On the Exterior Problem for Parabolic Hessian Quotient Equations

Ziwei Zhou

Abstract. We prove the existence of ancient solutions of the exterior problem for parabolic Hessian quotient equations $-u_{t} S_{k, l}\left(D^{2} u\right)=1$ with prescribed asymptotic behavior at infinity. We construct a subsolution to it and use Perron method to finish the proof.

1. Introduction

Let

$$
\mathbb{R}_{-}^{n+1}=\left\{(x, t) \mid x \in \mathbb{R}^{n}, t \leq 0\right\} .
$$

Denote

$$
S_{k, l}\left(D^{2} u\right)=\frac{\sigma_{k}\left(\lambda\left(D^{2} u\right)\right)}{\sigma_{l}\left(\lambda\left(D^{2} u\right)\right)},
$$

where $\lambda=\lambda\left(D^{2} u\right)=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$ are the eigenvalues of $D^{2} u$, the Hessian matrix on x,

$$
\sigma_{k}(\lambda)=\sum_{i_{1}<i_{2}<\cdots<i_{k}} \lambda_{i_{1}} \lambda_{i_{2}} \cdots \lambda_{i_{k}} .
$$

In this paper, we consider the solvability of the exterior problem of the parabolic Hessian quotient equation

$$
\begin{align*}
-u_{t} S_{k, l}\left(D^{2} u\right)=1 & \text { in } \mathbb{R}_{-}^{n+1} \backslash \bar{D} \tag{1.1}\\
u=\varphi(x, t) & \text { on } \partial_{p} D, \tag{1.2}
\end{align*}
$$

where $0 \leq l<k \leq n, n \geq 3$,

$$
D=\{(x, t) \mid Q(x)<t \leq 0\}, \quad \partial_{p} D=\{(x, t) \mid Q(x)=t \leq 0\}
$$

$Q(x)$ is a strictly convex second-order differentiable function such that D is bounded and not empty.

Received August 2, 2023; Accepted November 12, 2023.
Communicated by François Hamel.
2020 Mathematics Subject Classification. 35K55, 35A01.
Key words and phrases. parabolic Hessian quotient equation, exterior problem, ancient solution, existence. The author is supported by NSFC 12301240.

The Hessian quotient equation is an extension of the Monge-Ampère equation. In [3], Caffarelli and Li first studied the asymptotic behavior near infinity and the exterior problem for the elliptic Monge-Ampère equation

$$
\operatorname{det} D^{2} u=1
$$

In 2015, Bao, Li and Zhang [2] generalized the results in [3] to

$$
\operatorname{det} D^{2} u=f
$$

where f is a perturbation of 1 near infinity. In [8, 11], Bao, Wang and Zhang obtained the asymptotic behavior of the parabolic Monge-Ampère equation.

In 2011, Dai [5] studied the existence of solutions of the exterior problem for the elliptic Hessian quotient equation

$$
\begin{cases}S_{k, l}\left(D^{2} u\right)=1 & \text { in } \mathbb{R}^{n} \backslash \bar{\Omega} \\ u(x)=\varphi(x) & \text { on } \partial \Omega \\ \limsup _{|x| \rightarrow \infty}|x|^{k-l-2}\left|u(x)-\left(\frac{1}{2} a|x|^{2}+c\right)\right|<\infty, & \end{cases}
$$

where Ω is a smooth, bounded and strictly convex domain, $a=\left(C_{n}^{l} / C_{n}^{k}\right)^{k-l}, 0 \leq l<k \leq n$, $k-l \geq 3, c \in \mathbb{R}$. In [1] , Bao, Li and Li constructed a generalized symmetric subsolution and proved the solvability of the exterior problem of the elliptic Hessian equation.

In [12], we considered the existence of solutions of the exterior problem of the parabolic Monge-Ampère equation. We raised this problem for the first time and constructed a subsolution to it. In this paper, we continue to extend this problem to the Hessian quotient equation and generalize the result in [5] to the parabolic case.

Our main theorem is
Theorem 1.1. Let $n \geq 3$. For any $\varphi \in C^{2}(\bar{D})$, there exists $c^{*} \in \mathbb{R}$, depending on n, k, l, D and $\|\varphi\|_{C^{2}(\bar{D})}$, such that for any $c>c^{*}$, there exists a unique viscosity solution $u_{c} \in C^{0}\left(\mathbb{R}_{-}^{n+1} \backslash D\right)$ of (1.1), (1.2) and

$$
\limsup _{|x|^{2}-t \rightarrow+\infty}\left(|x|^{2}-t\right)^{\frac{k-l-2}{2}}\left|u_{c}(x, t)-\left(-t+\frac{1}{2} a|x|^{2}+c\right)\right|<\infty
$$

where $a=\left(C_{n}^{l} / C_{n}^{k}\right)^{k-l}, 0 \leq l<k \leq n, k-l \geq 3, c \in \mathbb{R}$.
The paper is arranged as follows. In Section 2, we state some notations and lemmas. In Section 3, we construct subsolutions of the problem. Finally in Section4, we use Perron method to finish the proof.

2. Notations and lemmas

We begin with some notations. Given a bounded set $\Omega \subset \mathbb{R}^{n+1}$ and $t \in \mathbb{R}$, we denote

$$
\Omega(t)=\{x:(x, t) \in \Omega\} .
$$

Let $t_{0}=\inf \{t: \Omega(t) \neq \emptyset\}$. The parabolic boundary of the bounded domain Ω is defined by

$$
\partial_{p} \Omega=\left(\bar{\Omega}\left(t_{0}\right) \times\left\{t_{0}\right\}\right) \cup\left(\bigcup_{t \in \mathbb{R}}(\partial \Omega(t) \times\{t\})\right)
$$

where $\bar{\Omega}$ denotes the closure of Ω and $\partial \Omega(t)$ denotes the boundary of $\Omega(t)$. We say that the set $\Omega \subset \mathbb{R}^{n+1}$ is a bowl-shaped domain if $\Omega(t)$ is convex for each t and $\Omega\left(t_{1}\right) \subset \Omega\left(t_{2}\right)$ for $t_{1} \leq t_{2}$.

Let

$$
\Gamma_{k}=\left\{\lambda \in \mathbb{R}^{n} \mid \sigma_{j}(\lambda)>0, j=1,2, \ldots, k\right\}
$$

We say that a function $u \in C^{2}(\Omega)$ is admissible (or k-convex) if $\lambda\left(D^{2} u\right) \in \bar{\Gamma}_{k}$ in Ω.
We say a function $u \in C^{k, j}(\Omega)$ which means that u is k-th continuous differentiable with spatial variables $x \in \mathbb{R}^{n}$ and j-th continuous differentiable with time variable t for $(x, t) \in \Omega$. A function u is called locally parabolically k-convex if u is locally k-convex in x and nonincreasing in t. We say Ω is an open set in the parabolic sense if $\Omega=\bar{\Omega} \backslash \partial_{p} \Omega$.

