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Schwarz Lemma at the Boundary for Holomorphic and Pluriharmonic

Mappings Between p-unit Balls

Jianfei Wang

Abstract. We give Schwarz lemma at the boundary for holomorphic mappings between

p-unit ball Bn
p ⊂ Cn and BN

p ⊂ CN , where p ≥ 2. When p = 2, this result reduces

to that of Liu, Chen and Pan [21] between the Euclidean unit balls, and our method

is new. By generalizing pluriharmonic Schwarz lemma of Chen and Gauthier [5] from

p = 2 to p ≥ 2, we obtain the boundary Schwarz lemma for pluriharmonic mappings

between p-unit balls.

1. Introduction

Schwarz lemma is a fundamental result of complex analysis, which plays an important role

in geometric function theory and complex geometry. The description of Schwarz lemma

has attracted many mathematicians’ attention, see [1,4,6,7,14,23]. In recent years, many

scholars have been interested in studying Schwarz lemma at the boundary of a domain.

The following boundary Schwarz lemma in one complex variable is well-known.

Lemma 1.1. [8,15,24] Let U be the unit disk of the complex plane C. Suppose f(z) : U →
U is a holomorphic function. If f(z) is holomorphic at z = 1 (or more generally, if f is

differentiable at z = 1), f(0) = 0 and f(1) = 1, then f ′(1) ≥ 1. Moreover, f ′(1) = 1 if

and only if f(z) ≡ z.

If the condition f(0) = 0 is removed, applying Lemma 1.1 to g(z) = 1−f(0)
1−f(0)

f(z)−f(0)

1−f(0)f(z)
,

then one has the following estimate instead:

(1.1) f ′(1) ≥ |1− f(0)|2

1− |f(0)|2
≥ 1− |f(0)|

1 + |f(0)|
> 0.

The boundary Schwarz lemma plays also important role in the classical complex analy-

sis. For example, the Bieberbach conjecture and Bloch constant are the two most difficult
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problems in the geometric function theory of one complex variable. Since De Branges

solved the Bieberbach conjecture in 1984, finding the exact value of the Bloch constant

is still pending until now. However, applying to boundary Schwarz lemma, Bonk [3]

improved the lower bound of the Bloch constant.

It is natural to generalize Lemma 1.1 to several complex variables. Liu et al. [20,

Theorems 3.1 and 3.4] established the following boundary Schwarz lemma for holomorphic

self-mappings defined on the Euclidean unit ball Bn in Cn, which is a higher dimensional

version of Lemma 1.1.

Theorem 1.2. [20] Let f : Bn → Bn be a holomorphic mapping. If f is holomorphic at

z0 ∈ ∂Bn and f(z0) = w0 ∈ ∂Bn, then the following statements hold.

(i) Jf (z0)Tz0(∂Bn) ⊂ Tw0(∂B
n), and Jf (z0)T 1,0

z0 (∂Bn) ⊂ T 1,0
w0 (∂Bn).

(ii) There is λ ∈ R such that Jf (z0)
T
w0 = λz0, where

λ = w0
TJf (z0)z0 ≥

|1− f(0)
T
w0|

1− ∥f(0)∥2
> 0

and Jf (z0)
T
is the transpose of conjugate matrix Jf (z0). If f(0) = 0, then λ ≥ 1.

(iii) For any µj, there exists αj ∈ ∂Bn ∩ T
(1,0)
z0 (∂Bn) such that

Jf (z0)αj = µjαj , |µj | ≤
√
λ, j = 2, . . . , n.

(iv) |det Jf (z0)| ≤ λ(n+1)/2, | tr Jf (z0)| ≤ λ+
√
λ(n− 1).

Moreover, these inequalities (ii), (iii) and (iv) are all sharp.

Interestingly, boundary Schwarz lemma plays also an important tool to the study of

geometric function theory in several complex variables, see [9, 11,13,16–20,26,27].

Recently, Liu et al. in [21, Theorem 1.1] gave a boundary Schwarz lemma for holomor-

phic mappings between the Euclidean unit balls in any dimensions as follows.

