Homogenization for Poisson equations in domains with concentrated holes

Hiroto Ishida

(Received September 9, 2022)

Abstract. We consider solutions u^{ε} of Poisson problems with the Dirichlet condition on domains Ω_{ε} with holes concentrated at subsets of a domain Ω nonperiodically. We show u^{ε} converges to a solution of a Poisson problem with a simple function potential. This is a generalized result of a sample model given by Cioranescu and Murat (1997). They showed a result for case that holes are distributed at Ω periodically.

AMS 2020 Mathematics Subject Classification. 35B27.

Key words and phrases. Poisson problem, homogenization.

§1. Introduction

Let $\Omega \subset \mathbb{R}^d, d \geq 2$ be open and bounded with C^2 boundary. We consider a union T_{ε} of holes concentrated at subsets of \mathbb{R}^d as Figure 1, and domains $\Omega_{\varepsilon} = \Omega \setminus T_{\varepsilon}$. We consider Poisson problems on Ω_{ε} with the homogeneous Dirichlet condition with $f \in L^2(\Omega)$, that is,

(1.1)
$$u^{\varepsilon} \in H_0^1(\Omega_{\varepsilon}), \quad -\Delta u^{\varepsilon} = f.$$

We will see u^{ε} converge to u as $\varepsilon \to 0$ which satisfies

(1.2)
$$u \in H_0^1(\Omega), \quad (-\Delta + V)u = f,$$

where V is a simple function. Details of assumptions for T_{ε} and the main result are given in Section 2.1.

H. ISHIDA

Figure 1: A domain Ω and holes T_{ε} .

1.1. Known results

There are many contributions to characterize the limit u of solutions u^{ε} on domains Ω_{ε} when $\Omega_{\varepsilon} \to \Omega$ in a proper sense. The PDE of the form (1.2) is often used to characterize the limit u. Many examples with V = 0 are introduced at [6], for example, $\Omega_{\varepsilon} \to \Omega \setminus K$ metrically with thin K.

On the other hand, there are examples for which $V \neq 0$. The case when $T_{\varepsilon} = \bigcup_{i \in 2\varepsilon \mathbb{Z}^d} \overline{B(i, a_{\varepsilon})}$ with the critical radius a_{ε} is introduced at [1, Example 2.1], where a_{ε} satisfies the same condition for $a_{\varepsilon,k}$ of (2.3) below. In this case, V is a constant. A similar result for Robin condition is given by [5] with a different critical radius and a different constant V. These results can be regarded as a strong resolvent convergence of Laplacian, and they were improved to a norm resolvent convergence of Laplacian with Dirichlet, Robin and Neumann conditions by [2]. In these cases, V is still a constant.

Other examples for which $V \neq 0$ are also introduced at [1, Example 2.9]. If T_{ε} is a union of holes on a hyper plane, V is a Dirac measure supported on the hyper plane.

As for randomly perforated domains, convergence of solutions in a proper sense with holes whose centers are generated by either Poisson or stationary point process is given by [3], [4] with a constant V.

§2. Assumption and the main result

2.1. Assumption

We denote Lebesgue measure on \mathbb{R}^d by $|\cdot|$. We use a class \mathcal{J} of sets to determine where holes concentrate.

Definition 1. Let

$$\mathcal{J} = \{ E \subset \mathbb{R}^d \mid |\partial E| = 0 \}.$$

Remark 1. If $E \subset \mathbb{R}^d$ and $|\overline{E}| < \infty$, $E \in \mathcal{J}$ if and only if $|\overline{E}| = |\mathring{E}|$ by $\partial E = \overline{E} \setminus |\mathring{E}|$. Elements of \mathcal{J} are measurable by completeness of Lebesgue measure.

