Homogenization for Poisson equations in domains with concentrated holes

Hiroto Ishida

(Received September 9, 2022)

Abstract

We consider solutions u^{ε} of Poisson problems with the Dirichlet condition on domains Ω_{ε} with holes concentrated at subsets of a domain Ω nonperiodically. We show u^{ε} converges to a solution of a Poisson problem with a simple function potential. This is a generalized result of a sample model given by Cioranescu and Murat (1997). They showed a result for case that holes are distributed at Ω periodically.

AMS 2020 Mathematics Subject Classification. 35B27.
Key words and phrases. Poisson problem, homogenization.

§1. Introduction

Let $\Omega \subset \mathbb{R}^{d}, d \geq 2$ be open and bounded with C^{2} boundary. We consider a union T_{ε} of holes concentrated at subsets of \mathbb{R}^{d} as Figure 1, and domains $\Omega_{\varepsilon}=\Omega \backslash T_{\varepsilon}$. We consider Poisson problems on Ω_{ε} with the homogeneous Dirichlet condition with $f \in L^{2}(\Omega)$, that is,

$$
\begin{equation*}
u^{\varepsilon} \in H_{0}^{1}\left(\Omega_{\varepsilon}\right), \quad-\Delta u^{\varepsilon}=f . \tag{1.1}
\end{equation*}
$$

We will see u^{ε} converge to u as $\varepsilon \rightarrow 0$ which satisfies

$$
\begin{equation*}
u \in H_{0}^{1}(\Omega), \quad(-\Delta+V) u=f, \tag{1.2}
\end{equation*}
$$

where V is a simple function. Details of assumptions for T_{ε} and the main result are given in Section 2.1.

Figure 1: A domain Ω and holes T_{ε}.

1.1. Known results

There are many contributions to characterize the limit u of solutions u^{ε} on domains Ω_{ε} when $\Omega_{\varepsilon} \rightarrow \Omega$ in a proper sense. The PDE of the form (1.2) is often used to characterize the limit u. Many examples with $V=0$ are introduced at [6, for example, $\Omega_{\varepsilon} \rightarrow \Omega \backslash K$ metrically with thin K.

On the other hand, there are examples for which $V \neq 0$. The case when $T_{\varepsilon}=\bigcup_{i \in 2 \varepsilon \mathbb{Z}^{d}} \overline{B\left(i, a_{\varepsilon}\right)}$ with the critical radius a_{ε} is introduced at [1, Example 2.1], where a_{ε} satisfies the same condition for $a_{\varepsilon, k}$ of 2.3) below. In this case, V is a constant. A similar result for Robin condition is given by [5] with a different critical radius and a different constant V. These results can be regarded as a strong resolvent convergence of Laplacian, and they were improved to a norm resolvent convergence of Laplacian with Dirichlet, Robin and Neumann conditions by [2]. In these cases, V is still a constant.

Other examples for which $V \neq 0$ are also introduced at [1, Example 2.9]. If T_{ε} is a union of holes on a hyper plane, V is a Dirac measure supported on the hyper plane.

As for randomly perforated domains, convergence of solutions in a proper sense with holes whose centers are generated by either Poisson or stationary point process is given by [3, 4] with a constant V.

§2. Assumption and the main result

2.1. Assumption

We denote Lebesgue measure on \mathbb{R}^{d} by $|\cdot|$. We use a class \mathcal{J} of sets to determine where holes concentrate.

Definition 1. Let

$$
\mathcal{J}=\left\{E \subset \mathbb{R}^{d}| | \partial E \mid=0\right\} .
$$

Remark 1. If $E \subset \mathbb{R}^{d}$ and $|\bar{E}|<\infty, E \in \mathcal{J}$ if and only if $|\bar{E}|=|E \circ|$ by $\partial E=\bar{E} \backslash|\dot{E}|$. Elements of \mathcal{J} are measurable by completeness of Lebesgue measure.

