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Blow-up Phenomena for a Reaction-diffusion Equation with Nonlocal

Gradient Terms

Su-Cheol Yi and Zhong Bo Fang*

Abstract. In this paper, we investigate blow-up phenomena of the solution to a

reaction-diffusion equation with nonlocal gradient absorption terms under Robin bound-

ary condition on a bounded star-shaped region. Based on the method of auxiliary

function and the technique of modified differential inequality, we establish some con-

ditions on the nonlinearities for which the solution exists globally or blows up at finite

time, when the sign of the constant σ is either positive or negative. Moreover, upper

and lower bounds for a blow-up time are derived under appropriate measure in higher

dimensional spaces.

1. Introduction

Consider the following reaction-diffusion equation with nonlocal gradient terms:

(1.1) ut = ∆u+ f(u, |∇u|), (x, t) ∈ Ω× (0, t∗),

under the null Robin boundary and initial conditions

∂u

∂ν
+ σu = 0, (x, t) ∈ ∂Ω× (0, t∗),(1.2)

u(x, 0) = u0(x), x ∈ Ω,(1.3)

where Ω ⊂ RN (N ≥ 2) is a bounded star-shaped region with smooth boundary ∂Ω, ν is

the unit outward normal vector on ∂Ω, σ is a nonzero constant, and t∗ is a possible blow-up

time when blow-up occurs, otherwise t∗ = +∞. The nonlinearity f(u, |∇u|) is assumed

to be a continuous function that satisfies appropriate conditions and contains nonlocal

gradient terms such as the form um
( ∫

Ω |∇un/2|2 dx
)q
. Moreover, the initial data u0(x) is

assumed to be a positive C1-function satisfying an appropriate compatibility condition.

When σ is a positive constant, it follows from the parabolic maximum principle that the
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solution of problem (1.1)–(1.3) will be nonnegative. However, it cannot be assured that

the solution is nonnegative when σ is negative.

The gradient model (1.1) is often referred to as a viscous Hamilton–Jacobi equation and

appears in many natural phenomena such as explosion model, compressible reactant gas

model, population dynamics theories and some biological species with a human-controlled

distribution model, see [1,3,6] and references therein. The formulation (1.1) also describes

the evolution of some biological population u on a certain occupied region and whose

growth is governed by the law of f , see [7]. Moreover, when the coefficient σ is zero, i.e.,

the well-known Neumann boundary condition, the distribution of u on the boundary of

the region maintains constant through the time. When σ is positive, the population u

enters the region with rate σ, whereas the population u gets out of the region with rate σ

when σ is negative.

During the past decades, there have been many works to deal with existence and

nonexistence of global solutions, blow-up of solutions, blow-up rates, blow-up sets, life

span, and asymptotic behavior of the solutions to reaction-diffusion equations and systems,

(cf. [9,24]). Among those topics, it is important to investigate whether the solution of the

reaction-diffusion equation blows up and when blow-up occurs in the sense of appropriate

measure. In particular, Quittner and Souplet [24, Chapters 2, 4 and 5] detailed a series

of research progresses on the reaction-diffusion equations with local nonlinear terms f(u)

and f(u,∇u), and with nonlocal terms under Dirichlet boundary condition. In a sense,

the nonlocal models are closer to practical problems than the local models, and many local

theories are no longer valid for the nonlocal models. Hence, the nonlocal models are more

challenging and difficult to deal with. In this paper, we investigate upper and lower bounds

for a blow-up time of the solution to a nonlocal reaction-diffusion model with competition

between inner source and absorption terms. As far as we know, a variety of methods have

been used to study upper bounds for blow-up times (cf. [10]). However, lower bounds for

blow-up times may be harder to be determined. Recently, some researchers such as Payne,

Schaefer and Philippin provided pioneering works on determining lower bounds for blow-up

times, and there have been many new progresses on that issue of lower bounds for blow-

up times of the solutions to the models without gradient term under Robin boundary

condition. One can refer to literatures [4, 5, 19, 21] for local models and [14, 26, 27] for

nonlocal models. Moreover, about the study of problems with nonlocal boundary flows

and time-varying coefficients, we can see [16].

However, there are only few works on lower bounds for blow-up times of the solution to

the gradient diffusion model. The salient feature of the gradient model is that boundary

or internal gradient blow-up may or may not occur under some conditions (cf. [8,23,25]).

In particular, Quittner and Souplet [23, 25] studied the reaction-diffusion equation with
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inner source and gradient absorption terms

(1.4) ut = ∆u+ λup − |∇u|q, (x, t) ∈ Ω× (0, t∗),

and the reaction-diffusion equation with nonlocal gradient term

ut = ∆u+ um
(∫

Ω
|∇u|2 dx

)q

, (x, t) ∈ Ω× (0, t∗),

where m ≥ 1 and q > 0. The authors pointed out that gradient blow-up never occurs,

whereas blow-up occurs in L∞-norm under either Dirichlet or Neumann boundary con-

dition. Payne and Song [22] firstly derived some lower bounds for a blow-up time of the

solution to the constant coefficient gradient damping model (1.4) in three-dimensional

space, when blow-up occurs. For higher dimensional case (N ≥ 3), one can refer to [11].

Liu et al. [13] studied lower bounds for the blow-up time of the solution to the reaction-

diffusion equation (1.4) with gradient absorption terms on a three-dimensional bounded

convex domain under nonlinear boundary flux. Recently, Marras et al. [18] extended

the results of [13] to the problem with time-dependent coefficients on a three-dimensional

bounded star-shaped region. Meanwhile, for the progress of parabolic equations with local

gradient sources and porous medium equations with local gradient terms under different

boundary conditions, we can see [12,15,17].

To the best of our knowledge, any research on the blow-up phenomena to prob-

lem (1.1)–(1.3) with competition between nonlocal gradient damping and local source

terms under Robin boundary condition has not been started yet. At a glance, the main

difficulties are to deal with the gradient terms and it cannot be assured that the solution

is nonnegative, when σ is negative. Motivated by these observations, we will establish

some conditions for which the solution of problem (1.1)–(1.3) exists globally or blows up

by using the method of auxiliary function and the technique of modified differential in-

equality, and derive some upper and lower bounds for blow-up time, when the constant σ

is either positive or negative.

