Open Access
2007 NORMALIZED MATCHING PROPERTY OF A CLASS OF SUBSPACE LATTICES
Jun Wang, Huajun Zhang
Taiwanese J. Math. 11(1): 43-50 (2007). DOI: 10.11650/twjm/1500404632

Abstract

Let $V_n(q)$ be the $n$-dimensional vector space over the finite field with $q$ elements and $K$ a selected $k$-dimensional subspace of $V_n(q)$. Let $C[n,k,t]$ denote the set of all subspaces $S$’s such that $\dim (S \cap K) \geq t$. We show that $C[n,k,t]$ has the normalized matching property, which yields that $C[n,k,t]$ has the strong Sperner property and the LYM property.

Citation

Download Citation

Jun Wang. Huajun Zhang. "NORMALIZED MATCHING PROPERTY OF A CLASS OF SUBSPACE LATTICES." Taiwanese J. Math. 11 (1) 43 - 50, 2007. https://doi.org/10.11650/twjm/1500404632

Information

Published: 2007
First available in Project Euclid: 18 July 2017

zbMATH: 1135.05073
MathSciNet: MR2304003
Digital Object Identifier: 10.11650/twjm/1500404632

Subjects:
Primary: 05D05 , 06A07

Keywords: normalized matching property , poset , Sperner property , subspace lattice

Rights: Copyright © 2007 The Mathematical Society of the Republic of China

Vol.11 • No. 1 • 2007
Back to Top