We shall construct holes T_{ε} as follows (see Figure 2). Let $m \in \mathbb{N},\left\{F_{k}\right\}_{k=1}^{m} \subset$ \mathcal{J} be a collection of disjoint sets and $\left\{N_{k}\right\}_{k=1}^{m} \subset \mathbb{N}$. We use \bigsqcup instead of \bigcup for the disjoint union of sets. Let $A \subset \mathbb{R}^{d}$ be measurable and bounded, and $\Lambda \subset \mathbb{R}^{d}$ be countable such that

$$
\begin{equation*}
\mathbb{R}^{d}=\bigsqcup_{i \in \Lambda}(A+i) \quad(A+i=\{x+i \mid x \in A\}) \tag{2.1}
\end{equation*}
$$

For $x \in \mathbb{R}^{d}$ and $R>0$, we denote $B(x, R)=\left\{y \in \mathbb{R}^{d}| | x-y \mid<R\right\}$. Choose small $C>0$ with

$$
\begin{equation*}
|A|>\max _{k \leq m} N_{k}|B(0, C)| . \tag{2.2}
\end{equation*}
$$

We denote $A_{i}^{\varepsilon}=\varepsilon(A+i)=\{\varepsilon x \mid x \in A+i\}$. Remark $\mathbb{R}^{d}=\bigsqcup_{i \in \Lambda} A_{i}^{\varepsilon}$ follows from (2.1) for each $\varepsilon>0$.
Definition 2. For $E \subset \mathbb{R}^{d}$ and $\varepsilon>0$, let

$$
\Lambda_{\varepsilon}^{-}(E)=\left\{i \in \Lambda \mid A_{i}^{\varepsilon} \subset E\right\}, \quad \Lambda_{\varepsilon}^{+}(E)=\left\{i \in \Lambda \mid A_{i}^{\varepsilon} \cap E \neq \emptyset\right\} .
$$

For $\varepsilon>0$ and $i \in \Lambda_{\varepsilon}^{-}\left(F_{k}\right)$ (such k is unique for each i), consider centers of holes $\left\{x_{i, j}^{\varepsilon} \mid j=1, \ldots, N_{k}\right\} \subset \mathbb{R}^{d}$ with $\bigsqcup_{j=1}^{N_{k}} B\left(x_{i, j}^{\varepsilon}, C \varepsilon\right) \subset A_{i}^{\varepsilon}$ for $\varepsilon \ll 1$. We omit to write $(\varepsilon \rightarrow 0)$ for convergence of sequences indexed by $\varepsilon>0$. Consider radii of holes $a_{\varepsilon, k}$ with the following condition for $1 \leq k \leq m$:

$$
\varepsilon^{-d} \times\left\{\begin{array}{ll}
\left(-\log a_{\varepsilon, k}\right)^{-1} & (d=2) \tag{2.3}\\
\left(a_{\varepsilon, k}\right)^{d-2} & (d \geq 3)
\end{array} \rightarrow \tilde{\mu_{k}} \in[0, \infty)\right.
$$

We recall that Ω is bounded, open with C^{2} boundary. We denote

$$
T_{\varepsilon, k}=\bigsqcup_{i \in \Lambda_{\varepsilon}^{-}\left(F_{k}\right), j \leq N_{k}} \overline{B\left(x_{i, j}^{\varepsilon}, a_{\varepsilon, k}\right)}, \quad T_{\varepsilon}=\bigsqcup_{k=1}^{m} T_{\varepsilon, k}, \quad \Omega_{\varepsilon}=\Omega \backslash T_{\varepsilon} .
$$

Figure 2: Construction of holes T_{ε} with $m=2, N_{1}=6, N_{2}=2$.

2.2. Result

Using the surface area S_{d} of $\partial B(0,1)$, we write $\mu_{d}=\frac{S_{d}}{|A|} \times\left\{\begin{array}{ll}1 & (d=2) \\ d-2 & (d \geq 3)\end{array}\right.$. For $E \subset \mathbb{R}^{d}$, we denote $1_{E}(x)=\left\{\begin{array}{ll}1 & (x \in E) \\ 0 & (x \notin E)\end{array}\right.$. Our main result is stated as follows.

Theorem 1. Under the assumptions as in Section 2.1, u^{ε} in (1.1) converges to u weakly in $H_{0}^{1}(\Omega)$ and the limit u solves (1.2) with

$$
V=\mu_{d} \sum_{k=1}^{m} \tilde{\mu_{k}} N_{k} 1_{F_{k}} .
$$

Remark 2. [1, Example 2.1] is just Theorem 1 with $F_{1}=\mathbb{R}^{d}, A=[-1,1)^{d}, \Lambda=$ $2 \mathbb{Z}^{d}, N_{1}=1, x_{i, 1}^{\varepsilon}=i \varepsilon$. It means holes are distributed on Ω periodically. We generalized it for the case where holes distributed concentrated at F_{k} nonperiodically. Moreover, each F_{k} can have different density $\tilde{\mu_{k}} N_{k}$.

2.3. Outline of proof

The proof of our main result is based on the theorem below.