The following is the definition of viscosity solutions.
Definition 2.1. Let u be an upper-semicontinuous (USC for short) (resp. lower-semicontinuous (LSC for short)) function in Ω. Then u is called a viscosity subsolution (supersolution) of

$$
\begin{equation*}
-u_{t} S_{k, l}\left(D^{2} u\right)=1 \quad \text { in } \Omega \tag{2.1}
\end{equation*}
$$

if for any point $(\bar{x}, \bar{t}) \in \Omega$ and any function $h \in C^{2,1}\left(Q_{r}(\bar{x}, \bar{t})\right)$ satisfying

$$
u(x, t)-h(x, t) \leq u(\bar{x}, \bar{t})-h(\bar{x}, \bar{t}) \quad(u(x, t)-h(x, t) \geq u(\bar{x}, \bar{t})-h(\bar{x}, \bar{t}))
$$

for all $(x, t) \in Q_{r}(\bar{x}, \bar{t})$, where

$$
Q_{r}(\bar{x}, \bar{t}):=\left\{(x, t)| | x-\bar{x} \mid<r, \bar{t}-r^{2}<t \leq \bar{t}\right\} \subset \Omega,
$$

we have

$$
-h_{t}(\bar{x}, \bar{t}) S_{k, l}\left(D^{2} h(\bar{x}, \bar{t})\right) \geq 1 \quad\left(-h_{t}(\bar{x}, \bar{t}) S_{k, l}\left(D^{2} h(\bar{x}, \bar{t})\right) \leq 1\right)
$$

For the supersolution, we also require that h is locally parabolically k-convex.
A function $u \in C^{0}(\Omega)$ is called a viscosity solution of 2.1), if it is both a viscosity subsolution and supersolution of (2.1).

Definition 2.2. A function u is called a viscosity subsolution (supersolution) of the problem (1.1), 1.2), if u is a viscosity subsolution (supersolution) of (1.1), and $u(x, t) \leq \varphi(x, t)$ $(u(x, t) \geq \varphi(x, t))$ on $\partial_{p} D$.

A function $u \in C^{0}\left(\mathbb{R}_{-}^{n+1} \backslash D\right)$ is called a viscosity solution of 1.1), 1.2), if u is a viscosity solution of (1.1), and $u(x, t)=\varphi(x, t)$ on $\partial_{p} D$.

Definition 2.3. We call u a generalized parabolically symmetric function with respect to a if u is a function of

$$
h=-t+\frac{1}{2} a|x|^{2} .
$$

Lemma 2.4. Let $\Omega_{1} \subset \Omega_{2}$ be two open subsets in \mathbb{R}^{n+1} in the parabolic sense. Suppose $u \in \operatorname{USC}\left(\Omega_{2}\right)$ and $v \in \operatorname{USC}\left(\bar{\Omega}_{1}\right)$ satisfy

$$
\begin{equation*}
-u_{t} S_{k, l}\left(D^{2} u\right) \geq 1 \quad \text { in } \Omega_{2} \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
-v_{t} S_{k, l}\left(D^{2} v\right) \geq 1 \quad \text { in } \Omega_{1} \tag{2.3}
\end{equation*}
$$

in the viscosity sense, respectively. Furthermore, assume

$$
u \leq v \text { in } \Omega_{1}, \quad u=v \quad \text { on } \partial \Omega_{1} \backslash\left(\partial \Omega_{1} \cap \partial \Omega_{2}\right) .
$$

Let

$$
w(x, t)= \begin{cases}v(x, t), & (x, t) \in \Omega_{1} \\ u(x, t), & (x, t) \in \Omega_{2} \backslash \Omega_{1}\end{cases}
$$

Then $w \in \operatorname{USC}\left(\Omega_{2}\right)$ satisfies

$$
-w_{t} S_{k, l}\left(D^{2} w\right) \geq 1 \quad \text { in } \Omega_{2}
$$

in the viscosity sense.
Proof. Let $h \in C^{2,1}\left(\Omega_{2}\right)$ and $(\bar{x}, \bar{t}) \in \Omega_{2}$ satisfying

$$
w(x, t)-h(x, t) \leq w(\bar{x}, \bar{t})-h(\bar{x}, \bar{t}), \quad \forall(x, t) \in Q_{r}(\bar{x}, \bar{t})
$$

for some $Q_{r}(\bar{x}, \bar{t}) \subset \Omega_{2}$.
If $(\bar{x}, \bar{t}) \in \Omega_{1}$, then for some $Q_{r_{1}}(\bar{x}, \bar{t}) \subset Q_{r}(\bar{x}, \bar{t}) \cap \Omega_{1}$,

$$
v(x, t)-h(x, t)=w(x, t)-h(x, t) \leq w(\bar{x}, \bar{t})-h(\bar{x}, \bar{t})=v(\bar{x}, \bar{t})-h(\bar{x}, \bar{t}), \quad \forall(x, t) \in Q_{r_{1}}(\bar{x}, \bar{t}) .
$$

By (2.3), we have

$$
-h_{t}(\bar{x}, \bar{t}) S_{k, l}\left(D^{2} h(\bar{x}, \bar{t})\right) \geq 1
$$

If $(\bar{x}, \bar{t}) \in \Omega_{2} \backslash \Omega_{1}$, then
$u(x, t)-h(x, t) \leq w(x, t)-h(x, t) \leq w(\bar{x}, \bar{t})-h(\bar{x}, \bar{t})=u(\bar{x}, \bar{t})-h(\bar{x}, \bar{t}), \quad \forall(x, t) \in Q_{r}(\bar{x}, \bar{t})$.
By (2.2), we have

$$
-h_{t}(\bar{x}, \bar{t}) S_{k, l}\left(D^{2} h(\bar{x}, \bar{t})\right) \geq 1
$$

Based on Jensen approximations [6], and referring to the parabolic analogue in [9], we can obtain our comparison principle below.

Lemma 2.5 (Comparison Principle). Let Ω be a bounded open set in \mathbb{R}^{n+1} in the parabolic sense. Let $u \in \operatorname{USC}(\bar{\Omega})$ and $v \in \operatorname{LSC}(\bar{\Omega})$ satisfy

$$
-u_{t} S_{k, l}\left(D^{2} u\right) \geq 1 \quad \text { in } \Omega \quad \text { and } \quad-v_{t} S_{k, l}\left(D^{2} v\right) \leq 1 \quad \text { in } \Omega
$$

in the viscosity sense respectively. Then we have

$$
\begin{equation*}
\sup _{\Omega}(u-v) \leq \sup _{\partial_{p} \Omega}(u-v) \tag{2.4}
\end{equation*}
$$

