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ON HOLLOW-LIFTING MODULES

Nil Orhan, Derya Keskin Tütüncü and Rachid Tribak

Abstract. Let R be any ring and let M be any right R-module. M is called
hollow-lifting if every submodule N of M such that M/N is hollow has a
coessential submodule that is a direct summand of M . We prove that every
amply supplemented hollow-lifting module with finite hollow dimension is
lifting. It is also shown that a direct sum of two relatively projective hollow-
lifting modules is hollow-lifting.

1. INTRODUCTION AND PRELIMINARIES

Throughout this paper R is a ring with identity and every R-module is a unitary
right R-module. A ≤ M will mean A is a submodule of M .

Let M be a module and A a submodule of M . A is called a small submodule of
M (denoted by A � M ) if for any X ≤ M , M = A+X implies X = M . Dually,
A is called essential in M if for any X ≤ M , A ∩ X = 0 implies X = 0. The
module M is called hollow if every proper submodule is small in M . Dually, M
is called uniform if every nonzero submodule is essential in M . For A ≤ B ≤ M ,
if A is essential in B, then B is called an essential extension of A in M . A
submodule A is said to be closed in M , if A has no proper essential extension in
M . Dually, for A ≤ B ≤ M , A is said to be a coessential submodule of B in M

if B/A � M/A. A is said to be coclosed in M (denoted by A ≤cc M ), if A has
no proper coessential submodule in M . Also, we will call A a coclosure of B in
M , if A is a coesential submodule of B and A is coclosed in M .

Let M be a module. For N, L ≤ M , N is a supplement of L in M if N is
minimal with respect to M = N +L. Equivalently, M = N +L with N ∩L � N .
If M = N + L with N ∩ L � M , then N is called a weak supplement of L in
M . A module M is called (weakly) supplemented if every submodule of M has a
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(weak) supplement in M . It is called amply supplemented if for every A, B ≤ M ,
M = A + B implies A has a supplement in M contained in B.

A module M is said to have finite hollow dimension, if there is an epimorphism
f : M −→ ⊕k

i=1Hi with each Hi hollow and Kerf � M , and then we say
that hollow dimension of M is k (denoted by h(M)=k). It is shown in [4] that
h(M) = k if and only if M contains a finite coindependent family of submodules
{N1, . . . , Nk} such that ∩k

i=1Ni � M and M/Ni is a hollow module for every
1 ≤ i ≤ k.

A module M is said to be extending if for every submodule N of M there exists
a direct summand K of M such that N is essential in K. Dually, M is called lifting
or satisfies(D1), if for every submodule N of M there exists a direct summand
K of M such that K is a coessential submodule of N in M . M is said to have
(D3), if for every direct summands A and B of M with M = A + B, A ∩ B is a
direct summand of M . The module M is called quasi-discrete if it is lifting and
has (D3).

Let M be a module. M is called uniform-extending if every uniform submodule
of M is essential in a direct summand of M . Dually, M is called hollow-lifting
if every submodule N of M with M/N hollow has a coessential submodule in M

that is a direct summand of M (cf. [13]). Clearly, if M is hollow-lifting, then every
coclosed submodule K of M with M/K hollow is a direct summand of M . The
converse is true if M is amply supplemented by [10, Proposition 1.5].

Let M1 and M2 be modules. The module M1 is small M2-projective (nearly
M2-projective) if every homomorphism f : M1 −→ M2/A, where A is a sub-
module of M2 and Imf � M2/A (Imf �= M2/A), can be lifted to a homomor-
phism ϕ : M1 −→ M2. Clearly, if M1 is nearly M2-projective, then M1 is small
M2-projective, and if M2 is hollow, then small M2-projectivity and nearly M2-
projectivity coincide. If M1 is small (nearly) M2-projective and M2 is small (nearly)
M1-projective, then M1 and M2 are called relatively small (nearly) projective.

A decomposition M = ⊕i∈IMi is said to complement direct summands if
for any direct summand K of M there exists a subset J ⊆ I such that M =
K ⊕ (⊕i∈JMi). Let M be any module. M is said to have the (finite) exchange
property if for any (finite) index set I , whenever M ⊕N = ⊕i∈IAi for modules N
and Ai, then M ⊕ N = M ⊕ (⊕i∈IBi) for submodules Bi ≤ Ai.

In Section 2 we introduce the notion of hollow-lifting modules. We begin by
showing some general properties of hollow-lifting modules. We prove that for an
indecomposable module M , the module M is hollow-lifting if and only if M is
hollow, or else M has no hollow factor modules (Proposition 2.7). In Section 3 we
will be concerned with hollow-lifting modules over commutative rings. In this way,
it is shown that a finitely generated module over a commutative ring is hollow-lifting
if and only if it is lifting (Corollary 3.4). In Section 4 we give some conditions
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under which a direct sum of hollow modules is hollow-lifting. Let M = ⊕n
i=1Hi

with all Hi hollow. If M has (D3), then the following are equivalent:
(1) M is hollow-lifting;
(2) M is lifting;
(3) M is quasi-discrete;
(4) Hi is Hj-projective for all i �= j (Theorem 4.10).

Section 5 is devoted to the study of hollow-lifting modules whose every direct
summand is hollow-lifting. It is shown that if M is a hollow-liting module, then
M/U is hollow-lifting for every fully invariant submodule U of M (Lemma 5.5). In
section 6 we give some sufficient conditions for a direct sum of two hollow-lifting
modules to be hollow-lifting. We prove that if M = M1 ⊕ M2 is a duo module,
then M is hollow-lifting if and only if M1 and M2 are hollow-lifting (Theorem
6.3). It is also proved that any direct sum of two relatively projective hollow-lifting
modules is hollow-lifting (Proposition 3.2).

2. SOME PROPERTIES OF HOLLOW-LIFTING MODULES

It is clear that hollow modules and semisimple modules are hollow-lifting. The
following result gives other examples of hollow-lifting modules.

Proposition 2.1. Let H1 and H2 be hollow modules. The following are
equivalent for the module M = H1 ⊕ H2:

(i) M is hollow-lifting;
(ii) M is lifting.

Proof. (i) ⇒ (ii) Let N ≤ M . Consider the projections π1 : M −→ H1 and
π2 : M −→ H2. If π1(N ) �= H1 and π2(N ) �= H2, then N � M . Now, assume
that π1(N ) = H1. Then M = N + H2. Therefore, M/N is hollow. Hence there
exists a direct summand K of M such that K ≤ N and N/K � M/K . Thus M
is lifting.

(ii) ⇒ (i) Clear.

Example 2.2. Let p be any prime integer. Since the module ZZ
p2ZZ

⊕ ZZ
p3ZZ

is
lifting (see [12, Proposition A.7]), it is hollow-lifting. But the module ZZ

pZZ ⊕ ZZ
p3ZZ

is not hollow-lifting because it is not lifting (see [12, Proposition A.7]).
Let R be a ring and M an R-module. Let U and V be two submodules of M .

We will say that V is a strong supplement of U in M if V is a supplement of U in
M and V ∩ U is a direct summand of U (see [18]).

