_2 is h-small M_1 -projective.

Proof. It is clear that $P(M) = M_1$ and M_2 is coatomic. The result follows from Theorem 6.18.

Example 6.20. Consider the module in Example 6.1(ii). Since M is not hollow-lifting, Corollary 6.19 shows that R/P is not h-small K/R-projective.

Lemma 6.21. Let M be a hollow-lifting module such that $M = P(M) \oplus K$ for some submodule K of M and P(M) = H is hollow. Then K is hollow-lifting and K is H-projective.

Proof. By Proposition 6.15, K is hollow-lifting. Let N be a proper submodule of M such that M = H + N. Then $\frac{M}{N}$ is hollow. Since M is hollow-lifting, there

is a direct summand X of M such that $X \leq N$ and $\frac{N}{X} \ll \frac{M}{X}$. Thus M = H + X. Therefore $\frac{M}{X}$ is radical. Let Y be a radical submodule of M such that $M = X \oplus Y$. It is clear that Y = H. Hence $M = X \oplus H$. Consequently, K is H-projective.

Lemma 6.22. Let M be a hollow-lifting module such that $M = P(M) \oplus K$ for some local submodule K of M. Then P(M) is hollow-lifting and it is K-projective.

Proof. By Proposition 6.15, P(M) is hollow-lifting. Let N be a proper submodule of M such that M = N + K. Then $\frac{M}{N}$ is hollow. Since M is hollow-lifting, there is a direct summand X of M such that $X \le N$ and $\frac{N}{X} \ll \frac{M}{X}$. Thus M = K + X. Since $\frac{M}{K} \cong P(M)$ is radical, $\frac{X}{X \cap K}$ is also radical. But K is hollow. Then $X \cap K \ll X$ and X is radical. Therefore $X \le P(M)$ and $M = X \oplus K$. So P(M) is K-projective.

Proposition 6.23. Let R be a commutative noetherian ring and let M be a supplemented R-module. Suppose that P(M) = H is hollow and $M = H \oplus K$ for some submodule K of M. Then M is hollow-lifting if and only if K is hollow-lifting and H and K are relatively projective.

Proof. Suppose that M is hollow-lifting. Then K is hollow-lifting by Proposition 6.15. By [14, Proposition 4.6], M is amply supplemented. Let N be a submodule of M with M = N + K. There is a submodule L of N such that L is a supplement of K in M. Since $\frac{M}{K}$ is radical, L is also radical. Thus $L \leq P(M)$. Hence $M = L \oplus K$. So H is K-projective. By Lemma 6.21, K is H-projective. For the converse we use Proposition 6.2.

Proposition 6.24. Let R be a commutative noetherian ring and let M be a supplemented R-module. If M is completely hollow-lifting, then $M = P(M) \oplus N$ for some (coatomic) submodule N of M and P(M) is a direct sum of hollow modules.

Proof. By [20, Satz 2.3 and Satz 2.5], $M = \bigoplus_{m \in \Omega} K_m(M)$. So it suffices to prove the result over a local ring. Suppose that R is local. By [14, Corollary 2.5], M = P(M) + X with a coatomic submodule X of M and P(M) is supplemented and it is a sum of finitely many hollow modules. Then P(M) has a finite hollow dimension. Let $P(M) = H_1 + \cdots + H_n$ with H_i is hollow for all i. Then $\frac{M}{H_2 + \cdots + H_n + X}$ is hollow radical. Since M is hollow-lifting, M has a hollow radical direct summand K_1 . Let X_1 be a direct summand of M such that $M = K_1 \oplus X_1$. Since X_1 is a completely hollow-lifting supplemented module and P(M) has finite hollow dimension, we have $M = P(M) \oplus N$ with a coatomic submodule N of Mand P(M) is a finite direct sum of hollow radical modules. Recall that any module M has *finite Goldie dimension* if M does not contain an infinite direct sum of nonzero submodules.

Proposition 6.25. Let R be a commutative noetherian ring and let M be a supplemented R-module having finite hollow dimension or finite Goldie dimension. If M is hollow-lifting, then $M = P(M) \oplus N$ such that N is a finite direct sum of local modules.

