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On the Exterior Problem for Parabolic Hessian Quotient Equations

Ziwei Zhou

Abstract. We prove the existence of ancient solutions of the exterior problem for

parabolic Hessian quotient equations −utSk,l(D
2u) = 1 with prescribed asymptotic

behavior at infinity. We construct a subsolution to it and use Perron method to finish

the proof.

1. Introduction

Let

Rn+1
− = {(x, t) | x ∈ Rn, t ≤ 0}.

Denote

Sk,l(D
2u) =

σk(λ(D
2u))

σl(λ(D2u))
,

where λ = λ(D2u) = (λ1, λ2, . . . , λn) are the eigenvalues of D
2u, the Hessian matrix on x,

σk(λ) =
∑

i1<i2<···<ik

λi1λi2 · · ·λik .

In this paper, we consider the solvability of the exterior problem of the parabolic

Hessian quotient equation

−utSk,l(D
2u) = 1 in Rn+1

− \D,(1.1)

u = φ(x, t) on ∂pD,(1.2)

where 0 ≤ l < k ≤ n, n ≥ 3,

D = {(x, t) | Q(x) < t ≤ 0}, ∂pD = {(x, t) | Q(x) = t ≤ 0},

Q(x) is a strictly convex second-order differentiable function such that D is bounded and

not empty.

Received August 2, 2023; Accepted November 12, 2023.

Communicated by François Hamel.

2020 Mathematics Subject Classification. 35K55, 35A01.

Key words and phrases. parabolic Hessian quotient equation, exterior problem, ancient solution, existence.

The author is supported by NSFC 12301240.

343



344 Ziwei Zhou

The Hessian quotient equation is an extension of the Monge–Ampère equation. In

[3], Caffarelli and Li first studied the asymptotic behavior near infinity and the exterior

problem for the elliptic Monge–Ampère equation

detD2u = 1.

In 2015, Bao, Li and Zhang [2] generalized the results in [3] to

detD2u = f,

where f is a perturbation of 1 near infinity. In [8,11], Bao, Wang and Zhang obtained the

asymptotic behavior of the parabolic Monge–Ampère equation.

In 2011, Dai [5] studied the existence of solutions of the exterior problem for the elliptic

Hessian quotient equation
Sk,l(D

2u) = 1 in Rn \ Ω,

u(x) = φ(x) on ∂Ω,

lim sup|x|→∞ |x|k−l−2
∣∣u(x)− (12a|x|2 + c

)∣∣ < ∞,

where Ω is a smooth, bounded and strictly convex domain, a = (C l
n/C

k
n)

k−l, 0 ≤ l < k ≤ n,

k − l ≥ 3, c ∈ R. In [1], Bao, Li and Li constructed a generalized symmetric subsolution

and proved the solvability of the exterior problem of the elliptic Hessian equation.

In [12], we considered the existence of solutions of the exterior problem of the parabolic

Monge–Ampère equation. We raised this problem for the first time and constructed a

subsolution to it. In this paper, we continue to extend this problem to the Hessian

quotient equation and generalize the result in [5] to the parabolic case.

Our main theorem is

Theorem 1.1. Let n ≥ 3. For any φ ∈ C2(D), there exists c∗ ∈ R, depending on n,

k, l, D and ∥φ∥C2(D), such that for any c > c∗, there exists a unique viscosity solution

uc ∈ C0(Rn+1
− \D) of (1.1), (1.2) and

lim sup
|x|2−t→+∞

(|x|2 − t)
k−l−2

2

∣∣∣∣uc(x, t)− (−t+
1

2
a|x|2 + c

)∣∣∣∣ < ∞,

where a = (C l
n/C

k
n)

k−l, 0 ≤ l < k ≤ n, k − l ≥ 3, c ∈ R.

The paper is arranged as follows. In Section 2, we state some notations and lemmas.

In Section 3, we construct subsolutions of the problem. Finally in Section 4, we use Perron

method to finish the proof.
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2. Notations and lemmas

We begin with some notations. Given a bounded set Ω ⊂ Rn+1 and t ∈ R, we denote

Ω(t) = {x : (x, t) ∈ Ω}.

