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Abstract. The model to represent mortality that Lee and Carter proposed is
still widely used. They proposed a method to estimate the parameters in the
model with mortality data using the singular value decomposition. In addition,
in the forecasting of future mortality, the time-dependent parameter is linearly
estimated using ARIMA (0,1,0). This method treats the parameters as non-
stochastic for part of the model construction using observed data, while it is
stochastic for the forecasting of future mortality. This results in inconsisten-
cies throughout the whole model. Girosi and King interpreted the parameters
in the Lee-Carter model as random variables and provided an integrated ex-
pression for the two parts, which derived a single stochastic model; however,
the covariance matrix in the single stochastic model is not the one by an or-
dinal ARIMA(0,1,0) and an estimation method was not clearly discussed, and
estimating the parameters in their model appears to be difficult owing to the
complicated covariance matrix. Therefore, this study proposes a new integrated
model of the Lee-Carter model based on Girosi and King’s interpretation. Our
model is defined as a stochastic model that does not conflict with the concepts
of Lee and Carter’s existing model with the covariance matrix deduced by Girosi
and King. Furthermore, we provide an estimation method for the parameters
in our model by applying the idea of conditional distributions used in classical
AR and MA models.
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§1. Introduction

We are exposed to various risks; thus, we need to take precautions against
unexpected deaths, such as through natural disasters or illness. Insurance
remedies the problem of these risks. With trillions of dollars per year in
primary written premiums in the global insurance market, even small errors in
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an estimate of the premiums could have a significant impact on cash flow. This
demonstrates the importance of designing and managing insurance products
for each company, based on highly accurate predictions of future mortality.
Lee and Carter [1] were the first to propose a practical method for stochastic
modeling and mortality prediction. This model is a standard international
method for estimating future mortalities. Although the model was proposed
in 1992, it is still under development and has been applied in many countries
around the world (e.g., see [2], [3], [4], and [5]). Tuljapurkar et al. [6] applied
G7 data from 1950 to 1994 and found a linear decreasing in mortality rates as
a universal pattern across countries.

In the parameter estimation by the Lee-Carter model, hereafter referred to
as the LC model, various methods have been proposed, including the method
using singular value decomposition (SVD) by Lee and Carter, such as the
weighted least squares method, the maximum likelihood estimation method
[7], and generalized linear models [8]. Some methods have been proposed for
forecasting, such as fitting time-dependent parameters among the estimated
parameters in ARIMA(0,1,0) and using a credibility approach to make pre-
dictions [9]. However, all methods focused independently on either the model
construction part or the future forecasting part, resulting in inconsistent meth-
ods. Girosi and King [10] provided an integrated stochastic model based on
the LC model, but did not provide a method for estimating its parameters
because they were treated with complicated time-series models. In addition,
their proposal is slightly inconsistent with the concept of the existing model;
therefore, their interpretation of the parameters differs from that of the LC
model. However, the slight difference is not intrinsic as they mentioned. The
main problem is that they did not show a method to estimate parameters.

Therefore, this study proposes a new integrated model based on the idea
of Girosi and King and its parameter estimation. Section 2 begins with an
overview of the LC model and parameter estimation using SVD and forecasting
methods with ARIMA(0,1,0) used by Lee and Carter. The integrated model
by Girosi and King is introduced in Section 2.3. This integrates the model
construction and future projection parts, and represents them as a single time-
series model. Then, we propose a new integrated model following Girosi and
King and discuss its estimation method in Section 3. Parameter estimation is
based on the conditional likelihood function commonly used in AR and MR
models, and we find that it is very easy to estimate because the solution can be
obtained algebraically. Furthermore, the method proposed by Lee and Carter
cannot estimate the variance of the error term in the model itself because the
model construction part by Lee and Carter is constructed with a non-stochastic
formulation, but our method provides an estimator of the variance. In Section
4, the bias and MSE of the proposed estimates and the accuracy of future
mortality are validated using Monte Carlo simulations. The results show that
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our proposal is accurate and can be computed faster than the optimization
function in R. Finally, in Sections 5 and 6, we apply our model to real data
and show that the estimation result does not conflict with the LC model.

§2. Lee-Carter Model

The LC model [1], hereafter referred to as the LC model, is a model of mortality
Qx,t for age x at time t in the form of

(2.1) Mx,t := logQx,t = ax + bxkt + εx,t,

where εx,t is an error term with a mean of 0. The definitions of each parameter
are as follows:

ax · · ·Logarithm of average mortality at each age x,

kt · · ·Deviation of the average mortality ax at each time point t,

bx · · ·The degree to which mortality is affected at each age corresponding to kt.

Let the vectors a, b,Mt, and εt be as follows:
(2.2)

a =

 a1
...
an

 , b =

 b1
...
bn

 , Mt =

 logQ1,t
...

logQn,t

 , εt =

 ε1,t
...
εn,t

 ,

where n denotes the final age of the life table.

2.1. A parameter estimation method by Lee and Carter

Lee and Carter proposed a method for estimating parameters ax, bx and kt.
This method is based on SVD. The parameters were determined by minimizing

n∑
x=1

T∑
t=1

(log qx,t − ax − bxkt)
2,

which is the minimization of the sum of the error terms εx,t under the param-
eter constraint,

(2.3)

n∑
x=1

bx = 1,

T∑
t=1

kt = 0

using actual mortality data qx,t of Qx,t for T years. Under this constraint,
they used SVD and estimated the parameters.
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2.2. A prediction of future derivation of the average mortality

Lee and Carter applied their model to the U.S. mortality rate and observed
that the estimates k̂t (1 ≤ t ≤ T ) of the average mortality rates are approxi-
mately linear. They assumed that the trend in the derivation of the average
mortality rate continued. Thus, they formulate kt as follows:

(2.4) kt = kt−1 + θ + ξt

at each time t in the future, where ξt is an error term with mean 0. This was
a random walk model with ARIMA(0,1,0). In other words, kt is treated as
a stochastic model for future mortality prediction at time t (t > T ). In the
model construction stage in (2.1), kt is treated as a parameter in the model. kt
is a random walk model with ARIMA(0,1,0) at the stage of future derivation
of the average mortality rate in (2.4), which is inconsistent and completely
distinct between the model construction stage and future prediction. It is
appropriate to distinguish between parameters and random variables in the
expression of kt. It would be convenient to use another notation κt instead
of kt in (2.4) to stress the randomness of the model for the expression of the
future derivation of average mortality.