We shall construct holes T_{ε} as follows (see Figure 2). Let $m \in \mathbb{N}$, $\{F_k\}_{k=1}^m \subset \mathcal{J}$ be a collection of disjoint sets and $\{N_k\}_{k=1}^m \subset \mathbb{N}$. We use \bigsqcup instead of \bigcup for the disjoint union of sets. Let $A \subset \mathbb{R}^d$ be measurable and bounded, and $\Lambda \subset \mathbb{R}^d$ be countable such that

(2.1)
$$\mathbb{R}^{d} = \bigsqcup_{i \in \Lambda} (A+i) \ (A+i = \{x+i \mid x \in A\}).$$

For $x \in \mathbb{R}^d$ and R > 0, we denote $B(x, R) = \{y \in \mathbb{R}^d \mid |x - y| < R\}$. Choose small C > 0 with

(2.2)
$$|A| > \max_{k \le m} N_k |B(0,C)|.$$

We denote $A_i^{\varepsilon} = \varepsilon(A+i) = \{\varepsilon x \mid x \in A+i\}$. Remark $\mathbb{R}^d = \bigsqcup_{i \in \Lambda} A_i^{\varepsilon}$ follows from (2.1) for each $\varepsilon > 0$.

Definition 2. For $E \subset \mathbb{R}^d$ and $\varepsilon > 0$, let

$$\Lambda_{\varepsilon}^{-}(E) = \{ i \in \Lambda \mid A_{i}^{\varepsilon} \subset E \}, \quad \Lambda_{\varepsilon}^{+}(E) = \{ i \in \Lambda \mid A_{i}^{\varepsilon} \cap E \neq \emptyset \}.$$

For $\varepsilon > 0$ and $i \in \Lambda_{\varepsilon}^{-}(F_k)$ (such k is unique for each i), consider centers of holes $\{x_{i,j}^{\varepsilon} \mid j = 1, ..., N_k\} \subset \mathbb{R}^d$ with $\bigsqcup_{j=1}^{N_k} B(x_{i,j}^{\varepsilon}, C\varepsilon) \subset A_i^{\varepsilon}$ for $\varepsilon \ll 1$. We omit to write $(\varepsilon \to 0)$ for convergence of sequences indexed by $\varepsilon > 0$. Consider radii of holes $a_{\varepsilon,k}$ with the following condition for $1 \le k \le m$:

(2.3)
$$\varepsilon^{-d} \times \begin{cases} (-\log a_{\varepsilon,k})^{-1} & (d=2)\\ (a_{\varepsilon,k})^{d-2} & (d\geq 3) \end{cases} \to \tilde{\mu_k} \in [0,\infty).$$

We recall that Ω is bounded, open with C^2 boundary. We denote

$$T_{\varepsilon,k} = \bigsqcup_{i \in \Lambda_{\varepsilon}^{-}(F_{k}), j \leq N_{k}} \overline{B(x_{i,j}^{\varepsilon}, a_{\varepsilon,k})}, \quad T_{\varepsilon} = \bigsqcup_{k=1}^{m} T_{\varepsilon,k}, \quad \Omega_{\varepsilon} = \Omega \setminus T_{\varepsilon}.$$

H. ISHIDA

Figure 2: Construction of holes T_{ε} with m = 2, $N_1 = 6$, $N_2 = 2$.

2.2. Result

Using the surface area S_d of $\partial B(0,1)$, we write $\mu_d = \frac{S_d}{|A|} \times \begin{cases} 1 & (d=2) \\ d-2 & (d \ge 3) \end{cases}$. For $E \subset \mathbb{R}^d$, we denote $1_E(x) = \begin{cases} 1 & (x \in E) \\ 0 & (x \notin E) \end{cases}$. Our main result is stated as follows.

Theorem 1. Under the assumptions as in Section 2.1, u^{ε} in (1.1) converges to u weakly in $H_0^1(\Omega)$ and the limit u solves (1.2) with

$$V = \mu_d \sum_{k=1}^m \tilde{\mu_k} N_k \mathbf{1}_{F_k}.$$

Remark 2. [1, Example 2.1] is just Theorem 1 with $F_1 = \mathbb{R}^d$, $A = [-1, 1)^d$, $\Lambda = 2\mathbb{Z}^d$, $N_1 = 1, x_{i,1}^{\varepsilon} = i\varepsilon$. It means holes are distributed on Ω periodically. We generalized it for the case where holes distributed concentrated at F_k non-periodically. Moreover, each F_k can have different density $\tilde{\mu}_k N_k$.

2.3. Outline of proof

The proof of our main result is based on the theorem below.