The remainder of this paper is organized as follows: In Section 2, we investigate the

existence of global solution and lower and upper bounds for a blow-up time of the solution

to problem (1.1)–(1.3) when σ is positive, and the existence of global solution and lower

bound for a blow-up time of the solution to the problem are examined when σ is negative

in Section 3.

2. The case that σ > 0

In this section, we investigate the existence of the global solution and upper and lower

bounds for a blow-up time of the solution to problem (1.1)–(1.3) with σ > 0.
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2.1. The global existence

In this subsection, we present some conditions on the nonlinearity f for which a global

solution exists. In order to prove our main conclusions, we introduce the following lemmas

on a bounded star-shaped region with smooth boundary.

Lemma 2.1. [20] Suppose that Ω ⊂ RN (N ≥ 2) is a bounded star-shaped region with

smooth boundary ∂Ω. Then for any nonnegative C1-function w and nonnegative constant

θ, we have the inequality

(2.1)

∫
∂Ω

wθ ds ≤ N

ρ0

∫
Ω
wθ dx+

θd

ρ0

∫
Ω
wθ−1|∇w| dx,

where ρ0 = minx∈∂Ω(x·ν) > 0 and d = maxx∈Ω |x|. Note that if Ω is a bounded star-shaped

region centered at origin, then d clearly exists, and that if Ω is a bounded star-shaped region

centered at x0 ̸= 0, then one can also have the inequality (2.1) by using the technique of

translation, in which

ρ0 = min
x∈∂Ω

((x− x0) · ν) and d = max
x∈Ω

|x− x0|.

Lemma 2.2. [12] Suppose that Ω ⊂ RN (N ≥ 2) is a bounded star-shaped region with

smooth boundary ∂Ω. If ξ1(σ) is the first positive eigenvalue of the Robin boundary problem∆w + ξ(σ)w = 0, x ∈ Ω,

∂w
∂ν + σw = 0, x ∈ ∂Ω,

and the geometry of Ω is chosen so that

(2.2)
ξ1(βσ)

βσ
>

N + d

ρ0
, β ≥ 1, σ > 0,

then for any nonnegative C1-function w, we have the inequality∫
Ω
|∇wβ|2 dx ≥ C

∫
Ω
w2β dx,

where C = η(βσ) and η(σ) = ρ0ξ1(σ)−σ(N+d)
ρ0+σd > 0.

Remark 2.3. In fact, after the first version of our manuscript was completed, we found

that the proof of Lemma 2.2 (the case of σ > 0) has been given in the latest literature [12].

However, for the sake of the application of Lemma 3.1 (the case of σ < 0) in Section 3,

we present the detailed proof.

Remark 2.4. Similar to the literature [12, page 4], there exists a triple (σ, β,Ω) such that

the geometric condition (2.2) in Lemma 2.2 is satisfied. For example, let us fix β ≥ 1, take
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dimensional N = 2 and the 2-dimensional rectangle-like domain R2
{L1,L2}(0) with center

at the origin and sizes 2Li. Then we have

ρ0 = min
i=1,2

Li, d =

√√√√ 2∑
i=1

L2
i .

Meanwhile, applying the standard method of separation of variables, we let w(x) =

w(x1, x2) = X1(x1)X2(x2), substitute it into the Robin eigenvalue problem in Lemma 2.2

and by a direct calculation, we arrive at

(2.3) −
2∑

i=1

X ′′
i (xi)

Xi(xi)
= ξ1(σ), ±X ′

i(±Li) + σXi(±Li) = 0, ∀ i = 1, 2.

Obviously, this system is composed of 2 independent second-order ordinary differential

problems, hence, for i = 1, 2, it can be rewritten as

(2.4) −X ′′
i (xi)

Xi(xi)
= Λi, ±X ′

i(±Li) + σXi(±Li) = 0,

where Λi = Λi(σ) > 0 is exactly the corresponding eigenvalue (Λi ≤ 0 is not compatible

with σ > 0 and Xi ̸≡ 0). By applying the characteristic solution, we obtain the general

solution of (2.3) in the form

Xi(xi) = C1 cos
(√

Λixi
)
+ C2 sin

(√
Λixi

)
,

where C1, C2 are constants. Moreover, at the boundary point xi = ±Li, it must satisfy(
σC1 ±

√
ΛiC2

)
cos
(√

Λixi
)
+
(
σC2 ∓

√
ΛiC1

)
sin
(√

Λixi
)
= 0.

In order to ensure that the above system in the unknown (C1, C2) admits a nontrivial

solution, we set its determinant equal to zero. It yields, for zi = Li

√
Λi,(

σ cos(zi)−
zi
Li

sin(zi)

)(
zi
Li

cos(zi) + σ sin(zi)

)
= 0,

dividing by cos(zi), we obtain

(2.5) tan(zi) = − zi
Liσ

or tan(zi) =
Liσ

zi
.

Since we are dealing with the smallest positive eigenvalue Λi to (2.4), and it is seen that

the first positive eigenvalue ẑ1i of the first equation in (2.5) satisfies ẑ1i ∈ (π/2, 3π/2). Also

similar to the second equation in (2.5), ẑ2i ∈ (0, π/2). Finally, the same reasons apply

for each independent problem given in (2.4), so that by superposition we obtain the first

eigenvalue of (2.3) is

ξ1(σ) =
2∑

i=1

Λi =
2∑

i=1

(
ẑ1i
Li

)2

or

(
ẑ11
L1

)2

+

(
ẑ22
L2

)2

or

(
ẑ21
L1

)2

+

(
ẑ12
L2

)2

or

2∑
i=1

(
ẑ2i
Li

)2

.
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Now, we can present some specific examples.

