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Error Analysis of an Alternating Direction Implicit Difference Method for

2D Subdiffusion Equation with Initial Singularity

Weizhi Liu and Hu Chen*

Abstract. The alternating direction implicit (ADI) scheme is used to numerically

solve the 2D subdiffusion equation with initial singularity. The time derivative is

defined by the commonly used Caputo fractional derivative, and discretised by the

L1 scheme on nonuniform mesh. The finite difference method (FDM) is applied to

spatial discretization. The local error analyses of fully discrete scheme under the L2-

norm and H1-norm are strictly established. By selecting the milder grading parameter

r > 2 − α, the time convergence rate can reach O(M−min{2−α,2α}) in positive time.

In order to verify the correctness of the theoretical analysis, some numerical results

are presented.

1. Introduction

In this work, we study the following 2D subdiffusion equation:

(1.1)


Dα

t w(x, y, t) = ∆w(x, y, t) + f(x, y, t), (x, y) ∈ Θ, 0 < t ≤ T,

w(x, y, 0) = w0(x, y), (x, y) ∈ Θ,

w(x, y, t) = 0, (x, y) ∈ ∂Θ, 0 < t ≤ T,

where α ∈ (0, 1), Θ = (0, l) × (0, l), f and w0 are continuous functions. In (1.1), Dα
t w is

the α-order Caputo fractional derivative of t, which is defined as

Dα
t w(x, y, t) =

1

Γ(1− α)

∫ t

σ=0
(t− σ)−α∂w(x, y, σ)

∂σ
dσ.

The time fractional subdiffusion equation has been extensively studied by scholars

recently, see the latest survey article [9] and references therein. An ADI scheme was

proposed for (1.1) by Sun and Zhang [14], but their analyses are based on the constraint
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that the solution is smooth enough in time direction. For time-fractional subdiffusion

problem, as is known that, the solution is usually accompanied by some initial weak

singularities [8]. For smooth solution, the truncation error of L1 scheme is uniformly

bounded by O(τ2−α) on the mesh tm = mτ , where τ is the step size. However for typical

solution exhibiting a weak initial singularity, the truncation error of L1 scheme at t = tm

depends on m (see, e.g., Lemma 3.6 in this paper), which complicates the analysis and

one cannot use the usual error analysis designed for smooth solution. On the other hand,

graded temporal mesh is employed to compensate for this initial singularity as one can

at most get first order accuracy on uniform mesh [5]. For the 2D sub-diffusion equation

with Neumann boundary condition, a compact ADI scheme was presented by Cheng et

al. [3] under realistic assumption on the solution. The sharp error estimates for the

compact ADI-L1 scheme of 2D time fractional integro-differential equations were studied

by Wang et al. [13]. In [12], the α-robust H1-norm convergence analysis of ADI scheme

for problem (1.1) with initial singularity was presented. However, both of the above works

are for the temporal global error estimates of the proposed schemes, and the schemes

often have better convergence rates on positive time [5]. Wang and Chen [11] proved the

time local convergence order of O(M−min{1,2α}) for an ADI scheme on uniform mesh for

problem (1.1), it is no better than 1 for all the values of α. Inspired by the work [7], where

local convergence of L1 scheme on graded mesh is proved, in this paper our purpose is to

gain local convergence of ADI-L1 scheme for problem (1.1) on graded mesh. In more detail,

we apply the L1 scheme on graded mesh to compensate the initial weak singularity, and a

fully discrete ADI finite difference scheme is constructed for (1.1). The local convergences

of the fully discrete ADI-L1 scheme both in L2-norm and H1-norm are rigorously proved.

The rest of this article is as follows. To solve the problem (1.1), we construct a

fully discrete ADI-L1 scheme in Section 2. In Section 3, we obtain the local L2-norm

convergence of the ADI-L1 scheme. Section 4 is dedicated to the convergence analysis of

ADI-L1 scheme in H1-norm. We give some numerical results illustrate the correctness of

error analysis in Section 5. Section 6 is the conclusion.

Notation. C will be used to represent a general positive constant throughout the paper,

and it is independent of the sizes of the mesh.