Theorem 2 ([1, Theorem 1.2]). Assume that $T_{\varepsilon} \subset \mathbb{R}^d$ is closed for each $\varepsilon > 0$. Assume there is a sequence

(H.1)
$$\{w^{\varepsilon}\} \subset H^1(\Omega)$$

satisfying

(H.2)
$$w^{\varepsilon} = 0 \text{ on } T_{\varepsilon} \text{ for each } \varepsilon > 0,$$

(H.3)
$$w^{\varepsilon} \to 1 \text{ weakly in } H^1(\Omega),$$

and there is

(H.4)
$$V \in W^{-1,\infty}(\Omega)$$

(thus, $V \in H^{-1}(\Omega)$) such that

(H.5)
$$\begin{array}{l} \langle -\Delta w^{\varepsilon}, \varphi v^{\varepsilon} \rangle_{H^{-1}(\Omega)} \to \langle V, \varphi v \rangle_{H^{-1}(\Omega)} \\ if \varphi \in C_0^{\infty}(\Omega), \ v^{\varepsilon} = 0 \ on \ T_{\varepsilon}. \ v^{\varepsilon} \to v \ weakly \ in \ H^1(\Omega). \end{array}$$

Then, u^{ε} in (1.1) converges to $u \in H_0^1(\Omega)$ weakly in $H_0^1(\Omega)$ where u is solution to (1.2).

We check the conditions (H.1)-(H.5) to prove Theorem 1. As mentioned in [1], it is not unusual that assuming the condition (H.5).

We first prepare some lemmas in Section 3.1, and we introduce w^{ε} and verify the conditions (H.1)–(H.4) in Section 3.2. Finally, we check the condition (H.5) in Section 3.3 and complete the proof of Theorem 1.

§3. Proof

3.1. Approximation of sets by tiles A_i^{ε}

We first state some properties for \mathcal{J} .

Lemma 1. Let $E_1, E_2 \in \mathcal{J}$, then $|\overline{E_1 \cap E_2}| = |(E_1 \cap E_2)^\circ|$.

Proof. A distributive property for sets shows $\overline{E_1 \cap E_2} \subset \overline{E_1} \cap \overline{E_2} = (\mathring{E_1} \sqcup \partial E_1) \cap (\mathring{E_2} \sqcup \partial E_2) = (\mathring{E_1} \cap \mathring{E_2}) \cup E = (E_1 \cap E_2)^\circ \cup E$ with some E satisfying |E| = 0.

Definition 3. For $E \subset \mathbb{R}^d$ and $\varepsilon > 0$, let

$$A_{\varepsilon}^{\pm}(E) = \bigsqcup_{i \in \Lambda_{\varepsilon}^{\pm}(E)} A_{i}^{\varepsilon}.$$

We remark that $A_{\varepsilon}^{-}(E) \subset E \subset A_{\varepsilon}^{+}(E)$. We will see that they are approximations of E by Lemmas 2 and 3 below.

Lemma 2. Let $E \subset \mathbb{R}^d$ be measurable and bounded, and satisfy $|E| = |\overline{E}|$. Then $|A_{\varepsilon}^+(E)| \to |E|$.

Proof. Let $d_{\varepsilon} = \operatorname{diam}(\varepsilon A)$. Then $d_{\varepsilon} \to 0$. Let $E_{\varepsilon} = \bigcup_{x \in E} \overline{B(x, d_{\varepsilon})}$. Then $\bigcap_{\varepsilon > 0} E_{\varepsilon} = \overline{E}$ and $|E_{\varepsilon}| < \infty$. Thus $|E_{\varepsilon}| \to |\overline{E}| = |E|$. The assertion follows from it and $E_{\varepsilon} \supset A_{\varepsilon}^+(E) \supset E$.

Lemma 3. Let $E \subset \mathbb{R}^d$ be a measurable set such that $|\mathring{E}| = |E|$. Then $|A_{\varepsilon}^{-}(E)| \to |E|$.