Let t0 = inf{t : Ω(t) ̸= ∅}. The parabolic boundary of the bounded domain Ω is defined

by

∂pΩ = (Ω(t0)× {t0}) ∪

(⋃
t∈R

(∂Ω(t)× {t})

)
,

where Ω denotes the closure of Ω and ∂Ω(t) denotes the boundary of Ω(t). We say that

the set Ω ⊂ Rn+1 is a bowl-shaped domain if Ω(t) is convex for each t and Ω(t1) ⊂ Ω(t2)

for t1 ≤ t2.

Let

Γk = {λ ∈ Rn | σj(λ) > 0, j = 1, 2, . . . , k}.

We say that a function u ∈ C2(Ω) is admissible (or k-convex) if λ(D2u) ∈ Γk in Ω.

We say a function u ∈ Ck,j(Ω) which means that u is k-th continuous differentiable

with spatial variables x ∈ Rn and j-th continuous differentiable with time variable t for

(x, t) ∈ Ω. A function u is called locally parabolically k-convex if u is locally k-convex in

x and nonincreasing in t. We say Ω is an open set in the parabolic sense if Ω = Ω \ ∂pΩ.
The following is the definition of viscosity solutions.

Definition 2.1. Let u be an upper-semicontinuous (USC for short) (resp. lower-semiconti-

nuous (LSC for short)) function in Ω. Then u is called a viscosity subsolution (supersolu-

tion) of

(2.1) −utSk,l(D
2u) = 1 in Ω,

if for any point (x, t) ∈ Ω and any function h ∈ C2,1(Qr(x, t)) satisfying

u(x, t)− h(x, t) ≤ u(x, t)− h(x, t) (u(x, t)− h(x, t) ≥ u(x, t)− h(x, t))

for all (x, t) ∈ Qr(x, t), where

Qr(x, t) := {(x, t) | |x− x| < r, t− r2 < t ≤ t} ⊂ Ω,

we have

−ht(x, t)Sk,l(D
2h(x, t)) ≥ 1 (−ht(x, t)Sk,l(D

2h(x, t)) ≤ 1).

For the supersolution, we also require that h is locally parabolically k-convex.

A function u ∈ C0(Ω) is called a viscosity solution of (2.1), if it is both a viscosity

subsolution and supersolution of (2.1).
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Definition 2.2. A function u is called a viscosity subsolution (supersolution) of the prob-

lem (1.1), (1.2), if u is a viscosity subsolution (supersolution) of (1.1), and u(x, t) ≤ φ(x, t)

(u(x, t) ≥ φ(x, t)) on ∂pD.

A function u ∈ C0(Rn+1
− \ D) is called a viscosity solution of (1.1), (1.2), if u is a

viscosity solution of (1.1), and u(x, t) = φ(x, t) on ∂pD.

Definition 2.3. We call u a generalized parabolically symmetric function with respect to

a if u is a function of

h = −t+
1

2
a|x|2.

Lemma 2.4. Let Ω1 ⊂ Ω2 be two open subsets in Rn+1 in the parabolic sense. Suppose

u ∈ USC(Ω2) and v ∈ USC(Ω1) satisfy

(2.2) −utSk,l(D
2u) ≥ 1 in Ω2

and

(2.3) −vtSk,l(D
2v) ≥ 1 in Ω1

in the viscosity sense, respectively. Furthermore, assume

u ≤ v in Ω1, u = v on ∂Ω1 \ (∂Ω1 ∩ ∂Ω2).

Let

w(x, t) =

v(x, t), (x, t) ∈ Ω1,

u(x, t), (x, t) ∈ Ω2 \ Ω1.

Then w ∈ USC(Ω2) satisfies

−wtSk,l(D
2w) ≥ 1 in Ω2

in the viscosity sense.

Proof. Let h ∈ C2,1(Ω2) and (x, t) ∈ Ω2 satisfying

w(x, t)− h(x, t) ≤ w(x, t)− h(x, t), ∀ (x, t) ∈ Qr(x, t)

for some Qr(x, t) ⊂ Ω2.

If (x, t) ∈ Ω1, then for some Qr1(x, t) ⊂ Qr(x, t) ∩ Ω1,

v(x, t)−h(x, t) = w(x, t)−h(x, t) ≤ w(x, t)−h(x, t) = v(x, t)−h(x, t), ∀ (x, t) ∈ Qr1(x, t).