Theorem 2 ([1, Theorem 1.2]). Assume that $T_{\varepsilon} \subset \mathbb{R}^{d}$ is closed for each $\varepsilon>0$. Assume there is a sequence

$$
\begin{equation*}
\left\{w^{\varepsilon}\right\} \subset H^{1}(\Omega) \tag{H.1}
\end{equation*}
$$

satisfying

$$
\begin{gather*}
w^{\varepsilon}=0 \text { on } T_{\varepsilon} \text { for each } \varepsilon>0, \tag{H.2}\\
w^{\varepsilon} \rightarrow 1 \text { weakly in } H^{1}(\Omega) \tag{H.3}
\end{gather*}
$$

and there is

$$
\begin{equation*}
V \in W^{-1, \infty}(\Omega) \tag{H.4}
\end{equation*}
$$

(thus, $\left.V \in H^{-1}(\Omega)\right)$ such that

$$
\begin{align*}
& \left\langle-\Delta w^{\varepsilon}, \varphi v^{\varepsilon}\right\rangle_{H^{-1}(\Omega)} \rightarrow\langle V, \varphi v\rangle_{H^{-1}(\Omega)} \tag{H.5}\\
& \text { if } \varphi \in C_{0}^{\infty}(\Omega), v^{\varepsilon}=0 \text { on } T_{\varepsilon} \cdot v^{\varepsilon} \rightarrow v \text { weakly in } H^{1}(\Omega) .
\end{align*}
$$

Then, u^{ε} in (1.1) converges to $u \in H_{0}^{1}(\Omega)$ weakly in $H_{0}^{1}(\Omega)$ where u is solution to (1.2).

We check the conditions H.1 - H.5) to prove Theorem 1 . As mentioned in [1, it is not unusual that assuming the condition (H.5).

We first prepare some lemmas in Section 3.1, and we introduce w^{ε} and verify the conditions (H.1)-(H.4) in Section 3.2. Finally, we check the condition (H.5) in Section 3.3 and complete the proof of Theorem 1.

§3. Proof

3.1. Approximation of sets by tiles A_{i}^{ε}

We first state some properties for \mathcal{J}.
Lemma 1. Let $E_{1}, E_{2} \in \mathcal{J}$, then $\left|\overline{E_{1} \cap E_{2}}\right|=\left|\left(E_{1} \cap E_{2}\right)^{\circ}\right|$.
Proof. A distributive property for sets shows $\overline{E_{1} \cap E_{2}} \subset \overline{E_{1}} \cap \overline{E_{2}}=\left(\dot{E}_{1} \sqcup\right.$ $\left.\partial E_{1}\right) \cap\left(\stackrel{\circ}{E}_{2} \sqcup \partial E_{2}\right)=\left(\stackrel{\circ}{E}_{1} \cap \stackrel{\circ}{E}_{2}\right) \cup E=\left(E_{1} \cap E_{2}\right)^{\circ} \cup E$ with some E satisfying $|E|=0$.
Definition 3. For $E \subset \mathbb{R}^{d}$ and $\varepsilon>0$, let

$$
A_{\varepsilon}^{ \pm}(E)=\bigsqcup_{i \in \Lambda_{\varepsilon}^{ \pm}(E)} A_{i}^{\varepsilon} .
$$

We remark that $A_{\varepsilon}^{-}(E) \subset E \subset A_{\varepsilon}^{+}(E)$. We will see that they are approximations of E by Lemmas 2 and 3 below.

Lemma 2. Let $E \subset \mathbb{R}^{d}$ be measurable and bounded, and satisfy $|E|=|\bar{E}|$. Then $\left|A_{\varepsilon}^{+}(E)\right| \rightarrow|E|$.

Proof. Let $d_{\varepsilon}=\operatorname{diam}(\varepsilon A)$. Then $d_{\varepsilon} \rightarrow 0$. Let $E_{\varepsilon}=\bigcup_{x \in E} \overline{B\left(x, d_{\varepsilon}\right)}$. Then $\bigcap_{\varepsilon>0} E_{\varepsilon}=\bar{E}$ and $\left|E_{\varepsilon}\right|<\infty$. Thus $\left|E_{\varepsilon}\right| \rightarrow|\bar{E}|=|E|$. The assertion follows from it and $E_{\varepsilon} \supset A_{\varepsilon}^{+}(E) \supset E$.