Theorem 1.3. [21] Let f : Bn → BN be a holomorphic mapping for n,N ≥ 1. If f is

C1+α for some α ∈ (0, 1) at z0 ∈ ∂Bn and f(z0) = w0 ∈ ∂BN , then we have

(i) Jf (z0)Tz0(∂Bn) ⊂ Tw0(∂B
N ), and Jf (z0)T 1,0

z0 (∂Bn) ⊂ T 1,0
w0 (∂BN ).

(ii) There exists λ ∈ R such that

Jf (z0)
T
w0 = λz0,

where λ ≥ |1−f(0)
T
w0|

1−∥f(0)∥2 .
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Furthermore, the following boundary Schwarz lemma for pluriharmonic mappings be-

tween unit balls was obtained by Liu, Dai and Pan in [22, Theorem 1.2].

Theorem 1.4. [22] Let f : Bn → BN be a pluriharmonic mapping for n,N ≥ 1. If f is

C1+α for some α ∈ (0, 1) at z0 ∈ ∂Bn and f(z0) = w0 ∈ ∂BN , then we have

(i) Df(z′0)Tz0(∂Bn) ⊂ Tw′
0
(∂BN ).

(ii) There exists λ > 0 such that

Df(z′0)
T
w′
0 = λz′0,

where z′0 and w′
0 are real version of vector z0 and w0 respectively, and λ ≥ 1−∥f(0)∥

22n−1 >

0.

Hamada [10] gave an improvement to λ ≥ 1−∥f(0)∥
2 > 0 under the weak condition that

the pluriharmonic mapping f is of C1 at z0 ∈ ∂Bn.

In this paper, we consider Schwarz lemma at the boundary of the p-unit ball Bn
p defined

by

Bn
p =

{
(z1, . . . , zn) ∈ Cn : ∥z∥p = (|z1|p + · · ·+ |zn|p)1/p < 1

}
, p ≥ 2.

It is clear to see that Bn
2 is the Euclidean unit ball of Cn, always written by Bn. If

2 ≤ p < ∞, the domain Bn
p is a class of important weak psuedoconvex domains in Cn.

In view of the above results, the motivation for this paper can be summarized in terms

of the following question.

Question 1.5. Let p ≥ 2 and n,N ≥ 1. Suppose that f : Bn
p → BN

p is a holomorphic or

pluriharmonic mapping. If f is of C1 class at z0 ∈ ∂Bn
p , f(z0) = w0 ∈ ∂BN

p , then what

conclusions can we obtain about Df(z0)?

This paper is devoted to giving an affirmative answer to Question 1.5. Compared

with the Euclidean unit ball for p = 2, the p-unit ball for p ̸= 2 is not homogeneous.

There appears some difficulty because we can not proceed in analogy with Liu and Pan’s

idea [21] of p = 2. Our way to overcome this obstacle is to introduce the slice holomorphic

function and then apply the general boundary Schwarz lemma of the unit disk (i.e., the

inequality (1.1)) to the slice function, see Theorem 4.1. As a consequence, we generalize

Schwarz lemma at the boundary for holomorphic mappings between p-unit balls from p = 2

to p ≥ 2. Also, our idea is simple and new. Next, by extending pluriharmonic Schwarz

lemma of Chen and Gauthier [5] from p = 2 to p ≥ 2, we then give a Schwarz lemma at

the boundary for pluriharmonic mapping between p-unit balls, which is Theorem 4.3.

The paper is organized as follows. In Section 2 we introduce some notations and

definitions. In Section 3, we introduce some lemmas which will be used to prove the main

results. In Section 4, we prove our main results.
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2. Preliminaries

To proceed further, let us first introduce some notations and definitions. Denote by Cn

the n-dimensional complex Hilbert space with the inner product and the norm given by

⟨z, w⟩ =
n∑

j=1

zjwj , ∥z∥ = ⟨z, z⟩1/2,

where z, w ∈ Cn. As real vectors in R2n, z and w are orthogonal if and only if Re⟨z, w⟩ = 0.

Throughout this paper, we write a point z ∈ Cn as a column vector in n × 1 matrix

form

z =


z1

z2
...

zn

 .

Let Ω ⊂ Cn be a domain. For a holomorphic mapping f : Ω → Cn, we also write f as the

n× 1 matrix form

f =


f1

f2
...

fn

 ,

where fj is a holomorphic function from Ω to C, j = 1, . . . , n. The derivative of f at a

point z ∈ Ω is the complex Jacobian matrix of f given by

Jf (z) =

(
∂fj(z)

∂zk

)
n×n

.