Proof. Let $V = \mathring{E}, g(x) = \text{dist}(x, \partial V), \ d_{\varepsilon} = \text{diam}(\varepsilon A)$ and

$$V_{-\varepsilon} = V \cap g^{-1}((d_{\varepsilon}, \infty)).$$

Then $\bigcup_{\varepsilon>0} V_{-\varepsilon} = V$ since V is open. The assertion follows from $V_{-\varepsilon} \subset A_{\varepsilon}^{-}(V) \subset E$. We verify $V_{-\varepsilon} \subset A_{\varepsilon}^{-}(V)$. Let $x \in V_{-\varepsilon}$. There is $i \in \Lambda$ that $x \in A_{\varepsilon}^{\varepsilon}$. We show $i \in \Lambda_{\varepsilon}^{-}(V)$. It is equivalence with $\mathbb{R}^{d} \setminus V \subset \mathbb{R}^{d} \setminus A_{\varepsilon}^{\varepsilon}$. If $y \notin V$, we can get $p \in \partial V$ from line segment which contain $\{x, y\}$. It is $p_{t} = (1-t)x + ty$ with minimal $t \in [0, 1]$ that $p_{t} \notin V$. Construction of p imply $|x-y| = |x-p| + |p-y| \ge \operatorname{dist}(x, \partial V) > d_{\varepsilon}$. Thus $y \notin A_{\varepsilon}^{\varepsilon}$. Thus $i \in \Lambda_{\varepsilon}^{-}(V)$. \Box

We can count how many tiles $A_{\varepsilon}^{\pm}(E)$ has.

Lemma 4. For $E \subset \mathbb{R}^d$ and $\varepsilon > 0$, the number of elements of $\Lambda_{\varepsilon}^{\pm}(E)$ is $\frac{|A_{\varepsilon}^{\pm}(E)|}{\varepsilon^d |A|}$.

We say E is a cube if $E = [0, R)^d + x$ with some $x \in \mathbb{R}^d, R > 0$. We prepare lemmas related to weak star topology of $L^{\infty}(\mathbb{R}^d) = L^1(\mathbb{R}^d)^*$. We denote $\langle g, h \rangle_{L^1(\mathbb{R}^d)^*} = \int ghdx$ for $g \in L^{\infty}(\mathbb{R}^d) = L^1(\mathbb{R}^d)^*, h \in L^1(\mathbb{R}^d)$.

Lemma 5. Let $\{g_{\varepsilon}\} \subset L^{\infty}(\mathbb{R}^d)$ be bounded and $g \in L^{\infty}(\mathbb{R}^d)$. If

$$\langle g_{\varepsilon}, 1_E \rangle_{L^1(\mathbb{R}^d)^*} \to \langle g, 1_E \rangle_{L^1(\mathbb{R}^d)^*}$$

for any cube $E, g_{\varepsilon} \to g$ weakly star in $L^{\infty}(\mathbb{R}^d)$.

Proof. If follows from the fact that the vector space generated by $\{1_E | E : \text{cube}\}$ is dense at $L^1(\mathbb{R}^d)$. And the fact follows from the facts that the set of simple functions on \mathbb{R}^d is dense in $L^1(\mathbb{R}^d)$, the Lebesgue measure is outer regular and any open set can be represented as the union of disjoint countable cubes.

66

Lemma 6. If $f_{\varepsilon} \to f$ in $L^2(\mathbb{R}^d)$, $|f_{\varepsilon}| \leq 1$ for $\varepsilon \ll 1$ and $g_{\varepsilon} \to g$ weakly star in $L^{\infty}(\mathbb{R}^d)$, we have $f_{\varepsilon}g_{\varepsilon} \to fg$ weakly star in $L^{\infty}(\mathbb{R}^d)$.

Proof. The existence of a subsequence of f_{ε} converging to f a.e. gives $|f| \leq 1$ a.e. The assertion follows from $c := \sup_{\varepsilon > 0} \|g_{\varepsilon}\|_{L^{\infty}(\mathbb{R}^d)} < \infty$, Lemma 5, and $|\langle f_{\varepsilon}g_{\varepsilon} - fg, 1_E \rangle| \leq c \|f_{\varepsilon} - f\|_{L^2(\mathbb{R}^d)} \|1_E\|_{L^2(\mathbb{R}^d)} + |\langle g_{\varepsilon} - g, f1_E \rangle|$ for any cube E.