By (2.3), we have

−ht(x, t)Sk,l(D
2h(x, t)) ≥ 1.
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If (x, t) ∈ Ω2 \ Ω1, then

u(x, t)−h(x, t) ≤ w(x, t)−h(x, t) ≤ w(x, t)−h(x, t) = u(x, t)−h(x, t), ∀ (x, t) ∈ Qr(x, t).

By (2.2), we have

−ht(x, t)Sk,l(D
2h(x, t)) ≥ 1.

Based on Jensen approximations [6], and referring to the parabolic analogue in [9], we

can obtain our comparison principle below.

Lemma 2.5 (Comparison Principle). Let Ω be a bounded open set in Rn+1 in the parabolic

sense. Let u ∈ USC(Ω) and v ∈ LSC(Ω) satisfy

−utSk,l(D
2u) ≥ 1 in Ω and − vtSk,l(D

2v) ≤ 1 in Ω

in the viscosity sense respectively. Then we have

(2.4) sup
Ω

(u− v) ≤ sup
∂pΩ

(u− v).

Proof. By replacing u by β
1

k+1u, we may assume that u satisfies

−utSk,l(D
2u) ≥ β in Ω

in the viscosity sense, where β > 1. Construct the sup- and inf-convolution u+ε and v−ε of

u and v, respectively, on Ω:

u+ε (x, t) = sup
(y,s)∈Ω

{
u(y, s)− |x− y|2

ε
− |t− s|2

ε

}
= u(y+ε , s

+
ε )−

|x− y+ε |2

ε
− |t− s+ε |2

ε
,

v−ε (x, t) = inf
(y,s)∈Ω

{
v(y, s) +

|x− y|2

ε
+

|t− s|2

ε

}
= v(y−ε , s

−
ε ) +

|x− y−ε |2

ε
+

|t− s−ε |2

ε
,

where ε > 0 is an arbitrarily small parameter.

Since u is upper semi-continuous, we have that u is bounded above in Ω, and for any

(x, t) ∈ Ω,

|x− y+ε |2 + |t− s+ε |2 = ε(u(y+ε , s
+
ε )− u+ε (x, t)) ≤ ε

(
sup
Ω

u− u(x, t)

)
.

Therefore,

u(x, t) ≤ lim inf
ε→0

u+ε (x, t) ≤ lim sup
ε→0

u+ε (x, t) ≤ lim sup
ε→0

u(y+ε , s
+
ε ) ≤ u(x, t),

which implies that u+ε converges to u in Ω. Similarly, we can also prove that v−ε converges

to v in Ω. Then if (2.4) were false, there would exists a small constant ε0 > 0, such that
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whenever 0 < ε ≤ ε0, the function wε := u+ε − v−ε attains its local maximum at some

interior point (xε, tε) ∈ Ω in the parabolic sense.

Let

Γε = {(x, t) ∈ Ω : ∃ p ∈ Rn s.t. wε(x, t) + p · (y − x) ≥ wε(y, s), ∀ (y, s) ∈ Ω, s ≤ t}

be the upper contact set of wε. Similar to the proof of Lemma A.3 in [4], we can prove

that Γε has positive measure. Indeed, by mollification, we may assume that wε is smooth.

Note that wε attains its local maximum at (xε, tε). Let wε,p(x, t) := wε(x, t)− p ·x. If δ is

sufficiently small and p ∈ Bδ, then every maximum of wε,p lies in the interior of Ω. Since

Dwε − p = 0 holds at maximum points of wε,p, we know that Dwε(Γε) ⊃ Bδ. Noting that

wε is semi-convex, there exists λε > 0 such that −λεI ≤ D2wε ≤ 0 on Γε. Thus,

|Bδ|Ln ≤ |Dwε(Γε)|Ln ≤
∫
Γε

| detD2wε(x, t)| dxdt ≤ |Γε|Ln+1 · λn
ε .

Then we obtain that |Γε|Ln+1 > 0.

Since wε(x, t) ≥ w(x, s) for all (x, t) ∈ Γε and s ≤ t, then (wε)t ≥ 0 a.e. in Γε.

Moreover,

wε(x, t) + p · h ≥ wε(x+ h, t) and wε(x, t)− p · h ≥ wε(x− h, t)

for all (x, t) ∈ Γε and all sufficiently small vectors h. So

2wε(x, t) ≥ wε(x+ h, t) + wε(x− h, t).