Proof. By Proposition 3.1 and [20, Satz 2.3 and Satz 2.5], it suffices to prove the result over a local ring. Suppose that R is local. By [14, Corollary 2.5], M = P(M) + X with a coatomic submodule X of M. Since M is hollow-lifting and X is a sum of local modules, M has a local direct summand (see Proposition 2.13). Let $M = K_1 \oplus X_1$ with K_1 local. Since X_1 is supplemented, we have $X_1 = P(X_1) + X_2$ with X_2 coatomic. Since K_1 has local endomorphism ring ([3, Theorem 4.1]), it has the exchange property. So X_1 is hollow-lifting by Proposition 2.12. If X_1 is not radical, then $X_2 \not\ll X_1$ and X_1 has a local direct summand. But M has finite dimension. Then we obtain that $M = Y \oplus K_1 \oplus \cdots \oplus K_n$ with Y radical and $K_i(i=1,\ldots,n)$ are local modules. Since K_i are reduced, Y = P(M).

The following example shows that Propositions 6.24 and 6.25 are not true in general if the ring R is not noetherian.

Example 6.26. Let K be a field and let R be the ring of polynomials in countably many commuting variables x_1, x_2, \ldots , over K, subject to the relations $x_1^2 = 0$ and $x_n^2 = x_{n-1}$ for $n \ge 2$. By [16, Example 2.11], R is a local ring with maximal ideal J generated by the x_i . Further, J is nil but not nilpotent (in fact $J^2 = J$). So R is not noetherian. Let L = R considered as an R-module. It is clear that L is a local module. Thus L is a completely hollow-lifting supplemented module. On the other hand, we have P(L) = J. Hence P(L) is not a direct summand of L.

Recall that a module M is called *socle-free* if Soc(M) = 0.

Corollary 6.27. Let R be a commutative noetherian ring and let M be a supplemented socle-free R-module. If M is hollow-lifting, then $M = P(M) \oplus N$ for some (coatomic) submodule N of M and P(M) and N both are direct sum of hollow modules.

Proof. By Proposition 3.1 and [20, Satz 2.3 and Satz 2.5], it suffices to prove the result over a local ring. Suppose that R is local. By [14, Corollary 2.5], M = P(M) + X with a coatomic submodule X of M and P(M) is a finite sum of hollow radical submodules. Then M has a hollow radical direct summand H_1 (see

Proposition 2.13). By [14, Theorem 1.3] and [12, Proposition 5.10 and Corollary 5.5], every hollow radical direct summand of M has local endomorphism ring. Hence $\frac{M}{H_1}$ is hollow-lifting by Proposition 2.12. Since $\frac{M}{H_1}$ is supplemented and P(M) has finite hollow dimension, we have $M = P(M) \oplus N$ with N coatomic, P(M) is a finite direct sum of hollow modules and N is hollow-lifting. By [19, Folgerung 1 p. 225], N has finite Goldie dimension. By Proposition 6.25, N is a finite direct sum of local modules.

Corollary 6.28. Let R be a commutative local noetherian ring and let M be a supplemented socle-free R-module. Then M is hollow-lifting if and only if $M = P(M) \oplus N$ for some (coatomic) submodule N of M and P(M) and N are relatively projective hollow-lifting modules.

Proof. Suppose that M is hollow-lifting. By the proof of Corollary 6.27, $M = P(M) \oplus N$, $P(M) = \bigoplus_{i=1}^{n} H_i$ is a finite direct sum of hollow radical modules H_i and $N = \bigoplus_{j=1}^{m} K_j$ is a finite direct sum of local modules K_j . By Theorem 6.18, P(M) and N are hollow-lifting relatively h-small projective modules. By Lemma 6.8 and Lemma 6.7, P(M) and K_j are relatively h-small projective for all $j = 1, \ldots, m$ and N and H_i are relatively h-small projective for all $i = 1, \ldots, n$. By Theorem 6.18 and Proposition 6.15, $P(M) \oplus K_j$ and $H_i \oplus N$ are hollow-lifting for all $i = 1, \ldots, n$ and $j = 1, \ldots, m$. By Lemma 6.21 and Lemma 6.22, P(M) is K_j -projective and N is H_i -projective for all $i = 1, \ldots, n$ and $j = 1, \ldots, m$. By [12, Proposition 4.33], P(M) is N-projective and N is P(M)-projective. The converse follows from Proposition 6.2.