3.2. Error corrector w^{ε}

By (2.3), we have $\frac{\max_k a_{\varepsilon,k}}{\varepsilon} \to 0$. Thus $\max_{k \leq m} a_{\varepsilon,k} < C\varepsilon$ for $\varepsilon \ll 1$ (recall C > 0 is chosen to satisfy (2.2)). Let

$$w_{0,k}^{\varepsilon}(r) = \begin{cases} \frac{\log a_{\varepsilon,k} - \log r}{\log a_{\varepsilon,k} - \log C\varepsilon} & (d=2), \\ \frac{(a_{\varepsilon,k})^{-d+2} - r^{-d+2}}{(a_{\varepsilon,k})^{-d+2} - (C\varepsilon)^{-d+2}} & (d\ge3), \end{cases} (a_{\varepsilon,k} \le r \le C\varepsilon), \\ B_{\varepsilon,k} = \bigsqcup_{i\in\Lambda_{\varepsilon}^{-}(F_{k}), j\le N_{k}} B(x_{i,j}^{\varepsilon}, C\varepsilon), \quad B_{\varepsilon} = \bigsqcup_{k=1}^{m} B_{\varepsilon,k}, \\ w^{\varepsilon}(x) = \begin{cases} 0 & (x \in T_{\varepsilon}), \\ w_{0,k}^{\varepsilon}(|x - x_{i,j}^{\varepsilon}|) & (x \in B(x_{i,j}^{\varepsilon}, C\varepsilon) \setminus B(x_{i,j}^{\varepsilon}, a_{\varepsilon,k})), \\ 1 & (x \notin B_{\varepsilon}). \end{cases}$$

Then we have

(3.1)
$$\Delta w^{\varepsilon} = 0 \text{ on } B_{\varepsilon} \setminus T_{\varepsilon}.$$

and (H.2). We need the limit of $1_{B_{\varepsilon,k}}$ to analyze w^{ε} .

Lemma 7.
$$1_{B_{\varepsilon,k}} \to \frac{N_k |B(0,C)|}{|A|} 1_{F_k} = \frac{N_k C^d S_d}{d|A|} 1_{F_k}$$
 weakly star in $L^{\infty}(\mathbb{R}^d)$.

Proof. Let *E* be a cube. By $|B_{\varepsilon,k} \cap A_i^{\varepsilon}| = \begin{cases} N_k |B(0, C\varepsilon)| & (i \in \Lambda_{\varepsilon}^-(F_k)) \\ 0 & (i \notin \Lambda_{\varepsilon}^-(F_k)) \end{cases}$. Lemma 4 and $B_{\varepsilon,k} \subset F_k$, we have

$$\frac{|A_{\varepsilon}^{-}(E \cap F_{k})|}{\varepsilon^{d}|A|}N_{k}|B(0,C\varepsilon)| = |B_{\varepsilon,k} \cap A_{\varepsilon}^{-}(E \cap F_{k})| \le \left\langle 1_{B_{\varepsilon,k}}, 1_{E} \right\rangle_{L^{1}(\mathbb{R}^{d})^{*}} \le \frac{|A_{\varepsilon}^{+}(E \cap F_{k})|}{\varepsilon^{d}|A|}N_{k}|B(0,C\varepsilon)|.$$

H. ISHIDA

By Lemmas 1 to 3,

$$\frac{|A_{\varepsilon}^{-}(E\cap F_{k})|}{\varepsilon^{d}|A|}N_{k}|B(0,C\varepsilon)| \to \frac{|E\cap F_{k}|N_{k}|B(0,C)|}{|A|} = \left\langle \frac{N_{k}|B(0,C)|}{|A|}1_{F_{k}}, 1_{E} \right\rangle.$$

These, Lemma 5 and $|B(0,C)| = \frac{S_d C^d}{d}$ imply the assertion.