2.3. A representation of the integrated model by Girosi and King

To integrate the LC model, we have

(2.5)
Mt = a+ κtb+ εt,

κt = κt−1 + θ + ξt

with (2.2). While Lee and Carter used the stochastic model ARIMA(0,1,0)
to represent the derivation of the average mortality in the forecasting model,
as in (2.4), they treated it as a non-stochastic model in (2.1) at the model
construction stage. The attempt of the integration of the two parts and the
interpretation of the LC model was deeply discussed by Girosi and King [10].
To obtain an integrated expression for the model construction and forecasting
parts of the model, Girosi and King formulated (2.5) using the stochastic
variable κt in the model construction part. In fact, they express the LC model
instead of (2.5) as

(2.6)
Mt =m+ κtb+ εt,

κt = κt−1 + θ + ξt
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by setting

(2.7) â =m =


1

T
(log q1,1 + · · ·+ log q1,T )

...
1

T
(log qn,1 + · · ·+ log qn,T )

 ,

where the vector εt and scalar ξt are assumed to have normal errors with vari-
ances σ2εIn and σ2ξ > 0. In other words, the vector εt has mutually independent
error terms ε1,t, ε2,t, . . . , εn,t and

εt ∼ Nn(0, σ
2
εIn), ξt ∼ N (0, σ2ξ ).

Therefore, κt in (2.5) is typically treated as a random variable. The two
equations can be unified into a single equation by vanishing κt in (2.5), as
follows:

Mt =Mt−1 + θb+ (ξtb+ εt − εt−1) .

Furthermore, they set b and θ as follows:

(2.8) θ := θgk = ∥ψ∥, b := bgk =
ψ

∥ψ∥
,

we obtain θgkbgk = ψ and

(2.9) Mt =Mt−1 +ψ +

(
ψ

∥ψ∥
ξt + εt − εt−1

)
.

Note that the constraint of (2.3) is not satisfied when b is defined by (2.8).
This means that even if ψ is estimated correctly, it does not coincide with
Lee and Carter’s estimate using SVD. However, as they mentioned, this is
not an intrinsic problem because the parameter can be adjusted after the
estimation. Thus, they obtained the single random walk model ARIMA(0,1,0).
However, the biggest difference between ordinal ARIMA(0,1,0) and (2.9) is
error structure. The error distribution in ARIMA(0,1,0) is εt, and then the
covariance matrix by (2.9) is different and includes ψ in the covariance matrix.
They did not show an estimation method for the above single random walk
(2.9).

By setting Yt =Mt+1 −Mt, we obtain

Yt ∼ Nn (ψ,Σgk) ,

where

Yt =

 Y1,t
...

Yn,t

 , Σgk = σ2ξ
ψψ′

∥ψ∥2
+ 2σ2εIn.
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Generally, if A is a matrix of type n ×m and B is a matrix of type m × n,
then

(In +AB)−1 = In −A(Im +BA)−1B.

Therefore,

Σ−1
gk =

1

2σ2ε

(
In −

σ2ξ

(2σ2ε + σ2ξ )∥ψ∥2
ψψ′

)
.

For a time difference of 1, we have

Cov(Yt,Yt−1) = −σ2εIn

and there is no correlation for a time difference of 2 or more. That is,

Cov(Yt,Yt−s) = O (|s| ≥ 2).

§3. A new integrated model and parameter estimation

3.1. A new integrated model

Girosi and King set θ and b as in (2.8). However, the definition loses affinity
for the original LC model because the estimated result with SVD by Lee and
Carter is different from the estimate of b defined by Girosi and King because
the LC model has the constraints in (2.3). Therefore, we define

(3.1) θ =

n∑
x=1

ψx, b =
ψ∑n

x=1 ψx

to hold the affinity for the estimate obtained by SVD because

(3.2)
n∑

x=1

bx =
n∑

x=1

ψx∑n
i=1 ψi

= 1,

which is the constraint on b in (2.3). Next, we check the constraints on
kt (1 ≤ t ≤ T ). Here, kt is interpreted as the (ensemble) expected value of the
random variable κt with

E[κt] = kt.

We also define M as

M =


1

T
(logQ1,1 + · · ·+ logQ1,T )

...
1

T
(logQn,1 + · · ·+ logQn,T )
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and let Mx be its components. Because we assume M is a vector of random
variables, we set its observed value to m in (2.7). Thus, we have the following
formula:

Mt =M + κtb+ εt.

In this case, using constraint (3.2) on bx, we obtain, by (2.1) with the estimate
of a in (2.7),

n∑
x=1

E [logQx,t] =
n∑

x=1

E
[
Mx + κtbx + εx,t

]
=

n∑
x=1

E[Mx] + kt.

Therefore, we obtain

(3.3) kt =
n∑

x=1

(
E[logQx,t]− E[Mx]

)
.

Then, the summation of both sides of (3.3) running t from 1 to T yields

T∑
t=1

kt =

T∑
t=1

n∑
x=1

E[logQx,t]− T

n∑
x=1

E[Mx] = T

n∑
x=1

E[Mx]− T

n∑
x=1

E[Mx] = 0.

Therefore, kt is defined by the expected value of κt also satisfies the constraint
condition in (2.3).