Proof. By replacing u by $\beta^{\frac{1}{k+1}} u$, we may assume that u satisfies

$$
-u_{t} S_{k, l}\left(D^{2} u\right) \geq \beta \quad \text { in } \Omega
$$

in the viscosity sense, where $\beta>1$. Construct the sup- and inf-convolution u_{ε}^{+}and v_{ε}^{-}of u and v, respectively, on $\bar{\Omega}$:

$$
\begin{aligned}
& u_{\varepsilon}^{+}(x, t)=\sup _{(y, s) \in \Omega}\left\{u(y, s)-\frac{|x-y|^{2}}{\varepsilon}-\frac{|t-s|^{2}}{\varepsilon}\right\}=u\left(y_{\varepsilon}^{+}, s_{\varepsilon}^{+}\right)-\frac{\left|x-y_{\varepsilon}^{+}\right|^{2}}{\varepsilon}-\frac{\left|t-s_{\varepsilon}^{+}\right|^{2}}{\varepsilon} \\
& v_{\varepsilon}^{-}(x, t)=\inf _{(y, s) \in \Omega}\left\{v(y, s)+\frac{|x-y|^{2}}{\varepsilon}+\frac{|t-s|^{2}}{\varepsilon}\right\}=v\left(y_{\varepsilon}^{-}, s_{\varepsilon}^{-}\right)+\frac{\left|x-y_{\varepsilon}^{-}\right|^{2}}{\varepsilon}+\frac{\left|t-s_{\varepsilon}^{-}\right|^{2}}{\varepsilon}
\end{aligned}
$$

where $\varepsilon>0$ is an arbitrarily small parameter.
Since u is upper semi-continuous, we have that u is bounded above in Ω, and for any $(x, t) \in \Omega$,

$$
\left|x-y_{\varepsilon}^{+}\right|^{2}+\left|t-s_{\varepsilon}^{+}\right|^{2}=\varepsilon\left(u\left(y_{\varepsilon}^{+}, s_{\varepsilon}^{+}\right)-u_{\varepsilon}^{+}(x, t)\right) \leq \varepsilon\left(\sup _{\Omega} u-u(x, t)\right)
$$

Therefore,

$$
u(x, t) \leq \liminf _{\varepsilon \rightarrow 0} u_{\varepsilon}^{+}(x, t) \leq \limsup _{\varepsilon \rightarrow 0} u_{\varepsilon}^{+}(x, t) \leq \limsup _{\varepsilon \rightarrow 0} u\left(y_{\varepsilon}^{+}, s_{\varepsilon}^{+}\right) \leq u(x, t)
$$

which implies that u_{ε}^{+}converges to u in Ω. Similarly, we can also prove that v_{ε}^{-}converges to v in Ω. Then if (2.4) were false, there would exists a small constant $\varepsilon_{0}>0$, such that
whenever $0<\varepsilon \leq \varepsilon_{0}$, the function $w_{\varepsilon}:=u_{\varepsilon}^{+}-v_{\varepsilon}^{-}$attains its local maximum at some interior point $\left(x_{\varepsilon}, t_{\varepsilon}\right) \in \Omega$ in the parabolic sense.

Let

$$
\Gamma_{\varepsilon}=\left\{(x, t) \in \Omega: \exists p \in \mathbb{R}^{n} \text { s.t. } w_{\varepsilon}(x, t)+p \cdot(y-x) \geq w_{\varepsilon}(y, s), \forall(y, s) \in \Omega, s \leq t\right\}
$$

be the upper contact set of w_{ε}. Similar to the proof of Lemma A. 3 in [4], we can prove that Γ_{ε} has positive measure. Indeed, by mollification, we may assume that w_{ε} is smooth. Note that w_{ε} attains its local maximum at $\left(x_{\varepsilon}, t_{\varepsilon}\right)$. Let $w_{\varepsilon, p}(x, t):=w_{\varepsilon}(x, t)-p \cdot x$. If δ is sufficiently small and $p \in B_{\delta}$, then every maximum of $w_{\varepsilon, p}$ lies in the interior of Ω. Since $D w_{\varepsilon}-p=0$ holds at maximum points of $w_{\varepsilon, p}$, we know that $D w_{\varepsilon}\left(\Gamma_{\varepsilon}\right) \supset B_{\delta}$. Noting that w_{ε} is semi-convex, there exists $\lambda_{\varepsilon}>0$ such that $-\lambda_{\varepsilon} I \leq D^{2} w_{\varepsilon} \leq 0$ on Γ_{ε}. Thus,

$$
\left|B_{\delta}\right|_{\mathcal{L}^{n}} \leq\left|D w_{\varepsilon}\left(\Gamma_{\varepsilon}\right)\right|_{\mathcal{L}^{n}} \leq \int_{\Gamma_{\varepsilon}}\left|\operatorname{det} D^{2} w_{\varepsilon}(x, t)\right| d x d t \leq\left|\Gamma_{\varepsilon}\right|_{\mathcal{L}^{n+1}} \cdot \lambda_{\varepsilon}^{n}
$$

Then we obtain that $\left|\Gamma_{\varepsilon}\right|_{\mathcal{L}^{n+1}}>0$.
Since $w_{\varepsilon}(x, t) \geq w(x, s)$ for all $(x, t) \in \Gamma_{\varepsilon}$ and $s \leq t$, then $\left(w_{\varepsilon}\right)_{t} \geq 0$ a.e. in Γ_{ε}. Moreover,

$$
w_{\varepsilon}(x, t)+p \cdot h \geq w_{\varepsilon}(x+h, t) \quad \text { and } \quad w_{\varepsilon}(x, t)-p \cdot h \geq w_{\varepsilon}(x-h, t)
$$

for all $(x, t) \in \Gamma_{\varepsilon}$ and all sufficiently small vectors h. So

$$
2 w_{\varepsilon}(x, t) \geq w_{\varepsilon}(x+h, t)+w_{\varepsilon}(x-h, t)
$$

Since

$$
\frac{w_{\varepsilon}(x+h, t)+w_{\varepsilon}(x-h, t)-2 w_{\varepsilon}(x, t)}{|h|^{2}}
$$

converges weakly to $h^{\prime} D^{2} w_{\varepsilon}(x, t) h$ as $|h| \rightarrow 0$, which follows that $D^{2} w_{\varepsilon} \leq 0$ a.e. in Γ_{ε} (see page 159 in (7). Thus, we have

$$
\begin{equation*}
D^{2} u_{\varepsilon}^{+} \leq D^{2} v_{\varepsilon}^{-}, \quad\left(u_{\varepsilon}^{+}\right)_{t} \geq\left(v_{\varepsilon}^{-}\right)_{t} \quad \text { a.e. in } \Gamma_{\varepsilon} . \tag{2.5}
\end{equation*}
$$

Since u_{ε}^{+}is a semi-convex function, it is twice differentiable almost everywhere in Ω (see Lemma A. 2 in [4]), and at such point (x, t), we have, for $(y, s),(\xi, \tau) \in \Omega$,

$$
\begin{aligned}
& u(y, s)-\frac{|\xi-y|^{2}}{\varepsilon}-\frac{|\tau-s|^{2}}{\varepsilon} \\
\leq & u_{\varepsilon}^{+}(\xi, \tau) \\
= & u_{\varepsilon}^{+}(x, t)+\partial_{t} u_{\varepsilon}^{+}(x, t)(\tau-t)+D_{x} u_{\varepsilon}^{+}(x, t) \cdot(\xi-x) \\
& +\frac{1}{2}(\xi-x)^{\prime} D_{x}^{2} u_{\varepsilon}^{+}(x, t)(\xi-x)+o\left(|\xi-x|^{2}+|\tau-t|\right)
\end{aligned}
$$

$$
\begin{aligned}
= & u\left(y_{\varepsilon}^{+}, s_{\varepsilon}^{+}\right)-\frac{\left|x-y_{\varepsilon}^{+}\right|^{2}}{\varepsilon}-\frac{\left|t-s_{\varepsilon}^{+}\right|^{2}}{\varepsilon} \\
& +\partial_{t} u_{\varepsilon}^{+}(x, t)(\tau-t)+D_{x} u_{\varepsilon}^{+}(x, t) \cdot(\xi-x) \\
& +\frac{1}{2}(\xi-x)^{\prime} D_{x}^{2} u_{\varepsilon}^{+}(x, t)(\xi-x)+o\left(|\xi-x|^{2}+|\tau-t|\right)
\end{aligned}
$$