Then Jf (z) is a linear mapping from Cn to Cn. The symbol Jf (x)
T stands for the transpose

of the matrix Jf (x).

A domain means a connected open set in Cn (or Rn) and the symbol Jf (z)
T stands for

the transpose of the matrix Jf (z). Denote by Ck(Ω1,Ω2) the set of k-times continuously

differential mappings from Ω1 ⊂ Cn into Ω2 ⊂ Cn. When k = 0, C0(Ω1,Ω2) = C(Ω1,Ω2)

denotes the set of continuous mappings from Ω1 into Ω2.

The following definition is well-known.

Definition 2.1. A mapping f : Ω → Cn is said to be differentiable at z ∈ Ω if there exists

a bounded real linear map Df such that

lim
h→0

∥f(z + h)− f(z)−Df(z)h∥
∥h∥

= 0.
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If f is differentiable at each point of Ω, then f is said to be differentiable on Ω. In this

case, the mapping

Df : z ∈ Ω 7→ Df(z)

is called the derivative (or differential) of f on Ω. If f is continuous in a neighborhood of

z, the mapping f is said to be of class C1 at z.

Next, we need to introduce the following two definitions, see [15].

Definition 2.2. Let z0 ∈ ∂Bn
p with p ≥ 2. The real tangent space Tz0(∂Bn

p ) to ∂Bn
p at

z0 is defined by

Tz0(∂Bn
p ) =

{
α ∈ Cn : Re⟨α,∇ρ(z0)⟩ = Re

[
∇ρ(z0)

T
α
]
= 0
}
.

Definition 2.3. Let z0 ∈ ∂Bn
p with p ≥ 2. The complex tangent space T 1,0

z0 (∂Bn
p ) to ∂Bn

p

at z0 is defined by

T 1,0
z0 (∂Bn

p ) =
{
α ∈ Cn : ⟨α,∇ρ(z0)⟩ = ∇ρ(z0)

T
α = 0

}
,

where T denotes the transpose of vectors and matrices.

Definition 2.4. A pluriharmonic mapping f is a continuous mapping and defined on a

domain Ω ⊂ Cn such that for fixed z ∈ Ω and η ∈ Cn with ∥η∥ = 1, the mapping f(z+ξη)

is harmonic in the complex variable ξ, such that |ξ| is smaller than the distance of z from

∂Ω, see [5].

If Ω is a simply connected domain in Cn, then f : Ω → CN is pluriharmonic if and

only if f has a representation f = g + h, where g and h are holomorphic mappings from

Ω into CN .

3. Some lemmas

In order to prove our main results, we exhibit several basic lemmas as follows. For z ∈ Bn
p

with p ≥ 2, the p-norm ρ(z) = ∥z∥p of Bn
p is C2 class except the origin. Let ∇ρ(z) be a

gradient at a point z ̸= 0. Then we have

∇ρ(z) = 2
∂ρ(z)

∂z
= 2

(
∂ρ(z)

∂z1
, . . . ,

∂ρ(z0)

∂zn

)T

=

(
∂ρ

∂x1
+ i

∂ρ

∂y1
, . . . ,

∂ρ

∂xn
+ i

∂ρ

∂yn

)T

,

where zj = xj + iyj for j = 1, . . . , n. Moreover, if z ∈ Cn \ {0}, then we get

∇ρ(z) =
1

∥z∥p−1
p

(
|z1|p−2z1, . . . , |zn|p−2zn

)T
and ∥∇ρ(z)∥q = 1,

where 1/p+1/q = 1. Further, it is easy to see that ρ(z) is a C2 on the boundary ∂Bn
p for

p ∈ [2,∞).
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Lemma 3.1. The p-norm ρ(z) = ∥z∥p of Bn
p satisfies the following properties.

(i) ∇ρ(z) = 2∂ρ
∂z (z) = 2

( ∂p
∂z1

(z), . . . , ∂ρ
∂zn

(z)
)
, ∀ z ∈ Cn \ {0}.

(ii) ⟨∇ρ(z0), z0⟩ = 1, ∀ z0 ∈ ∂Bn
p .