Moreover, Girosi and King assume ξt independently with respect to time
t in (2.5). However, we may assume a general assumption on ξt that they
are not always independent, but we restrict the form of ξt to deduce a quasi-
likelihood function defined below to be expressed as a product of conditional
distributions, which is a well-known idea to obtain a quasi-likelihood function
in the classical AR and MA models. Thus, we consider error terms ξ1, ξ2, . . . , ξt
of the form

(3.4) ξt = ζt − ζt−1, ζt ∼ N (0, σ2ζ )

with ζ0, ζ1, . . . , ζt independent for each t, which are independent from εt. Thus,
ξt is no longer an independent sequence with respect to time t. Thus, the two-
stage model of (2.5) is expressed as

(3.5)
Mt = a+ κtb+ εt,

κt = κt−1 + θ + ζt − ζt−1

and kt = E(κt) with constraints (2.3). This is our proposed model. By
expressing this with lt = κt − ζt, we have

lt = lt−1 + θ.
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This time-dependent relationship can be interpreted as random walk. Then,
using (3.1), we have that

(3.6) Mt+1 =Mt +ψ +
ψ∑n

x=1 ψx
(ζt+1 − ζt) + εt+1 − εt.

Let Yt =Mt+1 −Mt. Then, we have

(3.7) Yt ∼ Nn (ψ, 2Σ) ,

where

(3.8) Σ = σ2ζ
ψψ′

(
∑n

x=1 ψx)
2 + σ2εIn.

Note that

(3.9)
Cov(Yt,Yt−1) = −Σ,

Cov(Yt,Yt−s) = O (|s| ≥ 2)

for a time difference of 1 and for a time difference of 2 or more, respectively.

3.2. Quasi-Likelihood function

In this subsection, we discuss the parameter estimation method of the new
integrated model. The model resembles that proposed by Girosi and King.
Therefore, parameter estimation is not easy, as it is not. However, our formu-
lation provides a quasi-likelihood function with additional assumptions in the
model. Assume that

(3.10) ζ1 = 0, ε1 = 0

and consider quasi-maximum likelihood estimation using a conditional likeli-
hood function. Using the assumption of the error term, the conditional distri-
bution for

(3.11) Y1 = ψ +
ψ∑n

x=1 ψx
(ζ2 − ζ1) + ε2 − ε1 = ψ +

ψ∑n
x=1 ψx

ζ2 + ε2

leads to
Y1|(ζ1 = 0, ε1 = 0) ∼ Nn (ψ,Σ) .

Thus, we obtain the following probability density function:

fY1|ζ1,ε1(y1|ζ1 = 0, ε1 = 0) =
1

(2π)
n
2

√
detΣ

exp

{
−1

2
(y1 −ψ)′Σ−1(y1 −ψ)

}
.
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In addition, using the same arguments as those in the previous section, we
have

(3.12) Σ−1 =
1

σ2ε

(
In −

σ2ζ

σ2ζ∥ψ∥2 + σ2ε (
∑n

i=1 ψi)
2ψψ

′

)
.

Under the condition that Y1 = y1 is observed, we consider the distribution of
Y2. The conditional distribution Y2 given Y1 = y1 is

Y2 = ψ +

(
ψ∑n

x=1 ψx
(ζ3 − ζ2) + ε3 − ε2

)
,

we obtain the following by (3.11):

Y2 = 2ψ − y1 +
(

ψ∑n
x=1 ψx

ζ3 + ε3

)
.

Thus, we get

Y2|(Y1 = y1, ζ1 = 0, ε1 = 0) ∼ Nn (2ψ − y1,Σ) .

Thus, we have the following conditional density function:

fY2|Y1,ζ1,ε1(y2|y1, ζ1 = 0, ε1 = 0)

=
1

(2π)
n
2

√
detΣ

exp

{
−1

2
(y2 − 2ψ + y1)

′Σ−1(y2 − 2ψ + y1)

}
.

Similarly, the distribution of Yt under Y1 = y1, . . . ,Yt−1 = yt−1 can be rear-
ranged by summing up from

yk = ψ +

(
ψ∑n

x=1 ψx
(ζk+1 − ζk) + εk+1 − εk

)
(k = 1, 2, . . . , t− 1),

Yt = ψ +

(
ψ∑n

x=1 ψx
(ζt+1 − ζt) + εt+1 − εt

)
as

Yt = tψ −
t−1∑
k=1

yk +

(
ψ∑n

x=1 ψx
(ζt+1 − ζ1) + εt+1 − ε1

)
.

Therefore, from (3.10), we obtain

Yt|(Yt−1 = yt−1, . . . ,Y1 = y1, ζ1 = 0, ε1 = 0) ∼ Nn

(
tψ −

t−1∑
k=1

yk,Σ

)
.
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Thus, the conditional density function is

fYt|Yt−1,...,Y1ζ1,ε1(yt|yt−1, . . . ,y1, ζ1 = 0, ε1 = 0)

=
1

(2π)
n
2

√
detΣ

exp

{
−1

2
(yt − tψ +

t−1∑
k=1

yk)
′Σ−1(yt − tψ +

t−1∑
k=1

yk)

}
.

By multiplying the individual density functions, the joint likelihood is given
by

fYT−1,YT−2,...,Y1|ζ1,ε1 (yT−1,yT−2, . . . ,y1 | ζ1 = 0, ε1 = 0)

= fY1|ζ1,ε1 (y1 | ζ1 = 0, ε1 = 0)

×
T−1∏
t=2

fYt|Yt−1,Yt−2,...,Y1,ζ1,ε1 (yt | yt−1,yt−2, . . . ,y1, ζ1 = 0, ε1 = 0) ,

where T denotes the number of vectors observed. The following quasi-likelihood
function is then obtained:

(3.13)

L (ψ, σ2ε , σ
2
ζ ) =− (T − 1)n

2
log(2π) +

T − 1

2
log(detΣ−1)

− 1

2

T−1∑
i=1

(
i∑

k=1

yk − iψ

)′

Σ−1

(
i∑

k=1

yk − iψ

)
.

Here, we note that Σ is a function of σ2ε , σ
2
ζ , and ψ as in (3.8). The biggest

difficulty is that the mean parameter ψ is included in the covariance matrix
Σ.