Taking $\xi=y-y_{\varepsilon}^{+}+x, \tau=s-s_{\varepsilon}^{+}+t$, we obtain that

$$
\begin{align*}
u(y, s) \leq & u\left(y_{\varepsilon}^{+}, s_{\varepsilon}^{+}\right)+\partial_{t} u_{\varepsilon}^{+}(x, t)\left(s-s_{\varepsilon}^{+}\right)+D_{x} u_{\varepsilon}^{+}(x, t) \cdot\left(y-y_{\varepsilon}^{+}\right) \\
& +\frac{1}{2}\left(y-y_{\varepsilon}^{+}\right)^{\prime} D_{x}^{2} u_{\varepsilon}^{+}(x, t)\left(y-y_{\varepsilon}^{+}\right)+o\left(\left|y-y_{\varepsilon}^{+}\right|^{2}+\left|s-s_{\varepsilon}^{+}\right|\right) \tag{2.6}
\end{align*}
$$

By the definition of viscosity subsolutions, we know that

$$
\begin{equation*}
-\left(u_{\varepsilon}^{+}\right)_{t} S_{k}\left(D^{2} u_{\varepsilon}^{+}\right)(x, t) \geq \beta \quad \text { and } \quad \lambda\left(D^{2} u_{\varepsilon}^{+}(x, t)\right) \in \Gamma_{k} . \tag{2.7}
\end{equation*}
$$

Hence, from (2.5) and 2.7), for a.e. $(x, t) \in \Gamma_{\varepsilon}$,

$$
\begin{equation*}
-\left(v_{\varepsilon}^{-}\right)_{t} S_{k}\left(D^{2} v_{\varepsilon}^{-}\right)(x, t) \geq \beta \quad \text { and } \quad \lambda\left(D^{2} v_{\varepsilon}^{-}(x, t)\right) \in \Gamma_{k} \tag{2.8}
\end{equation*}
$$

On the other hand, similarly as (2.6), we can also obtain that

$$
\begin{aligned}
v(y, s) \geq & v\left(y_{\varepsilon}^{-}, s_{\varepsilon}^{-}\right)+\partial_{t} v_{\varepsilon}^{-}(x, t)\left(s-s_{\varepsilon}^{-}\right)+D_{x} v_{\varepsilon}^{-}(x, t) \cdot\left(y-y_{\varepsilon}^{-}\right) \\
& +\frac{1}{2}\left(y-y_{\varepsilon}^{-}\right)^{\prime} D_{x}^{2} v_{\varepsilon}^{-}(x, t)\left(y-y_{\varepsilon}^{-}\right)+o\left(\left|y-y_{\varepsilon}^{-}\right|^{2}+\left|s-s_{\varepsilon}^{-}\right|\right)
\end{aligned}
$$

Therefore, by the definition of viscosity supersolutions, we have

$$
-\left(v_{\varepsilon}^{-}\right)_{t} S_{k, l}\left(D_{x}^{2} v_{\varepsilon}^{-}\right)(x, t) \leq 1,
$$

which is a contradiction to (2.8).
To introduce the Perron method for parabolic equations, we first define weak viscosity solutions which do not satisfy (semi) continuous properties.
Definition 2.6. Let $\Omega \subset \mathbb{R}^{n+1}$ be an open set in the parabolic sense. We say a function u is a weak viscosity subsolution of

$$
-u_{t} S_{k, l}\left(D^{2} u\right)=1 \quad \text { in } \Omega
$$

if the USC envelope of u, namely,

$$
u^{*}(x, t)=\lim _{r \rightarrow 0} \sup _{(y, s) \in B_{r}(x, t)} u(y, s)
$$

is finite and a viscosity subsolution, where

$$
B_{r}(x, t):=\left\{(y, s)| | x-\left.y\right|^{4}+|t-s|^{2}<r^{2}\right\} \subset \Omega .
$$

Similarly, one uses LSC envelope $u_{*}=-(-u)^{*}$ for supersolutions. If u is a weak viscosity sub- and supersolution, we call u a weak viscosity solution.

We can also define weak viscosity solutions of the problem (1.1), (1.2) by giving the boundary condition like Definition 2.2.

From the result in [10, we have the two lemmas below.
Lemma 2.7. Let Ω be an open set in \mathbb{R}^{n+1} in the parabolic sense. Let \mathcal{S} denote any nonempty set of weak viscosity subsolutions of

$$
\begin{equation*}
-v_{t} S_{k, l}\left(D^{2} v\right)=1 \quad \text { in } \Omega \tag{2.9}
\end{equation*}
$$

Set

$$
u(x, t)=\sup \{v(x, t) \mid v \in \mathcal{S}\} \quad \text { for }(x, t) \in \Omega
$$

Suppose $u^{*}(x, t)<\infty$ for $(x, t) \in \Omega$, then u is a weak viscosity subsolution of (2.9).
Lemma 2.8. Let g be a weak viscosity supersolution of (2.9). Let

$$
S_{g}:=\{v \mid v \text { is a weak viscosity subsolution of (2.9) and } v \leq g\}
$$

and

$$
u(x, t):=\sup \left\{v(x, t) \mid v \in S_{g}\right\} .
$$

If S_{g} is not empty, then u is a weak viscosity solution of 2.9.
In [1] , the authors derived a formula of $\sigma_{k}(\lambda(M))$ for matrices M of the form

$$
\begin{equation*}
M=\left(p_{i} \delta_{i j}-\beta q_{i} q_{j}\right)_{n \times n} \tag{2.10}
\end{equation*}
$$

where $p=\left(p_{1}, p_{2}, \ldots, p_{n}\right), q=\left(q_{1}, q_{2}, \ldots, q_{n}\right)$ and $\beta \in \mathbb{R}$.
Proposition 2.9 ($\mathrm{Bao}-\mathrm{Li}-\mathrm{Li})$. If M is an $n \times n$ matrix of the form (2.10) for $p=$ $\left(p_{1}, p_{2}, \ldots, p_{n}\right), q=\left(q_{1}, q_{2}, \ldots, q_{n}\right)$ and $\beta \in \mathbb{R}$, then we have

$$
\sigma_{k}(\lambda(M))=\sigma_{k}(p)-\beta \sum_{i=1}^{n} q_{i}^{2} \sigma_{k-1 ; i}(p)
$$

where $\sigma_{k-1 ; i}(p)=\left.\sigma_{k-1}(p)\right|_{p_{i}=0}$.