Proposition 2.3. Let U be a submodule of a module M . The following are
equivalent:
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(i) U has a strong supplement in M ;
(ii) U has a coessential submodule that is a direct summand of M .

Proof. (i) ⇒ (ii) Let V be a strong supplement of U in M and let W ≤ M
such that (U ∩ V ) ⊕ W = U . Then M = W ⊕ V . Moreover, if U

W + X
W = M

W
then U + X = M and (U ∩ V ) + W + X = M . Since U ∩ V � V , we have
W + X = M . Hence X = M . Therefore U

W � M
W and the result is proved.

(ii) ⇒ (i) Let A be a coessential submodule of U that is a direct summand of
M . Let B be a submodule of M with M = A ⊕ B. Thus U = A ⊕ (B ∩ U)
and U + B = M . If (U ∩ B) + X = B then A + (U ∩ B) + X = M . Hence
U + X = M and U

A + X+A
A = M

A . Since U
A � M

A , we have X + A = M . But
X ≤ B, then X = B. Therefore U ∩B is small in B. Consequently, B is a strong
supplement of U in M .

Corollary 2.4. Let M be any module. The following are equivalent:
(i) M is hollow-lifting;
(ii) every submodule N of M such that M

N is hollow has a strong supplement in
M .

Proposition 2.5. Let M be an R-module. The following are equivalent:
(i) M is hollow-lifting;
(ii) every submodule N of M such that M

N is hollow can be written as N = K⊕L
with K is a direct summand of M and L is a small submodule of M .

Proof. (i) ⇒ (ii) Let N be a submodule of M such that M
N is hollow. Since

M is hollow-lifting, there exists a direct summand K of M such that K ≤ N and
N
K � M

K . Let F be a submodule of M with M = K ⊕ F . So N = K ⊕ (F ∩N ).
Further, if X ≤ F with (F ∩N )+ X = F , then N + X = M . Since N

K � M
K , we

have X +K = M . Hence X = F and F ∩N � F . It suffices to take L = F ∩N .
(ii) ⇒ (i) Let N be a submodule of M such that M

N is hollow. Then N can be
written as N = K⊕L with K is a direct summand of M and L is small in M . Let
X be a submodule of M such that K ≤ X and N

K + X
K = M

K . Thus N + X = M .
So K + L + X = M and K + X = M . But K ≤ X . Then X = M and N

K � M
K .

Therefore M is hollow-lifting.

Remark 2.6. It is clear that every module having no hollow factor modules is
a hollow-lifting module.

Proposition 2.7. Let M be an indecomposable module. The following are
equivalent:
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(i) M is hollow-lifting;

(ii) M is hollow, or else M has no hollow factor modules.

Proof. (i)⇒(ii) Suppose that M has a hollow factor module. Then there exists a
proper submodule N of M such that M

N is hollow. Since M is hollow-lifting, there
is K a direct summand of M such that N

K is small in M
K . But M is indecomposable.

Then K = 0 and N is small in M . Therefore M itself is a hollow module.
(ii)⇒(i) Clear.

Corollary 2.8. Let M be a nonzero indecomposable module over a commuta-
tive noetherian ring R. The following are equivalent:

(i) M is hollow-lifting;

(ii) M is lifting;

(iii) M is hollow.

Proof. (ii) ⇔ (iii) By [12, Corollary 4.9].
(iii) ⇒ (i) Clear.
(i) ⇒ (iii) By [15, Proposition 2.24 and Theorem 4.30], M has an artinian factor

module. Since every artinian module has finite hollow dimension, M has a hollow
factor module. Then M is hollow by Proposition 2.7.

Proposition 2.9. Let M1, . . . , Mn be modules having no hollow factor modules.
Then M = M1 ⊕ · · · ⊕ Mn is hollow-lifting.

Proof. Suppose that M has a submodule N such that M
N is hollow. Since

M1+N
N + · · · + Mn+N

N = M
N , there exists i ∈ {1, . . . , n} such that Mi+N

N = M
N

is hollow. So Mi has a hollow factor module, a contradiction. Therefore M is
hollow-lifting.

Remark 2.10. Proposition 2.7 gives an idea to find an example of a hollow-
lifting module that is not a lifting module. In fact, it is clear that every indecom-
posable module M which has no hollow factor module is hollow-lifting but it is not
a lifting module. On the other hand, let N be any indecomposable module having
no hollow factor module and let K be a semisimple module. If L is a submodule
of M = N ⊕K such that M

L is hollow, then we have N +L = M or K +L = M .
Since N has no hollow factor modules and N+L

L
∼= N

N∩L , we have K + L = M .
But K is semisimple. So there is a submodule E of K such that K = E⊕(K∩L).
Therefore E ⊕ L = M . Hence L is a direct summand of M . Consequently, M is
hollow-lifting. It is clear that M is not lifting (N is not hollow).
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In the same manner as in the proof of [18, Lemma 1.1], we can show the
following result:

Lemma 2.11. Let M0 be a direct summand of a module M such that M 0 has
the finite exchange property. If M0 ≤ U ≤ M and U has a strong supplement in
M , then U

M0
has a strong supplement in M

M0
.

Proposition 2.12. Let M0 be a direct summand of a module M such that M 0

has the finite exchange property. If M is hollow-lifting, then M
M0

is also hollow-
lifting.

Proof. Let N be a submodule of M with M0 ≤ N and
M
M0
N

M0

is hollow. Thus
M
N is hollow. By Corollary 2.4, N has a strong supplement in M . By Lemma 2.11,
N
M0

has a strong supplement in M
M0

. Therefore M
M0

is hollow-lifting by Corollary
2.4.

Proposition 2.13. Let M be a hollow-lifting module such that M has a non-
small hollow submodule. Then M has a hollow direct summand.

Proof. Let H be a non-small hollow submodule of M . Then there is a proper
submodule N of M such that M = H + N . Since M is hollow-lifting, there
is a direct summand L of M such that N/L � M/L. Clearly M/L is hollow.
Now M = L ⊕ K for some submodule K of M . Therefore K is a hollow direct
summand of M .

Lemma 2.14. Let M be a hollow-lifting module having a maximal submodule
N . Then M has a local direct summand.

Proof. Since M is hollow-lifting and M
N is simple, there is a submodule K of

M that is a strong supplement of N in M . Thus K is a direct summand of M ,
M = N + K and K

N∩K
∼= M

N is simple. So K is local because N ∩ K is small in
K.

Proposition 2.15. Let R be a right noetherian ring and M a finitely generated
hollow-lifting right R-module. Then M is a finite direct sum of local modules.

Proof. By Lemma 2.14 M has a local direct summand H1. By [3, Theorem
4.2], End(H1) is local. So H1 has exchange property. Then M

H1
is hollow-lifting

by Proposition 2.12. Hence we can get by induction that M is a direct sum of local
modules.
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Recall that a module M is called coatomic if every proper submodule of M is
contained in a maximal submodule of M .

Proposition 2.16. Let M be a coatomic hollow-lifting module. Then M can
be written as an irredundant sum of local direct summands of M .

Proof. The same proof of [7, Proposition 3.2].

Corollary 2.17. Let M be a coatomic module with Rad(M) = 0. The
following are equivalent:

(i) M is hollow-lifting;
(ii) M is supplemented;
(iii) M is semisimple.