Since
wε(x+ h, t) + wε(x− h, t)− 2wε(x, t)

|h|2

converges weakly to h′D2wε(x, t)h as |h| → 0, which follows that D2wε ≤ 0 a.e. in Γε (see

page 159 in [7]). Thus, we have

(2.5) D2u+ε ≤ D2v−ε , (u+ε )t ≥ (v−ε )t a.e. in Γε.

Since u+ε is a semi-convex function, it is twice differentiable almost everywhere in Ω

(see Lemma A.2 in [4]), and at such point (x, t), we have, for (y, s), (ξ, τ) ∈ Ω,

u(y, s)− |ξ − y|2

ε
− |τ − s|2

ε

≤ u+ε (ξ, τ)

= u+ε (x, t) + ∂tu
+
ε (x, t)(τ − t) +Dxu

+
ε (x, t) · (ξ − x)

+
1

2
(ξ − x)′D2

xu
+
ε (x, t)(ξ − x) + o(|ξ − x|2 + |τ − t|)
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= u(y+ε , s
+
ε )−

|x− y+ε |2

ε
− |t− s+ε |2

ε

+ ∂tu
+
ε (x, t)(τ − t) +Dxu

+
ε (x, t) · (ξ − x)

+
1

2
(ξ − x)′D2

xu
+
ε (x, t)(ξ − x) + o(|ξ − x|2 + |τ − t|).

Taking ξ = y − y+ε + x, τ = s− s+ε + t, we obtain that

u(y, s) ≤ u(y+ε , s
+
ε ) + ∂tu

+
ε (x, t)(s− s+ε ) +Dxu

+
ε (x, t) · (y − y+ε )

+
1

2
(y − y+ε )

′D2
xu

+
ε (x, t)(y − y+ε ) + o(|y − y+ε |2 + |s− s+ε |).

(2.6)

By the definition of viscosity subsolutions, we know that

(2.7) −(u+ε )tSk(D
2u+ε )(x, t) ≥ β and λ(D2u+ε (x, t)) ∈ Γk.

Hence, from (2.5) and (2.7), for a.e. (x, t) ∈ Γε,

(2.8) −(v−ε )tSk(D
2v−ε )(x, t) ≥ β and λ(D2v−ε (x, t)) ∈ Γk.

On the other hand, similarly as (2.6), we can also obtain that

v(y, s) ≥ v(y−ε , s
−
ε ) + ∂tv

−
ε (x, t)(s− s−ε ) +Dxv

−
ε (x, t) · (y − y−ε )

+
1

2
(y − y−ε )

′D2
xv

−
ε (x, t)(y − y−ε ) + o(|y − y−ε |2 + |s− s−ε |).

Therefore, by the definition of viscosity supersolutions, we have

−(v−ε )tSk,l(D
2
xv

−
ε )(x, t) ≤ 1,

which is a contradiction to (2.8).

To introduce the Perron method for parabolic equations, we first define weak viscosity

solutions which do not satisfy (semi) continuous properties.

Definition 2.6. Let Ω ⊂ Rn+1 be an open set in the parabolic sense. We say a function

u is a weak viscosity subsolution of

−utSk,l(D
2u) = 1 in Ω

if the USC envelope of u, namely,

u∗(x, t) = lim
r→0

sup
(y,s)∈Br(x,t)

u(y, s)

is finite and a viscosity subsolution, where

Br(x, t) := {(y, s) | |x− y|4 + |t− s|2 < r2} ⊂ Ω.

Similarly, one uses LSC envelope u∗ = −(−u)∗ for supersolutions. If u is a weak viscosity

sub- and supersolution, we call u a weak viscosity solution.
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We can also define weak viscosity solutions of the problem (1.1), (1.2) by giving the

boundary condition like Definition 2.2.

From the result in [10], we have the two lemmas below.

Lemma 2.7. Let Ω be an open set in Rn+1 in the parabolic sense. Let S denote any

nonempty set of weak viscosity subsolutions of

(2.9) −vtSk,l(D
2v) = 1 in Ω.

Set

u(x, t) = sup{v(x, t) | v ∈ S} for (x, t) ∈ Ω.