2. An ADI-L1 scheme

Before formally introducing the discrete scheme, we introduce some symbols to make the

article more concise and clear. There are three positive integers N1, N2 and M . Let

xi = ih1 and yj = jh2 for 0 ≤ i ≤ N1 and 0 ≤ j ≤ N2, where h1 = l/N1 and h2 = l/N2

are the step sizes of spatial mesh. Set Θh = {(xi, yj) | 1 ≤ i ≤ N1 − 1, 1 ≤ j ≤ N2 − 1}
and ∂Θh = {(xi, yj) | i = 0, N1 or j = 0, N2}. Let ti = T (i/M)r, 0 ≤ i ≤ M , where r ≥ 1
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is a parameter which can control the grid. Mark τm = tm − tm−1 for 1 ≤ m ≤ M , and set

τ = t1 for simplicity of the notation, as we will frequently use t1. Therefore, the grid is

{(xi, yj , tm) | 0 ≤ i ≤ N1, 0 ≤ j ≤ N2, 0 ≤ m ≤ M}. We use ϖm
i,j to represent the value of

the approximate solution at point (xi, yj , tm). For 1 ≤ m ≤ M , denote

δxϖ
m
i− 1

2
,j
=

1

h1

(
ϖm

i,j −ϖm
i−1,j

)
for 1 ≤ i ≤ N1, 0 ≤ j ≤ N2,

δ2xϖ
m
i,j =

1

h1

(
δxϖ

m
i+ 1

2
,j
− δxϖ

m
i− 1

2
,j

)
for 1 ≤ i ≤ N1 − 1, 0 ≤ j ≤ N2,

δyδxϖ
m
i− 1

2
,j− 1

2

=
1

h2

(
δxϖ

m
i− 1

2
,j
− δxϖ

m
i− 1

2
,j−1

)
for 1 ≤ i ≤ N1, 1 ≤ j ≤ N2.

According to the same definition method, we can define the form of δyϖ
m
i,j− 1

2

, δ2yϖ
m
i,j , and

δxδyϖ
m
i− 1

2
,j− 1

2

.

We approximate Caputo derivative by the commonly used L1 scheme:

Dα
t w(xi, yj , tm) ≈ ∂α

τ w(xi, yj , tm)

:=
1

Γ(1− α)

m−1∑
k=0

wk+1
i,j − wk

i,j

τk+1

∫ tk+1

σ=tk

(tm − σ)−α dσ

= dm,1w
m
i,j − dm,mw0

i,j −
m−1∑
k=1

(dm,k − dm,k+1)w
m−k
i,j ,

where

dm,p =
(tm − tm−p)

1−α − (tm − tm−p+1)
1−α

τm−p+1Γ(2− α)
for 1 ≤ p ≤ m.

We use the discrete operator ∆h := δ2x + δ2y to approximate the Laplace operator ∆. The

direct approximation of problem (1.1) is as follows:

(2.1)


∂α
τ ϖ

m
i,j −∆hϖ

m
i,j = f(xi, yj , tm) for (xi, yj) ∈ Θh, 1 ≤ m ≤ M,

ϖ0
i,j = w0(xi, yj) for (xi, yj) ∈ Θh,

ϖm
i,j = 0 for (xi, yj) ∈ ∂Θh, 1 ≤ m ≤ M.

For simplicity, let ϱm := d−1
m,1 = Γ(2 − α)ταm, and it is obvious that its order is O(M−α).

By adding ϱ2mδ2xδ
2
y∂

α
τ ϖ

m
i,j to the left of the first relation in (2.1), we can obtain the ADI-L1

scheme:

(1 + ϱ2mδ2xδ
2
y)∂

α
τ ϖ

m
i,j −∆hϖ

m
i,j = f(xi, yj , tm) for (xi, yj) ∈ Θh, 1 ≤ m ≤ M,(2.2a)

ϖ0
i,j = w0(xi, yj) for (xi, yj) ∈ Θh,(2.2b)

ϖm
i,j = 0 for (xi, yj) ∈ ∂Θh, 1 ≤ m ≤ M.(2.2c)
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The (2.2a) can be reformulated in the following expression:

(1− ϱmδ2x)(1− ϱmδ2y)ϖ
m
i,j

= ϱm(1 + ϱ2mδ2xδ
2
y)

(
m−1∑
k=1

(dm,k − dm,k+1)ϖ
k
i,j + dm,mϖ0

i,j

)
+ ϱmfm

i,j .