Lemma 8. We have (H.1) and (H.3)

Proof. For $i \in \Lambda_{\varepsilon}^{-}(F_k)$, $j \leq N_k$, $k \leq m$, We have

$$\begin{split} \|\boldsymbol{\nabla}\boldsymbol{w}^{\varepsilon}\|_{L^{2}(B(\boldsymbol{x}_{i,j}^{\varepsilon},C\varepsilon)\setminus\overline{B(\boldsymbol{x}_{i,j}^{\varepsilon},a_{\varepsilon,k})})}^{2} &= S_{d}\int_{a_{\varepsilon,k}}^{C\varepsilon}|\partial_{r}\boldsymbol{w}_{0,k}^{\varepsilon}(r)|^{2}r^{d-1}dr\\ &= S_{d}\begin{cases} \frac{1}{\log C\varepsilon - \log a_{\varepsilon,k}} & (d=2),\\ \frac{d-2}{(a_{\varepsilon,k})^{-d+2} - (C\varepsilon)^{-d+2}} & (d\geq3), \end{cases} \end{split}$$

which along with $|w^{\varepsilon}| \leq 1$ implies w^{ε} is an extension of an $H^1_{loc}(B_{\varepsilon} \setminus T_{\varepsilon})$ function by the boundary values on $\partial(B_{\varepsilon} \setminus T_{\varepsilon})$. Thus, ∇w^{ε} in the distributional sense coincides with the pointwise, classical derivative and

$$\|\boldsymbol{\nabla} w^{\varepsilon}\|_{L^{2}(A_{i}^{\varepsilon})}^{2} = \begin{cases} \frac{N_{k}S_{d}}{\log C\varepsilon - \log a_{\varepsilon,k}} & (i \in \Lambda_{\varepsilon}^{-}(F_{k}), \ d = 2), \\ \frac{N_{k}S_{d}(d-2)}{(a_{\varepsilon,k})^{-d+2} - (C\varepsilon)^{-d+2}} & (i \in \Lambda_{\varepsilon}^{-}(F_{k}), \ d \ge 3), \\ 0 & (i \notin \bigcup_{k \le m} \Lambda_{\varepsilon}^{-}(F_{k})). \end{cases}$$

Using (2.3) for them, we have $c := \sup_{\varepsilon > 0, i \in \Lambda} \varepsilon^{-d} \| \nabla w^{\varepsilon} \|_{L^{2}(A_{i}^{\varepsilon})}^{2} < \infty$. Thus $\| \nabla w^{\varepsilon} \|_{L^{2}(A^{\varepsilon})}^{2} \le c \varepsilon^{d}$. It and Lemmas 2 and 4 imply

$$\|\boldsymbol{\nabla} w^{\varepsilon}\|_{L^{2}(\Omega)}^{2} \leq \|\boldsymbol{\nabla} w^{\varepsilon}\|_{L^{2}(A^{+}_{\varepsilon}(\Omega))}^{2} \leq \frac{|A^{+}_{\varepsilon}(\Omega)|}{\varepsilon^{d}|A|} c\varepsilon^{d} \leq \frac{c|\bigcup_{x\in\Omega} B(x,1)|}{|A|} \ (\varepsilon\ll 1),$$

which together with $|w^{\varepsilon}| \leq 1$ implies (H.1), and $\{w^{\varepsilon}\} \subset H^{1}(\Omega)$ is bounded.

Consider any subsequences of $\{w^{\varepsilon}\}$ (we still denote w^{ε}) which converge weakly in $H^1(\Omega)$, and let $w = \text{w-}\lim_{\varepsilon \to 0} w^{\varepsilon}$. We show w = 1. Let $F = \bigsqcup_k F_k$. Rellich's theorem gives $w^{\varepsilon} \mathbb{1}_{\mathbb{R}^d \setminus F} = \mathbb{1}_{\mathbb{R}^d \setminus F}$ tend to $w \mathbb{1}_{\mathbb{R}^d \setminus F} = \mathbb{1}_{\mathbb{R}^d \setminus F}$ in $L^2(\Omega)$. Thus, w = 1 a.e. on $\Omega \setminus F$. On the other hand, Lemma 7 gives $\mathbb{1}_{F_k \setminus B_{\varepsilon,k}} = \mathbb{1}_{F_k}(1 - \mathbb{1}_{B_{\varepsilon,k}}) \to \mathbb{1}_{F_k}(1 - c_k \mathbb{1}_{F_k}) = (1 - c_k)\mathbb{1}_{F_k}$ weakly star in $L^{\infty}(\mathbb{R}^d)$ where $c_k = \frac{N_k |B(0,C)|}{|A|}$. Hence $w^{\varepsilon} \mathbb{1}_{\Omega} \mathbb{1}_{F_k \setminus B_{\varepsilon,k}} = \mathbb{1}_{\Omega} \mathbb{1}_{F_k \setminus B_{\varepsilon,k}}$ tends to $w \mathbb{1}_{\Omega}(1 - c_k)\mathbb{1}_{F_k} = \mathbb{1}_{\Omega}(1 - c_k)\mathbb{1}_{F_k}$ weakly star in $L^{\infty}(\mathbb{R}^d)$ for each k by Lemma 6. Since $0 < c_k < 1$ by (2.2), we have w = 1 on $\Omega \cap F_k$. Since $\mathbb{R}^d = (\mathbb{R}^d \setminus F) \cup (\sqcup_k F_k)$, we have w = 1 on Ω . We use a special function to analyze a distribution $-\Delta w^{\varepsilon}$. Let