Proof. (i)⇒ (iii) By Proposition 2.16, M is a sum of local direct summands
of M . But if H is a local direct summand of M , then H will be a simple module
because Rad(H) = 0. Thus M is semisimple.

(iii)⇒ (ii) Clear.
(ii)⇒ (i) Let L be any submodule of M such that M

L is hollow. Since M is
supplemented, there exists a submodule H of M such that H is a supplement of L
in M . But Rad(M) = 0. Thus M = L ⊕ H . Hence M is hollow-lifting.

Let M be an amply supplemented module with finite hollow dimension. Then
M has a coclosed submodule K with M/K hollow. For, since M has finite hollow
dimension, there exists a submodule N of M such that M/N is hollow. Since M

is amply supplemented, there is a coclosed submodule K of M such that K ≤ N
and N/K � M/K by [10, Proposition 1.5]. Therefore (M/K)/(N/K) ∼= M/N

implies that M/K is hollow.

Lemma 2.18. Let M be an amply supplemented hollow-lifting module and
K ≤cc M such that M/K has finite hollow dimension. Then K is a direct summand
of M .

Proof. We give the proof by induction on hollow dimension of M/K . If
hollow dimension of M/K is 1, then K is a direct summand of M since M is
hollow-lifting. Assume that hollow dimension of M/K is n and for every coclosed
submodule T of M such that M/T has hollow dimension less than n, T is a direct
summand of M .

Let H/K be coclosed in M/K such that (M/K)/(H/K) is hollow. By [10,
Lemma 1.4], H is coclosed in M . Hence M = H⊕H ′ for some submodule H′ of M

as M is hollow-lifting. Then K = H∩(K⊕H ′) and M/K = H/K⊕(K⊕H ′)/K.
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Therefore (K ⊕H ′)/K is coclosed in M/K . Again, by [10, Lemma 1.4], K ⊕H ′

is coclosed in M . By induction, K ⊕ H ′ is a direct summand of M , and so K is
a direct summand of M .

Proposition 2.19. An amply supplemented module with finite hollow dimension
is lifting if and only if it is hollow-lifting.

Proof. Suppose that M is hollow-lifting and let K be a coclosed submodule
of M . Since M has finite hollow dimension, M/K has finite hollow dimension.
Therefore by Lemma 2.18, K is a direct summand of M . Hence M is lifting by
[10, Proposition 1.5].

3. HOLLOW-LIFTING MODULES OVER COMMUTATIVE RINGS

Let R denote a commutative ring. Let Ω be the set of all maximal ideal of R. If
m ∈ Ω, M an R-module, we denote as in [20, p. 53] by Km(M) = {x ∈ M | x = 0
or the only maximal ideal over AnnR(x) is m} as the m-local component of M . We
call M m-local if Km(M) = M . In this case M is an Rm-module by the following
operation: ( r

s )x = rx′ with x = sx′ (r ∈ R, s ∈ R − m). The submodules of M

over R and over Rm are identical.
For K(M) = {x ∈ M | Rx is supplemented} it is easily seen that K(M) =

{x ∈ M | R
AnnR(x) is semiperfect}, and we always have the decomposition K(M) =

⊕m∈ΩKm(M) (see [20, Satz 2.3].

The next result shows that in studying of hollow-lifting or lifting modules M

with M = K(M) over commutative rings, one may restrict to the case of modules
over local rings.

Proposition 3.1. Let M be an R-module over the commutative ring R. Then:
K(M) is(hollow-)lifting if and only if Km(M) is (hollow-)lifting for all m∈Ω.

Proof. It is an immediate consequence of the fact that for every submodule N

of K(M) we have N = ⊕m∈ΩN ∩ Km(M).

Lemma 3.2. (see [18, Folgerung 3.3]) Let M be a finitely generated module
over a commutative local ring R. The following are equivalent:

(i) M is lifting;

(ii) every submodule U of M such that M
U is cyclic has a strong supplement in

M .
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Proposition 3.3. Let M be a finitely generated module over a commutative
local ring R. The following are equivalent:

(i) M is hollow-lifting;
(ii) M is lifting.

Proof. (ii) ⇒ (i) Clear.
(i) ⇒ (ii) Let U be a submodule of M such that M

U is cyclic. Since R is local,
M
U is a local module. Then U has a strong supplement in M by Corollary 2.4.
Hence M is lifting by Lemma 3.2.

Corollary 3.4. Let M be a finitely generated module over a commutative ring
R. The following are equivalent:

(i) M is hollow-lifting;
(ii) M is lifting.

Proof. Assume M is hollow-lifting. By Proposition 2.16, M is a finite
sum of local submodules. So M is supplemented ([21, Lemma 1.3(c)]). Hence
⊕m∈ΩKm(M) = K(M) = M by [20, Satz. 1.6]. The result follows from Propo-
sition 3.1 and Proposition 3.3.

Theorem 3.5. The following are equivalent for a commutative ring R with
radical J:

(1) R is artinian serial and J 2 = 0;
(2) Every R-module is lifting;
(3) Every R-module is hollow-lifting;
(4) Every finitely generated R-module is lifting;
(5) Every finitely generated R-module is hollow-lifting.

Proof. By [11, Theorem 3.15] and Corollary 3.4.

4. SOME CONDITIONS UNDER WHICH A DIRECT SUM OF

HOLLOW MODULES IS HOLLOW-LIFTING

Theorem 4.1. Let M = ⊕i∈IMi, where all Mi are hollow and ⊕i∈IMi

complements direct summands. If M is hollow-lifting, then ⊕ i�=jMi is nearly Mj -
projective.

Proof. Consider any proper submodule A of Mj , the homomorphism f :
⊕i�=jMi −→ Mj/A with Imf �= Mj/A and the natural epimorphism π : Mj −→
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Mj/A. Define B = {x + y | x ∈ ⊕i�=jMi, y ∈ Mjandf(x) = −π(y)}. Then
M = B + Mj , A ≤ B and M/B is hollow. By hypothesis, there exists a direct
summand D of M such that D ≤ B and B/D � M/D. Therefore M/D is hollow.
Since the decomposition of M complements direct summands, M = D ⊕ Mk for
some k ∈ I . As B/D � M/D, we have M = D + Mj . If k �= j, then f

is an epimorphism, a contradiction. Therefore k = j. So M = D ⊕ Mj . Let
α : M = D ⊕ Mj −→ Mj be the projection and β the restriction of α to ⊕i�=jMi.
Clearly, f can be lifted to the homomorphism β. Therefore, ⊕i�=jMi is nearly
Mj-projective.

Since the properties nearly and small projectivity are inherited by direct sum-
mands, we have the following fact.

Corollary 4.2. Let M = ⊕i∈IMi, where all Mi are hollow and ⊕i∈IMi

complements direct summands. If M is hollow-lifting, then for all i �= j, M i is
nearly (small) Mj-projective.

Corollary 4.3. Let M1 and M2 be hollow modules with local endomorphism
rings. If M1 ⊕M2 is hollow-lifting, then M1 and M2 are relatively nearly (small)-
projective.

Proof. By [1, Corollary 12.7] and Theorem 4.1.