Case 1: ξ1(σ) =
∑2

i=1 Λi =
∑2

i=1

( ẑ1i
Li

)2
. Selecting the triple

(
2, 3/2,R2

{1,8/9}(0)
)
, by

employing MATLAB, we obtain ξ1(σβ) ∼= 13.3644, and then

ξ1(σβ)

σβ
− N + d

ρ0
=

ξ1(σβ)

σβ
−

(
2

L2
+

√
L2
1 + L2

2

L2

)
∼= 0.6996 > 0;

Case 2: ξ1(σ) =
( ẑ11
L1

)2
+
( ẑ22
L2

)2
. Selecting the triple

(
1/2, 2,R2

{7/8,8/7}(0)
)
, by employing

MATLAB, we obtain ξ1(σβ) ∼= 5.7742, and then

ξ1(σβ)

σβ
− N + d

ρ0
=

ξ1(σβ)

σβ
−

(
2

L1
+

√
L2
1 + L2

2

L1

)
∼= 1.8435 > 0;

Case 3: ξ1(σ) =
( ẑ21
L1

)2
+
( ẑ12
L2

)2
. Selecting the triple

(
1, 2,R2

{5/6,6/7}(0)
)
, by employing

MATLAB, we obtain ξ1(σβ) ∼= 8.2511, and then

ξ1(σβ)

σβ
− N + d

ρ0
=

ξ1(σβ)

σβ
−

(
2

L1
+

√
L2
1 + L2

2

L1

)
∼= 0.2910 > 0;

Case 4: ξ1(σβ) =
∑2

i=1

( ẑ2i
Li

)2
. Unfortunately, we can not find a suitable example,

mainly because ẑ2i ∈ (0, π/2) is too small.

Proof. For the variational definition of ξ1, one can have the inequality

(2.6) ξ1(σ)

∫
Ω
w2 dx ≤

∫
Ω
|∇w|2 dx+ σ

∫
∂Ω

w2 ds.

It then follows from (2.6) and Young’s inequality with exponent 1/2 that

ξ1(σ)

∫
Ω
w2 dx ≤ σ

N + d

ρ0

∫
Ω
w2 dx+

(
1 +

σd

ρ0

)∫
Ω
|∇w|2 dx,

and hence we have the inequality

(2.7)

∫
Ω
|∇w|2 dx ≥ η(σ)

∫
Ω
w2 dx

since σ > 0, where η(σ) = ρ0ξ1(σ)−σ(N+d)
ρ0+σd > 0. Now, the function φ := wβ satisfies the

equation ∂φ
∂ν + βσφ = 0, and hence one can have∫

Ω
|∇wβ|2 dx =

∫
Ω
|∇φ|2 dx ≥ η(βσ)

∫
Ω
φ2 dx = C

∫
Ω
w2β dx

from (2.7), where C = η(βσ) = ρ0ξ1(βσ)−βσ(N+d)
ρ0+βσd > 0.

A result on the existence of the global solution of problem (1.1)–(1.3) is stated below.
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Theorem 2.5. Suppose that Ω ⊂ RN (N ≥ 2) is a bounded star-shaped region with smooth

boundary ∂Ω and that the nonlinearity f is such that

(2.8) f(s, |∇s|) ≤ a1s
p − a2s

m

(∫
Ω
|∇sn/2|2 dx

)q

, s ≥ 0,

where a1 ≥ 0, a2 > 0, q > 0, n ≥ 2 and m > p > 1. Then the nonnegative classical

solution u(x, t) of problem (1.1)–(1.3) does not blow up; that is, u(x, t) exists for all t > 0.

Proof. Define an auxiliary function as

Φ(t) =

∫
Ω
un dx.

With (1.1), (1.2), (2.8) and Green’s formula, it can be seen that

Φ′(t) = n

∫
Ω
un−1

[
∆u+ f(u, |∇u|)

]
dx

≤ n

∫
Ω
un−1

[
∆u+ a1u

p − a2u
m

(∫
Ω
|∇un/2|2 dx

)q]
dx

= −nσ

∫
∂Ω

un ds− n(n− 1)

∫
Ω
un−2|∇u|2 dx+ na1

∫
Ω
un+p−1 dx

− na2

∫
Ω
un+m−1 dx

(∫
Ω
|∇un/2|2 dx

)q

.

(2.9)

Now, taking ω = u and β = n/2 in Lemma 2.2, we obtain

(2.10)

∫
Ω
|∇un/2|2 dx ≥ C

∫
Ω
un dx.

From (2.9) and (2.10), we obtain the inequality

(2.11) Φ′(t) ≤ na1

∫
Ω
un+p−1 dx− na2C

qΦq

∫
Ω
un+m−1 dx.

Applying Hölder’s inequality we obtain∫
Ω
un+p−1 dx ≤

(∫
Ω
un+m−1 dx

) n+p−1
n+m−1

|Ω|
m−p

n+m−1 ,(2.12) ∫
Ω
un dx ≤

(∫
Ω
un+m−1 dx

) n
n+m−1

|Ω|
m−1

n+m−1 .(2.13)

Substituting (2.12) and (2.13) into (2.11), one can have that

Φ′(t) ≤ na1|Ω|
m−p

n+m−1

(∫
Ω
un+m−1 dx

) n+p−1
n+m−1

− na2C
qΦq

∫
Ω
un+m−1 dx

=

∫
Ω
un+m−1 dx

[
na1|Ω|

m−p
n+m−1

(∫
Ω
un+m−1 dx

) p−m
n+m−1

− na2C
qΦq

]

≤
∫
Ω
un+m−1 dx

[
P1Φ

p−m
n − P2Φ

q
]
,

(2.14)
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where P1 = na1|Ω|
(1−m−n)(−m+p)

n(n+m−1) > 0, P2 = na2C
q > 0, p−m

n < 0 and q > 0.

From (2.14), it can be seen that Φ(t) remains bounded for all time under the conditions

stated in Theorem 2.5. In fact, if u(x, t) blows up at finite time t∗, then Φ(t) is unbounded

near t∗. In view of (2.14), p < m and q > 0, which implies Φ(t) is decreasing in some

interval [t0, t
∗). Hence, we have Φ(t) ≤ Φ(t0) in [t0, t

∗), which means that Φ(t) is bounded

in [t0, t
∗). This leads to a contradiction. Therefore, u(x, t) exists for all t > 0, which

completes the proof.