(iii) ⟨∇ρ(z), z⟩ = 2Re ∂ρ
∂z (z)z = ρ(z), ∀ z ∈ Cn \ {0}.

(iv)
∣∣⟨∇ρ(z), w⟩

∣∣ ≤ ρ(w), ∀ z ∈ Cn \ {0}, w ∈ Cn.

Proof. Firstly, the result (i) is clear. Since ρ(z) =
(
|z1|p + · · ·+ |zn|p

)1/p
, we have

∇ρ(z) =
1

∥z∥p−1
p

(
|z1|p−2z1, . . . , |zn|p−2zn

)T
, z ̸= 0.

Also, (ii) and (iii) hold by using the above equality.

By using Hölder inequality, we get

∣∣⟨∇ρ(z), w⟩
∣∣ = 1

∥z∥p−1
p

∣∣∣∣∣
n∑

k=1

|zk|p−2zkwk

∣∣∣∣∣ ≤ 1

∥z∥p−1
p

n∑
k=1

|zk|p−1|wk|

≤ 1

∥z∥p−1
p

(
n∑

k=1

|zk|(p−1)q

)1/q ( n∑
k=1

|wk|p
)1/p

=

n∑
k=1

(|wk|p)1/p = ρ(w),

which gives the proof of (iv).

The following Schwarz lemma is due to Pavlović [25, Theorem 3.6.1].

Lemma 3.2. [25] Let f : U → U be a harmonic mapping. Then∣∣∣∣f(z)− 1− |z|2

1 + |z|2
f(0)

∣∣∣∣ ≤ 4

π
arctan |z|, ∀ z ∈ U.

The following Schwarz lemma is a generalization of [5, Theorem 4] from the Euclidean

unit balls to p-unit balls, which is a high dimensional version of Lemma 3.2.

Lemma 3.3. [7] Let p ≥ 2 and let f : Bn
p → BN

p be a pluriharmonic mapping. Then∥∥∥∥∥f(z)− 1− ∥z∥2p
1 + ∥z∥2p

f(0)

∥∥∥∥∥
p

≤ 4

π
arctan ∥z∥p, ∀ z ∈ Bn

p .

When f(0) = 0, it holds

∥f(z)∥p ≤
4

π
arctan ∥z∥p, ∀ z ∈ Bn

p .

The following Harnack inequality can be found in [2, 12]. For the completeness, we

give a self-contained proof.
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Lemma 3.4. [12] Let Bn be the real unit ball of Rn. If u : Bn → R is a nonnegative

harmonic function, then for any x ∈ Bn, we have

1− ∥x∥
(1 + ∥x∥)n−1

u(0) ≤ u(x) ≤ 1 + ∥x∥
(1− ∥x∥)n−1

u(0).

In particular, when −1 < x1 < 1, it holds

1− |x1|
(1 + |x1|)n−1

u(0) ≤ u(x1, 0, . . . , 0) ≤
1 + |x1|

(1− |x1|)n−1
u(0).

Proof. Firstly, we suppose that u is harmonic on the closed unit ball Bn. According to

Poisson’s equation, we have

u(x) =
1

ωn−1

∫
Sn−1

1− ∥x∥2

∥x− y∥n
u(y) dσ(y)

holds for all x ∈ Bn. Notice that

1− ∥x∥2

(1 + ∥x∥)n
≤ 1− ∥x∥2

∥x− y∥n
≤ 1− ∥x∥2

(1− ∥x∥)n
, u(0) =

1

ωn−1

∫
Sn−1

u(y) dσ(y),

we get
1− ∥x∥

(1 + ∥x∥)n−1
u(0) ≤ u(x) ≤ 1 + ∥x∥

(1− ∥x∥)n−1
u(0).

Secondly, for the general case, if u(x) is a nonnegative harmonic function, then we apply

the above result to the dilates function ur(x) = u(rx) (0 < r < 1) and take the limit as

r → 1−.

4. Main results

In this section, we prove the main results of this article. Recall the following notations

ρ(z) =

(
n∑

k=1

|zk|p
)1/p

and ∇ρ(z) = 2
∂ρ

∂z
(z) =

1

∥z∥p−1
p

(
|z1|p−2z1, . . . , |zn|p−2zn

)T
.