Lemma 3. Let $E \subset \mathbb{R}^{d}$ be a measurable set such that $|E|=|E|$. Then $\left|A_{\varepsilon}^{-}(E)\right| \rightarrow|E|$.
Proof. Let $V=\stackrel{\circ}{E}, g(x)=\operatorname{dist}(x, \partial V), d_{\varepsilon}=\operatorname{diam}(\varepsilon A)$ and

$$
V_{-\varepsilon}=V \cap g^{-1}\left(\left(d_{\varepsilon}, \infty\right)\right) .
$$

Then $\bigcup_{\varepsilon>0} V_{-\varepsilon}=V$ since V is open. The assertion follows from $V_{-\varepsilon} \subset$ $A_{\varepsilon}^{-}(V) \subset E$. We verify $V_{-\varepsilon} \subset A_{\varepsilon}^{-}(V)$. Let $x \in V_{-\varepsilon}$. There is $i \in \Lambda$ that $x \in A_{i}^{\varepsilon}$. We show $i \in \Lambda_{\varepsilon}^{-}(V)$. It is equivalence with $\mathbb{R}^{d} \backslash V \subset \mathbb{R}^{d} \backslash A_{i}^{\varepsilon}$. If $y \notin V$, we can get $p \in \partial V$ from line segment which contain $\{x, y\}$. It is $p_{t}=(1-t) x+t y$ with minimal $t \in[0,1]$ that $p_{t} \notin V$. Construction of p imply $|x-y|=|x-p|+|p-y| \geq \operatorname{dist}(x, \partial V)>d_{\varepsilon}$. Thus $y \notin A_{i}^{\varepsilon}$. Thus $i \in \Lambda_{\varepsilon}^{-}(V)$.

We can count how many tiles $A_{\varepsilon}^{ \pm}(E)$ has.
Lemma 4. For $E \subset \mathbb{R}^{d}$ and $\varepsilon>0$, the number of elements of $\Lambda_{\varepsilon}^{ \pm}(E)$ is $\frac{\left|A_{\varepsilon}^{ \pm}(E)\right|}{\varepsilon^{d}|A|}$.

We say E is a cube if $E=[0, R)^{d}+x$ with some $x \in \mathbb{R}^{d}, R>0$. We prepare lemmas related to weak star topology of $L^{\infty}\left(\mathbb{R}^{d}\right)=L^{1}\left(\mathbb{R}^{d}\right)^{*}$. We denote $\langle g, h\rangle_{L^{1}\left(\mathbb{R}^{d}\right)^{*}}=\int g h d x$ for $g \in L^{\infty}\left(\mathbb{R}^{d}\right)=L^{1}\left(\mathbb{R}^{d}\right)^{*}, h \in L^{1}\left(\mathbb{R}^{d}\right)$.

Lemma 5. Let $\left\{g_{\varepsilon}\right\} \subset L^{\infty}\left(\mathbb{R}^{d}\right)$ be bounded and $g \in L^{\infty}\left(\mathbb{R}^{d}\right)$. If

$$
\left\langle g_{\varepsilon}, 1_{E}\right\rangle_{L^{1}\left(\mathbb{R}^{d}\right)^{*}} \rightarrow\left\langle g, 1_{E}\right\rangle_{L^{1}\left(\mathbb{R}^{d}\right)^{*}}
$$

for any cube E, $g_{\varepsilon} \rightarrow g$ weakly star in $L^{\infty}\left(\mathbb{R}^{d}\right)$.
Proof. If follows from the fact that the vector space generated by $\left\{1_{E} \mid E\right.$: cube $\}$ is dense at $L^{1}\left(\mathbb{R}^{d}\right)$. And the fact follows from the facts that the set of simple functions on \mathbb{R}^{d} is dense in $L^{1}\left(\mathbb{R}^{d}\right)$, the Lebesgue measure is outer regular and any open set can be represented as the union of disjoint countable cubes.

Lemma 6. If $f_{\varepsilon} \rightarrow f$ in $L^{2}\left(\mathbb{R}^{d}\right),\left|f_{\varepsilon}\right| \leq 1$ for $\varepsilon \ll 1$ and $g_{\varepsilon} \rightarrow g$ weakly star in $L^{\infty}\left(\mathbb{R}^{d}\right)$, we have $f_{\varepsilon} g_{\varepsilon} \rightarrow f g$ weakly star in $L^{\infty}\left(\mathbb{R}^{d}\right)$.