3. Construction of subsolutions

Denote

$$
\mathcal{A}_{k, l}:=\left\{A: A \text { is a real } n \times n \text { symmetric positive definite matrix and } S_{k, l}(A)=1\right\} .
$$

Lemma 3.1. Let $n \geq 3, \varphi \in C^{2}(\bar{D})$ and $A \in \mathcal{A}_{k, l}$. Then there exists some positive constant c_{0} depending only on $n,\|\varphi\|_{C^{2}(\bar{D})}, D, A$, such that for any $\bar{c}>c_{0}$, and $(\xi, \lambda) \in$ $\partial_{p} D$, there exist C_{0} depending only on $n,\|\varphi\|_{C^{2}(\bar{D})}, D, A, \bar{c}$, and $\bar{x}(\xi, \lambda) \in \mathbb{R}^{n}$ satisfying

$$
|\bar{x}(\xi, \lambda)| \leq C_{0} \quad \text { and } \quad w_{\xi, \lambda}(x, t)<\varphi(x, t) \quad \text { on } \partial_{p} D \backslash\{(\xi, \lambda)\},
$$

where

$$
w_{\xi, \lambda}(x, t)=\varphi(\xi, \lambda)-\bar{c}(t-\lambda)+\frac{1}{2}(x-\bar{x})^{\prime} A(x-\bar{x})-\frac{1}{2}(\xi-\bar{x})^{\prime} A(\xi-\bar{x}), \quad(x, t) \in \mathbb{R}_{-}^{n+1}
$$

Proof. Denote

$$
I:=\left\{x \in \mathbb{R}^{n} \mid Q(x) \leq 0\right\} .
$$

Let $(\xi, \lambda) \in \partial_{p} D$. By the mean value theorem, for $x \in I$, there exist $\xi_{1}, \xi_{2} \in I$ such that

$$
\begin{gathered}
Q(x)=Q(\xi)+D Q\left(\xi_{1}\right) \cdot(x-\xi) \\
Q(x)=Q(\xi)+D Q(\xi) \cdot(x-\xi)+\frac{1}{2}(x-\xi)^{\prime} D^{2} Q\left(\xi_{2}\right)(x-\xi)
\end{gathered}
$$

Let

$$
M_{1}=\max _{x \in I}|D Q(x)|,
$$

and M_{2} be the half of the minimum of the smallest eigenvalue of $D^{2} Q(x)$ over $x \in I$. Then we have

$$
\begin{gathered}
|Q(x)-Q(\xi)| \leq M_{1}|x-\xi| \\
Q(x) \geq Q(\xi)+D Q(\xi) \cdot(x-\xi)+M_{2}|x-\xi|^{2}
\end{gathered}
$$

Again by the mean value theorem, for $(x, t) \in \partial_{p} D$,

$$
\begin{aligned}
& \varphi(x, t) \\
= & \varphi(\xi, \lambda)+D_{x, t} \varphi(\xi, \lambda) \cdot((x, t)-(\xi, \lambda))+\frac{1}{2}((x, t)-(\xi, \lambda))^{\prime} D_{x, t}^{2} \varphi(\bar{\xi}, \bar{\lambda})((x, t)-(\xi, \lambda)) \\
\geq & \varphi(\xi, \lambda)+D_{x} \varphi(\xi, \lambda) \cdot(x-\xi)+\varphi_{t}(\xi, \lambda)(t-\lambda)-C\left(|x-\xi|^{2}+(t-\lambda)^{2}\right) \\
= & \varphi(\xi, \lambda)+D_{x} \varphi(\xi, \lambda) \cdot(x-\xi)+\varphi_{t}(\xi, \lambda)(Q(x)-Q(\xi))-C\left(|x-\xi|^{2}+(Q(x)-Q(\xi))^{2}\right),
\end{aligned}
$$

where $(\bar{\xi}, \bar{\lambda}) \in \bar{D}$, and $C=\frac{1}{2}\left(\max _{\bar{D}}\left|D_{x, t}^{2} \varphi\right|+\max _{\bar{D}}\left|\varphi_{t}\right|\right)$.
Define

$$
w_{\xi, \lambda}(x, t)=\varphi(\xi, \lambda)-\bar{c}(t-\lambda)+\frac{1}{2}(x-\bar{x})^{\prime} A(x-\bar{x})-\frac{1}{2}(\xi-\bar{x})^{\prime} A(\xi-\bar{x}), \quad(x, t) \in \mathbb{R}_{-}^{n+1}
$$

where

$$
\bar{x}(\xi, \lambda)=-A^{-1} D_{x} \varphi(\xi, \lambda)+\xi-\left(\bar{c}+\varphi_{t}(\xi, \lambda)\right) A^{-1} D Q(\xi)
$$

Then on $\partial_{p} D$,

$$
\begin{aligned}
w_{\xi, \lambda}(x, t)= & \varphi(\xi, \lambda)-\bar{c}(t-\lambda)+\frac{1}{2}\left(x^{\prime} A x-\xi^{\prime} A \xi\right)-(x-\xi)^{\prime} A \bar{x} \\
= & \varphi(\xi, \lambda)-\bar{c}(Q(x)-Q(\xi))+\frac{1}{2}(x-\xi)^{\prime} A(x-\xi)+D_{x} \varphi(\xi, \lambda) \cdot(x-\xi) \\
& +\left(\bar{c}+\varphi_{t}(\xi, \lambda)\right) D Q(\xi) \cdot(x-\xi)
\end{aligned}
$$

Thus for $\bar{c} \geq \max _{\bar{D}}\left|\varphi_{t}\right|$,

$$
\begin{aligned}
& \left(w_{\xi, \lambda}-\varphi\right)(x, t) \\
\leq & \left(-\bar{c}-\varphi_{t}(\xi, \lambda)\right)(Q(x)-Q(\xi))+\frac{1}{2}(x-\xi)^{\prime} A(x-\xi)+C\left(|x-\xi|^{2}+(Q(x)-Q(\xi))^{2}\right) \\
& +\left(\bar{c}+\varphi_{t}(\xi, \lambda)\right) D Q(\xi) \cdot(x-\xi) \\
\leq & \left(-\bar{c}-\varphi_{t}(\xi, \lambda)\right) M_{2}|x-\xi|^{2}+\frac{A_{\max }}{2}|x-\xi|^{2}+C\left(|x-\xi|^{2}+M_{1}^{2}|x-\xi|^{2}\right) \\
= & {\left[\left(-\bar{c}-\varphi_{t}(\xi, \lambda)\right) M_{2}+\frac{A_{\max }}{2}+C\left(1+M_{1}^{2}\right)\right]|x-\xi|^{2}, }
\end{aligned}
$$

where $A_{\max }$ is the upper bound of A. Set $c_{0}=\frac{1}{M_{2}}\left(\frac{A_{\max }}{2}+C\left(1+M_{1}^{2}\right)\right)+2 C$, then for $\bar{c}>c_{0}$,

$$
\left(-\bar{c}-\varphi_{t}(\xi, \lambda)\right) M_{2}+\frac{A_{\max }}{2}+C\left(1+M_{1}^{2}\right)<0
$$

and

$$
\left(w_{\xi, \lambda}-\varphi\right)(x, t)<0 \quad \text { on } \partial_{p} D \backslash\{(\xi, \lambda)\}
$$