Suppose u∗(x, t) < ∞ for (x, t) ∈ Ω, then u is a weak viscosity subsolution of (2.9).

Lemma 2.8. Let g be a weak viscosity supersolution of (2.9). Let

Sg := {v | v is a weak viscosity subsolution of (2.9) and v ≤ g}

and

u(x, t) := sup{v(x, t) | v ∈ Sg}.

If Sg is not empty, then u is a weak viscosity solution of (2.9).

In [1], the authors derived a formula of σk(λ(M)) for matrices M of the form

(2.10) M = (piδij − βqiqj)n×n,

where p = (p1, p2, . . . , pn), q = (q1, q2, . . . , qn) and β ∈ R.

Proposition 2.9 (Bao–Li–Li). If M is an n × n matrix of the form (2.10) for p =

(p1, p2, . . . , pn), q = (q1, q2, . . . , qn) and β ∈ R, then we have

σk(λ(M)) = σk(p)− β
n∑

i=1

q2i σk−1;i(p),

where σk−1;i(p) = σk−1(p)|pi=0.

3. Construction of subsolutions

Denote

Ak,l := {A : A is a real n× n symmetric positive definite matrix and Sk,l(A) = 1}.



On the Exterior Problem for Parabolic Hessian Quotient Equations 351

Lemma 3.1. Let n ≥ 3, φ ∈ C2(D) and A ∈ Ak,l. Then there exists some positive

constant c0 depending only on n, ∥φ∥C2(D), D, A, such that for any c > c0, and (ξ, λ) ∈
∂pD, there exist C0 depending only on n, ∥φ∥C2(D), D, A, c, and x(ξ, λ) ∈ Rn satisfying

|x(ξ, λ)| ≤ C0 and wξ,λ(x, t) < φ(x, t) on ∂pD \ {(ξ, λ)},

where

wξ,λ(x, t) = φ(ξ, λ)− c(t− λ) +
1

2
(x− x)′A(x− x)− 1

2
(ξ − x)′A(ξ − x), (x, t) ∈ Rn+1

− .

Proof. Denote

I := {x ∈ Rn | Q(x) ≤ 0}.

Let (ξ, λ) ∈ ∂pD. By the mean value theorem, for x ∈ I, there exist ξ1, ξ2 ∈ I such that

Q(x) = Q(ξ) +DQ(ξ1) · (x− ξ),

Q(x) = Q(ξ) +DQ(ξ) · (x− ξ) +
1

2
(x− ξ)′D2Q(ξ2)(x− ξ).

Let

M1 = max
x∈I

|DQ(x)|,

and M2 be the half of the minimum of the smallest eigenvalue of D2Q(x) over x ∈ I. Then

we have

|Q(x)−Q(ξ)| ≤ M1|x− ξ|,

Q(x) ≥ Q(ξ) +DQ(ξ) · (x− ξ) +M2|x− ξ|2.

Again by the mean value theorem, for (x, t) ∈ ∂pD,

φ(x, t)

= φ(ξ, λ) +Dx,tφ(ξ, λ) · ((x, t)− (ξ, λ)) +
1

2
((x, t)− (ξ, λ))′D2

x,tφ(ξ, λ)((x, t)− (ξ, λ))

≥ φ(ξ, λ) +Dxφ(ξ, λ) · (x− ξ) + φt(ξ, λ)(t− λ)− C
(
|x− ξ|2 + (t− λ)2

)
= φ(ξ, λ) +Dxφ(ξ, λ) · (x− ξ) + φt(ξ, λ)(Q(x)−Q(ξ))− C

(
|x− ξ|2 + (Q(x)−Q(ξ))2

)
,

where (ξ, λ) ∈ D, and C = 1
2

(
maxD |D2

x,tφ|+maxD |φt|
)
.

Define

wξ,λ(x, t) = φ(ξ, λ)− c(t− λ) +
1

2
(x− x)′A(x− x)− 1

2
(ξ − x)′A(ξ − x), (x, t) ∈ Rn+1

− ,

where

x(ξ, λ) = −A−1Dxφ(ξ, λ) + ξ − (c+ φt(ξ, λ))A
−1DQ(ξ).
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Then on ∂pD,

wξ,λ(x, t) = φ(ξ, λ)− c(t− λ) +
1

2
(x′Ax− ξ′Aξ)− (x− ξ)′Ax

= φ(ξ, λ)− c(Q(x)−Q(ξ)) +
1

2
(x− ξ)′A(x− ξ) +Dxφ(ξ, λ) · (x− ξ)

+ (c+ φt(ξ, λ))DQ(ξ) · (x− ξ).