3.3. Parameter estimations and the bias

Next, we are interested in the parameter estimation of σ2ε , σ
2
ζ , and ψ. The use

of optimal functions in the statistical package enabled us to estimate these
parameters. However, we discuss an algebraical closed estimate of these pa-
rameters. To get the algebraical solution, we propose a two-step estimation
method to obtain an algebraic solution. First, we do not treat Σ as a function
of ψ, although Σ is a function of ψ. This implies that we estimate ψ and Σ
independently in the first stage and then substitute the estimated value of ψ
into Σ. Next, we estimate σ2ε and σ2ζ using the estimate Σ̂ with the estimate

ψ̂. The estimates of σ2ε and σ2ζ are given by (3.19) and (3.20), respectively.

Before describing the estimates of σ2ε and σ2ζ , we consider the estimates of Σ
and ψ.
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As the distribution follows (3.7), we may consider

(3.14)

ψ̂1 =
1

T − 1

T−1∑
i=1

yi =
mT −m1

T − 1
,

Σ̂1 =
1

2(T − 1)

T−1∑
i=1

(
yk − ψ̂1

)(
yk − ψ̂1

)′
as the intuitive estimator. The estimator ψ̂1 is used in ARIMA(0,1,0) as noted
in [10, Sect. 3.1].

Next, we consider the estimates of ψ and Σ using the quasi-likelihood
function as an estimator different from ψ̂1 and Σ̂1. Here, L (ψ, σ2ε , σ

2
ζ ) is a

function of σ2ε , σ
2
ζ , and ψ. However, we consider L (ψ,Σ) as a function of ψ

and Σ instead of L (ψ, σ2ε , σ
2
ζ ) and find the maximum solution of L (ψ,Σ). In

other words, although Σ is a function of ψ, we do not treat it as a function of
ψ. Then, we perform a two-step estimation for σ2ε and σ2ζ after obtaining the
estimates of ψ and Σ. Solving

∂

∂ψ
L (ψ,Σ) = − ∂

∂ψ

1

2

T−1∑
i=1

(
i∑

k=1

yk − iψ

)′

Σ−1

(
i∑

k=1

yk − iψ

)

=

T−1∑
i=1

iΣ−1

(
i∑

k=1

yk

)
−

T−1∑
i=1

i2Σ−1ψ = 0,

we get

(3.15) ψ̂2 =

T−1∑
i=1

i∑
k=1

iyk

T−1∑
i=1

i2

=

T−1∑
k=1

T−1∑
i=k

iyk

T−1∑
i=1

i2

=

3
T−1∑
k=1

(k + T − 1)(T − k)yk

T (T − 1)(2T − 1)
.

Next, we calculate the quasi-maximum likelihood estimator of Σ. Differenti-
ating the likelihood function above by Σ−1 and solving

∂

∂Σ−1
L (ψ,Σ)

=
∂

∂Σ−1

T − 1

2
log(detΣ−1)− 1

2

T−1∑
i=1

(
i∑

k=1

yk − iψ

)′

Σ−1

(
i∑

k=1

yk − iψ

)
=
T − 1

2
Σ− 1

2

T−1∑
i=1

(
i∑

k=1

yk − iψ

)(
i∑

k=1

yk − iψ

)′

= O,



102 R. KANAZAWA, T. KUROSAWA

we obtain

Σ̂2 =
1

T − 1

T−1∑
i=1

(
i∑

k=1

yk − iψ̂2

)(
i∑

k=1

yk − iψ̂2

)′

.

Next, we confirm unbiasedness of each estimator and derive their MSEs.
First, we check the unbiasedness of the ψ̂ estimators ψ̂1 and ψ̂2. For ψ̂1, we
can easily confirm that E[ψ̂1] = ψ from equation (3.7). Then,

E

[
T−1∑
i=1

i∑
k=1

iYk

]
=

T−1∑
i=1

E

[
i∑

k=1

iYk

]
=

T−1∑
i=1

i2ψ,

so that E[ψ̂2] = ψ. Given that unbiasedness is ensured, MSE coincides with
the variance of the estimator. First, from (3.7) and (3.9),

V [Y1 + · · ·+ YT−1] =
T−1∑
k=1

V [Yk] + 2
T−2∑
k=1

Cov(Yk,Yk+1) = 2Σ,

and therefore

(3.16) V1 := MSE(ψ̂1) = V [ψ̂1] =
2

(T − 1)2
Σ.

Next, for ψ̂2 because

V

[
T−1∑
i=1

i∑
k=1

iYk

]

=
T−1∑
k=1

V

[
(k + T − 1)(T − k)

2
Yk

]

+ 2

T−2∑
k=1

Cov

(
(k + T − 1)(T − k)

2
Yk,

(k + T )(T − k − 1)

2
Yk+1

)

=2(T − 1)2Σ+
T−2∑
k=1

(k + T − 1)2(T − k)2

2
Σ

−
T−2∑
k=1

(k + T − 1)(T − k)(k + T )(T − k − 1)

2
Σ

=

(
2(T − 1)2 +

T−2∑
k=1

k(k + T − 1)(T − k)

)
Σ

=
1

12
T (T − 1)(T + 1)(3T − 2)Σ
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using (3.7) and (3.9), we obtain

(3.17) V2 := MSE(ψ̂2) = V
[
ψ̂2

]
=

3(T + 1)(3T − 2)

T (T − 1)(2T − 1)2
Σ.

By (3.16) and (3.17), both unbiased estimators ψ̂1 and ψ̂2 are consistent es-
timators as T → ∞ by the Chebyshev inequality and lim V1 = limV2 = 0.
Furthermore, the estimators constructed by Y1, . . . ,YT−1 are normal distribu-
tions. Thus,

ψ̂1 ∼ Nn(ψ, V1), ψ̂2 ∼ Nn(ψ, V2).

Next, we confirm the unbiasedness of Σ̂1 and Σ̂2. First, for the unbiasedness
of Σ̂1, using

T−1∑
i=1

(
Yi − ψ̂1

)(
Yi − ψ̂1

)′
=

T−1∑
i=1

(Yi −ψ) (Yi −ψ)′ − (T − 1)(ψ̂1 −ψ)(ψ̂1 −ψ)′,

(3.7) and (3.16), we obtain

E
[
Σ̂1

]
=
T (T − 2)

(T − 1)2
Σ.