By Lemma 3.1, for $(\xi, \lambda) \in \partial_{p} D$, there exist $c_{0}>0$ and $\bar{x}(\xi, \lambda) \in \mathbb{R}^{n},|\bar{x}(\xi, \lambda)|<\infty$ such that

$$
w_{\xi, \lambda}(x, t)<\varphi(x, t) \quad \text { on } \partial_{p} D \backslash\{(\xi, \lambda)\}
$$

where

$$
w_{\xi, \lambda}(x, t)=\varphi(\xi, \lambda)-\bar{c}(t-\lambda)+\frac{1}{2} a|x-\bar{x}|^{2}-\frac{1}{2} a|x-\bar{x}|^{2}, \quad(x, t) \in \mathbb{R}_{-}^{n+1},
$$

and $\bar{c} \geq \max \left\{1, c_{0}\right\}$. Then

$$
-\left(w_{\xi, \lambda}\right)_{t} S_{k, l}\left(D^{2} w_{\xi, \lambda}\right)=\bar{c} \geq 1, \quad(x, t) \in \mathbb{R}_{-}^{n+1}
$$

Set

$$
w(x, t)=\max _{(\xi, \lambda) \in \partial_{p} D} w_{\xi, \lambda}(x, t), \quad(x, t) \in \mathbb{R}_{-}^{n+1}
$$

Then w is a locally Lipschitz function in \mathbb{R}_{-}^{n+1},

$$
\begin{equation*}
w(x, t)=\varphi(x, t), \quad(x, t) \in \partial_{p} D \tag{3.1}
\end{equation*}
$$

and by Lemma 2.7 .

$$
\begin{equation*}
-w_{t} S_{k, l}\left(D^{2} w\right) \geq 1, \quad(x, t) \in \mathbb{R}_{-}^{n+1} \tag{3.2}
\end{equation*}
$$

in the viscosity sense.
Let $D_{H}=\left\{\left.(x, t)\left|\frac{1}{2} a\right| x\right|^{2}-H^{2}<t \leq 0\right\}$. Without loss of generality, we can assume that $D_{H_{1}} \subset \subset D \subset \subset D_{H_{2}}$, where $H_{2}>H_{1}$. For $b>0, h=\sqrt{-t+\frac{1}{2} a|x|^{2}}$, define

$$
u_{-}(x, t)=U(h)=2 \int_{H_{2}}^{h}\left(s^{k-l}+b\right)^{\frac{1}{k-l}} d s+\inf _{D_{H_{2}}} w, \quad(x, t) \in \mathbb{R}_{-}^{n+1}
$$

and

$$
\bar{u}(x, t)=-t+\frac{1}{2} a|x|^{2}+c, \quad(x, t) \in \mathbb{R}_{-}^{n+1}
$$

We see that

$$
\begin{equation*}
u_{-}(x, t) \leq 2 \int_{H_{2}}^{H_{2}}\left(s^{k-l}+b\right)^{\frac{1}{k-l}} d s+\inf _{D_{H_{2}}} w \leq w(x, t) \quad \text { on } \partial_{p} D . \tag{3.3}
\end{equation*}
$$

Choose $H_{3}=H_{2}+1$ and sufficiently large b, c such that the following three inequalities hold at the same time

$$
\begin{gather*}
u_{-}(x, t)=2 \int_{H_{2}}^{H_{3}}\left(s^{k-l}+b\right)^{\frac{1}{k-l}} d s+\inf _{D_{H_{2}}} w \geq w(x, t) \quad \text { on } \partial_{p} D_{H_{3}} \\
\bar{u}(x, t)=-t+\frac{1}{2} a|x|^{2}+c \geq w(x, t) \quad \text { on } \partial_{p} D_{H_{3}} \tag{3.4}\\
\bar{u}(x, t)=H_{1}^{2}+c \geq w(x, t) \geq u_{-}(x, t) \quad \text { on } \partial_{p} D_{H_{1}} . \tag{3.5}
\end{gather*}
$$

By simple computation, we have

$$
\begin{gathered}
U^{\prime}(h)=2\left(h^{k-l}+b\right)^{\frac{1}{k-l}}, \quad U^{\prime \prime}(h)=2\left(h^{k-l}+b\right)^{\frac{1}{k-l}-1} h^{k-l-1}, \\
h_{t}=-\frac{1}{2 h}, \quad h_{r}=\frac{a r}{2 h}, \quad h_{r r}=\frac{2 a h^{2}-a^{2} r^{2}}{4 h^{3}}, \\
\left(u_{-}\right)_{t}=-\frac{1}{h}\left(h^{k-l}+b\right)^{\frac{1}{k-l}}, \quad\left(u_{-}\right)_{r}=\left(h^{k-l}+b\right)^{\frac{1}{k-l}} \cdot \frac{a r}{h} \\
\left(u_{-}\right)_{r r}=\left(h^{k-l}+b\right)^{\frac{1}{k-l}-1} h^{k-l-1} \cdot \frac{a^{2} r^{2}}{2 h^{2}}+\left(h^{k-l}+b\right)^{\frac{1}{k-l}} \cdot \frac{2 a h^{2}-a^{2} r^{2}}{2 h^{3}} .
\end{gathered}
$$

Then we have

$$
\begin{aligned}
& S_{k, l}\left(D^{2} u_{-}\right) \\
= & \frac{C_{n-1}^{k}\left(\frac{\left(u_{-}\right)_{r}}{r}\right)^{k}+\left(u_{-}\right)_{r r} C_{n-1}^{k-1}\left(\frac{\left(u_{-}\right)_{r}}{r}\right)^{k-1}}{C_{n-1}^{l}\left(\frac{\left(u_{-}\right)_{r}}{r}\right)^{l}+\left(u_{-}\right)_{r r} C_{n-1}^{l-1}\left(\frac{\left(u_{-}\right)_{r}}{r}\right)^{l-1}} \\
= & \left(\frac{\left(u_{-}\right)_{r}}{r}\right)^{k-l} \frac{C_{n-1}^{k}\left(\frac{\left(u_{-}\right)_{r}}{r}\right)+\left(u_{-}\right)_{r r} C_{n-1}^{k-1}}{C_{n-1}^{l}\left(\frac{\left(u_{-}\right)_{r}}{r}\right)+\left(u_{-}\right)_{r r} C_{n-1}^{l-1}}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(h^{k-l}+b\right)\left(\frac{a}{h}\right)^{k-l} \frac{C_{n-1}^{k}\left(h^{k-l}+b\right)^{\frac{1}{k-l}} \cdot \frac{a}{h}+C_{n-1}^{k-1}\left(u_{-}\right)_{r r}}{C_{n-1}^{l}\left(h^{k-l}+b\right)^{\frac{1}{k-l} \cdot \frac{a}{h}+C_{n-1}^{l-1}\left(u_{-}\right)_{r r}}} \\
& =\left(h^{k-l}+b\right)\left(\frac{a}{h}\right)^{k-l} \frac{C_{n-1}^{k}\left(h^{k-l}+b\right)+C_{n-1}^{k-1}\left[h^{k-l-1} \cdot \frac{a r^{2}}{2 h}+\left(h^{k-l}+b\right) \cdot \frac{2 h^{2}-a r^{2}}{2 h^{2}}\right]}{C_{n-1}^{l}\left(h^{k-l}+b\right)+C_{n-1}^{l-1}\left[h^{k-l-1} \cdot \frac{a r^{2}}{2 h}+\left(h^{k-l}+b\right) \cdot \frac{2 h^{2}-a r^{2}}{2 h^{2}}\right]} \\
& =\left(h^{k-l}+b\right)\left(\frac{a}{h}\right)^{k-l} \frac{C_{n-1}^{k}\left(h^{k-l}+b\right)+C_{n-1}^{k-1}\left[\left(h^{k-l}+b\right)-\frac{a b r^{2}}{2 h^{2}}\right]}{C_{n-1}^{l}\left(h^{k-l}+b\right)+C_{n-1}^{l-1}\left[\left(h^{k-l}+b\right)-\frac{a b r^{2}}{2 h^{2}}\right]} \\
& =\left(h^{k-l}+b\right)\left(\frac{a}{h}\right)^{k-l} \frac{C_{n}^{k}\left(h^{k-l}+b\right)-C_{n-1}^{k-1} \frac{a b r^{2}}{2 h^{2}}}{C_{n}^{l}\left(h^{k-l}+b\right)-C_{n-1}^{l-1} \frac{a r^{2}}{2 h^{2}}} .
\end{aligned}
$$