Theorem 4.1. Let p ≥ 2 and n,N ≥ 1. Suppose that f : Bn
p → BN

p is a holomorphic

mapping. If f is C1 at z0 ∈ ∂Bn
p , f(z0) = w0 ∈ ∂BN

p , then the following two statements

hold:

(i) Jf (z0)Tz0(∂Bn
p ) ⊂ Tw0(∂B

N
p ) and Jf (z0)T 1,0

z0 (∂Bn
p ) ⊂ T 1,0

w0 (∂BN
p ).

(ii) There exists λ ≥ 1−∥f(0)∥p
1+∥f(0)∥p > 0 such that

Jf (z0)
T∇ρ(w0) = λ∇ρ(z0), or ∇ρ(w0)

T
Jf (z0) = λ∇ρ(z0)

T
.
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In particular, if f(0) = 0, then ∇ρ(w0)
T
Jf (z0)∇ρ(z0) = λ ≥ 1.

Proof. (i) For any unit vector α ∈ Tz0(∂Bn
p ), we can choose a smooth curve

γ : [−1, 1] \ {0} → Bn
p

such that

γ(0) = z0,
d

dt
γ(t)

∣∣∣
t=0

= α.

Since f is C1 at z0, it yields that f(γ[−1, 1]) ⊂ BN
p . From ρ(z) = ∥z∥p =

(
|z1|p + · · · +

|zn|p
)1/p

, we have

max
t∈(−1,1)

ρ(f(γ(t))) = ρ(f(γ(0))) = ρ(w0) = 1.

This implies that

d

dt
ρ(f(γ(t)))

∣∣∣
t=0

= 2Re
[
∇ρ(z0)

]T
Jf (z0)α = 0, ∀α ∈ Tz0(∂Bn

p ).

Hence, Jf (z0)α ∈ Tz0(∂BN
p ). Notice that Jf (z0) is a C-linear transformation, we get

Jf (z0)T 1,0
z0 (∂Bn

p ) ⊂ T 1,0
z0 (∂BN

p ).

The proof of (i) is completed.

(ii) The proof is divided into two steps.

Step 1. We claim that there exists λ ∈ R such that Jf (z0)
T∇ρ(w0) = λ∇ρ(z0). In

fact, suppose

Jf (z0)
T∇ρ(w0) = λ∇ρ(z0) + β

for some λ ∈ R and β ∈ Tz0(∂Bn
p ). In terms of Jf (z0)Tz0(∂Bn

p ) ⊂ Tw0(∂B
N
p ) of result (i),

we get

Jf (z0)β ∈ Tw0(∂B
N
p ).

Namely, Re⟨Jf (z0)β,∇ρ(w0)⟩ = 0. Hence,

∥β∥2 = Re⟨β, λ∇ρ(z0) + β⟩ = Re⟨β, Jf (z0)
T∇ρ(z0)⟩ = Re⟨Jf (z0)β,∇ρ(z0)⟩ = 0.

This shows that β = 0 and Jf (z0)
T∇ρ(w0) = λ∇ρ(z0) for some λ ∈ R. Consequently,

(4.1) ∇ρ(w0)
T
Jf (z0) = λ∇ρ(z0)

T
.

Step 2. We prove the above real number λ ≥ 1−∥f(0)∥p
1+∥f(0)∥p . Notice that

∇ρ(w0) =
(
|w1|p−2w1, . . . , |wN |p−2wN

)∣∣T
w=w0

.

Let

h(ζ) = ⟨f(ζz0),∇ρ(w0)⟩ = ∇ρ(w0)
T
f(ζz0), ζ ∈ U.
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Then h : U → U is holomorphic, and

h(1) = ⟨f(z0),∇ρ(w0)⟩ = ⟨w0,∇ρ(w0)⟩ = 1.

Applying the equality (1.1) to h(ζ), this implies that

h′(1) = lim
t→1−

h(1)− h(t)

1− t
≥ 1− |h(0)|

1 + |h(0)|
=

1− |∇ρ(w0)
T
f(0)|

1 + |∇ρ(w0)
T
f(0)|

.

Since ∥∇ρ(w0)∥q = 1, we get

|∇ρ(w0)
T
f(0)| ≤ ∥∇ρ(w0)∥q∥f(0)∥p ≤ 1.