For the unbiasedness of Σ̂2, we know that

(3.18)

E

T−1∑
i=1

(
i∑

k=1

Yk − iψ

)(
i∑

l=1

Yl − iψ

)′
=

T−1∑
i=1

(
i∑

k=1

V [Yk] + 2

i−1∑
k=1

Cov(Yk,Yk+1)

)
= 2(T − 1)Σ.

Then, it can be further transformed in to

T−1∑
i=1

(
i∑

k=1

Yk − iψ̂2

)(
i∑

k=1

Yk − iψ̂2

)′

=

T−1∑
i=1


(

i∑
k=1

Yk − iψ

)(
i∑

k=1

Yk − iψ

)′

− i2(ψ − ψ̂2)(ψ − ψ̂2)
′

 .
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Therefore, from (3.17) and (3.18), we obtain

E
[
Σ̂2

]
=

1

T − 1

(
2(T − 1)Σ−

T−1∑
i=1

i2V [ψ̂2]

)
=

(5T − 3)(T − 2)

2(T − 1)(2T − 1)
Σ.

Because biases exist in Σ̂1 and Σ̂2, we set

Σ̂∗
1 =

(T − 1)2

T (T − 2)
Σ̂1, Σ̂∗

2 =
2(T − 1)(2T − 1)

(5T − 3)(T − 2)
Σ̂2

for the bias-corrected estimators.
Hereafter, we estimate σ2ε and σ2ζ using the estimates of ψ and Σ. For

brevity, let ψ̂i, σ̂
2
i,j denote the components of the ψ and Σ estimators obtained

thus far, respectively. First, because the off-diagonal components of Σ depend
only on σ2ζ , we consider minimizing

n∑
i=1

n∑
j=i+1

σ̂2i,j − σ2ζ
ψ̂iψ̂j(∑n
x=1 ψ̂x

)2


2

.

By differentiating the above equation with respect to σ2ζ and solving

2

n∑
i=1

n∑
j=i+1

ψ̂iψ̂j(∑n
x=1 ψ̂x

)2
σ̂2i,j − σ2ζ

ψ̂iψ̂j(∑n
x=1 ψ̂x

)2
 = 0,

we get

(3.19) σ̂2ζ =

(
n∑

x=1

ψ̂x

)2 n∑
i=1

n∑
j=i+1

ψ̂iψ̂j σ̂
2
i,j

n∑
i=1

n∑
j=i+1

ψ̂2
i ψ̂

2
j

.

Next, for diagonal components σ2ε ,

(3.20) σ̂2ε =
1

n

n∑
i=1

σ̂2i,i − σ̂2ζ
ψ̂2
i(∑n

x=1 ψ̂x

)2


is obtained by finding σ2ε that minimizes

n∑
i=1

σ̂2i,i − σ2ε − σ̂2ζ
ψ̂2
i(∑n

x=1 ψ̂x

)2


2
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in the same way.
From the discussion above, we obtain an estimate of ψ. Thus, we obtain

the estimates of θ and b as

(3.21) θ̂ =

n∑
x=1

ψ̂x, b̂ =
ψ̂

n∑
x=1

ψ̂x

.

Furthermore, from (3.3), we have

(3.22) k̂t = Ê(κt) =

n∑
x=1

(
log qx,t −

log qx,1 + · · ·+ log qx,T
T

)
for t (1 ≤ t ≤ T ).

3.4. Probability points of probability densities of future mortality

In this section, we deduce the probability densities of Mx,t and κt for the
future. The probability density functions include the unknown parameters θ,
ψ, σ2ε , and σ

2
ζ . Thus, we estimate the parameters as θ̂, ψ̂, σ̂2ε , and σ̂

2
ζ derived

in the previous section using the observed values.
First, we consider the probability points of the predictive densities Mx,T+1

and κT+1. Since we assume that the model holds from the past and the future,
(3.5) and (3.6) hold for t ≥ T as well. Then, since

Mx,T+1|Mx,T ∼ N

(
Mx,T + ψx, 2

(
ψx∑n
x=1 ψx

)2

σ2ζ + 2σ2ε

)
,

κT+1|κT ∼ N (κT + θ, 2σ2ζ ).

The predictive distributions are estimated as follows:

f̂Mx,T+1|m ∼ N

mx,T + ψ̂x, 2

(
ψ̂x∑n
x=1 ψ̂x

)2

σ̂2ζ + 2σ̂2ε

 ,

f̂κT+1|m ∼ N (k̂T + θ̂, 2σ̂2ζ )

by using the parameter estimates obtained in the previous section, where
m = (m1, . . . ,mT ). By using the above distributions, the lower and upper
α/2% points of Mx,T+1 are

mx,T + ψ̂x ± z(α
2 )

√√√√2

(
ψ̂x∑n
x=1 ψ̂x

)2

σ̂2ζ + 2σ̂2ε .
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The interval covers (1− α)% of the distribution. Similarly, for κT+1, we have

k̂T + θ̂ ± z(α
2 )

√
2σ̂2ζ ,

where z(α
2 )

denotes the upper α/2% point of the standard normal distribution

and k̂T is estimated by (3.22) with t = T .
For forecast h (≥ 2) years ahead of time T , by summing both sides of (3.6)

and the second equation in (3.5) from T + 1 to T + h, respectively, we obtain

Mx,T+h =Mx,T + hψx +

(
ψx∑n
x=1 ψx

(ζT+h − ζT ) + (εx,T+h − εx,T )

)
,

κT+h = κT + hθ + ζT+h − ζT ,

and thus, the conditional distributions are

(3.23)
Mx,T+h|Mx,T ∼ N

(
Mx,T + hψx, 2

(
ψx∑n
x=1 ψx

)2

σ2ζ + 2σ2ε

)
,

κT+h|κT ∼ N (κT + hθ, 2σ2ζ ).