In [2], Baba and Harada define almost projective modules. Let M1 and M2

be two modules. M1 is called almost M2–projective, if for every epimorphism
f : M2 −→ K and every homomorphism g : M1 −→ K, either there exists
h : M1 −→ M2 with fh = g or there exists a nonzero direct summand N of M2

and h̄ : N −→ M1 with gh̄ = f |N .

Lemma 4.4. Let M1 be a hollow module and M2 an indecomposable module.
Assume that there is no epimorphism from M 2 to M1. Then M1 is almost M2–
projective if and only if M1 is M2–projective.

Proof. Assume that M1 is almost M2–projective. Let f : M1 −→ M2/A be
any homomorphism and let π : M2 −→ M2/A be the natural epimorphism with
A ≤ M2. If there exist a nonzero direct summand K of M2 and a homomorphism
h : K −→ M1 with fh = π |K , then K = M2 since M2 is indecomposable.
Hence h : M2 −→ M1 is an epimorphism, because M1 is hollow, a contradiction.
Therefore there is a homomorphism g : M1 −→ M2 such that πg = f . The
converse is clear.

Theorem 4.5. Let M1 and M2 be hollow modules with local endomorphism
rings. Assume that there is no epimorphism between M 1 and M2. Then the fol-
lowing are equivalent for the module M = M 1 ⊕ M2:
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(1) M is hollow-lifting;
(2) M is lifting;
(3) M is quasi–discrete;
(4) M1 and M2 are relatively projective;
(5) M1 and M2 are relatively almost projective.

Proof. (1)⇔(2) Follows from Proposition 2.1. (4)⇔(5) Follows from Lemma
4.4. (5)⇔(2) By [2, Theorem 1]. (3)⇔(4) By [8, Corollary 13].

Corollary 4.6. Let M1 and M2 be hollow modules with local endomorphism
rings. Assume that Rad(M1) = M1 and M2 is local. Then the conditions (1)-(5)
in Theorem 4.5 are equivalent for the module M = M 1 ⊕ M2.

Lemma 4.7. Let M = M1 ⊕ M2 be a module. Assume that for every proper
submodule N of M if M = N + M2 then M �= N + M1. Then there is no
epimorphism from M1 to M2.

Proof. Assume that there is an epimorphism f : M1 −→ M2. Define N =
{m1 − f(m1) | m1 ∈ M1}. Then M = M2 ⊕ N . Since f is epic, M = M1 + N ,
this is a contradiction. Therefore there is no epimorphism from M1 to M2.

Proposition 4.8. Let M1 and M2 be hollow modules with local endomorphism
rings. Assume that M = M1 ⊕ M2 and for every proper submodule N of M , if
M = N + Mi, then M �= N + Mj (i �= j). Then the following are equivalent:

(1) M is hollow-lifting;
(2) M is lifting;
(3) M1 and M2 are relatively projective;
(4) M1 and M2 are relatively small projective;
(5) M1 and M2 are relatively nearly projective;
(6) M1 and M2 are relatively almost projective;
(7) M is quasi-discrete.

Proof. (1)⇔(2)⇔(3)⇔(6)⇔(7) By Theorem 4.5 and Lemma 4.7. (3)⇔(4)⇔(5)
Clear by [9, Theorem 2.6].

Proposition 4.9. Let M = ⊕i∈IHi with all Hi hollow. If M is hollow-lifting
and has (D3), then for every i ∈ I , ⊕i�=jHj is Hi-projective.

Proof. Let N be a proper submodule of M with M = N +Hi. Since M/N ∼=
Hi/N ∩ Hi and Hi/N ∩ Hi is hollow, M/N is hollow. As M is hollow-lifting,
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there exists a direct summand N ∗ of M such that N ∗ ≤ N and N/N ∗ � M/N ∗.
Therefore, M = Hi + N ∗. Since M has (D3), M = Hi ⊕ N ∗. Hence ⊕i�=jHj is
Hi-projective by [17, 41.14].

Theorem 4.10. Let M = ⊕n
i=1Hi with all Hi hollow. If M has (D3), then

the following are equivalent:

(1) M is hollow-lifting;
(2) M is lifting;
(3) M is quasi-discrete;
(4) Hi is Hj-projective for all i �= j.

Proof. (1)⇒(4) It is clear by Proposition 4.9. (3)⇔(4) By [10, Corollary 2.15].
(3)⇒(2)⇒(1) By definitions.

Proposition 4.11. Let M = ⊕i∈IHi be a direct sum of hollow modules H i

such that the decomposition ⊕ i∈IHi complements direct summands and there is no
epimorphism between Hi and Hj (i �= j). If M is hollow-lifting, then ⊕j �=iHj is
Hi-projective for each i ∈ I .

Proof. Let X be a proper submodule of M such that M = X + Hi. It is clear
that M

X is hollow. Thus there exists a direct summand Y of M such that Y ≤ X

and X
Y is small in M

Y . Hence M = Y + Hi. Since the decomposition ⊕i∈IHi

complements direct summands and there is no epimorphism between Hi and Hj

(i �= j), we have M = Y ⊕ Hi. The result is proved by [17, 41.14].

Proposition 4.12. Let M = ⊕i∈IHi be a direct sum of local modules H i

such that Rad(M) is small in M and there is no epimorphism between H i and Hj

(i �= j). The following are equivalent:

(i) M is quasi-discrete;
(ii) M is hollow-lifting and the decomposition ⊕ i∈IHi complements direct sum-

mands;
(iii) Hi is Hj-projective for each i and j with (i �= j).

Proof. (i)⇔(iii) By [12, Theorem 4.48, Proposition 4.31 and Corollary 4.51].
(i)⇒(ii) By [12, Theorem 4.48].
(ii)⇒(iii) By Proposition 4.11 and [12, Proposition 4.32].

Corollary 4.13. Let M = H1 ⊕ · · · ⊕ Hn be a direct sum of local modules
Hi such that End(Hi) is local and there is no epimorphism between H i and Hj

(i �= j). The following are equivalent:
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(i) M is quasi-discrete;
(ii) M is hollow-lifting;
(iii) Hi is Hj -projective for each i and j with (i �= j).

Proof. By Proposition 4.12 and [1, Corollary 12.7].

5. COMPLETELY HOLLOW-LIFTING MODULES

It would be desirable to find a hollow-lifting module which has a direct summand
that is not hollow-lifting but we have not been able to do this. This is remained open
in this paper. In this vein we will say that a module M is completely hollow-lifting
if every direct summand of M is hollow-lifting.

In [5], L. Ganesan and N. Vanaja introduced the UCC-modules. A module M

is a UCC-module if every submodule of M has a unique coclosure in M .

Proposition 5.1. Let M be a weakly supplemented UCC–module. If M is
hollow-lifting, then M is completely hollow-lifting.