Let Wi,j = (1 − ϱmδ2y)ϖ
m
i,j for m = 1, . . . ,M . To get the solution of the scheme (2.2),

we can transform the spatial two-dimensional problem into two one-dimensional problems

by setting the intermediate variable, and then get the numerical solution of the problem.

First fix j ∈ {1, 2, . . . , N2 − 1}, for 1 ≤ i ≤ N1 − 1 we solve

(2.3)


(1− ϱmδ2x)Wi,j

= ϱm(1 + ϱ2mδ2xδ
2
y)
(∑m−1

k=1 (dm,k − dm,k+1)ϖ
k
i,j + dm,mϖ0

i,j

)
+ ϱmfm

i,j ,

W0,j = (1− ϱmδ2y)ϖ
m
0,j , WN1,j = (1− ϱmδ2y)ϖ

m
N1,j

.

Then fix i ∈ {1, 2, . . . , N1 − 1}, we solve

(2.4)

(1− ϱmδ2y)ϖ
m
i,j = Wi,j for 1 ≤ j ≤ N2 − 1,

ϖm
i,0 = 0, ϖm

i,N2
= 0.

The two coefficient matrices of (2.3) and (2.4) are diagonally dominant matrices, so

scheme (2.2) is uniquely solvable.

3. Local error convergence analysis in the sense of L2-norm

For all m ≥ 1 and a constant γ ∈ R, we set

Υm
γ :=


τtα−1

m if γ > 0,

τ tα−1
m [1 + ln(tm/τ)] if γ = 0,

τ tα−1
m (τ/tm)γ if γ < 0.

As [10], the positive multipliers are defined as follows: for m = 1, 2, . . . ,M and k =

1, 2, . . . ,m− 1,

θm,m := 1, θm,k :=
m−k∑
p=1

1

dm−p,1
(dm,p − dm,p+1)θm−p,k.

Lemma 3.1. [2, Corollary 5.4] For positive multipliers defined above, we have

ϱm

m∑
k=1

θm,k ≤ tαm
Γ(1 + α)

for m = 1, . . . ,M .
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Lemma 3.2. [1, Lemma 2.5] For a grid function {Ψm}Mm=0, let Ψ
0 = 0 and

Ψm = Γ(2− α)ταm

m∑
k=1

θm,k(τ/tk)
γ+1 for m = 1, 2, . . . ,M.

Then one has

Ψm ≤ CΥm
γ for m = 1, . . . ,M.

Lemma 3.3. [6, Lemma 4.2] For a nonnegative grid function {gm}Mm=0 satisfying g0 ≥ 0,

if {ϕm}∞m=1, {φm}∞m=1 satisfy the following conditions:

(∂α
τ g

m)gm ≤ ϕmgm + (φm)2 for m = 1, 2, . . . ,M,

where {ϕm}∞m=1, {φm}∞m=1 are nonnegative, then we have

gm ≤ g0 + ϱm

m∑
p=1

θm,p(ϕ
p + φp) + max

1≤p≤m
{φp} for m = 1, 2, . . . ,M.

Set Θh = {(xi, yj) | 0 ≤ i ≤ N1, 0 ≤ j ≤ N2} and ∂Θh = Θh ∩ ∂Θ. Let Πh = {ϑi,j |
ϑi,j = 0 if (xi, yj) ∈ ∂Θh and (xi, yj) ∈ Θh}. For any w, v ∈ Πh, we define

(w, v) = h1h2

N1−1∑
i=1

N2−1∑
j=1

wi,jvi,j ,

(w, v)x = h1h2

N1∑
i=1

N2−1∑
j=1

(δxwi− 1
2
,j)δxvi− 1

2
,j ,

(w, v)y = h1h2

N1−1∑
i=1

N2∑
j=1

(δywi,j− 1
2
)δyvi,j− 1

2
,

(w, v)xy = h1h2

N1∑
i=1

N2∑
j=1

(δxδywi− 1
2
,j− 1

2
)(δxδyvi− 1

2
,j− 1

2
),

and the corresponding norm ∥w∥ = (w,w)1/2, ∥w∥x = (w,w)
1/2
x , ∥w∥y = (w,w)