Similarly, by estimating

f̂Mx,T+h|m ∼ N

mx,T + hψ̂x, 2

(
ψ̂x∑n
x=1 ψ̂x

)2

σ̂2ζ + 2σ̂2ε

 ,(3.24)

f̂κT+h|m ∼ N (k̂T + hθ̂, 2σ̂2ζ )(3.25)

for the predictive distribution h years ahead, the lower and upper α/2% of
Mx,T+h are

(3.26) mx,T + hψ̂x ± z(α
2 )

√√√√2

(
ψ̂x∑n
x=1 ψ̂x

)2

σ̂2ζ + 2σ̂2ε .

Similarly, for κT+h, we have

(3.27) k̂T + hθ̂ ± z(α
2 )

√
2σ̂2ζ .

§4. A simulation study

4.1. Unbiasedness and MSE of the proposed estimator

In this section, we check the unbiasedness and theoretical MSE derived from
the proposed estimators. We also evaluate the performance of the computa-
tional estimate for the quasi-likelihood function using an optimization function
in R. The data were generated under the following settings and verified using
Monte Carlo simulations:
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• Number of Monte Carlo replications: MC = 2000,

• T = 70,

• ψ = (−0.02,−0.03)′, σ2ε = 0.001, σ2ζ = 0.1.

The results of the simulation settings are shown below. First, the unbiasedness
results for ψ are listed in Table 1. We observe that both estimators are
unbiased, as are the theoretical values. ψ̂opt in Table 1 is an estimate of the
optimization function in R.

Table 1: Simulation results of bias for ψ.

Bias

ψ̂1 (6.244 · 10−5, 8.036 · 10−5)′

ψ̂2 (6.053 · 10−5, 7.996 · 10−5)′

ψ̂opt (8.435 · 10−5, 9.122 · 10−5)′

The MSE results are listed in Table 2. The estimated results of the MSEs
are close to the theoretical MSEs as shown in Table 3, indicating that both
methods are correctly estimated.

Table 2: Estimated MSE for ψ.

MSE

ψ̂1

(
6.912 · 10−6 9.787 · 10−6

9.787 · 10−6 1.523 · 10−5

)
ψ̂2

(
8.035 · 10−6 1.134 · 10−5

1.134 · 10−5 1.749 · 10−5

)
ψ̂opt

(
9.765 · 10−6 1.178 · 10−5

1.178 · 10−5 1.915 · 10−5

)

Table 3: Theoretical MSE for ψ.

Theoretical MSE

ψ̂1

(
7.141 · 10−6 1.008 · 10−5

1.008 · 10−5 1.554 · 10−5

)
ψ̂2

(
8.070 · 10−6 1.139 · 10−5

1.139 · 10−5 1.756 · 10−5

)

The biases and MSEs of σ2ε and σ2ζ are presented in Tables 4 and 5. Here,

Method 1 in the tables indicates the results calculated from ψ̂1 and Σ̂∗
1, and

Method 2 is calculated from ψ̂2 and Σ̂∗
2. Method 3 is based on the optimization

function of R. Additionally, the (scalar) MSE of ψ̂ in Table 5 is defined as
Tr[MSE(ψ̂)]. It can be seen that both results are estimated more correctly
than when using the optimization function. The results also show that the
model can be estimated correctly using a simple method. Because the former
can be solved algebraically, the computational time is instant, whereas the
optimization function generally requires a considerable computation time.
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Table 4: Simulation results of estimated bias for ψ, σ2ε , σ
2
ζ .

Bias

||ψ|| σ2ε σ2ζ
Method 1 1.017 · 10−5 5.264 · 10−5 1.008 · 10−3

Method 2 1.002 · 10−5 3.435 · 10−5 1.602 · 10−4

Method 3 1.242 · 10−5 −1.095 · 10−2 8.895 · 10−2

Table 5: Simulation results of estimated MSE for ψ, σ2ε , σ
2
ζ .

MSE

ψ σ2ε σ2ζ
Method 1 2.214 · 10−5 4.094 · 10−7 4.372 · 10−4

Method 2 2.553 · 10−5 8.836 · 10−7 1.116 · 10−3

Method 3 2.892 · 10−5 1.384 · 10−4 7.930 · 10−3

4.2. Comparison with SVD

We compare our parameter estimation with the SVD method used in the LC
model. Since the LC model is 2 stage modeling, the data structure is different
from a single random walk model by us and King and Girosi. In fact, σ2ζ is
not used in the SVD estimation in the LC model, while our and their models
include it in the data generating process. Therefore, it is difficult to compare
them directly. However, we generate the data based on the SVD method by
(2.1), and then compare the SVD method and our model. We set n = 2 and
T = 70. For the comparison, let define true parameters as

a =

(
0.4
0.6

)
, b =

(
0.4
0.6

)
, kt+1 = θ + kt (k = 1, . . . , T − 1), k1 = 138,

where θ = −4. Note that b and k satisfy (2.3). We generate the logarithm
mt of mortalities qt (t = 1, ..., T ) using (2.1) with σ2ε = 0.001.

The SVD method outputs the estimates of a, b, and k using the generated
logarithm mt of the mortalities (1 ≤ t ≤ T ). As mentioned in [10], the
parameter θ in the forecasting part is estimated by

θ̂ =
k̂T − k̂1
T − 1

,

and then ψ̂ is obtained by (3.1) and b̂. In our parameter estimation, we obtain
the estimate of ψ by (3.15) using the same generated date mt (1 ≤ t ≤ T ),
and then the estimates of b and θ by (3.21). The estimate of a is the same as
SVD as in (2.7). Finally, k is estimated by (3.22).
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Now, we obtain a sequence of estimates using a Monte Carlo simulation
with MC = 2000 replications. Table 6 is the results for the estimated scalar
MSE of these estimates.

Table 6: The estimated scalar MSEs for parameters.