Proof. Let M = N ⊕ N ′. Let A ≤ N with N/A hollow. By [5, Corollary
3.6], M is amply supplemented. Hence N is amply supplemented. Then there
exists a coclosed submodule A′ of N such that A′ ≤ A and A/A′ � N/A′. Since
N is coclosed in M , then A′ is coclosed in M by [5, Lemma 2.6]. Since N ′ is
coclosed in M , A′⊕N ′ is coclosed in M by [5, Theorem 3.16]. On the other hand,
(N/A′)/(A/A′) ∼= N/A implies that N/A′ is hollow. Therefore M/(N ′ ⊕ A′) is
hollow. Since M is hollow-lifting, N ′ ⊕ A′ is a direct summand of M and hence
A′ is a direct summand of N .

Proposition 5.2. Let M be a hollow-lifting module having (D 3). Then M is
completely hollow-lifting.

Proof. Let N be a direct summand of M . Then M = N ⊕ N ′ for some
submodule N ′ of M . Let K ≤ N such that N/K is hollow. Since M/K =
N/K ⊕ (N ′⊕K)/K, M/(N ′⊕K) is hollow. By assumption, there exists a direct
summand A of M such that A ≤ N ′ ⊕ K and (N ′ ⊕ K)/A � M/A. Then
M = A + N . By [10, Lemma 1.3], [N ∩ (N ′ ⊕ K)]/(A∩N ) � M/(A∩ N ). So
K/(A ∩ N ) � M/(A ∩ N ). Since M has (D3), A ∩ N is a direct summand of
M and so A∩N is a direct summand of N . Since K/(A∩N ) ≤ N/(A∩N ) and
N/(A∩N ) is a direct summand of M/(A∩N ), we have K/(A∩N ) � N/(A∩N ).
Thus N is hollow-lifting.

Theorem 5.3. Let M be a hollow-lifting module having (D 3). If M has finite
hollow dimension, then M is lifting and it is a finite direct sum of hollow modules.
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Proof. Let M be a hollow-lifting module having (D3). We first show that M is
a finite direct sum of hollow modules. We use induction on h(M). If h(M) = 1, M
is hollow. Assume now 1 < n and assume that for every hollow-lifting module N

with (D3) such that h(N ) < n, N is a finite direct sum of hollow modules. Let M
be a hollow-lifting module with h(M) = n. Suppose that M is indecomposable.
Since M has finite hollow dimension, there exists a proper submodule A of M
such that M/A is hollow. As M is hollow-lifting, there exists a direct summand
B of M such that B ≤ A and A/B � M/B. Then clearly M is hollow, a
contradiction. Therefore we can assume that M is not indecomposable. So M has
a decomposition M = N ⊕ L with N and L are nonzero submodules of M . Since
h(M) = h(N ) + h(L), h(N ) and h(L) are less than n. Further, by Proposition
5.2, N and L are hollow-lifting modules. By hypothesis they are finite direct sum
of hollow modules and so is M . By Theorem 4.10, M is lifting.

Lemma 5.4. Let M be a module. If M = M1 ⊕ M2, then M/A = (A +
M1)/A ⊕ (A + M2)/A for every fully invariant submodule A of M .

Proof. Let A be a fully invariant submodule of M . Then A = (A ∩ M1) ⊕
(A ∩ M2). Hence (A + M1) ∩ (A + M2) ≤ (M1 + M2 + A) ∩ A + (M1 +
A + A) ∩ M2 = A + [M1 + (A ∩ M1) ⊕ (A ∩ M2)] ∩ M2 = A. Therefore
M/A = (A + M1)/A ⊕ (A + M2)/A.

Lemma 5.5. Let M be a module. If M is hollow-lifting, then M/U is hollow-
lifting for every fully invariant submodule U of M .

Proof. Let A/U be a submodule of M/U with (M/U)/(A/U) ∼= M/A
hollow. Since M is hollow-lifting, there exists a direct summand B of M such that
B ≤ A, A/B � M/B and M = B ⊕ B′ for some submodule B′ of M . By [12,
Lemma 4.2(3)], (A + U)/(B + U) = A/(B + U) � M/(B + U). Now it suffices
to prove that (B + U)/U is a direct summand of M/U . Since M = B ⊕ B′,
M/U = (B + U)/U ⊕ (B′ + U)/U by Lemma 5.4. This completes the proof.

A module M is called a duo-module, if every submodule of M is fully invariant.

Corollary 5.6. Let M be a duo hollow-lifting module. Then M is completely
hollow-lifting.

Proposition 5.7. Let M = ⊕i∈IMi be a direct sum of modules M i such that
End(Mi) is local and the decomposition ⊕ i∈IMi complements direct summands.
If M is hollow-lifting, then M is completely hollow-lifting.

Proof. By [12, Theorem 2.25 and Lemma 3.20], every direct summand of M

has the exchange property. The result is proved by Proposition 2.12.



On Hollow-Lifting Modules 559

Corollary 5.8. Let M = ⊕n
i=1Mi be a direct sum of modules M i such that

End(Mi) is local. If M is hollow-lifting, then M is completely hollow-lifting.

Proof. By Proposition 5.7 and [1, Corollary 12.7].

6. SUFFICIENT CONDITIONS FOR A DIRECT SUM OF TWO HOLLOW-LIFTING MODULES TO

BE HOLLOW-LIFTING

Direct sum of two hollow-lifting modules need not be a hollow-lifting module
as we see in the following example.

Example 6.1.
(i) Let M be the ZZ–module ZZ/2ZZ ⊕ ZZ/8ZZ. Since ZZ/2ZZ and ZZ/8ZZ are

hollow, they are hollow-lifting. But M is not hollow-lifting (see Example
2.2). Note that ZZ/2ZZ is not ZZ/8ZZ-projective.

(ii) Let R be a discrete valuation ring with field of fractions K, let P be the
unique maximal ideal of R. Let M be the R-module K/R ⊕ R/P . Since
K/R and R/P are hollow, they are hollow-lifting. By [12, Proposition A.7],
M is not lifting. Therefore by Proposition 2.1, M is not hollow-lifting.

Proposition 6.2. Let M be an R-module. Suppose that M = N ⊕ K, N

and K both are hollow-lifting and N and K are relatively projective. Then M is
hollow-lifting.

Proof. Let L be a submodule of M such that M
L is hollow. Then M = N + L

or M = K + L. Suppose that M = N + L (the case M=K+L being analogous).
Hence N

L∩N is hollow. Since K is N -projective, there exists a direct summand G

of L such that M = N ⊕ G ([17, 41.14]). Then L = (N ∩ L) ⊕ G. Since N is
hollow-lifting, there exists a direct summand X of N such that X ≤ L ∩ N and
L∩N

X � N
X . Thus X ⊕ G is a direct summand of M and X ⊕ G ≤ (L ∩ N )⊕ G.

Let F be a submodule of M with X ⊕ G ≤ F and (L∩N)⊕G
X⊕G + F

X⊕G = M
X⊕G .

Then (L ∩ N ) + G + F = M . So (L ∩ N ) + F = M . Hence F = M (because
L∩N

X � N
X ). Thus X ⊕G is a coessential submodule of (L∩N )⊕G = L in M .

Theorem 6.3. Let M = M1 ⊕M2 be a duo module. Then M is hollow-lifting
if and only if M1 and M2 are hollow-lifting.