1/2
y , and

∥w∥xy = (w,w)
1/2
xy . One can easily verify that

(−δ2xw, v) := h1h2

N1−1∑
i=1

N2−1∑
j=1

(−δ2xwi,j)vi,j = (w, v)x,(3.1)

(−δ2yw, v) := h1h2

N1−1∑
i=1

N2−1∑
j=1

(−δ2ywi,j)vi,j = (w, v)y,(3.2)

(δ2xδ
2
yw, v) := h1h2

N1−1∑
i=1

N2−1∑
j=1

(δ2xδ
2
ywi,j)vi,j = (w, v)xy.(3.3)

For two mesh functions w, v ∈ Πh, let (w, v)ϱm := (w, v) + ϱ2m(w, v)x,y, and ∥w∥ϱm =√
(w,w)ϱm .
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Lemma 3.4. The inner product of the above definition (w, v)ϱm has the following prop-

erties

(w, v)ϱm ≤ ∥w∥ϱm∥v∥ϱm .

Proof. It is obvious that (w, v)ϱm satisfies the properties of inner product, and we can use

Cauchy–Schwartz inequality to prove this lemma.

Theorem 3.5. For m = 1, 2, . . . ,M , the solution of scheme (2.2) satisfies

∥ϖm∥ϱm ≤ ∥ϖ0∥ϱm + ϱm

m∑
p=1

θm,p∥fp∥.

Proof. Making L2-norm inner product with ϖm on (2.2a), we can get(
(1 + ϱ2mδ2xδ

2
y)

(
dm,1ϖ

m −
m−1∑
k=1

(dm,k − dm,k+1)ϖ
m−k − dm,mϖ0

)
, ϖm

)
= (δ2xϖ

m, ϖm) + (δ2yϖ
m, ϖm) + (fm, ϖm).

Using (3.1)–(3.3), Lemma 3.4, and applying Cauchy–Schwartz inequality, one has

dm,1∥ϖm∥2ϱm

≤
m−1∑
k=1

(dm,k − dm,k+1)∥ϖm−k∥ϱm∥ϖm∥ϱm + dm,m∥ϖ0∥ϱm∥ϖm∥ϱm + ∥fm∥∥ϖm∥

≤
m−1∑
k=1

(dm,k − dm,k+1)∥ϖm−k∥ϱm∥ϖm∥ϱm + dm,m∥ϖ0∥ϱm∥ϖm∥ϱm + ∥fm∥∥ϖm∥ϱm ,

which is equivalent to

(∂α
τ ∥ϖm∥ϱm)∥ϖm∥ϱm ≤ ∥fm∥∥ϖm∥ϱm .

Then by Lemma 3.3, we obtain

∥ϖm∥ϱm ≤ ∥ϖ0∥ϱm + ϱm

m∑
p=1

θm,p∥fp∥.

Lemma 3.6. [7, Lemma 3.4] Suppose |∂p
tw(t)| ≤ C(1 + tα−p) for p = 0, 1, 2, then∣∣∂α

τ w(tm)−Dα
t w(tm)

∣∣ ≤ C(τ/tm)min{α+1,(2−α)/r} for m = 1, 2, . . . ,M.

Next we prove the convergence of ADI-L1 scheme, let ϵmi,j := w(xi, yj , tm) − ϖm
ij .

If (xi, yj) ∈ ∂Θh, ϵmi,j = 0, for 1 < m ≤ M . Denote ϵtw
m
ij := (1 + ϱ2mδ2xδ

2
y)∂

α
τ w

m
ij −

Dα
t w(xi, yj , tm), ϵsw

m
ij := ∆w(xi, yj , tm) − ∆hw

m
ij . Then we get the error equation: for

1 ≤ m ≤ M ,

(3.4) (I + ϱ2mδ2xδ
2
y)∂

α
τ ϵ

m
ij −∆hϵ

m
ij = ϵtw

m
ij + ϵsw

m
ij .
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Theorem 3.7. Suppose for p = 0, 1, 2, the condition |∂p
tw(t)| ≤ C(1 + tα−p) holds, and

for each t, w ∈ C4(Θ). Then for m = 1, 2, . . . ,M ,

∥ϵm∥ϱm ≤ C
(
h21 + h22 + Em +M−2α

)
,

where Em is defined by

(3.5) Em :=


M−rtα−1

m if 1 ≤ r < 2− α,

Mα−2tα−1
m [1 + ln(tm/τ)] if r = 2− α,

Mα−2t
α− 2−α

r
m if r ≥ 2− α.