Therefore,

$$
\begin{align*}
-\left(u_{-}\right)_{t} S_{k, l}\left(D^{2} u_{-}\right) & =\frac{1}{h}\left(h^{k-l}+b\right)^{\frac{1}{k-l}}\left(h^{k-l}+b\right)\left(\frac{a}{h}\right)^{k-l} \frac{C_{n}^{k}\left(h^{k-l}+b\right)-C_{n-1}^{k-1} \frac{a b r^{2}}{2 h^{2}}}{C_{n}^{l}\left(h^{k-l}+b\right)-C_{n-1}^{l-1} \frac{a b r^{2}}{2 h^{2}}} \\
& \geq\left(h^{k-l}+b\right)\left(\frac{a}{h}\right)^{k-l} \frac{C_{n}^{k}\left(h^{k-l}+b\right)-C_{n}^{k} \frac{a b r^{2}}{2 h^{2}}}{C_{n}^{l}\left(h^{k-l}+b\right)} \tag{3.6}\\
& =\left(\frac{a}{h}\right)^{k-l} \frac{C_{n}^{k}\left(h^{k-l}-\frac{b t}{h^{2}}\right)}{C_{n}^{l}} \\
& \geq a^{k-l} \frac{C_{n}^{k}}{C_{n}^{l}}=1 .
\end{align*}
$$

By simple computation, we have

$$
\begin{aligned}
U(h) & =2 \int_{H_{2}}^{h}\left(s^{k-l}+b\right)^{\frac{1}{k-l}} d s+\inf _{D_{H_{2}}} w \\
& =2 \int_{H_{2}}^{h} s\left[\left(1+\frac{b}{s^{k-l}}\right)^{\frac{1}{k-l}}-1\right] d s+h^{2}-H_{2}^{2}+\inf _{D_{H_{2}}} w \\
& =h^{2}+O\left(h^{l-k+2}\right)+2 \int_{H_{2}}^{+\infty} s\left[\left(1+\frac{b}{s^{k-l}}\right)^{\frac{1}{k-l}}-1\right] d s-H_{2}^{2}+\inf _{D_{H_{2}}} w
\end{aligned}
$$

as h tends to infinity. Then

$$
u_{-}(x, t)=-t+\frac{1}{2} a|x|^{2}+\mu(b)+O\left(\left(-t+\frac{1}{2} a|x|^{2}\right)^{\frac{l-k+2}{2}}\right)
$$

as $|x|^{2}-t$ tends to infinity, where

$$
\mu(b)=2 \int_{H_{2}}^{+\infty} s\left[\left(1+\frac{b}{s^{k-l}}\right)^{\frac{1}{k-l}}-1\right] d s-H_{2}^{2}+\inf _{D_{H_{2}}} w
$$

We can see that $\mu(b)$ is continuous, strictly increasing in $(0,+\infty)$, and

$$
\lim _{b \rightarrow+\infty} \mu(b)=+\infty
$$

Then there exists c^{*} large enough such that for any $c>c^{*}$, there exists $b(c)$ satisfying $\mu(b(c))=c$. Therefore, as $|x|^{2}-t \rightarrow+\infty$,

$$
\begin{equation*}
u_{-}(x, t)=\bar{u}(x, t)=-t+\frac{1}{2} a|x|^{2}+c+O\left(\left(-t+\frac{1}{2} a|x|^{2}\right)^{\frac{l-k+2}{2}}\right) \tag{3.7}
\end{equation*}
$$

By (3.5), (3.6), (3.7) and Lemma 2.5, we know that

$$
\begin{equation*}
u_{-} \leq \bar{u} \quad \text { in } \mathbb{R}_{-}^{n+1} \backslash D_{H_{1}} \tag{3.8}
\end{equation*}
$$

Now we want to show that u_{-}is k-convex. From the computation above, we have

$$
\left(u_{-}\right)_{i}=U^{\prime} h_{i}=U^{\prime} \frac{a x_{i}}{2 h}
$$

and

$$
\left(u_{-}\right)_{i j}=U^{\prime} \frac{a \delta_{i j} 2 h-a x_{i} \frac{a x_{j}}{h}}{4 h^{2}}+U^{\prime \prime} \frac{a^{2} x_{i} x_{j}}{4 h^{2}}=U^{\prime} \frac{a}{2 h} \delta_{i j}-\left(U^{\prime} \frac{a^{2}}{4 h^{3}}-U^{\prime \prime} \frac{a^{2}}{4 h^{2}}\right) x_{i} x_{j} .
$$

By Proposition 2.9, for any $1 \leq m \leq k-1$,

$$
\begin{aligned}
\sigma_{m}\left(\lambda\left(D^{2} u_{-}\right)\right) & =C_{n}^{m}\left(U^{\prime} \frac{a}{2 h}\right)^{m}-\left(U^{\prime} \frac{a^{2}}{4 h^{3}}-U^{\prime \prime} \frac{a^{2}}{4 h^{2}}\right) \sum_{i=1}^{n} x_{i}^{2} C_{n-1}^{m-1}\left(U^{\prime} \frac{a}{2 h}\right)^{m-1} \\
& =U^{\prime m-1} \frac{a^{m}}{(2 h)^{m}}\left[C_{n}^{m} U^{\prime}-C_{n-1}^{m-1}\left(U^{\prime} \frac{a}{2 h^{2}}-U^{\prime \prime} \frac{a}{2 h}\right)|x|^{2}\right] \\
& =U^{\prime m-1} \frac{a^{m}}{(2 h)^{m}}\left[C_{n-1}^{m} U^{\prime}+C_{n-1}^{m-1} \frac{-t}{h^{2}}+C_{n-1}^{m-1} U^{\prime \prime} \frac{a}{2 h}|x|^{2}\right] \\
& >0 .
\end{aligned}
$$

4. Proof of Theorem 1.1

For $c>c^{*}$, define

$$
\underline{u}(x, t)= \begin{cases}\max \left\{w(x, t), u_{-}(x, t)\right\}, & (x, t) \in D_{H_{3}} \backslash D_{H_{1}} \\ u_{-}(x, t), & (x, t) \in \mathbb{R}_{-}^{n+1} \backslash D_{H_{3}}\end{cases}
$$