By using Lemma 3.1(iv), we get

|h(0)| = |⟨f(0),∇ρ(z0)⟩| ≤ ρ(f(0)) = ∥f(0)∥p,

which follows from Hölder inequality. Hence,

h′(1) ≥ 1− ∥f(0)∥p
1 + ∥f(0)∥p

.

In terms of the equality (4.1), we have

λ = ⟨z0, Jf (z0)
T∇ρ(w0)⟩ = ⟨Jf (z0)z0,∇ρ(w0)⟩.

By using Lemma 3.1 again, we get

h′(1) = ⟨Jf (z0)z0,∇ρ(w0)⟩ = ⟨z0, Jf (z0)
T∇ρ(w0)⟩ = λ ≥ 1− ∥f(0)∥p

1 + ∥f(0)∥p
.

In particular, when f(0) = 0, then λ ≥ 1. Hence, this completes the proof.

Remark 4.2. Theorem 4.1 generalizes the boundary Schwarz lemma [21, Theorem 1.1]

from the Euclidean unit ball of p = 2 to the p-unit ball of p ≥ 2. Moreover, our method

is quite simple.

For pluriharmonic mappings, we have the following boundary Schwarz lemma. Denote

∇ρ(z) = 2

(
∂ρ(z)

∂z1
, . . . ,

∂ρ(z)

∂zn

)T

=

(
∂ρ(z)

∂x1
+ i

∂ρ(z)

∂y1
, . . . ,

∂ρ(z)

∂xn
+ i

∂ρ(z)

∂yn

)T

,

where zj = xj + iyj for j = 1, . . . , n. For convenience to the following expression, we still

use z standing for the real version of the complex vector z.

Theorem 4.3. Let p ≥ 2 and n,N ≥ 1. Suppose that f : Bn
p → BN

p is a pluriharmonic

mapping. If f is C1 at z0 ∈ ∂Bn
p , f(z0) = w0 ∈ ∂BN

p , then the following two statements

hold:
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(i) Df(z0)Tz0(∂Bn
p ) ⊂ Tw0(∂B

N
p ).

(ii) There exists λ ≥ max
{

2
π − ∥f(0)∥p, 1−Re⟨f(0),∇ρ(w0)⟩

2

}
such that

Df(z0)
T∇ρ(w0) = λ∇ρ(z0), or ∇ρ(w0)

T
Df(z0) = λ∇ρ(z0)

T
.

In particular, if f(0) = 0, then ∇ρ(w0)
T
Df(z0)∇ρ(z0) = λ ≥ 2/π.

Proof. By using the arguments similar to Theorem 4.1, we have Df(z0)Tz0(∂Bn
p ) ⊂

Tw0(∂B
N
p ) and Df(z0)

T∇ρ(w0) = λ∇ρ(z0) for some λ ∈ R. Hence, we need to prove

part (ii).

Firstly, we prove λ ≥ 2/π − ∥f(0)∥p. By some calculations, we get

lim
t→0+

∥f(z0)∥p − ∥f(z0 − t∇ρ(z0))∥p
t

= lim
t→0+

ρ(f(z0))− ρ(f(z0)− t∇ρ(z0))

t
= 2Re

{(
∂ρ

∂w
(w0)

)T

Jf (z0)∇ρ(z0)

}
= Re

{
∇ρ(w0)

T
Jf (z0)∇ρ(z0)

}
= λ∥∇ρ(z0)∥2.

According to Lemma 3.3, we have

∥f(z)∥p ≤
4

π
arctan ∥z∥p +

1− ∥z∥2p
1 + ∥z∥2p

∥f(0)∥p, z ∈ Bn
p .

Taking z = z0 − t∇ρ(z0) and letting t → 0+, we get

∥f(z0 − t∇ρ(z0))∥p ≤
4

π
arctan ∥z0 − t∇ρ(z0)∥p +

1− ∥z0 − t∇ρ(z0)∥2p
1 + ∥z0 − t∇ρ(z0)∥2p

∥f(0)∥p.

Then

lim
t→0+

1− ∥f(z0 − t∇ρ(z0))∥p
t

≥ lim
t→0+

1− 4
π arctan ∥z0 − t∇ρ(z0)∥p −

1−∥z0−t∇ρ(z0)∥2p
1+∥z0−t∇ρ(z0)∥2p

∥f(0)∥p
t

for t → 0+. Consequently,

λ∥∇ρ(z0)∥2 ≥
(
2

π
− ∥f(0)∥p

)
∥∇ρ(z0)∥2.