Proof. Denote γ := min{α, (2−α)/r− 1}. Noting ϵmi,j = 0, applying Theorem 3.5 to (3.4)

gives

∥ϵm∥ϱm ≤ ϱm

m∑
p=1

θm,p∥ϵtwp + ϵsw
p∥ ≤ C

ϱm

m∑
p=1

θm,p

(
(τ/tp)

γ+1 +M−2α + h21 + h22
)

≤ C
(
Υm

γ +M−2α + h21 + h22
)
,

where we have used Lemmas 3.1 and 3.2 to obtain the last inequality. It remains to prove

that Υm
γ ≤ CEm. This will be three cases:

1. If 1 ≤ r < 2− α, i.e., γ > 0. As τ ≤ CM−r, one has Υm
γ ≤ CM−rtα−1

m .

2. If r = 2− α, i.e., γ = 0. By τ ≤ CMα−2 = CM−r, one gets Υm
γ ≤ CMα−2tα−1

m [1 +

ln(tm/τ)].

3. If r > 2 − α, i.e., γ < 0. Thus Υm
γ ≤ Cτtα−1

m (τ/tm)
2−α
r

−1 = Cτ
2−α
r t

α− 2−α
r

m ≤

CMα−2t
α− 2−α

r
m .

The proof is completed.

Remark 3.8 (Local convergence). For positive time tm which is away from 0, if 1 ≤
r ≤ (2 − α), Em ≃ M−r, while if r > 2 − α, Em ≃ M−(2−α), thus the temporal local

convergence rate in Theorem 3.7 is O(M−min{1,2α}) if r = 1, and O(M−min{2−α,2α}) if

r > min{2− α, 2α}.

4. Local error convergence analysis in the sense of H1-norm

Same as the Section 3, our main work in this section is to analyze the convergence of the

local H1 error of the discrete scheme. For any grid function w ∈ Πh, we define

∥∇hw
m∥ =

(
∥δxwm∥2 + ∥δywm∥2

)1/2
,

∥wm∥H1 =
(
∥wm∥2 + ∥∇hw

m∥2
)1/2

,

∥wm∥1,ϱ =
(
∥∇hw

m∥2 + ϱ2m
(
∥δxδ2ywm∥2 + ∥δyδ2xwm∥2

))1/2
.



8 Weizhi Liu and Hu Chen

Lemma 4.1. [12, Lemma 3.2] For any w, v ∈ Πh, we have(
− (wm + ϱ2mδ2xδ

2
yw

m),∆hv
m
)
≤ ∥wm∥1,ϱ∥vm∥1,ϱ,

when w = v, the equal sign in the above inequality can be taken.

Theorem 4.2. For m = 1, 2, . . . ,M , the solution of ADI-L1 scheme (2.2) satisfies

(
∂α
τ ∥ϖm∥1,ϱ

)
∥ϖm∥1,ϱ ≤ 1

4
∥fm∥2.

Proof. Making discrete inner product with −∆hϖ
m on (2.2a), we have(

(1 + ϱ2mδ2xδ
2
y)

(
dm,1ϖ

m −
m−1∑
k=1

(dm,k − dm,k+1)ϖ
m−k − dm,mϖ0

)
,−∆hϖ

m

)
+ ∥∆hϖ

m∥2

= (fm,−∆hϖ
m).

By Lemma 4.1, one gets

dm,1∥ϖm∥21,ϱ + ∥∆hϖ
m∥2

≤
m−1∑
k=1

(dm,k − dm,k+1)∥ϖm−k∥1,ϱ∥ϖm∥1,ϱ + dm,m∥ϖ0∥1,ϱ∥ϖm∥1,ϱ + (fm,−∆hϖ
m).

Applying Young’s inequality and Cauchy–Schwartz inequality, we can get

(fm,−∆hϖ
m) ≤ ∥fm∥∥∆hϖ

m∥ ≤ 1

4
∥fm∥2 + ∥∆hϖ

m∥2.