By (3.3), $\underline{u} \in C^{0}\left(\mathbb{R}_{-}^{n+1} \backslash D_{H_{1}}\right)$. By (3.2), (3.6) and Lemma 2.4, \underline{u} satisfies

$$
-(\underline{u})_{t} S_{k, l}\left(D^{2} \underline{u}\right) \geq 1 \quad \text { in } \mathbb{R}_{-}^{n+1} \backslash D
$$

in the viscosity sense. By (3.1) and (3.3), we know that

$$
\begin{equation*}
\underline{u}=w=\varphi \quad \text { on } \partial_{p} D . \tag{4.1}
\end{equation*}
$$

Then \underline{u} is a subsolution of (1.1) and (1.2). By (3.7), as $|x|^{2}-t \rightarrow+\infty$,

$$
\begin{equation*}
\underline{u}(x, t)=-t+\frac{1}{2} a|x|^{2}+c+O\left(\left(-t+\frac{1}{2} a|x|^{2}\right)^{\frac{l-k+2}{2}}\right) . \tag{4.2}
\end{equation*}
$$

Furthermore, by (3.2), (3.4), (3.5) and Lemma 2.5,

$$
w \leq \bar{u} \quad \text { in } D_{H_{3}} \backslash D_{H_{1}} .
$$

Then combining with (3.8),

$$
\underline{u} \leq \bar{u} \quad \text { in } \mathbb{R}_{-}^{n+1} \backslash D_{H_{1}}
$$

Let S_{c} denote the set of functions v which are weak viscosity subsolutions of (1.1) and (1.2) satisfying

$$
v \leq \bar{u} \quad \text { in } \mathbb{R}_{-}^{n+1} \backslash D
$$

By the arguments above, $\underline{u} \in S_{c}$. So $S_{c} \neq \emptyset$. Define

$$
u_{c}(x, t)=\sup \left\{v(x, t): v \in S_{c}\right\}, \quad(x, t) \in \mathbb{R}_{-}^{n+1} \backslash D
$$

By the definition of u_{c}, we know that $\underline{u} \leq u_{c} \leq \bar{u}$. Then by (4.2), as $|x|^{2}-t \rightarrow+\infty$,

$$
u_{c}(x, t)=-t+\frac{1}{2} a|x|^{2}+c+O\left(\left(-t+\frac{1}{2} a|x|^{2}\right)^{\frac{l-k+2}{2}}\right)
$$

For any $(\xi, \tau) \in \partial_{p} D$, on the one hand, by (4.1),

$$
\liminf _{(x, t) \rightarrow(\xi, \tau)} u_{c}(x, t) \geq \liminf _{(x, t) \rightarrow(\xi, \tau)} \underline{u}(x, t)=\varphi(\xi, \tau) .
$$

On the other hand, we have

$$
\liminf _{(x, t) \rightarrow(\xi, \tau)} u_{c}(x, t) \leq \varphi(\xi, \tau)
$$

Indeed, for every $v \in S_{c}$, by the definition of viscosity solutions, v^{*} satisfies

$$
\begin{cases}-\left(v_{t}\right)^{*}+\Delta v^{*} \geq 0 & \text { in } D_{H_{2}} \backslash \bar{D}, \\ v^{*} \leq \varphi & \text { on } \partial_{p} D \\ v^{*} \leq \sup _{\partial_{p} D_{H_{2}}} \bar{u}=: B & \text { on } \partial_{p} D_{H_{2}}\end{cases}
$$

Let $\bar{v} \in C^{2,1}\left(D_{H_{2}} \backslash \bar{D}\right) \cap C^{0}\left(\overline{D_{H_{2}}} \backslash D\right)$ be the solution of the problem 77

$$
\begin{cases}-\bar{v}_{t}+\Delta \bar{v}=0 & \text { in } D_{H_{2}} \backslash \bar{D} \\ \bar{v}=\varphi & \text { on } \partial_{p} D \\ \bar{v}=\sup _{\partial_{p} D_{H_{2}}} \bar{u}=: B & \text { on } \partial_{p} D_{H_{2}}\end{cases}
$$

By the comparison principle for the heat conduction equation, which can be proved directly by the definition of viscosity solutions, we have $v \leq v^{*} \leq \bar{v}$ on $\overline{D_{H_{2}}} \backslash \bar{D}$. So $u_{c} \leq \bar{v}$ on $\overline{D_{H_{2}}} \backslash \bar{D}$, and

$$
\limsup _{(x, t) \rightarrow(\xi, \tau)} u_{c}(x, t) \leq \limsup _{(x, t) \rightarrow(\xi, \tau)} \bar{v}(x, t)=\varphi(\xi, \tau) .
$$

Thus, $u_{c}=\varphi$ on $\partial_{p} D$.
By the definition of u_{c} and Lemma 2.8, we can prove that u_{c} is a weak viscosity solution of 1.1). Then by Lemma 2.5 and the asymptotic behavior, $u_{c}^{*} \leq u_{c *}$. By the definition of u_{c}^{*} and $u_{c *}, u_{c}^{*} \geq u_{c *}$. Thus, $u_{c}^{*}=u_{c *}$. Then u_{c} is continuous and a viscosity solution.

References

[1] J. Bao, H. Li and Y. Li, On the exterior Dirichlet problem for Hessian equations, Trans. Amer. Math. Soc. 366 (2014), no. 12, 6183-6200.
[2] J. Bao, H. Li and L. Zhang, Monge-Ampère equation on exterior domains, Calc. Var. Partial Differential Equations 52 (2015), no. 1-2, 39-63.
[3] L. Caffarelli and Y. Li, An extension to a theorem of Jörgens, Calabi, and Pogorelov, Comm. Pure Appl. Math. 56 (2003), no. 5, 549-583.
[4] M. G. Crandall, H. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.) 27 (1992), no. 1, 1-67.
[5] L. Dai, The Dirichlet problem for Hessian quotient equations in exterior domains, J. Math. Anal. Appl. 380 (2011), no. 1, 87-93.
[6] R. Jensen, The maximum principle for viscosity solutions of fully nonlinear second order partial differential equations, Arch. Rational Mech. Anal. 101 (1988), no. 1, 1-27.
[7] G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific, River Edge, NJ, 1996.
[8] B. Wang and J. Bao, Asymptotic behavior on a kind of parabolic Monge-Ampère equation, J. Differential Equations 259 (2015), no. 1, 344-370.
[9] R. H. Wang and G. L. Wang, The geometric measure theoretical characterization of viscosity solutions to parabolic Monge-Ampère type equation, J. Partial Differential Equations 6 (1993), no. 3, 237-254.
[10] Y. Zhan, Viscosity Solutions of Nonlinear Degenerate Parabolic Equations and Several Applications, Thesis (Ph.D.)-University of Toronto (Canada), ProQuest LLC, Ann Arbor, MI, 2000.
[11] W. Zhang, J. Bao and B. Wang, An extension of Jörgens-Calabi-Pogorelov theorem to parabolic Monge-Ampère equation, Calc. Var. Partial Differential Equations 57 (2018), no. 3, Paper No. 90, 36 pp.
[12] Z. Zhou, S. Gong and J. Bao, Ancient solutions of exterior problem of parabolic Monge-Ampère equations, Ann. Mat. Pura Appl. (4) 200 (2021), no. 4, 1605-1624.

Ziwei Zhou

School of Statistics, University of International Business and Economics, Beijing 100029, China
E-mail address: zhouziwei@uibe.edu.cn