Proof. The existence of a subsequence of f_{ε} converging to f a.e. gives $|f| \leq 1$ a.e. The assertion follows from $c:=\sup _{\varepsilon>0}\left\|g_{\varepsilon}\right\|_{L^{\infty}\left(\mathbb{R}^{d}\right)}<\infty$, Lemma 5, and $\left|\left\langle f_{\varepsilon} g_{\varepsilon}-f g, 1_{E}\right\rangle\right| \leq c\left\|f_{\varepsilon}-f\right\|_{L^{2}\left(\mathbb{R}^{d}\right)}\left\|1_{E}\right\|_{L^{2}\left(\mathbb{R}^{d}\right)}+\left|\left\langle g_{\varepsilon}-g, f 1_{E}\right\rangle\right|$ for any cube E.

3.2. Error corrector w^{ε}

By (2.3), we have $\frac{\max _{k} a_{\varepsilon, k}}{\varepsilon} \rightarrow 0$. Thus $\max _{k \leq m} a_{\varepsilon, k}<C \varepsilon$ for $\varepsilon \ll 1$ (recall $C>0$ is chosen to satisfy (2.2)). Let

$$
\begin{gathered}
w_{0, k}^{\varepsilon}(r)=\left\{\begin{array}{ll}
\frac{\log a_{\varepsilon, k}-\log r}{\log a_{\varepsilon, k}-\log C \varepsilon} & (d=2), \\
\frac{\left(a_{\varepsilon, k}\right)^{-d+2}-r^{-d+2}}{\left(a_{\varepsilon, k}\right)^{-d+2}-(C \varepsilon)^{-d+2}} & (d \geq 3),
\end{array} \quad\left(a_{\varepsilon, k} \leq r \leq C \varepsilon\right),\right. \\
B_{\varepsilon, k}=\quad \bigsqcup_{i \in \Lambda_{\varepsilon}^{-}\left(F_{k}\right), j \leq N_{k}} \quad B\left(x_{i, j}^{\varepsilon}, C \varepsilon\right), \quad B_{\varepsilon}=\bigsqcup_{k=1}^{m} B_{\varepsilon, k}, \\
w^{\varepsilon}(x)= \begin{cases}0 & \left(x \in T_{\varepsilon}\right), \\
w_{0, k}^{\varepsilon}\left(\left|x-x_{i, j}^{\varepsilon}\right|\right) & \left(x \in B\left(x_{i, j}^{\varepsilon}, C \varepsilon\right) \backslash B\left(x_{i, j}^{\varepsilon}, a_{\varepsilon, k}\right)\right), \\
1 & \left(x \notin B_{\varepsilon}\right) .\end{cases}
\end{gathered}
$$

Then we have

$$
\begin{equation*}
\Delta w^{\varepsilon}=0 \text { on } B_{\varepsilon} \backslash T_{\varepsilon} . \tag{3.1}
\end{equation*}
$$

and (H.2). We need the limit of $1_{B_{\varepsilon, k}}$ to analyze w^{ε}.
Lemma 7. $1_{B_{\varepsilon, k}} \rightarrow \frac{N_{k}|B(0, C)|}{|A|} 1_{F_{k}}=\frac{N_{k} C^{d} S_{d}}{d|A|} 1_{F_{k}}$ weakly star in $L^{\infty}\left(\mathbb{R}^{d}\right)$.
Proof. Let E be a cube. By $\left|B_{\varepsilon, k} \cap A_{i}^{\varepsilon}\right|=\left\{\begin{array}{ll}N_{k}|B(0, C \varepsilon)| & \left(i \in \Lambda_{\varepsilon}^{-}\left(F_{k}\right)\right) \\ 0 & \left(i \notin \Lambda_{\varepsilon}^{-}\left(F_{k}\right)\right)\end{array}\right.$,
Lemma 4 and $B_{\varepsilon, k} \subset F_{k}$, we have

$$
\begin{aligned}
\frac{\left|A_{\varepsilon}^{-}\left(E \cap F_{k}\right)\right|}{\varepsilon^{d}|A|} N_{k}|B(0, C \varepsilon)| & =\left|B_{\varepsilon, k} \cap A_{\varepsilon}^{-}\left(E \cap F_{k}\right)\right| \leq\left\langle 1_{B_{\varepsilon, k}}, 1_{E}\right\rangle_{L^{1}\left(\mathbb{R}^{d}\right)^{*}} \\
& \leq \frac{\left|A_{\varepsilon}^{+}\left(E \cap F_{k}\right)\right|}{\varepsilon^{d}|A|} N_{k}|B(0, C \varepsilon)|
\end{aligned}
$$