Then we have

dm,1∥ϖm∥21,ϱ ≤
m−1∑
k=1

(dm,k − dm,k+1)∥ϖm−k∥1,ϱ∥ϖm∥1,ϱ + dm,m∥ϖ0∥1,ϱ∥ϖm∥1,ϱ +
1

4
∥fm∥2,

that is (
∂α
τ ∥ϖm∥1,ϱ

)
∥ϖm∥1,ϱ ≤ 1

4
∥fm∥2.

Here, the proof of the theorem is completed.

Theorem 4.3. Assume that |∂p
tw(t)| ≤ C(1 + tα−p) for p = 0, 1, 2, and w ∈ C4(Θ) for

each t. For m = 1, 2, . . . ,M , one has

∥ϵm∥1,ϱ ≤ C
(
h21 + h22 + Em +M−2α

)
,

where Em is defined in (3.5).
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Proof. On both sides of (3.4), taking discrete L2 inner product with −∆hϵ
m, we obtain

dm,1∥ϵm∥21,ϱ + ∥∆hϵ
m∥2

≤
m−1∑
k=1

(dm,k − dm,k+1)∥ϵm−k∥1,ϱ∥ϵm∥1,ϱ + (ϵtw
m + ϵsw

m,−∆hϵ
m)

=

m−1∑
k=1

(dm,k − dm,k+1)∥ϵm−k∥1,ϱ∥ϵm∥1,ϱ + (∇hϵtw
m,∇hϵ

m)− (ϵsw
m,∆hϵ

m)

≤
m−1∑
k=1

(dm,k − dm,k+1)∥ϵm−k∥1,ϱ∥ϵm∥1,ϱ + ∥∇hϵtw
m∥∥ϵm∥1,ϱ +

1

4
∥ϵswm∥2 + ∥∆hϵ

m∥2,

which can be rewritten as

(
∂α
τ ∥ϵm∥1,ϱ

)
∥ϵm∥1,ϱ ≤ ∥∇hϵtw

m∥∥ϵm∥1,ϱ +
1

4
∥ϵswm∥2.

Denote γ := min
{
α, 2−α

r − 1
}
. By Lemma 3.3, we get

∥ϵm∥1,ϱ ≤ ϱm

m∑
p=1

θm,p

(
∥∇hϵtw

p∥+ 1

2
∥ϵswp∥

)
+

1

2
max

1≤p≤m
{∥ϵswp∥}

≤ Cϱm

m∑
p=1

θm,p

(
(τ/tp)

γ+1 +M−2α + h21 + h22
)
+ C(h21 + h22)

≤ C
(
Υm

γ +M−2α + h21 + h22
)
,

where we have used Lemmas 3.1 and 3.2 to obtain the last inequality. The proof is

completed by noting that Υm
γ ≤ CEm which was proved in the proof of Theorem 3.7.

5. Numerical experiments

Example 5.1. In (1.1), take l = π, T = 1, f = Γ(1 + α) sinx sin y + 2tα sinx sin y and

w0(x, y) = 0. Moreover, w(x, y, t) = tα sinx sin y is the exact solution.

Denote ∥w(tM ) − ϖM∥ as the L2 local error when t = tM , and ∥w(tM ) − ϖM∥H1

as the local H1-norm error when t = tM . In numerical experiments, we take M =

2N1 = 2N2 such that the error in time direction is dominant. Tables 5.1–5.6 present

the local errors and convergence orders in the sense of L2-norm and H1-norm under

different grading parameters r. From these data, we can see if r = 1, the local convergence

order is O(M−min{1,2α}), and we can attain O(M−min{2−α,2α}) by selecting milder grading

parameters r, which is consistent with Remark 3.8.
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Table 5.1: Example 5.1 local L2-norm error when r = 1.

M \ α
0.8 0.6 0.4

Error Rate Error Rate Error Rate

8 1.0619e-3 5.0977e-3 2.2769e-2

16 9.6441e-4 0.1389 2.9001e-3 0.8138 1.4135e-2 0.6878

32 5.6231e-4 0.7783 1.4520e-3 0.9981 8.3622e-3 0.7573

64 2.9188e-4 0.9460 6.8971e-4 1.0739 4.8540e-3 0.7847

128 1.4553e-4 1.0041 3.1997e-4 1.1080 2.7959e-3 0.7958

Table 5.2: Example 5.1 local L2-norm error when r = 2− α.