This shows that

(4.2) λ ≥ 2

π
− ∥f(0)∥p.
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Secondly, we prove λ ≥ Re⟨f(0),∇ρ(w0)⟩
2 . Define

h(ξ) = 1− Re⟨f(ξz0),∇ρ(w0)⟩, ξ ∈ U.

Then h is harmonic on U. Notice that

h(ξ) = 1− Re⟨f(ξz0),∇ρ(w0)⟩ ≥ 1− ρ(f(ξz0)) ≥ 0

follows from Lemma 3.1. Applying to Lemma 3.4 for the harmonic function h(ξ) with

n = 2, we get
1− r

1 + r
h(0) ≤ h(ξ) ≤ 1 + r

1− r
h(0), |ξ| = r < 1.

Since

h(1) = 1− Re⟨f(z0),∇ρ(w0)⟩ = 1− Re⟨w0,∇ρ(w0)⟩ = 0,

it yields that

lim
r→1−

h(r)− h(1)

1− r
= lim

r→1−

h(r)

1− r
≥ lim

r→1−

h(0)

1 + r
=

h(0)

2
.

By using (i), we get

lim
r→1−

h(r)− h(1)

1− r
= Re⟨Df(z0)z0,∇ρ(w0)⟩ = Re⟨z0, Df(z0)

T∇ρ(w0)⟩ = λ.

Hence,

(4.3) λ ≥ h(0)

2
≥ 1− Re⟨f(0),∇ρ(w0)⟩

2
.

Putting (4.2) and (4.3) together, we get

λ ≥ max

{
2

π
− ∥f(0)∥p,

1− Re⟨f(0),∇ρ(w0)⟩
2

}
.

Remark 4.4. When p = 2, Theorem 4.3 reduces to [9, Proposition 1.8] for the case of finite

dimensional Hilbert spaces.

Acknowledgments

The author would like to express their sincere gratitude to the anonymous referees for

carefully reading the paper and many valuable suggestions and comments which lead to

the improvement of this paper.



136 Jianfei Wang

References

[1] L. V. Ahlfors, An extension of Schwarz’s lemma, Trans. Amer. Math. Soc. 43 (1938),

no. 3, 359–364.

[2] S. Axler, P. Bourdon and W. Ramey, Harmonic Function Theory, Grad. Texts in

Math. 137, Springer-Verlag, New York, 1992.

[3] M. Bonk, On Bloch’s constant, Proc. Amer. Math. Soc. 110 (1990), no. 4, 889–894.

[4] D. M. Burns and S. G. Krantz, Rigidity of holomorphic mappings and a new Schwarz

lemma at the boundary, J. Amer. Math. Soc. 7 (1994), no. 3, 661–676.

[5] H. Chen and P. M. Gauthier, The Landau theorem and Bloch theorem for planar

harmonic and pluriharmonic mappings, Proc. Amer. Math. Soc. 139 (2011), no. 2,

583–595.

[6] S. Chen and H. Hamada, Some sharp Schwarz–Pick type estimates and their appli-

cations of harmonic and pluriharmonic functions, J. Funct. Anal. 282 (2022), no. 1,

Paper No. 109254, 42 pp.

[7] S. Chen, H. Hamada, S. Ponnusamy and R. Vijayakumar, Schwarz type lemmas and

their applications in Banach spaces, Accepted in J. Anal. Math. (2023), 36 pp.

[8] J. B. Garnett, Bounded Analytic Functions, Pure Appl. Math. 96, Academic Press,

New York, 1981.

[9] I. Graham, H. Hamada and G. Kohr, A Schwarz lemma at the boundary on complex

Hilbert balls and applications to starlike mappings, J. Anal. Math. 140 (2020), no. 1,

31–53.

[10] H. Hamada, A simple proof for the boundary Schwarz lemma for pluriharmonic map-

pings, Ann. Acad. Sci. Fenn. Math. 42 (2017), no. 2, 799–802.

[11] , A Schwarz lemma at the boundary using the Julia–Wolff–Carathéodory type
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