By Lemmas 1 to 3,

$$
\frac{\left|A_{\varepsilon}^{-}\left(E \cap F_{k}\right)\right|}{\varepsilon^{d}|A|} N_{k}|B(0, C \varepsilon)| \rightarrow \frac{\left|E \cap F_{k}\right| N_{k}|B(0, C)|}{|A|}=\left\langle\frac{N_{k}|B(0, C)|}{|A|} 1_{F_{k}}, 1_{E}\right\rangle
$$

These, Lemma 5 and $|B(0, C)|=\frac{S_{d} C^{d}}{d}$ imply the assertion.
Lemma 8. We have (H.1) and (H.3)
Proof. For $i \in \Lambda_{\varepsilon}^{-}\left(F_{k}\right), j \leq N_{k}, k \leq m$, We have

$$
\begin{aligned}
\left\|\nabla w^{\varepsilon}\right\|_{L^{2}\left(B\left(x_{i, j}^{\varepsilon}, C \varepsilon\right) \backslash \overline{B\left(x_{i, j}^{\varepsilon}, a_{\varepsilon, k}\right)}\right.}^{2} & =S_{d} \int_{a_{\varepsilon, k}}^{C \varepsilon}\left|\partial_{r} w_{0, k}^{\varepsilon}(r)\right|^{2} r^{d-1} d r \\
& =S_{d} \begin{cases}\frac{1}{\log C \varepsilon-\log a_{\varepsilon, k}} & (d=2) \\
\frac{d-2}{\left(a_{\varepsilon, k}\right)^{-d+2}-(C \varepsilon)^{-d+2}} & (d \geq 3)\end{cases}
\end{aligned}
$$

which along with $\left|w^{\varepsilon}\right| \leq 1$ implies w^{ε} is an extension of an $H_{l o c}^{1}\left(B_{\varepsilon} \backslash T_{\varepsilon}\right)$ function by the boundary values on $\partial\left(B_{\varepsilon} \backslash T_{\varepsilon}\right)$. Thus, ∇w^{ε} in the distributional sense coincides with the pointwise, classical derivative and

$$
\left\|\nabla w^{\varepsilon}\right\|_{L^{2}\left(A_{i}^{\varepsilon}\right)}^{2}= \begin{cases}\frac{N_{k} S_{d}}{\log C \varepsilon-\log a_{\varepsilon, k}} & \left(i \in \Lambda_{\varepsilon}^{-}\left(F_{k}\right), d=2\right) \\ \frac{N_{k} S_{d}(d-2)}{\left(a_{\varepsilon, k}\right)^{-d+2}-(C \varepsilon)^{-d+2}} & \left(i \in \Lambda_{\varepsilon}^{-}\left(F_{k}\right), d \geq 3\right) \\ 0 & \left(i \notin \bigcup_{k \leq m} \Lambda_{\varepsilon}^{-}\left(F_{k}\right)\right)\end{cases}
$$

Using (2.3) for them, we have $c:=\sup _{\varepsilon>0, i \in \Lambda} \varepsilon^{-d}\left\|\nabla w^{\varepsilon}\right\|_{L^{2}\left(A_{i}^{\varepsilon}\right)}^{2}<\infty$. Thus $\left\|\nabla w^{\varepsilon}\right\|_{L^{2}\left(A_{i}^{\varepsilon}\right)}^{2} \leq c \varepsilon^{d}$. It and Lemmas 2 and 4 imply

$$
\left\|\nabla w^{\varepsilon}\right\|_{L^{2}(\Omega)}^{2} \leq\left\|\nabla w^{\varepsilon}\right\|_{L^{2}\left(A_{\varepsilon}^{+}(\Omega)\right)}^{2} \leq \frac{\left|A_{\varepsilon}^{+}(\Omega)\right|}{\varepsilon^{d}|A|} c \varepsilon^{d} \leq \frac{c\left|\bigcup_{x \in \Omega} B(x, 1)\right|}{|A|}(\varepsilon \ll 1)
$$