2.2. Blow-up and upper bound of t∗

In this subsection, the domain Ω only needs to be a bounded region with smooth boundary

instead of star-shaped one. We establish a sufficient condition for which the solution of

problem (1.1)–(1.3) blows up at finite time t∗ and derive an upper bound for t∗. Our

result can be summarized as follows:

Theorem 2.6. Suppose that u(x, t) is a nonnegative classical solution of problem (1.1)–

(1.3) and that the integrable function f is such that

(2.15) ξf(ξ, |∇ξ|) ≥ 2(1 + α)F (ξ), ξ ≥ 0,

where F (ξ) =
∫ ξ
0 f(s, |∇s|) ds and α ≥ 0. Define a function Θ(t) as

Θ(t) = −σ

∫
∂Ω

u2 ds−
∫
Ω
|∇u|2 dx+ 2

∫
Ω
F (u) dx,

and assume that Θ(0) > 0. Then the solution u(x, t) of problem (1.1)–(1.3) blows up in

L2-norm at some finite time t∗ ≤ T , where

T =
Ψ(0)

2α(1 + α)Θ(0)
for α > 0 and Ψ(t) =

∫
Ω
u2 dx, Ψ(0) > 0,

and if α = 0 then T = ∞.

Proof. With (1.1), (1.2), (2.15) and Green’s formula, one can see that

Ψ′(t) = 2

∫
Ω
uut dx

= −2σ

∫
∂Ω

u2 ds− 2

∫
Ω
|∇u|2 dx+ 2

∫
Ω
uf(u, |∇u|) dx

≥ 2(1 + α)

[
−σ

∫
∂Ω

u2 ds−
∫
Ω
|∇u|2 dx+ 2

∫
Ω
F (u) dx

]
≥ 2(1 + α)Θ(t).

(2.16)
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By using Green’s formula, it can be seen that

Θ′(t) = −2σ

∫
∂Ω

uut ds− 2

∫
Ω
∇u · ∇ut dx+ 2

∫
Ω
f(u, |∇u|)ut dx

= −2σ

∫
∂Ω

uut ds+ 2

∫
Ω
ut∆u dx+ 2σ

∫
∂Ω

uut ds+ 2

∫
Ω
f(u, |∇u|)ut dx

= 2

∫
Ω
ut
[
∆u+ f(u, |∇u|)

]
dx = 2

∫
Ω
u2t dx ≥ 0,

which implies Θ(t) > 0 for all t ∈ (0, t∗) since Θ(0) > 0. Moreover, it follows from

Schwarz’s inequality that

2(1 + α)Ψ′(t)Θ(t) ≤ (Ψ′(t))2 = 4

(∫
Ω
uut dx

)2

≤ 4

∫
Ω
u2 dx

∫
Ω
u2t dx

= 2Ψ(t)Θ′(t).

From the inequality above, one can have the inequality

(2.17)
(
ΘΨ−(1+α)

)′ ≥ 0.

Integrating (2.17) from 0 to t and noticing that Ψ(0) > 0, one can see that

Θ(t)(Ψ(t))−(1+α) ≥ Θ(0)(Ψ(0))−(1+α) := M > 0;

that is,

(2.18) Θ(t) ≥ M(Ψ(t))1+α.

Substituting (2.18) into (2.16), one can have the differential inequality

(2.19) Ψ′(t) ≥ 2M(1 + α)(Ψ(t))1+α.

If α > 0, (2.19) leads to

(2.20)
[
(Ψ(t))−α

]′
= −α(Ψ(t))−(1+α)Ψ′(t) ≤ −2Mα(1 + α).

By (2.16), Θ(t) > 0 and Ψ(0) > 0, one can easily see that Ψ(t) > 0 for all t ≥ 0.

Integrating (2.20) from 0 to t again, we obtain the inequalities

(2.21) 0 < (Ψ(t))−α ≤ (Ψ(0))−α − 2Mα(1 + α)t.

Obviously, (2.21) cannot be hold for all time. Therefore, (2.21) leads to

t∗ ≤ T =
Ψ(0)

2α(1 + α)Θ(0)
.

If α = 0, by (2.19), one can see that

Ψ(t) ≥ Ψ(0)e2Θ(0)(Ψ(0))−1t

is valid for all t > 0, which implies t∗ = ∞; that is, blow-up occurs in infinite time. This

completes the proof.
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Remark 2.7. We observe that the function f(ξ, |∇ξ|) = a1ξ
p−a2ξ

m
( ∫

Ω |∇ξn/2|2 dx
)q

with

n ≥ 2, q > 0, p ≥ 2α+ 1 ≥ m > 1, satisfies (2.15).

Remark 2.8. By Theorem 2.6 and Ln(Ω) ⊂ L2(Ω), one can see that the solution u(x, t) of

problem (1.1)–(1.3) blows up in Ln-norm at some finite time t∗ for n ≥ 2.

2.3. Lower bounds for t∗

In this subsection, we make some appropriate assumptions on the nonlinearity f to seek

lower bounds for the blow-up time t∗ in high dimensional spaces (N ≥ 3).

Theorem 2.9. Let Ω ⊂ RN (N ≥ 3) be a bounded star-shaped region with smooth bound-

ary ∂Ω. Suppose the function f satisfies (2.8) with a1, a2, q > 0, p,m > 1 and p ≥ m+nq.

Meanwhile, we give the same auxiliary function

Φ(t) :=

∫
Ω
un dx, n > max{2(N − 2)(p− 1), 2}

in Theorem 2.5. If the nonnegative classical solution u(x, t) of the problem (1.1)–(1.3)

blows up in the measure of Φ(t) at finite time t∗, then the blow-up time t∗ is bounded

below, i.e., ∫ +∞

Φ(0)

dξ

Q1ξ
3(N−2)
3N−8 +Q4

≤ t∗

where Φ(0) =
∫
Ω un0 dx and Q1, Q4 are some positive constants given in the proof.