$$q_0^{\varepsilon}(r) = \frac{r^2 - (C\varepsilon)^2}{2} \ (0 \le r \le C\varepsilon),$$
$$q^{\varepsilon}(x) = \begin{cases} q_0^{\varepsilon}(|x - x_{i,j}^{\varepsilon}|) & (x \in B(x_{i,j}^{\varepsilon}, C\varepsilon))\\ 0 & (x \notin B_{\varepsilon}) \end{cases}.$$

Then we have

(3.2)
$$-\Delta q^{\varepsilon} = -d \ (x \in B_{\varepsilon}), \ \partial_r q_0^{\varepsilon}(C\varepsilon) = C\varepsilon, \ q_0^{\varepsilon}(C\varepsilon) = 0.$$

Now we decompose the restricted distribution $(-\Delta w^{\varepsilon})|_{H^1_0(\Omega_{\varepsilon})}$ by using q^{ε} . Lemma 9. Suppose $v \in H^1_0(\Omega_{\varepsilon})$. Then we have

$$\langle -\Delta w^{\varepsilon}, v \rangle_{H^{-1}(\Omega)} = \sum_{k \le m} \frac{\partial_r w_{0,k}^{\varepsilon}(C\varepsilon)}{C\varepsilon} \left(\int_{B_{\varepsilon,k}} \nabla q^{\varepsilon} \cdot \nabla v dx + d \left\langle 1_{B_{\varepsilon,k}}, v \right\rangle_{H^{-1}(\Omega)} \right).$$

Proof. By (3.2) and integration by parts,

$$\int_{B_{\varepsilon,k}} \boldsymbol{\nabla} q^{\varepsilon} \cdot \boldsymbol{\nabla} v dx = C \varepsilon \int_{\partial B_{\varepsilon,k}} v d\sigma - d \left\langle \mathbf{1}_{B_{\varepsilon,k}}, v \right\rangle_{H^{-1}(\Omega)}$$

for $v \in H_0^1(\Omega_{\varepsilon})$. By assumption, $\int_{\partial T_{\varepsilon,k}} v d\sigma = 0$. Using them and (3.1), we have

$$\begin{split} \langle -\Delta w^{\varepsilon}, v \rangle_{H^{-1}(\Omega)} &= \sum_{k \leq m} \int_{B_{\varepsilon,k} \setminus T_{\varepsilon,k}} \nabla w^{\varepsilon} \cdot \nabla v dx = \sum_{k \leq m} \partial_r w_{0,k}^{\varepsilon}(C\varepsilon) \int_{\partial B_{\varepsilon,k}} v d\sigma \\ &= \sum_{k \leq m} \frac{\partial_r w_{0,k}^{\varepsilon}(C\varepsilon)}{C\varepsilon} \left(\int_{B_{\varepsilon,k}} \nabla q^{\varepsilon} \cdot \nabla v dx + d \left\langle 1_{B_{\varepsilon,k}}, v \right\rangle_{H^{-1}(\Omega)} \right). \end{split}$$

This completes the proof.

The following lemma is very similar to (H.5).