ψ b k θ

SVD 4.430× 10−7 2.342× 10−9 0.132 7.865× 10−7

our estimate 9.522× 10−7 3.130× 10−8 0.138 9.486× 10−7

Even if the data is generated by the SVD model, our model has extremely
close performance to SVD. Furthermore, our estimate is easy to calculate by
(3.15), (3.21), and (3.22) without calculating eigen values using in SVD.

4.3. Forecasts

In this section, we verify the accuracy of the probability points obtained by
(3.26) and (3.27) in the previous section by using Monte Carlo simulations
under the following settings:

• Number of Monte Carlo replications: MC = 1000,

• T = 50, 100, 500, h = 10,

• ψ = (−0.02,−0.03)′, σ2ε = 0.001, σ2ζ = 0.1.

T = 500 is unrealistic because large-scale data are not available in practice.
To evaluate the performance of our estimates, we created a virtual situation.
The other settings are particularly useful in the current situation, since only
approximately 70 years of mortality data are available. We must generate
both values in the observed period and the future period of a random process.
First, we generate the observed values in the random process from (3.5) with

random errors in (3.4), and the true value of θ using (3.1) by {κ(j)t }1≤t≤T

for the jth Monte Carlo replication. Note that we do not use assumption
(3.10) when we generate the sequence because this assumption is only used
to estimate the parameters in the random process using the quasi-likelihood
function. The original random process does not assume that (3.10). In fact,
we generate y1, . . . ,yT−1 with (3.7). The parameter estimates of θ, ψx, σ

2
ζ , σ

2
ε

in (3.26) and (3.27) are conducted using y1, . . . ,yT−1. We set the initial value
m1 = (1, 2)′ that is required to calculate mx,T and k̂T in (3.26) and (3.27) in
our simulation, which is independent of the length of the predictive intervals.

A future value κ
(j)
T+h has a conditional distribution given κ

(j)
1 , . . . , κ

(j)
T . To

obtain the distribution of κ
(j)
T+h, we generated N = 10000 samples from the
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conditional distribution. In fact, we generate the samples using (3.5) and not

directly from (3.23). Let κ
(l,j)
T+h be the lth (1 ≤ l ≤ N) of the samples. To

obtain the upper 1% point, let U0.01

(
κ
(j)
T+h

)
denote the 9900th order value

when we set κ
(1,j)
T+h, . . . , κ

(N,j)
T+h in ascending order for each j. Using our nota-

tion, we provide the upper and lower α/2% in (3.27). If we set α = 2, we

obtain the upper 1%. We generated N = 10000 samples, and U0.01

(
κ
(j)
T+h

)
may be regarded as the true 99% percent point of κ

(j)
T+h. For each j, we esti-

mate U0.01

(
κ
(j)
T+h

)
by using our estimate. Let

̂
U0.01

(
κ
(j)
T+h

)
be an estimate of

the second formula in (3.27). This is a point estimate of U0.01

(
κ
(j)
T+h

)
given

κ
(j)
1 , . . . , κ

(j)
T .

U0.01

(
κ
(j)
T+h

)
and

̂
U0.01

(
κ
(j)
T+h

)
are defined for each j (1 ≤ j ≤ MC).

The values depend on κ
(j)
1 , . . . , κ

(j)
T because the parameters in

̂
U0.01

(
κ
(j)
T+h

)
are estimated using the observed data generated for each j. Furthermore, the

estimate has variation in the estimation since
̂

U0.01

(
κ
(j)
T+h

)
is a point estimate.

To validate the accuracy of the estimate, we evaluated it using a Monte Carlo
setting. We evaluated the upper 1% of the points

U0.01 (κT+h) ≃
1

MC

MC∑
j=1

U0.01

(
κ
(j)
T+h

)
by

̂U0.01 (κT+h) =
1

MC

MC∑
j=1

̂
U0.01

(
κ
(j)
T+h

)
.

The same procedure was applied for Mt. In Table 7 only the upper points
are listed. A comparison of the results shows that the estimates are accurate
for each T setting.

Table 7: Upper points of Mt and κt.

T = 50 T = 100 T = 500

U0.01 (κT+h) 0.1618 −0.0365 −1.6308
̂U0.01 (κT+h) 0.1610 −0.0373 −1.6308

U0.01 (MT+h) (0.03505, 0.1348)′ (−0.06552, 0.03408)′ (−0.8638,−0.7643)′

̂U0.01 (MT+h) (0.03456, 0.1344)′ (−0.06596, 0.03374)′ (−0.8638,−0.7644)′
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§5. Real data analysis

Figures 1 and 2 show the estimation results of bx and kt obtained by SVD,
and ψ̂1 in (3.14). We propose using mortality data [11] from 1947 to 2020.
For our estimates, we estimate the values of bx using (3.21) and the values of
kt using (3.22).

Figure 1: Estimation results for bx. Figure 2: Estimation results for kt.

Because both have similar values, the proposed estimation method under
our assumption is compatible with the model proposed by Lee and Carter.
Our estimate does not require complex computation, whereas the method
proposed by Lee and Carter uses SVD. As we can see, the estimate ψ̂1 of ψ
is the simple average of the observed values. Even when we use ψ̂2, this value
is a weighted average. For kt, we did not use the estimate of ψ. We calculate
from the mortality data, as in (3.22). Thus, we conclude that we have given
an appropriate and simple method to estimate the parameters that were not
discussed by Girosi and King, and have dissolved the problem of inconsistency
by Lee and Carter.

Next, we show the upper and lower 1% probability points of Mt and κt
obtained by applying the real data to (3.26) and (3.27) for the age groups of
20 to 29 and from 70 to 79, respectively. The data are obtained from the same
source, but we conduct our estimation for two different datasets: the young
group and the older group independently. In our notation, age x ranges from
1 to n, where n is the final age in the life table. The model can be easily
applied to 20 to 29 age groups by corresponding to 1 to n = 10 as well as 70
to 79.