Proof. By using a similar argument as in Theorem 2.5, one can see that

Φ′(t) = n

∫
Ω
un−1

[
∆u+ f(u, |∇u|)

]
dx

≤ −nσ

∫
∂Ω

un ds− n(n− 1)

∫
Ω
un−2|∇u|2 dx+ na1

∫
Ω
un+p−1 dx

− na2

∫
Ω
un+m−1 dx

(∫
Ω
|∇un/2|2 dx

)q

≤ −4(n− 1)

n

∫
Ω
|∇un/2|2 dx+ na1

∫
Ω
un+p−1 dx

− na2

∫
Ω
un+m−1 dx

(∫
Ω
|∇un/2|2 dx

)q

.

(2.22)

By Lemma 2.2 and applying Hölder’s inequality to the last term on the right-hand side of

(2.22), we obtain the inequalities∫
Ω
|∇un/2|2 dx ≥ C

∫
Ω
un dx,(2.23) ∫

Ω
un+m−1 dx ≥

(∫
Ω
un dx

)1+m−1
n

|Ω|
−m+1

n .(2.24)
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Combining (2.23) and (2.24) with (2.22), one can have the inequality

(2.25) Φ′(t) ≤ −4(n− 1)

n

∫
Ω
|∇un/2|2 dx+ na1

∫
Ω
un+p−1 dx− na2C

q|Ω|−
m−1
n Φ1+q+m−1

n .

We now consider the integral in the second term on the right-hand side of (2.25) and

it can be shown that∫
Ω
un+p−1 dx =

∫
Ω
u

n(2N−3)
2(N−2)

· 2(N−2)(n+p−1)
n(2N−3) dx

≤ |Ω|1−m1

(∫
Ω
u

n(2N−3)
2(N−2) dx

)m1

≤ (1−m1)|Ω|+m1

∫
Ω
u

n(2N−3)
2(N−2) dx,

(2.26)

by using Hölder’s and Young’s inequalities, where

m1 :=
2(N − 2)(n+ p− 1)

n(2N − 3)
∈ (0, 1).

By applying Schwarz’s inequality to the integral in (2.26), we have∫
Ω
u

n(2N−3)
2(N−2) dx ≤

(∫
Ω
un dx

)1/2(∫
Ω
u

n(N−1)
N−2 dx

)1/2

=

(∫
Ω
un dx

)3/4(∫
Ω
(un/2)

2N
N−2 dx

)1/4

.

(2.27)

To bound
∫
Ω(u

n/2)
2N
N−2 dx, we use the Sobolev inequality (N ≥ 3) given in [2] and, with

the inequality, one can obtain the inequalities

∥un/2∥
N

2(N−2)

L
2N
N−2 (Ω)

≤ (cs)
N

2(N−2) ∥un/2∥
N

2(N−2)

W 1,2(Ω)

≤ cb

(
∥∇un/2∥

N
2(N−2)

L2(Ω)
+ ∥un/2∥

N
2(N−2)

L2(Ω)

)
,

(2.28)

where cs is the Sobolev constant depending on Ω and N , and

(2.29) cb :=

21/2(cs)
3/2, N = 3,

(cs)
N

2(N−2) , N > 3.

Substituting (2.28) into (2.27) and using Young’s inequality, one can see that∫
Ω
u

n(2N−3)
2(N−2) dx ≤ cb

(∫
Ω
un dx

)3/4(∫
Ω
|∇un/2|2 dx

) N
4(N−2)

+ cb

(∫
Ω
un dx

) 2N−3
2(N−2)

≤
c
4(N−2)
3N−8

b (3N − 8)

4(N − 2)
ε
− N

3N−8

1 Φ
3(N−2)
3N−8 (t) +

Nε1
4(N − 2)

∫
Ω
|∇un/2|2 dx

+ cb

(∫
Ω
un dx

) 2N−3
2(N−2)

,

(2.30)
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where ε1 is a positive constant to be determined later. It can be seen that

Φ′(t) ≤
na1m1c

4(N−2)
3N−8

b (3N − 8)

4(N − 2)
ε
− N

3N−8

1 Φ
3(N−2)
3N−8 (t) + na1m1cb

(∫
Ω
un dx

) 2N−3
2(N−2)

+

(
na1m1Nε1
4(N − 2)

− 4(n− 1)

n

)∫
Ω
|∇un/2|2 dx− na2C

q|Ω|−
m−1
n Φ1+q+m−1

n

+ na1(1−m1)|Ω|,

(2.31)

by substituting (2.26) and (2.30) into (2.25), and it follows from Young’s inequality that

(2.32)

(∫
Ω
un dx

) 2N−3
2(N−2)

≤ m2ε
−m3

m2
2

(∫
Ω
un dx

) 3(N−2)
3N−8

+m3ε2

(∫
Ω
un dx

)m+n−1
n

+q

,

where

m2 :=
(3N − 8)

[
(2N − 3)n− 2q(N − 2)n− 2(N − 2)(m+ n− 1)

]
2(N − 2)

[
3(N − 2)n− q(3N − 8)n− (3N − 8)(m+ n− 1)

] ,
m3 :=

n
[
6(N − 2)2 − (3N − 8)(2N − 3)

]
2(N − 2)

[
3(N − 2)n− q(3N − 8)n− (3N − 8)(m+ n− 1)

] ,
and ε2 is a positive constant to be determined later. Since p ≥ m+nq and n > max{2(p−
1)(N − 2), 2}, the constants m2 and m3 are in (0, 1).

Combining (2.31) and (2.32) yields the inequality

(2.33) Φ′(t) ≤ Q1Φ
3(N−2)
3N−8 +Q2Φ

1+q+m−1
n +Q3

∫
Ω
|∇un/2|2 dx+Q4,

where

Q1 =
na1m1c

4(N−2)
3N−8

b (3N − 8)

4(N − 2)ε
N

3N−8

1

+ na1m1cbm2ε
−m3

m2
2 > 0,

Q2 = na1m1cbm3ε2 − na2|Ω|−
m−1
n Cq,

Q3 =
na1m1Nε1
4(N − 2)

− 4(n− 1)

n
,

Q4 = na1(1−m1)|Ω| > 0.

By choosing appropriate positive constants ε1 and ε2 so that Q2 and Q3 are zero, inequal-

ity (2.33) can be reduced to

(2.34) Φ′(t) ≤ Q1Φ
3(N−2)
3N−8 +Q4.