Lemma 10. Suppose that $v^{\varepsilon} \in H_0^1(\Omega_{\varepsilon})$ and $v^{\varepsilon} \to v$ weakly in $H_0^1(\Omega)$, Then

$$\langle -\Delta w^{\varepsilon}, v^{\varepsilon} \rangle_{H^{-1}(\Omega)} \rightarrow \left\langle \mu_d \sum_{k=1}^m \tilde{\mu}_k N_k \mathbf{1}_{F_k}, v \right\rangle_{H^{-1}(\Omega)}$$

Proof. By (2.3), we have $\frac{\partial_r w_{0,k}^{\varepsilon}(C\varepsilon)}{C\varepsilon} \to \frac{\tilde{\mu_k}}{C^d} \times \begin{cases} 1 & (d=2) \\ d-2 & (d \ge 3) \end{cases}$. We also have

$$\left|\int_{B_{\varepsilon,k}} \boldsymbol{\nabla} q^{\varepsilon} \cdot \boldsymbol{\nabla} v^{\varepsilon} dx\right| \leq C \varepsilon \sup_{\delta > 0} \left\| v^{\delta} \right\|_{W^{1,1}(\Omega)} \to 0.$$

H. ISHIDA

Rellich's theorem gives $|\langle 1_{B_{\varepsilon,k}}, v^{\varepsilon} - v \rangle_{H^{-1}(\Omega)}| \leq ||1||_{L^{2}(\Omega)} ||v^{\varepsilon} - v||_{L^{2}(\Omega)} \to 0.$ It and Lemma 7 give

$$\begin{split} \left\langle 1_{B_{\varepsilon,k}}, v^{\varepsilon} \right\rangle_{H^{-1}(\Omega)} &= \left\langle 1_{B_{\varepsilon,k}}, v^{\varepsilon} - v \right\rangle_{H^{-1}(\Omega)} + \left\langle 1_{B_{\varepsilon,k}}, 1_{\Omega} v \right\rangle_{L^{1}(\mathbb{R}^{d})^{*}} \\ &\to \left\langle \frac{N_{k} C^{d} S_{d}}{d|A|} 1_{F_{k}}, v \right\rangle_{H^{-1}(\Omega)}. \end{split}$$

The assertion follows from these limit and Lemma 9.

3.3. Proof of Theorem 1

Proof. Since $V = \mu_d \sum_{k=1}^m \tilde{\mu_k} N_k \mathbf{1}_{F_k} \in L^{\infty}(\Omega) = L^1(\Omega)^* \subset W^{-1,\infty}(\Omega)$, we have (H.4). We shall verify (H.5). Indeed, the multiplier of $\varphi : H^1(\Omega) \to H^1_0(\Omega)$ is a bounded operator. Thus, $\varphi v^{\varepsilon} \to \varphi v$ weakly in $H^1_0(\Omega)$. It and Lemma 10 imply (H.5). Since we already checked (H.1)–(H.3) in Section 3.2, Theorem 1 follows from Theorem 2.

Acknowledgement.

The author thanks to the referees for their suggestions in the improvement of the paper.

References

- D. Cioranescu and F. Murat. A strange term coming from nowhere. In Topics in the Mathematical Modelling of Composite Materials. Progress in Nonlinear Differential Equations and Their Applications, pages 45–93. Birkhäuser Boston, 1997.
- [2] P. Dondl, K. Cherednichenko, and F. Rösler. Norm-resolvent convergence in perforated domains. Asymptot. Anal., 110:163–184, 2017.
- [3] A. Giunti. Convergence rates for the homogenization of the Poisson problem in randomly perforated domains. *Netw. Heterog. Media*, 16(3):341–375, 2021.
- [4] A. Giunti, R. Höfer, and J.J. L. Velázquez. Homogenization for the Poisson equation in randomly perforated domains under minimal assumptions on the size of the holes. *Comm. in PDEs*, 43:1377–1412, 2018.
- [5] S. Kaizu. The Robin problems on domains with many tiny holes. Proc. Japan Acad. Ser. A Math. Sci., 61(7):39–42, 1985.
- [6] J. Rauch and M. Taylor. Potential and scattering theory on wildly perturbed domains. J. Funct. Anal., 18(1):27–59, 1975.

POISSON EQUATIONS IN DOMAINS WITH CONCENTRATED HOLES 71

Hiroto Ishida Graduate School of Science, University of Hyogo Shosha, Himeji, Hyogo 671-2201, Japan *E-mail*: immmrfff@gmail.com