which together with $\left|w^{\varepsilon}\right| \leq 1$ implies (H.1), and $\left\{w^{\varepsilon}\right\} \subset H^{1}(\Omega)$ is bounded.
Consider any subsequences of $\left\{w^{\varepsilon}\right\}$ (we still denote w^{ε}) which converge weakly in $H^{1}(\Omega)$, and let $w=\mathrm{w}-\lim _{\varepsilon \rightarrow 0} w^{\varepsilon}$. We show $w=1$. Let $F=\sqcup_{k} F_{k}$. Rellich's theorem gives $w^{\varepsilon} 1_{\mathbb{R}^{d} \backslash F}=1_{\mathbb{R}^{d} \backslash F}$ tend to $w 1_{\mathbb{R}^{d} \backslash F}=1_{\mathbb{R}^{d} \backslash F}$ in $L^{2}(\Omega)$. Thus, $w=1$ a.e. on $\Omega \backslash F$. On the other hand, Lemma 7 gives $1_{F_{k} \backslash B_{\varepsilon, k}}=$ $1_{F_{k}}\left(1-1_{B_{\varepsilon, k}}\right) \rightarrow 1_{F_{k}}\left(1-c_{k} 1_{F_{k}}\right)=\left(1-c_{k}\right) 1_{F_{k}}$ weakly star in $L^{\infty}\left(\mathbb{R}^{d}\right)$ where $c_{k}=\frac{N_{k}|B(0, C)|}{|A|}$. Hence $w^{\varepsilon} 1_{\Omega} 1_{F_{k} \backslash B_{\varepsilon, k}}=1_{\Omega} 1_{F_{k} \backslash B_{\varepsilon, k}}$ tends to $w 1_{\Omega}\left(1-c_{k}\right) 1_{F_{k}}=$ $1_{\Omega}\left(1-c_{k}\right) 1_{F_{k}}$ weakly star in $L^{\infty}\left(\mathbb{R}^{d}\right)$ for each k by Lemma 6. Since $0<c_{k}<1$ by 2.2 , we have $w=1$ on $\Omega \cap F_{k}$. Since $\mathbb{R}^{d}=\left(\mathbb{R}^{d} \backslash F\right) \cup\left(\sqcup_{k} F_{k}\right)$, we have $w=1$ on Ω.

We use a special function to analyze a distribution $-\Delta w^{\varepsilon}$. Let

$$
\begin{gathered}
q_{0}^{\varepsilon}(r)=\frac{r^{2}-(C \varepsilon)^{2}}{2}(0 \leq r \leq C \varepsilon) \\
q^{\varepsilon}(x)= \begin{cases}q_{0}^{\varepsilon}\left(\left|x-x_{i, j}^{\varepsilon}\right|\right) & \left(x \in B\left(x_{i, j}^{\varepsilon}, C \varepsilon\right)\right) \\
0 & \left(x \notin B_{\varepsilon}\right)\end{cases}
\end{gathered}
$$

Then we have

$$
\begin{equation*}
-\Delta q^{\varepsilon}=-d\left(x \in B_{\varepsilon}\right), \partial_{r} q_{0}^{\varepsilon}(C \varepsilon)=C \varepsilon, q_{0}^{\varepsilon}(C \varepsilon)=0 \tag{3.2}
\end{equation*}
$$

Now we decompose the restricted distribution $\left.\left(-\Delta w^{\varepsilon}\right)\right|_{H_{0}^{1}\left(\Omega_{\varepsilon}\right)}$ by using q^{ε}.
Lemma 9. Suppose $v \in H_{0}^{1}\left(\Omega_{\varepsilon}\right)$. Then we have

$$
\left\langle-\Delta w^{\varepsilon}, v\right\rangle_{H^{-1}(\Omega)}=\sum_{k \leq m} \frac{\partial_{r} w_{0, k}^{\varepsilon}(C \varepsilon)}{C \varepsilon}\left(\int_{B_{\varepsilon, k}} \nabla q^{\varepsilon} \cdot \nabla v d x+d\left\langle 1_{B_{\varepsilon, k}}, v\right\rangle_{H^{-1}(\Omega)}\right) .
$$

Proof. By (3.2) and integration by parts,

$$
\int_{B_{\varepsilon, k}} \boldsymbol{\nabla} q^{\varepsilon} \cdot \nabla v d x=C \varepsilon \int_{\partial B_{\varepsilon, k}} v d \sigma-d\left\langle 1_{B_{\varepsilon, k}}, v\right\rangle_{H^{-1}(\Omega)}
$$

for $v \in H_{0}^{1}\left(\Omega_{\varepsilon}\right)$. By assumption, $\int_{\partial T_{\varepsilon, k}} v d \sigma=0$. Using them and 3.1), we have

$$
\begin{aligned}
\left\langle-\Delta w^{\varepsilon}, v\right\rangle_{H^{-1}(\Omega)} & =\sum_{k \leq m} \int_{B_{\varepsilon, k} \backslash T_{\varepsilon, k}} \nabla w^{\varepsilon} \cdot \nabla v d x=\sum_{k \leq m} \partial_{r} w_{0, k}^{\varepsilon}(C \varepsilon) \int_{\partial B_{\varepsilon, k}} v d \sigma \\
& =\sum_{k \leq m} \frac{\partial_{r} w_{0, k}^{\varepsilon}(C \varepsilon)}{C \varepsilon}\left(\int_{B_{\varepsilon, k}} \nabla q^{\varepsilon} \cdot \nabla v d x+d\left\langle 1_{B_{\varepsilon, k}}, v\right\rangle_{H^{-1}(\Omega)}\right) .
\end{aligned}
$$