Proof. (⇒:) It is clear by Corollary 5.6.
(⇐:) Let A be submodule of M with M/A hollow. By Lemma 5.4, M/A =
(A + M1)/A ⊕ (A + M2)/A. Since M/A is hollow, we can assume that (A +
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M1)/A = M/A. Then M2 ≤ A. Since (A + M1)/A ∼= M1/(A ∩ M1) and M1 is
hollow-lifting, there exists a direct summand B1 of M1 such that B1 ≤ A∩M1 and
(A∩M1)/B1 � M1/B1. Since A = (A∩M1)⊕(A∩M2), we get A/(B1⊕M2) �
M/(B1 ⊕ M2). Moreover, it is easily seen that B1 ⊕ M2 is a direct summand of
M . Thus M is hollow-lifting.

Corollary 6.4. Let M = M1 ⊕ · · · ⊕ Mn be a duo module. Then M is
hollow-lifting if and only if M i is hollow-lifting for all i = 1, 2, . . . , n.

Proof. The proof is by induction on n and it is based on the fact that any direct
summand of a duo module is duo.

The following example shows that in Theorem 6.3, Duo is essential:

Example 6.5. Consider the ZZ–module M in Example 6.1(i). Then M is not
duo. For, let f : ZZ/2ZZ ⊕ ZZ/8ZZ −→ ZZ/2ZZ ⊕ ZZ/8ZZ be the homomorphism
defined by f(p, q) = (p + q, 2q). Then f(0 ⊕ ZZ/8ZZ) �⊆ 0 ⊕ ZZ/8ZZ (f(0, 1) =
(1, 2)).

Let M1 and M2 be modules. The module M1 is called h-small M2-projective
if every homomorphism f : M1 −→ M2/A, where A ≤ M2, M2/A is hollow and
Imf � M2/A, can be lifted to a homomorphism ϕ : M1 −→ M2. Obviously, if
M1 is small M2-projective, then M1 is h-small M2-projective.

Lemma 6.6. Let M1 and M2 be modules and M = M1 ⊕ M2. The following
are equivalent:

(i) M1 is h-small M2-projective;
(ii) For every submodule N of M such that M/N is hollow and M �= M 1 + N ,

there exists a submodule N ′ of N such that M = N ′ ⊕ M2.

Proof. By the same proof of [10, Lemma 2.4].

Lemma 6.7. Let M1 = K ⊕ L and M2 be two modules. If M1 is h-small
M2-projective, then K is h-small M2-projective.

Proof. Let X be a submodule of M2 such that M2
X is hollow and let f :

K −→ M2
X be an homomorphism with Imf � M2

X . Let π : M2 −→ M2
X be the

natural epimorphism and let g : M1 −→ K be the canonical projection. Then
fg : M1 −→ M2

X is a homomorphism with Im(fg) = Imf � M2
X . Since M1

is h-small M2-projective, there exists a homomorphism ϕ : M1 −→ M2 such that
πϕ = fg. It is clear that π(ϕ/K) = f where ϕ/K is the restriction of ϕ to K.
Therefore K is h-small M2-projective.
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Lemma 6.8. If M is h-small (M1 ⊕ M2)-projective, then M is h-small M i-
projective for i = 1, 2.

Proof. Let N1 be a submodule of M1 such that M1
N1

is hollow. Let f : M −→
M1
N1

be a homomorphism such that Imf � M1
N1

. Let h : M1
N1

−→ M1⊕M2
N1⊕M2

be the
natural isomorphism defined by h(m1 + N1) = m1 + (N1 ⊕ M2). Since M is
h-small (M1 ⊕ M2)-projective and Imhf � M1⊕M2

N1⊕M2
, there is a homomorphism

ϕ : M −→ M1 ⊕ M2 such that πϕ = hf where π : M1 ⊕ M2 −→ M1⊕M2
N1⊕M2

is the
canonical epimorphism. Let α : M1 −→ M1

N1
and β : M1 ⊕ M2 −→ M1 be the

canonical epimorphisms. It is clear that αβϕ = f and βϕ is a homomorphism from
M to M1. Therefore M is h-small M1-projective.

Proposition 6.9. Let M be any module and let H1 and H2 be two hollow
modules. Assume that M is small H 1-projective and small H2-projective.Then M
is small (H1 ⊕ H2)-projective.

Proof. Let f : M −→ B be any homomorphism and g : H1 ⊕ H2 −→ B be
any epimorphism, where B is any module. Assume Imf � B. Since g is epic,
g(H1) + g(H2) = B. It is easy to see that f can be lifted to a homomorphism
from M to H1 ⊕ H2 if g(H1) = B or g(H2) = B. Now assume g(H1) �=
B and g(H2) �= B. Let π : B −→ B/g(H2) be the natural epimorphism and
ḡ : H1 −→ B/g(H2) be the epimorphism defined by ḡ(h1) = g(h1) + g(H2).
Clearly, (πf)(M) � B/g(H2). Since M is small H1-projective, there exists a
homomorphism h1 : M −→ H1 such that ḡh1 = πf . Since for every x ∈ M
f(x)−gh1(x) ∈ g(H2), consider the homomorphism f̄ = f −gh1 : M −→ g(H2).
Now we prove that Imf̄ � g(H2). Since H2 is hollow, g(H2) is hollow. Therefore
it is sufficient to show that Imf̄ �= g(H2). If Imf̄ = g(H2), then g(H1) = B
since f(M) � B, this is a contradiction. Thus Imf̄ �= g(H2). Since M is small
H2-projective there exists a homomorphism h2 : M −→ H2 such that gh2 = f̄ .
Now let h be the homomorphism defined by h = h1 + h2 : M −→ H1 ⊕ H2.
Clearly f lifts to the homomorphism h.

Lemma 6.10. Let M1 be any module and M2 = ⊕n
i=1Hi be a finite direct

sum of hollow modules. Then M1 is h-small M2-projective if and only if it is small
M2-projective.

Proof. (⇐:)Clear.
(⇒:) Assume M1 is h-small M2-projective. Let i ∈ {1, 2, ....., n}. Clearly, M1

is h-small Hi-projective (see Lemma 6.8) and hence M1 is small Hi-projective.
Therefore M1 is small M2-projective by Proposition 6.9.
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Lemma 6.11. Let M1 be any module, M2 a hollow-lifting module and let
M = M1⊕M2. If M1 is h-small M2-projective, then every coclosed submodule K
of M such that M/K is hollow and (K + M1)/K � M/K is a direct summand
of M .

Proof. Let K be a coclosed submodule of M such that M/K is hollow and
(K + M1)/K � M/K . By Lemma 6.6, there exists a submodule N ′ of K such
that M = N ′⊕M2. Now M/N ′ is hollow-lifting, K/N ′ is coclosed in M/N ′ and
M
N ′
K
N ′

is hollow. Therefore K/N ′ is a direct summand of M/N ′. Hence K is a direct
summand of M .

Theorem 6.12. Let M1 and M2 be hollow-lifting modules and let M =
M1 ⊕ M2 be an amply supplemented module. If one of the following conditions
holds, then M is hollow-lifting.

(i) M1 is h-small M2-projective and every coclosed submodule K of M with
M/K hollow and M = K + M1 is a direct summand of M ;

(ii) M1 and M2 are relatively h-small projective and every coclosed submodule
K of M with M/K hollow and M = K + M1 = K + M2 is a direct
summand of M ;

(iii) M2 is M1-projective and M1 is h-small M2-projective;
(iv) M1 is semisimple and h-small M2-projective.