REFERENCES

- 1. F. W. Anderson and K. R. Fuller, *Rings and categories of modules*, 2nd edition, Springer-Verlag, New York, 1992.
- Y. Baba and M. Harada, On almost *M*-projectives and almost *M*-injectives, *Tsukuba J. Math.*, 14 (1990), 53-69.
- 3. P. Fleury, Hollow modules and local endomorphism rings, *Pacific J. Math.*, **53** (1974), 379-385.
- P. Grzeszczuk and E. R. Puczylowski, On Goldie and Dual Goldie Dimensions, Journal of Pure and Applied Algebra, 31 (1984), 47-54.
- 5. L. Ganesan and N. Vanaja, Modules for which every submodule has a unique coclosure, *Comm. Algebra*, **30**(5) (2002), 2355-2377.
- 6. A.Harmanci, D. Keskin and P. F. Smith On ⊕-supplemented modules, *Acta Math. Hungar.*, **83(1-2)** (1999), 161-169.
- A. Idelhadj and R. Tribak, On some properties of ⊕-supplemented modules, *IJMMS*, 69 (2003), 4373-4387.

- 8. D. Keskin, Finite direct sums of (D_1) -modules, *Turkish J. Math.*, **22(1)** (1998), 85-91.
- D. Keskin, (D₁)-modules with summands having local endomorphism rings, Far East J. Math. Sci., Special Volume, Part II (1998), 145-152.
- 10. D. Keskin, On lifting modules, Comm. Algebra, 28(7) (2000), 3427-3440.
- 11. D. Keskin, P. F. Smith and W. Xue, Rings whose modules are ⊕-supplemented, J. Algebra, **218** (1999), 470-487.
- 12. S. H. Mohamed and B. J. Müller, *Continuous and discrete modules*, London Math. Soc. LNS 147 Cambridge Univ. Press, Cambridge, 1990.
- 13. K. Oshiro, Lifting modules, extending modules and their applications to generalized uniserial rings, *Hokkaido Math. J.*, **13**(3) (1984), 339-346.
- 14. P. Rudlof, Couniform and complemented modules, *J. Pure Appl. Algebra*, **74** (1991), 281-305.
- 15. D. W. Sharpe and P. Vamos, *Injective modules*, Lecture in pure mathematics, University of Sheffield, 1972.
- Hans H. Storrer, On Goldman's primary decomposition, *Lecture Notes in Math.*, 246 (1972), 617-661.
- 17. R. Wisbauer, *Foundations of module and ring theory*, Gordon and Breach, Philadelphia, 1991.
- 18. H. Zöschinger, Komplemente als directe Summanden II, Arch. Math. (Basel), 38 (1982), 324-334.
- 19. H. Zöschinger, Koatomare Moduln, Math. Z., 170 (1980), 221-232.
- 20. H. Zöschinger, Gelfandringe und koabgeschlossene Untermoduln, Bayer. Akad. Wiss. Math.-Natur. Kl. Sitzungsber., 3 (1982), 43-70.
- 21. H. Zöschinger, Komplementierte Moduln über Dedekindringen, J. Algebra, **29** (1974), 42-56.

Nil Orhan and Derya Keskin Tütüncü Department of Mathematics, University of Hacettepe, 06532 Beytepe, Ankara, Turkey E-mail: nilorhan@hacettepe.edu.tr and keskin@hacettepe.edu.tr

Rachid Tribak Département de Mathématiques, Faculté des Sciences de Tétouan, Université Abdelmalek Essaâdi, B.P.21.21 Tétouan, Morocco E-mail: tribak12@yahoo.com