Integrating (2.34) from 0 to t, we have the inequality∫ Φ(t)

Φ(0)

dξ

Q1ξ
3(N−2)
3N−8 +Q4

≤ t,
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and letting t → t∗−, we obtain the inequality∫ +∞

Φ(0)

dξ

Q1ξ
3(N−2)
3N−8 +Q4

≤ t∗.

Remark 2.10. If u(x, t) is a nonnegative solution of problem (1.1)–(1.3) with σ > 0, and

uN (x, t) and uD(x, t) are nonnegative solutions of equation (1.1) satisfying the boundary

conditions
∂uN
∂ν

= 0, x ∈ ∂Ω, t ∈ (0, t∗N ),

uD = 0, x ∈ ∂Ω, t ∈ (0, t∗D),

respectively, and the initial condition (1.3), then one can have the inequalities

uN (x, t) ≥ u(x, t) ≥ uD(x, t),

on their common existence interval and

t∗N ≤ t∗ ≤ t∗D,

by the comparison principle, when blow-up occurs, where t∗N and t∗D are the corresponding

possible blow-up times. This shows that the maximal existence times of the solutions to

equation (1.1) satisfying the three different boundary conditions can be ordered.

3. The case that σ < 0

In this section, we investigate the existence of the global solution and a lower bound for

the blow-up time of the solution to problem (1.1)–(1.3) with σ < 0.

3.1. The global existence

In this subsection, we present some conditions on the nonlinearity f for which a global

solution exists. In order to prove our main conclusion, we introduce a lemma on a bounded

star-shaped region with smooth boundary.

Lemma 3.1. Suppose that Ω ⊂ RN (N ≥ 2) is a bounded star-shaped region with smooth

boundary ∂Ω. If ζ1(σ) is the first positive eigenvalue of the Robin boundary problem∆w + ζ(σ)w = 0, x ∈ Ω,

∂w
∂ν + σw = 0, x ∈ ∂Ω,

where σ < 0 and β ≥ 1, then for any nonnegative C1-function w, we have∫
Ω
|∇wβ|2 dx ≥ H

∫
Ω
w2β dx,

where H = ζ1(βσ) > 0.
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Proof. For the variational definition of ζ1, one can see that

ζ1(σ)

∫
Ω
w2 dx ≤

∫
Ω
|∇w|2 dx+ σ

∫
∂Ω

w2 ds ≤
∫
Ω
|∇w|2 dx,

and since the function χ = wβ satisfies the equation ∂χ
∂ν + βσχ = 0, it can be easily seen

that ∫
Ω
|∇wβ|2 dx =

∫
Ω
|∇χ|2 dx ≥ ζ1(βσ)

∫
Ω
χ2 dx = H

∫
Ω
w2β dx,

where H = ζ1(βσ) > 0.

When σ is negative, the solution of problem (1.1)–(1.3) is not negative, and so we

assume that the nonlinearity f is such that

(3.1) sf(s, |∇s|) ≤ a3|s|p+1 − a4|s|m+1

(∫
Ω
|∇sn/2|2 dx

)q

,

and introduce an auxiliary function ϕ(t) :=
∫
Ω |u|n dx where n ≥ 2.

For convenience, we set ϕ(t) = ϕ+(t) + ϕ−(t), where

ϕ+(t) :=

∫
Ω+

un dx, Ω+ = {x ∈ Ω | u(x, t) > 0}, t ∈ (0, t∗),

ϕ−(t) :=

∫
Ω−

|u|n dx, Ω− = {x ∈ Ω | u(x, t) < 0}, t ∈ (0, t∗).

Theorem 3.2. Let Ω ⊂ RN (N ≥ 2) be a bounded star-shaped region with smooth bound-

ary ∂Ω. If the nonlinearity f satisfies (3.1), where a3 ≥ 0, a4, q > 0 and m > p > 1, then

the classical solution u(x, t) of problem (1.1)–(1.3) does not blow up in the measure ϕ(t),

that is, u(x, t) exists for all t > 0.

Proof. It follows from (1.1), (1.2), (3.1) and Green’s formula that

ϕ′
−(t) = −n

∫
Ω−

|u|n−1ut dx = −n

∫
Ω−

|u|n−1
[
∆u+ f(u, |∇u|)

]
dx

= −nσ

∫
∂Ω−

|u|n ds− n(n− 1)

∫
Ω−

|u|n−2|∇u|2 dx

+ n

∫
Ω−

|u|n−2uf(u, |∇u|) dx

≤ −nσ

∫
∂Ω−

|u|n ds− n(n− 1)

∫
Ω−

|u|n−2|∇u|2 dx+ na3

∫
Ω−

|u|n+p−1 dx

− na4

∫
Ω−

|u|n+m−1 dx

(∫
Ω−

|∇un/2|2 dx
)q

,

(3.2)
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and similarly it can be shown that

ϕ′
+(t) = n

∫
Ω+

|u|n−1ut dx = n

∫
Ω+

|u|n−1
[
∆u+ f(u, |∇u|)

]
dx

≤ −nσ

∫
∂Ω+

|u|n ds− n(n− 1)

∫
Ω+

|u|n−2|∇u|2 dx+ na3

∫
Ω+

|u|n+p−1 dx

− na4

∫
Ω+

|u|n+m−1 dx

(∫
Ω+

|∇un/2|2 dx
)q

.

(3.3)

Adding (3.2) and (3.3), we obtain the inequality

ϕ′(t) ≤ −nσ

∫
∂Ω

|u|n ds− n(n− 1)

∫
Ω
|u|n−2|∇u|2 dx+ na3

∫
Ω
|u|n+p−1 dx

− na4

∫
Ω
|u|n+m−1 dx

(∫
Ω
|∇un/2|2 dx

)q

.

(3.4)

From Lemma 2.1, one can have the inequality

(3.5)

∫
∂Ω

|u|n ds ≤ N

ρ0

∫
Ω
|u|n dx+

nd

ρ0

∫
Ω
|u|n−1|∇u| dx,

and, by applying Schwarz’s and Young’s inequalities, we can obtain the inequalities∫
Ω
|u|n−1|∇u| dx ≤

(∫
Ω
|u|n−2|∇u|2 dx

)1/2(∫
Ω
|u|n dx

)1/2

≤ µ

2

∫
Ω
|u|n−2|∇u|2 dx+

1

2µ

∫
Ω
|u|n dx,

(3.6)

where µ is a positive constant to be determined later, and it follows from Lemma 3.1 that

(3.7)

∫
Ω
|∇un/2|2 dx ≥ H

∫
Ω
|u|n dx.