M \ α
0.8 0.6 0.4

Error Rate Error Rate Error Rate

8 1.1606e-3 6.7663e-3 3.0825e-2

16 8.9805e-4 0.3701 3.5498e-3 0.9306 1.8986e-2 0.6992

32 4.7998e-4 0.9038 1.6883e-3 1.0722 1.1230e-2 0.7575

64 2.2957e-4 1.0641 7.6773e-4 1.1369 6.5337e-3 0.7814

128 1.0510e-4 1.1272 3.4125e-4 1.1698 3.7741e-3 0.7918

Table 5.3: Example 5.1 local L2-norm error when r = 2.

M \ α
0.8 0.6 0.4

Error Rate Error Rate Error Rate

8 3.3358e-3 1.0589e-2 3.6399e-2

16 1.5970e-3 1.0627 5.2466e-3 1.0132 2.2339e-2 0.7043

32 6.8957e-4 1.2116 2.4300e-3 1.1104 1.3206e-2 0.7584

64 2.8563e-4 1.2715 1.0900e-3 1.1566 7.6842e-3 0.7812

128 1.1646e-4 1.2943 4.8108e-4 1.1800 4.4401e-3 0.7913
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Table 5.4: Example 5.1 local H1-norm error when r = 1.

M \ α
0.8 0.6 0.4

Error Rate Error Rate Error Rate

8 1.0970e-3 5.2665e-3 2.3524e-2

16 9.7307e-4 0.1730 2.9261e-3 0.8479 1.4262e-2 0.7219

32 5.6362e-4 0.7878 1.4553e-3 1.0076 8.3817e-3 0.7669

64 2.9205e-4 0.9485 6.9012e-4 1.0764 4.8569e-3 0.7872

128 1.4555e-4 1.0047 3.2002e-4 1.1087 2.7964e-3 0.7965

Table 5.5: Example 5.1 local H1-norm error when r = 2− α.

M \ α
0.8 0.6 0.4

Error Rate Error Rate Error Rate

8 1.1991e-3 6.9904e-3 3.1846e-2

16 9.0612e-4 0.4042 3.5817e-3 0.9647 1.9156e-2 0.7333

32 4.8110e-4 0.9134 1.6922e-3 1.0818 1.1257e-2 0.7670

64 2.2970e-4 1.0666 7.6818e-4 1.1394 6.5375e-3 0.7840

128 1.0511e-4 1.1279 3.4130e-4 1.1704 3.7746e-3 0.7924

Table 5.6: Example 5.1 local H1-norm error when r = 2.

M \ α
0.8 0.6 0.4

Error Rate Error Rate Error Rate

8 3.4462e-3 1.0940e-2 3.7604e-2

16 1.6113e-3 1.0968 5.2937e-3 1.0473 2.2540e-2 0.7384

32 6.9117e-4 1.2211 2.4356e-3 1.1200 1.3237e-2 0.7679

64 2.8580e-4 1.2740 1.0907e-3 1.1591 7.6888e-3 0.7837

128 1.1648e-4 1.2950 4.8115e-4 1.1807 4.4408e-3 0.7919

Example 5.2. In problem (1.1), take T = 1, l = π, w0 = sinx sin y, and f = t2.

Different from Example 5.1, the analytical solution of Example 5.2 is unknown, we

employ the two-mesh method in [4] to compute the error. Let ϖm
h be the solution of our
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scheme (2.2), where 0 ≤ i ≤ N1, 0 ≤ j ≤ N2, and 0 ≤ m ≤ M . Next, we obtain a second

mesh by

tm = T
( m

2M

)r
for 0 ≤ M ≤ 2M, N ′

1 = 2N1, N ′
2 = 2N2.

On the second mesh we get the numerical solution ϖm
h , where 0 ≤ i ≤ N ′

1, 0 ≤ j ≤ N ′
2,

0 ≤ m ≤ 2M . We then define

EM
h =

∥∥ϖM
h −ϖ2M

h

∥∥.
Here ∥ · ∥ represents the two error norms studied in this paper. The convergence order is

computed by

log2
EM

h

E2M
h

.

We take M = 2N1 = 2N2 such that the error in time direction is dominant. Tables 5.7–

5.12 shows the L2 and H1 local differences and convergence orders of the Example 5.2

using different grading parameters r, which conform with Remark 3.8.