Thus for c ≥ maxD |φt|,

(wξ,λ − φ)(x, t)

≤ (−c− φt(ξ, λ))(Q(x)−Q(ξ)) +
1

2
(x− ξ)′A(x− ξ) + C

(
|x− ξ|2 + (Q(x)−Q(ξ))2

)
+ (c+ φt(ξ, λ))DQ(ξ) · (x− ξ)

≤ (−c− φt(ξ, λ))M2|x− ξ|2 + Amax

2
|x− ξ|2 + C

(
|x− ξ|2 +M2

1 |x− ξ|2
)

=

[
(−c− φt(ξ, λ))M2 +

Amax

2
+ C(1 +M2

1 )

]
|x− ξ|2,

where Amax is the upper bound of A. Set c0 = 1
M2

(
Amax

2 + C(1 + M2
1 )
)
+ 2C, then for

c > c0,

(−c− φt(ξ, λ))M2 +
Amax

2
+ C(1 +M2

1 ) < 0,

and

(wξ,λ − φ)(x, t) < 0 on ∂pD \ {(ξ, λ)}.

By Lemma 3.1, for (ξ, λ) ∈ ∂pD, there exist c0 > 0 and x(ξ, λ) ∈ Rn, |x(ξ, λ)| < ∞
such that

wξ,λ(x, t) < φ(x, t) on ∂pD \ {(ξ, λ)},

where

wξ,λ(x, t) = φ(ξ, λ)− c(t− λ) +
1

2
a|x− x|2 − 1

2
a|x− x|2, (x, t) ∈ Rn+1

− ,

and c ≥ max{1, c0}. Then

−(wξ,λ)tSk,l(D
2wξ,λ) = c ≥ 1, (x, t) ∈ Rn+1

− .

Set

w(x, t) = max
(ξ,λ)∈∂pD

wξ,λ(x, t), (x, t) ∈ Rn+1
− .

Then w is a locally Lipschitz function in Rn+1
− ,

(3.1) w(x, t) = φ(x, t), (x, t) ∈ ∂pD,
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and by Lemma 2.7,

(3.2) −wtSk,l(D
2w) ≥ 1, (x, t) ∈ Rn+1

−

in the viscosity sense.

Let DH =
{
(x, t) | 1

2a|x|
2 −H2 < t ≤ 0

}
. Without loss of generality, we can assume

that DH1 ⊂⊂ D ⊂⊂ DH2 , where H2 > H1. For b > 0, h =
√

−t+ 1
2a|x|2, define

u−(x, t) = U(h) = 2

∫ h

H2

(sk−l + b)
1

k−l ds+ inf
DH2

w, (x, t) ∈ Rn+1
− ,

and

u(x, t) = −t+
1

2
a|x|2 + c, (x, t) ∈ Rn+1

− .

We see that

(3.3) u−(x, t) ≤ 2

∫ H2

H2

(sk−l + b)
1

k−l ds+ inf
DH2

w ≤ w(x, t) on ∂pD.

Choose H3 = H2 + 1 and sufficiently large b, c such that the following three inequalities

hold at the same time

u−(x, t) = 2

∫ H3

H2

(sk−l + b)
1

k−l ds+ inf
DH2

w ≥ w(x, t) on ∂pDH3 ,

u(x, t) = −t+
1

2
a|x|2 + c ≥ w(x, t) on ∂pDH3 ,(3.4)

u(x, t) = H2
1 + c ≥ w(x, t) ≥ u−(x, t) on ∂pDH1 .(3.5)

By simple computation, we have

U ′(h) = 2(hk−l + b)
1

k−l , U ′′(h) = 2(hk−l + b)
1

k−l
−1hk−l−1,

ht = − 1

2h
, hr =

ar

2h
, hrr =

2ah2 − a2r2

4h3
,

(u−)t = −1

h
(hk−l + b)

1
k−l , (u−)r = (hk−l + b)

1
k−l · ar

h
,

(u−)rr = (hk−l + b)
1

k−l
−1hk−l−1 · a

2r2

2h2
+ (hk−l + b)

1
k−l · 2ah

2 − a2r2

2h3
.