Proof. (i) and (ii) By Lemma 6.11 and [10, Proposition 1.5].
(iii) Let K be a coclosed submodule of M with M/K hollow and M = K+M1.

Since M2 is M1-projective, there exists a direct summand K ′ of K such that
M = K ′ ⊕ M1 by [17, 41.14]. By the same proof of Lemma 6.11, we conclude
that K is a direct summand of M . The result follows from (i).

(iv) Follows from (iii).

Lemma 6.13. Let M1 and M2 be two modules. Suppose that M = M1 ⊕ M2

is a hollow-lifting module having (D 3). Then M1 and M2 are relatively h-small
projective.

Proof. It suffices to prove that M1 is h-small M2-projective. Let N be a
submodule of M with M/N hollow and M �= N + M1. Then M = N + M2. As
M is hollow-lifting, there exists a direct summand K of M such that K ≤ N and
N/K � M/K . Then M = K + M2. Since M has (D3), K ∩ M2 is a direct
summand of M . Let L be a submodule of K with K = (K ∩ M2) ⊕ L. Hence
M = L + M2. But L ∩ M2 = L ∩ K ∩ M2 = 0. Then M = L ⊕ M2. By Lemma
6.6, M1 is h-small M2-projective.
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Theorem 6.14. Let M = M1 ⊕M2 be an amply supplemented module having
(D3) such that M1 is semisimple and M2 is a lifting module that is a finite direct
sum of hollow modules. Then following are equivalent:

(i) M is lifting;
(ii) M is hollow-lifting;
(iii) M1 is h-small M2-projective;
(iv) M1 is small M2-projective.

Proof. (i) ⇒ (ii) It is clear. (iii)⇔ (iv) By Lemma 6.10. (ii)⇒ (iii) By Lemma
6.13. (iv)⇒ (i) By [10, Theorem 2.8].

Let R be any ring and let M be an R-module. M is called a radical module if
Rad(M) = M . By P (M) we denote the sum of all radical submodules of M . If
P (M) = 0, M is called reduced. It is easy to see that P (M) is a fully invariant
submodule of M and it is always radical. So by Lemma 5.5, if M is hollow-lifting,
then M

P (M )
is hollow-lifting. On the other hand, if M is a supplemented module,

[21, Lemma 1.5 (c)] shows that M
P (M ) is coatomic.

Proposition 6.15. Let M be an R-module. Suppose that M is hollow-lifting.
If P (M) is a direct summand of M , then P (M) and M

P (M ) both are hollow-lifting.

Proof. We only need to show that P (M) is hollow-lifting. Let N be a
submodule of M with M = P (M) ⊕ N . Let L be a submodule of P (M) such
that P (M )

L is hollow. Thus M
L⊕N is hollow. Since M is hollow-lifting, there exists

a submodule X of M such that X is a strong supplement of L ⊕ N in M . Hence
(L⊕N ) + X = M and P (M )

L
∼= M

L⊕N
∼= X

(L⊕N)∩X . Therefore X is hollow radical
and X ≤ P (M). Hence P (M) = L+X . Since X ∩L = (L⊕N )∩X , X ∩L is a
direct summand of L. So X is a strong supplement of L in P (M). Consequently,
P (M) is hollow-lifting.

Proposition 6.16. Let M be an R-module. Suppose that M = N ⊕ K , N

is radical, K is coatomic, N and K both are hollow-lifting and N and K are
relatively h-small projective. Then M is hollow-lifting.

Proof. Let L be a submodule of M such that M
L is hollow. Then M = N + L

or M = K + L. If M = K + L = N + L, then M
L

∼= N
N∩L

∼= K
K∩L . Hence K

K∩L
is coatomic and radical. Thus K

K∩L = 0 and L = M , a contradiction. Therefore
we have M = N + L and M �= K + L or M �= N + L and M = K + L. Since
N and K are relatively h-small projective, the rest of the proof is the same as the
proof of Proposition 6.2 (See Lemma 6.6).
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Proposition 6.17. Let M be an R-module. If M = P (M) ⊕ K for some
coatomic submodule K of M and M is hollow-lifting, then P (M) and K are
relatively h-small projective.

Proof. Let L be a submodule of M with M �= P (M) + L and M
L hollow.

Then M = K + L. Hence M
L

∼= K
L∩K and M

L is local. Since M is hollow-lifting,
there exists a direct summand E of M such that E ≤ L and L

E � M
E . Then

M = E + K and M
E is local. Let F be a submodule of M with M = E ⊕ F . So

P (M) = P (E)⊕P (F ). Thus P (F ) is a radical direct summand of F . Therefore F
is reduced because F is local. This gives P (M) = P (E) ≤ E . Hence P (M) ≤ L.
Since M = P (M) ⊕ K, P (M) is h-small K-projective.

Now, let L be a submodule of M with M �= K + L and M
L is hollow. Then

M = P (M) + L, M
L

∼= P (M )
L∩P (M )

and M
L is radical. Since M is hollow-lifting,

there exists a direct summand B of M such that B ≤ L and L
B � M

B . It is clear
that M

B is hollow radical. Let A be a submodule of M with M = A ⊕ B. Then
P (M) = P (A)⊕P (B) and P (M) = A⊕P (B) because A is radical. Since P (B)
is a direct summand of B, there exists a submodule C of B such that B = P (B)⊕C.
Then M = A ⊕ B = A ⊕ P (B) ⊕ C. Thus M = P (M) ⊕C. Since C ≤ L, K is
h-small P (M)-projective.

Theorem 6.18. Let M be an R-module. Suppose that M = P (M) ⊕ K for
some coatomic submodule K of M . Then M is hollow-lifting if and only if P (M)
and K are relatively h-small projective and P (M) and K both are hollow-lifting.

Proof. By Proposition 6.17, Proposition 6.16 and Proposition 6.15.

Corollary 6.19. Let M = M1 ⊕M2 be an R-module such that M1 is radical
and M2 is semisimple. Then M is hollow-lifting if and only if M 1 is hollow-lifting
and M2 is h-small M1-projective.

Proof. It is clear that P (M) = M1 and M2 is coatomic. The result follows
from Theorem 6.18.

Example 6.20. Consider the module in Example 6.1(ii). Since M is not
hollow-lifting, Corollary 6.19 shows that R/P is not h-small K/R-projective.

Lemma 6.21. Let M be a hollow-lifting module such that M = P (M) ⊕ K
for some submodule K of M and P (M) = H is hollow. Then K is hollow-lifting
and K is H-projective.

Proof. By Proposition 6.15, K is hollow-lifting. Let N be a proper submodule
of M such that M = H + N . Then M

N is hollow. Since M is hollow-lifting, there
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is a direct summand X of M such that X ≤ N and N
X � M

X . Thus M = H + X .
Therefore M

X is radical. Let Y be a radical submodule of M such that M = X⊕Y .
It is clear that Y = H . Hence M = X ⊕ H . Consequently, K is H-projective.