Although Mt is n = 10 dimension data, the results of the prediction by
(5.1) for ages 20 and 70 are shown on behalf of their groups in Figures 3 and
4, respectively. For Mt, we have the observed values mt (1 ≤ t ≤ T ) shown
as the solid line on the left side of the vertical line in Figures 3 and 4. For the
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prediction of Mt, we use the expectation of Mt. From (3.24), we have

(5.1) Ê(Mx,T+h|Mx,t = mx,t (1 ≤ t ≤ T )) = mx,T + hψ̂x.

The solid and dotted lines on the right side of the vertical line in Figures 3
and 4 represent the prediction ofMt for t (T +1 ≤ t ≤ T +h) and their upper
and lower probability points by (3.26), respectively.

Figure 3: The observed values for
mt (1 ≤ t ≤ T ) and the estimated
mean of Mt with the upper and
lower 1% points of Mt at age 20
for t (T + 1 ≤ t ≤ T + h).

Figure 4: The observed values for
mt (1 ≤ t ≤ T ) and the estimated
mean of Mt with the upper and
lower 1% points of Mt at age 70
for t (T + 1 ≤ t ≤ T + h).

For κt, we estimate kt = E(κt) for the observed and future periods. For
the observed period, we estimated the values of kt using (3.22). The solid line
on the left part of the vertical line in Figures 5 and 6 represents the estimated
result for kt for t (1 ≤ t ≤ T ). The prediction of κt is given by

k̂T+h = ̂E(κT+h) = k̂T + hθ̂

in equation (3.25).

Because Lee and Carter applied a stochastic model in κt only for the predic-
tion part following ARIMA(0,1,0) and estimated the parameters in Mt using
SVD which is not a stochastic model, they could only draw probability points
for κt and did not give probability points for Mt. Our model has a standard
error for Mt because it is constructed using the integrated stochastic model,
which is different from the original LC model. In other words, we propose a
method to obtain the variances of σ2ε and σ2ζ that allows the probability points
of κt and Mt. Note, however, that, as the results show, the width of each
interval of the probability points is considerably different. This phenomenon
is discussed in the final section.
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Figure 5: Estimated and pre-
dicted results for kt (1 ≤ t ≤
T + h) and for the upper and
lower 1% points of κt in the 20s
(T + 1 ≤ t ≤ T + h).

Figure 6: Estimated and pre-
dicted results for kt (1 ≤ t ≤
T + h) and for the upper and
lower 1% points of κt in the 70s
(T + 1 ≤ t ≤ T + h).

§6. Discussion and future study

In this study, we propose a two-step estimation method to obtain σ2ε and σ2ζ
from the estimated values of ψ and Σ using the quasi-likelihood function. An
alternative approach is to estimate σ2ε , σ

2
ζ , and ψ simultaneously using the

quasi-likelihood function in (3.13). This is because we assumed ε0 = 0 and
ζ0 = 0 to derive the likelihood function. A further extension is to estimate the
unknown parameters from the exact likelihood function derived from Equa-
tion (3.6) as a multivariate time-series model. This would be a type of VAR
or VMA model, but the estimation is generally difficult to calculate from the
likelihood of a multivariate time-series model. Intensive consideration of pa-
rameter estimation is required if we treat the exact likelihood function. In
fact, estimations for VARMA have identification difficulties (see e.g. [12]) and
require much computational difficulty (see e.g. [13]). To conquer the problems
approaches relying on Bayesian methods are used (see e.g. [14] and [15]). For
example, Chang and Shi [14] applied a Bayesian factor-augmented approach.
In general, a Bayesian approach requires many parameters and intensive com-
putation. As we discussed, our approach is a very simple estimation method.
The estimation ends with simple algebraic computation because it is based on
the simple original LC model.

Additionally, in the future prediction of Mt, the value of Mx,T+h varies
depending on the estimated values of ψx as in (5.1). Note, however, that
the estimates applied to real data performed in Section 5 show a decreasing
trend for most ages. ψ is generally estimated to have negative values. The
estimated values are negative because ψ is defined as the mean of the difference
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Mt −Mt−1 by (3.7). Thus, if the estimated values of ψx and ψx′ in ψ of age
x and x′ with x < x′ have a relation ψ̂x > ψ̂x′ , then a phenomenon in which
the mortality rate of age x exceeds that of age x′ could occur in the future.
As pointed out by Girosi and King, this is a result of the assumption that κt
behaves linearly. As can be seen from equations (2.6) and (3.5), Mt is only
influenced by κt with respect to time t; therefore, it is necessary to examine
the validity of the LC model itself. As an approach to conquering the problem
of linearity, Miyata and Matsuyama [16] mentioned the development of neural
network approaches such as the NN-based generalization of the LC model using
a fully connected network (see [17]). However, Miyata and Matsuyama [16]
mentioned in their paper that neural network approaches are hard to interpret
results if the methods are a single-stage estimation. Miyata and Matsuyama
[16] proposed a method to solve their concern, however, the estimation results
in their estimation (see Figure 5 in their paper) do not have similarity to the
estimation result by the original LC model. We do not mention that their
result is strange, but the results are far from the original LC model. We might
interpret that Miyata and Matsuyama [16] could capture the phenomenon that
the LC model does not.

We also point out another issue found through the real data analysis per-
formed in Section 5. In the real data analysis, we divided the dataset into
young and elderly people. We applied the proposed method to two indepen-
dent datasets. Table 8 shows the results of the estimates of σ2ε and σ2ζ for the
young aged 20 to 29 and the elderly aged 70 to 79, respectively.

Table 8: Estimated results of σ2ε and σ2ζ .

σ̂2ε σ̂2ζ
young people 0.0031 30.1310
elderly people 0.0012 0.3142

As it can be seen from the results, the estimation result of σ2ζ for the younger
age group is much larger than the one for the elder age group. This is because
of the original assumption that we have a common variance σ2ζ across ages, and
it is an undesirable result that the estimation results are different for each age.
As we know, many extensions of the LC model were proposed. For example,
Fung et al. [18] weakened the assumption of shared variance. That is, they
assume a heteroscedasticity model. Our main target is estimation methods
for the original LC model. An extension of our approach to other models such
as the models with heteroscedasticity is required in future.
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