Then we have

Sk,l(D
2u−)

=
Ck
n−1

( (u−)r
r

)k
+ (u−)rrC

k−1
n−1

( (u−)r
r

)k−1

C l
n−1

( (u−)r
r

)l
+ (u−)rrC

l−1
n−1

( (u−)r
r

)l−1

=

(
(u−)r
r

)k−l Ck
n−1

( (u−)r
r

)
+ (u−)rrC

k−1
n−1

C l
n−1

( (u−)r
r

)
+ (u−)rrC

l−1
n−1
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= (hk−l + b)
(a
h

)k−l Ck
n−1(h

k−l + b)
1

k−l · a
h + Ck−1

n−1(u−)rr

C l
n−1(h

k−l + b)
1

k−l · a
h + C l−1

n−1(u−)rr

= (hk−l + b)
(a
h

)k−l Ck
n−1(h

k−l + b) + Ck−1
n−1

[
hk−l−1 · ar2

2h + (hk−l + b) · 2h2−ar2

2h2

]
C l
n−1(h

k−l + b) + C l−1
n−1

[
hk−l−1 · ar2

2h + (hk−l + b) · 2h2−ar2

2h2

]
= (hk−l + b)

(a
h

)k−l Ck
n−1(h

k−l + b) + Ck−1
n−1

[
(hk−l + b)− abr2

2h2

]
C l
n−1(h

k−l + b) + C l−1
n−1

[
(hk−l + b)− abr2

2h2

]
= (hk−l + b)

(a
h

)k−l Ck
n(h

k−l + b)− Ck−1
n−1

abr2

2h2

C l
n(h

k−l + b)− C l−1
n−1

abr2

2h2

.

Therefore,

−(u−)tSk,l(D
2u−) =

1

h
(hk−l + b)

1
k−l (hk−l + b)

(a
h

)k−l Ck
n(h

k−l + b)− Ck−1
n−1

abr2

2h2

C l
n(h

k−l + b)− C l−1
n−1

abr2

2h2

≥ (hk−l + b)
(a
h

)k−l Ck
n(h

k−l + b)− Ck
n
abr2

2h2

C l
n(h

k−l + b)

=
(a
h

)k−l Ck
n

(
hk−l − bt

h2

)
C l
n

≥ ak−lC
k
n

C l
n

= 1.

(3.6)

By simple computation, we have

U(h) = 2

∫ h

H2

(sk−l + b)
1

k−l ds+ inf
DH2

w

= 2

∫ h

H2

s

[(
1 +

b

sk−l

) 1
k−l

− 1

]
ds+ h2 −H2

2 + inf
DH2

w

= h2 +O(hl−k+2) + 2

∫ +∞

H2

s

[(
1 +

b

sk−l

) 1
k−l

− 1

]
ds−H2

2 + inf
DH2

w

as h tends to infinity. Then

u−(x, t) = −t+
1

2
a|x|2 + µ(b) +O

((
− t+

1

2
a|x|2

) l−k+2
2
)

as |x|2 − t tends to infinity, where

µ(b) = 2

∫ +∞

H2

s

[(
1 +

b

sk−l

) 1
k−l

− 1

]
ds−H2

2 + inf
DH2

w.

We can see that µ(b) is continuous, strictly increasing in (0,+∞), and

lim
b→+∞

µ(b) = +∞.
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Then there exists c∗ large enough such that for any c > c∗, there exists b(c) satisfying

µ(b(c)) = c. Therefore, as |x|2 − t → +∞,

(3.7) u−(x, t) = u(x, t) = −t+
1

2
a|x|2 + c+O

((
− t+

1

2
a|x|2

) l−k+2
2
)
.

By (3.5), (3.6), (3.7) and Lemma 2.5, we know that

(3.8) u− ≤ u in Rn+1
− \DH1 .

Now we want to show that u− is k-convex. From the computation above, we have

(u−)i = U ′hi = U ′axi
2h

and

(u−)ij = U ′aδij2h− axi
axj

h

4h2
+ U ′′a

2xixj
4h2

= U ′ a

2h
δij −

(
U ′ a

2

4h3
− U ′′ a

2

4h2

)
xixj .