Lemma 6.22. Let M be a hollow-lifting module such that M = P (M) ⊕ K
for some local submodule K of M . Then P (M) is hollow-lifting and it is K-
projective.

Proof. By Proposition 6.15, P (M) is hollow-lifting. Let N be a proper
submodule of M such that M = N + K. Then M

N is hollow. Since M is hollow-
lifting, there is a direct summand X of M such that X ≤ N and N

X � M
X . Thus

M = K + X . Since M
K

∼= P (M) is radical, X
X∩K is also radical. But K is hollow.

Then X ∩K � X and X is radical. Therefore X ≤ P (M) and M = X ⊕K. So
P (M) is K-projective.

Proposition 6.23. Let R be a commutative noetherian ring and let M be a
supplemented R-module. Suppose that P (M) = H is hollow and M = H ⊕K for
some submodule K of M . Then M is hollow-lifting if and only if K is hollow-lifting
and H and K are relatively projective.

Proof. Suppose that M is hollow-lifting. Then K is hollow-lifting by Propo-
sition 6.15. By [14, Proposition 4.6], M is amply supplemented. Let N be a
submodule of M with M = N + K . There is a submodule L of N such that L is
a supplement of K in M . Since M

K is radical, L is also radical. Thus L ≤ P (M).
Hence M = L ⊕ K. So H is K-projective. By Lemma 6.21, K is H-projective.
For the converse we use Proposition 6.2.

Proposition 6.24. Let R be a commutative noetherian ring and let M be a
supplemented R-module. If M is completely hollow-lifting, then M = P (M) ⊕N
for some (coatomic) submodule N of M and P (M) is a direct sum of hollow
modules.

Proof. By [20, Satz 2.3 and Satz 2.5], M = ⊕m∈ΩKm(M). So it suffices to
prove the result over a local ring. Suppose that R is local. By [14, Corollary 2.5],
M = P (M) + X with a coatomic submodule X of M and P (M) is supplemented
and it is a sum of finitely many hollow modules. Then P (M) has a finite hollow
dimension. Let P (M) = H1 + · · · + Hn with Hi is hollow for all i. Then

M
H2+···+Hn+X is hollow radical. Since M is hollow-lifting, M has a hollow radical
direct summand K1. Let X1 be a direct summand of M such that M = K1 ⊕ X1.
Since X1 is a completely hollow-lifting supplemented module and P (M) has finite
hollow dimension, we have M = P (M)⊕N with a coatomic submodule N of M

and P (M) is a finite direct sum of hollow radical modules.
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Recall that any module M has finite Goldie dimension if M does not contain
an infinite direct sum of nonzero submodules.

Proposition 6.25. Let R be a commutative noetherian ring and let M be a
supplemented R-module having finite hollow dimension or finite Goldie dimension.
If M is hollow-lifting, then M = P (M) ⊕ N such that N is a finite direct sum of
local modules.

Proof. By Proposition 3.1 and [20, Satz 2.3 and Satz 2.5], it suffices to prove
the result over a local ring. Suppose that R is local. By [14, Corollary 2.5],
M = P (M) + X with a coatomic submodule X of M . Since M is hollow-lifting
and X is a sum of local modules, M has a local direct summand (see Proposition
2.13). Let M = K1 ⊕ X1 with K1 local. Since X1 is supplemented, we have
X1 = P (X1) + X2 with X2 coatomic. Since K1 has local endomorphism ring ([3,
Theorem 4.1]), it has the exchange property. So X1 is hollow-lifting by Proposition
2.12. If X1 is not radical, then X2 �� X1 and X1 has a local direct summand. But
M has finite dimension. Then we obtain that M =Y ⊕K1⊕· · ·⊕Kn with Y radical
and Ki(i=1,. . ., n) are local modules. Since Ki are reduced, Y =P (M).

The following example shows that Propositions 6.24 and 6.25 are not true in
general if the ring R is not noetherian.

Example 6.26. Let K be a field and let R be the ring of polynomials in
countably many commuting variables x1, x2, . . . , over K , subject to the relations
x2

1 = 0 and x2
n = xn−1 for n ≥ 2. By [16, Example 2.11], R is a local ring with

maximal ideal J generated by the xi. Further, J is nil but not nilpotent (in fact
J2 = J). So R is not noetherian. Let L = R considered as an R-module. It is
clear that L is a local module. Thus L is a completely hollow-lifting supplemented
module. On the other hand, we have P (L) = J . Hence P (L) is not a direct
summand of L.

Recall that a module M is called socle-free if Soc(M) = 0.

Corollary 6.27. Let R be a commutative noetherian ring and let M be a
supplemented socle-free R-module. If M is hollow-lifting, then M = P (M) ⊕ N
for some (coatomic) submodule N of M and P (M) and N both are direct sum of
hollow modules.

Proof. By Proposition 3.1 and [20, Satz 2.3 and Satz 2.5], it suffices to prove
the result over a local ring. Suppose that R is local. By [14, Corollary 2.5],
M = P (M)+X with a coatomic submodule X of M and P (M) is a finite sum of
hollow radical submodules. Then M has a hollow radical direct summand H1 (see



On Hollow-Lifting Modules 567

Proposition 2.13). By [14, Theorem 1.3] and [12, Proposition 5.10 and Corollary
5.5], every hollow radical direct summand of M has local endomorphism ring.
Hence M

H1
is hollow-lifting by Proposition 2.12. Since M

H1
is supplemented and

P (M) has finite hollow dimension, we have M = P (M) ⊕ N with N coatomic,
P (M) is a finite direct sum of hollow modules and N is hollow-lifting. By [19,
Folgerung 1 p. 225], N has finite Goldie dimension. By Proposition 6.25, N is a
finite direct sum of local modules.

Corollary 6.28. Let R be a commutative local noetherian ring and let M
be a supplemented socle-free R-module. Then M is hollow-lifting if and only if
M = P (M) ⊕ N for some (coatomic) submodule N of M and P (M) and N are
relatively projective hollow-lifting modules.

Proof. Suppose that M is hollow-lifting. By the proof of Corollary 6.27,
M = P (M)⊕N , P (M) = ⊕n

i=1Hi is a finite direct sum of hollow radical modules
Hi and N = ⊕m

j=1Kj is a finite direct sum of local modules Kj . By Theorem
6.18, P (M) and N are hollow-lifting relatively h-small projective modules. By
Lemma 6.8 and Lemma 6.7, P (M) and Kj are relatively h-small projective for all
j = 1, . . . , m and N and Hi are relatively h-small projective for all i = 1, . . . , n.
By Theorem 6.18 and Proposition 6.15, P (M)⊕Kj and Hi ⊕N are hollow-lifting
for all i = 1, . . . , n and j = 1, . . . , m. By Lemma 6.21 and Lemma 6.22, P (M)
is Kj-projective and N is Hi-projective for all i = 1, . . . , n and j = 1, . . . , m.
By [12, Proposition 4.33], P (M) is N -projective and N is P (M)-projective. The
converse follows from Proposition 6.2.
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21. H. Zöschinger, Komplementierte Moduln uber Dedekindringen, J. Algebra, 29 (1974),
42-56.

Nil Orhan and Derya Keskin Tütüncü
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