From (3.4)–(3.7), one can obtain the inequality

ϕ′(t) ≤
(
−σnN

ρ0
− σn2d

2ρ0µ

)∫
Ω
|u|n dx+ na3

∫
Ω
|u|n+p−1 dx

− na4H
qϕq

∫
Ω
|u|n+m−1 dx+

(
−2σdµ

ρ0
− 4(n− 1)

n

)∫
Ω
|∇un/2|2 dx.

(3.8)

Choosing µ = −2(n−1)ρ0
σdn so that −2σdµ

ρ0
− 4(n−1)

n = 0, inequality (3.8) can be reduced to

ϕ′(t) ≤
(
−σnN

ρ0
− σn2d

2ρ0µ

)∫
Ω
|u|n dx+ na3

∫
Ω
|u|n+p−1 dx

− na4H
qϕq

∫
Ω
|u|n+m−1 dx.

(3.9)
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With Hölder’s inequality, we obtain the inequalities∫
Ω
|u|n+p−1 dx ≤

(∫
Ω
|u|n+m−1 dx

) n+p−1
n+m−1

|Ω|
m−p

n+m−1 ,(3.10) ∫
Ω
|u|n dx ≤

(∫
Ω
|u|n+m−1 dx

) n
n+m−1

|Ω|
m−1

n+m−1 .(3.11)

Substituting (3.10) and (3.11) into (3.9), one can see that

ϕ′(t) ≤
∫
Ω
|u|n+m−1 dx

[(
−σnN

ρ0
− σn2d

2ρ0µ

)
|Ω|

m−1
n+m−1

(∫
Ω
|u|n+m−1 dx

) −m+1
n+m−1

+ na3|Ω|
m−p

n+m−1

(∫
Ω
|u|n+m−1 dx

) p−m
n+m−1

− na4H
qϕq

]
≤
∫
Ω
|u|n+m−1 dx

[
J1ϕ

−m+1
n + J2ϕ

−m+p
n − J3ϕ

q
]
,

(3.12)

where

J1 =

(
−σnN

ρ0
− σn2d

2ρ0µ

)
|Ω|

(1−m)(1−m−n)
n(n+m−1) > 0,

J2 = na3|Ω|
(p−m)(1−m−n)

n(n+m−1) > 0, J3 = na4H
q > 0,

and 1−m
n < 0, p−m

n < 0 and q > 0.

We conclude from (3.12) that ϕ(t) remains bounded for all time under the conditions

stated in Theorem 3.2. In fact, if u(x, t) blows up at finite time t∗, then ϕ(t) is unbounded

near t∗. In view of (3.12), m > 1, p < m and q > 0, which implies ϕ(t) is decreasing in

some interval [t0, t
∗), and hence we have ϕ(t) ≤ ϕ(t0) in [t0, t

∗), which means that ϕ(t) is

bounded in [t0, t
∗). This leads to a contradiction. Therefore, u(x, t) exists for all t > 0,

which completes the proof.

3.2. Lower bounds for t∗

When σ is negative, we can derive a blow-up result for the nonnegative solution of prob-

lem (1.1)–(1.3) by a similar argument as in Theorem 2.6 under the same conditions. The

difference is that the blow-up time t∗ will decrease, which means that the blow-up time

for the solution of problem (1.1)–(1.3) with σ < 0 is ahead of that for the solution to the

problem with σ > 0. Therefore, one can assume that the solution of problem (1.1)–(1.3)

blows up at a finite time. However, the main difficulty is that the nonpositivity of the

solution cannot be assured, when σ is negative. In this subsection, we obtain a lower

bound for the blow-up time t∗ in high dimensional spaces (N ≥ 3).

Theorem 3.3. Suppose the function f satisfies (3.1) with a3, a4 > 0, q > 0, p,m > 1, p ≥
m+nq and n > max{2(N − 2)(p− 1), 2}. Meanwhile, we give the same auxiliary function
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ϕ(t) in Theorem 3.2. If the nonnegative classical solution u(x, t) of the problem (1.1)–(1.3)

blows up in the measure of ϕ(t) at finite time t∗, then the blow-up time t∗ is bounded below,

i.e., ∫ +∞

ϕ(0)

dϑ

I1ϑ+ I2ϑ
3(N−2)
3N−8 + I5

≤ t∗,

where ϕ(0) =
∫
Ω un0 dx and I1, I2, I5 are some computable positive constants.

Proof. By a similar argument as in Theorem 3.2, we have

ϕ′(t) ≤ −nσ

∫
∂Ω

|u|n ds− n(n− 1)

∫
Ω
|u|n−2|∇u|2 dx+ na3

∫
Ω
|u|n+p−1 dx

− na4

∫
Ω
|u|n+m−1 dx

(∫
Ω
|∇un/2|2 dx

)q

.

(3.13)

By Lemma 2.1 and applying Young’s inequality, we obtain the inequalities∫
∂Ω

|u|n ds ≤ N

ρ0

∫
Ω
|u|n dx+

nd

ρ0

∫
Ω
|u|n−1|∇u| dx

≤ ndδ1
2ρ0

∫
Ω
|u|n−2|∇u|2 dx+

(
N

ρ0
+

nd

2ρ0δ1

)∫
Ω
|u|n dx,

(3.14)

where δ1 is a positive constant to be determined later. It follows from Hölder’s inequality

that

(3.15)

∫
Ω
|u|n+m−1 dx ≥

(∫
Ω
|u|n dx

)1+m−1
n

|Ω|
−m+1

n .