Table 5.7: Example 5.2 local L2-norm error when r = 1.

M \ α
0.8 0.6 0.4

Error Rate Error Rate Error Rate

8 1.5397e-2 8.7923e-3 1.3278e-2

16 8.7493e-3 0.8154 5.1096e-3 7.8304 6.6887e-3 0.9898

32 4.6814e-3 0.9022 2.4213e-3 1.0774 3.5064e-3 0.9317

64 2.3767e-3 0.9780 1.1891e-3 1.0260 2.0342e-3 0.7856

128 1.1623e-3 1.0319 5.7834e-4 1.0398 1.1987e-3 0.7629

Table 5.8: Example 5.2 local L2-norm error when r = 2− α.

M \ α
0.8 0.6 0.4

Error Rate Error Rate Error Rate

8 1.5841e-2 9.4798e-3 1.4145e-2

16 8.9291e-3 0.8271 5.7728e-3 0.7156 7.9401e-3 0.8331

32 4.6646e-3 0.9367 2.5915e-3 1.1555 4.3763e-3 0.8594

64 2.3033e-3 1.0181 1.1465e-3 1.1766 2.5909e-3 0.7563

128 1.0919e-3 1.0769 4.9941e-4 1.1989 1.5628e-3 0.7294
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Table 5.9: Example 5.2 local L2-norm error when r = 2.

M \ α
0.8 0.6 0.4

Error Rate Error Rate Error Rate

8 2.2732e-2 9.8769e-3 1.3659e-2

16 1.2585e-2 0.8530 6.8302e-3 0.5321 8.3271e-3 0.7140

32 6.3801e-3 0.9801 3.2965e-3 1.0510 4.8445e-3 0.7815

64 3.0432e-3 1.0680 1.4999e-3 1.1361 2.9455e-3 0.7178

128 1.3995e-3 1.1207 6.6132e-4 1.1815 1.8048e-3 0.7067

Table 5.10: Example 5.2 local H1-norm error when r = 1.

M \ α
0.8 0.6 0.4

Error Rate Error Rate Error Rate

8 2.5300e-2 1.7821e-2 2.0590e-2

16 1.0562e-2 1.2602 7.3169e-3 1.2843 9.1840e-3 1.1647

32 4.9178e-3 1.1028 2.7781e-3 1.3971 4.0817e-3 1.1700

64 2.4035e-3 1.0329 1.2361e-3 1.1683 2.1498e-3 0.9250

128 1.1654e-3 1.0443 5.8413e-4 1.0814 1.2214e-3 0.8156

Table 5.11: Example 5.2 local H1-norm error when r = 2− α.

M \ α
0.8 0.6 0.4

Error Rate Error Rate Error Rate

8 2.6082e-2 1.8776e-2 2.1805e-2

16 1.0830e-2 1.2680 8.4225e-3 1.1566 1.0660e-2 1.0323

32 4.9156e-3 1.1396 3.0502e-3 1.4653 5.0400e-3 1.0807

64 2.3307e-3 1.0766 1.2167e-3 1.3259 2.7370e-3 0.8808

128 1.0949e-3 1.0900 5.0966e-4 1.2554 1.5922e-3 0.7815
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Table 5.12: Example 5.2 local H1-norm error when r = 2.

M \ α
0.8 0.6 0.4

Error Rate Error Rate Error Rate

8 3.5123e-2 1.8959e-2 2.1042e-2

16 1.5076e-2 1.2202 9.7744e-3 0.9558 1.1224e-2 0.9067

32 6.7290e-3 1.1638 3.8612e-3 1.3400 5.5665e-3 1.0117

64 3.0825e-3 1.1263 1.5927e-3 1.2776 3.1064e-3 0.8415

128 1.4037e-3 1.1349 6.7588e-4 1.2366 1.8378e-3 0.7572

6. Conclusion

In this work, we have constructed a fully discrete ADI-L1 scheme for 2D subdiffusion

equation with initial singularity. Error analysis of the proposed fully discrete scheme

in the sense of L2 and H1-norms are strictly proved. The temporal convergence rate can

attain O(M−min{2−α,2α}) on positive time by selecting milder grading parameter r > 2−α.

Finally, the correctness of the theoretical analysis is supported by numerical examples.
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