By Proposition 2.9, for any 1 ≤ m ≤ k − 1,

σm(λ(D2u−)) = Cm
n

(
U ′ a

2h

)m
−
(
U ′ a

2

4h3
− U ′′ a

2

4h2

) n∑
i=1

x2iC
m−1
n−1

(
U ′ a

2h

)m−1

= U ′m−1 am

(2h)m

[
Cm
n U ′ − Cm−1

n−1

(
U ′ a

2h2
− U ′′ a

2h

)
|x|2
]

= U ′m−1 am

(2h)m

[
Cm
n−1U

′ + Cm−1
n−1

−t

h2
+ Cm−1

n−1 U ′′ a

2h
|x|2
]

> 0.

4. Proof of Theorem 1.1

For c > c∗, define

u(x, t) =

max{w(x, t), u−(x, t)}, (x, t) ∈ DH3 \DH1 ,

u−(x, t), (x, t) ∈ Rn+1
− \DH3 .

By (3.3), u ∈ C0(Rn+1
− \DH1). By (3.2), (3.6) and Lemma 2.4, u satisfies

−(u)tSk,l(D
2u) ≥ 1 in Rn+1

− \D

in the viscosity sense. By (3.1) and (3.3), we know that

(4.1) u = w = φ on ∂pD.
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Then u is a subsolution of (1.1) and (1.2). By (3.7), as |x|2 − t → +∞,

(4.2) u(x, t) = −t+
1

2
a|x|2 + c+O

((
− t+

1

2
a|x|2

) l−k+2
2
)
.

Furthermore, by (3.2), (3.4), (3.5) and Lemma 2.5,

w ≤ u in DH3 \DH1 .

Then combining with (3.8),

u ≤ u in Rn+1
− \DH1 .

Let Sc denote the set of functions v which are weak viscosity subsolutions of (1.1) and

(1.2) satisfying

v ≤ u in Rn+1
− \D.

By the arguments above, u ∈ Sc. So Sc ̸= ∅. Define

uc(x, t) = sup{v(x, t) : v ∈ Sc}, (x, t) ∈ Rn+1
− \D.

By the definition of uc, we know that u ≤ uc ≤ u. Then by (4.2), as |x|2 − t → +∞,

uc(x, t) = −t+
1

2
a|x|2 + c+O

((
− t+

1

2
a|x|2

) l−k+2
2
)
.

For any (ξ, τ) ∈ ∂pD, on the one hand, by (4.1),

lim inf
(x,t)→(ξ,τ)

uc(x, t) ≥ lim inf
(x,t)→(ξ,τ)

u(x, t) = φ(ξ, τ).

On the other hand, we have

lim inf
(x,t)→(ξ,τ)

uc(x, t) ≤ φ(ξ, τ).

Indeed, for every v ∈ Sc, by the definition of viscosity solutions, v∗ satisfies
−(vt)

∗ +∆v∗ ≥ 0 in DH2 \D,

v∗ ≤ φ on ∂pD,

v∗ ≤ sup∂pDH2
u =: B on ∂pDH2 .

Let v ∈ C2,1(DH2 \D) ∩ C0(DH2 \D) be the solution of the problem [7]
−vt +∆v = 0 in DH2 \D,

v = φ on ∂pD,

v = sup∂pDH2
u =: B on ∂pDH2 .
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By the comparison principle for the heat conduction equation, which can be proved directly

by the definition of viscosity solutions, we have v ≤ v∗ ≤ v on DH2 \ D. So uc ≤ v on

DH2 \D, and

lim sup
(x,t)→(ξ,τ)

uc(x, t) ≤ lim sup
(x,t)→(ξ,τ)

v(x, t) = φ(ξ, τ).

Thus, uc = φ on ∂pD.

By the definition of uc and Lemma 2.8, we can prove that uc is a weak viscosity solution

of (1.1). Then by Lemma 2.5 and the asymptotic behavior, u∗c ≤ uc∗. By the definition

of u∗c and uc∗, u
∗
c ≥ uc∗. Thus, u

∗
c = uc∗. Then uc is continuous and a viscosity solution.
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