Substituting (3.14), (3.15) and (3.7) into (3.13), one can have the inequality

(3.16)

ϕ′(t) ≤ Ĩ1

∫
Ω
|u|n dx+ Ĩ2

∫
Ω
|u|n+p−1 dx− Ĩ3

(∫
Ω
|u|n dx

)1+q+m−1
n

+ Ĩ4

∫
Ω
|∇un/2|2 dx,

where

Ĩ1 =
−σnN

ρ0
− σn2d

2ρ0δ1
> 0, Ĩ2 = na3 > 0,

Ĩ3 = na4H
q|Ω|

−m+1
n > 0, Ĩ4 =

−2σdδ1
ρ0

− 4(n− 1)

n
.

We now consider the second term on the right-hand side of (3.16). By using Hölder’s

and Young’s inequalities, we have the inequalities∫
Ω
|u|n+p−1 dx ≤ |Ω|1−m1

(∫
Ω
|u|

n(2N−3)
2(N−2) dx

)m1

≤ (1−m1)|Ω|+m1

∫
Ω
|u|

n(2N−3)
2(N−2) dx,

(3.17)



754 Su-Cheol Yi and Zhong Bo Fang

where m1 is a number given in (2.23). By applying Schwarz’s inequality to the second

term on the right-hand side of (3.17), one can obtain the inequality∫
Ω
|u|

n(2N−3)
2(N−2) dx ≤

(∫
Ω
|u|n dx

)3/4(∫
Ω

(
|u|n/2

) 2N
N−2 dx

)1/4

.(3.18)

To bound
∫
Ω(|u|

n/2)
2N
N−2 dx, we use the Sobolev inequality (N ≥ 3) given in [2] and,

with the inequality, we can obtain the inequality

∥∥|u|n/2∥∥ N
2(N−2)

L
2N
N−2 (Ω)

≤ (cs)
N

2(N−2)
∥∥|u|n/2∥∥ N

2(N−2)

W 1,2(Ω)

≤ cb

(∥∥∇|u|n/2
∥∥ N

2(N−2)

L2(Ω)
+
∥∥|u|n/2∥∥ N

2(N−2)

L2(Ω)

)
,

(3.19)

where cs is the Sobolev constant and cb is a number given in (2.26). By substituting (3.19)

into (3.18) and using Young’s inequality, one can see that∫
Ω
|u|

n(2N−3)
2(N−2) dx

≤ cb

(∫
Ω
|u|n dx

)3/4(∫
Ω
|∇un/2|2 dx

) N
4(N−2)

+ cb

(∫
Ω
|u|n dx

) 2N−3
2(N−2)

≤
c
4(N−2)
3N−8

b (3N − 8)

4(N − 2)
δ
− N

3N−8

2 ϕ
3(N−2)
3N−8 (t) +

Nδ2
4(N − 2)

∫
Ω
|∇un/2|2 dx

+ cb

(∫
Ω
|u|n dx

) 2N−3
2(N−2)

,

(3.20)

where δ2 is a positive constant to be determined later. We then obtain the inequality

ϕ(t) ≤ Ĩ1ϕ+
Ĩ2m1c

4(N−2)
3N−8

b (3N − 8)

4(N − 2)
δ
− N

3N−8

2 ϕ
3(N−2)
3N−8 (t) + Ĩ2m1cbϕ

2N−3
2(N−2)

+

(
Ĩ4 +

Ĩ2m1Nδ2
4(N − 2)

)∫
Ω
|∇un/2|2 dx− Ĩ3ϕ

1+q+m−1
n + (1−m1)Ĩ2|Ω|,

(3.21)

by substituting (3.17) and (3.20) into (3.16). It follows from Young’s inequality that

(3.22) ϕ
2N−3
2(N−2) ≤ m2δ

−m3
m2

3 ϕ
3(N−2)
3N−8 +m3δ3ϕ

m+n−1
n

+q,

where m2 and m3 are the numbers given in (2.29) and (2.30), respectively, and δ3 is a

positive constant to be determined later. From (3.21) and (3.22), it can be seen that

(3.23) ϕ′(t) ≤ I1ϕ+ I2ϕ
3(N−2)
3N−8 + I3ϕ

1+q+m−1
n + I4

∫
Ω
|∇un/2|2 dx+ I5,
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where

I1 = Ĩ1 =
−σnN

ρ0
− σn2d

2ρ0δ1
> 0, I2 =

Ĩ2m1c
4(N−2)
3N−8

b (3N − 8)

4(N − 2)δ
N

3N−8

2

+ Ĩ2m1cbm2δ
−m3

m2
3 > 0,

I3 = Ĩ2m1cbm3δ3 − Ĩ3, I4 =
na3m1Nδ2
4(N − 2)

− 2σdδ1
ρ0

− 4(n− 1)

n
, I5 = Ĩ2(1−m1)|Ω| > 0.

Choosing appropriate δ1, δ2, δ3 > 0 so that I3, I4 = 0, (3.23) can be reduced to

(3.24) ϕ′(t) ≤ I1ϕ+ I2ϕ
3(N−2)
3N−8 + I5.

Integrating (3.24) from 0 to t and letting t → t∗−, we obtain the inequality∫ +∞

ϕ(0)

dϑ

I1ϑ+ I2ϑ
3(N−2)
3N−8 + I5

≤ t∗.
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Basel, 2007.

[25] P. Souplet, Gradient blow-up for multidimensional nonlinear parabolic equations with

general boundary conditions, Differential Integral Equations 15 (2002), no. 2, 237–

256.

[26] H. Tian and L. Zhang, Global and blow-up solutions for a nonlinear reaction diffusion

equation with Robin boundary conditions, Bound. Value Probl. 2020, Paper No. 68,

19 pp.

[27] Y. Wang, Z. B. Fang and S.-C. Yi, Lower bounds for blow-up time in nonlocal parabolic

problem under Robin boundary conditions, Appl. Anal. 98 (2019), no. 8, 1403–1414.

Su-Cheol Yi

Department of Mathematics, Changwon National University, Changwon 51140, South

Korea

E-mail address: scyi@changwon.ac.kr

Zhong Bo Fang

School of Mathematical Sciences, Ocean University of China, Qingdao 266100, China

E-mail address: fangzb7777@hotmail.com


	Introduction
	The case that 
	The global existence
	Blow-up and upper bound of 
	Lower bounds for 

	The case that 
	The global existence
	Lower bounds for 