This completes the proof.
The following lemma is very similar to H.5).
Lemma 10. Suppose that $v^{\varepsilon} \in H_{0}^{1}\left(\Omega_{\varepsilon}\right)$ and $v^{\varepsilon} \rightarrow v$ weakly in $H_{0}^{1}(\Omega)$, Then

$$
\left\langle-\Delta w^{\varepsilon}, v^{\varepsilon}\right\rangle_{H^{-1}(\Omega)} \rightarrow\left\langle\mu_{d} \sum_{k=1}^{m} \tilde{\mu_{k}} N_{k} 1_{F_{k}}, v\right\rangle_{H^{-1}(\Omega)} .
$$

Proof. By (2.3), we have $\frac{\partial_{r} w_{0, k}^{\varepsilon}(C \varepsilon)}{C \varepsilon} \rightarrow \frac{\tilde{\mu_{k}}}{C^{d}} \times\left\{\begin{array}{ll}1 & (d=2) \\ d-2 & (d \geq 3)\end{array}\right.$. We also have

$$
\left|\int_{B_{\varepsilon, k}} \nabla q^{\varepsilon} \cdot \nabla v^{\varepsilon} d x\right| \leq C \varepsilon \sup _{\delta>0}\left\|v^{\delta}\right\|_{W^{1,1}(\Omega)} \rightarrow 0 .
$$

Rellich's theorem gives $\left|\left\langle 1_{B_{\varepsilon, k}}, v^{\varepsilon}-v\right\rangle_{H^{-1}(\Omega)}\right| \leq\|1\|_{L^{2}(\Omega)}\left\|v^{\varepsilon}-v\right\|_{L^{2}(\Omega)} \rightarrow 0$. It and Lemma 7 give

$$
\begin{aligned}
\left\langle 1_{B_{\varepsilon, k},}, v^{\varepsilon}\right\rangle_{H^{-1}(\Omega)} & =\left\langle 1_{B_{\varepsilon, k}}, v^{\varepsilon}-v\right\rangle_{H^{-1}(\Omega)}+\left\langle 1_{B_{\varepsilon, k}}, 1_{\Omega} v\right\rangle_{L^{1}\left(\mathbb{R}^{d}\right)^{*}} \\
& \rightarrow\left\langle\frac{N_{k} C^{d} S_{d}}{d|A|} 1_{F_{k}}, v\right\rangle_{H^{-1}(\Omega)} .
\end{aligned}
$$

The assertion follows from these limit and Lemma 9.

3.3. Proof of Theorem 1

Proof. Since $V=\mu_{d} \sum_{k=1}^{m} \tilde{\mu_{k}} N_{k} 1_{F_{k}} \in L^{\infty}(\Omega)=L^{1}(\Omega)^{*} \subset W^{-1, \infty}(\Omega)$, we have (H.4). We shall verify (H.5). Indeed, the multiplier of $\varphi: H^{1}(\Omega) \rightarrow$ $H_{0}^{1}(\Omega)$ is a bounded operator. Thus, $\varphi v^{\varepsilon} \rightarrow \varphi v$ weakly in $H_{0}^{1}(\Omega)$. It and Lemma 10 imply (H.5). Since we already checked (H.1)-H.3) in Section 3.2 , Theorem 1 follows from Theorem 2.

Acknowledgement.

The author thanks to the referees for their suggestions in the improvement of the paper.

References

[1] D. Cioranescu and F. Murat. A strange term coming from nowhere. In Topics in the Mathematical Modelling of Composite Materials. Progress in Nonlinear Differential Equations and Their Applications, pages 45-93. Birkhäuser Boston, 1997.
[2] P. Dondl, K. Cherednichenko, and F. Rösler. Norm-resolvent convergence in perforated domains. Asymptot. Anal., 110:163-184, 2017.
[3] A. Giunti. Convergence rates for the homogenization of the Poisson problem in randomly perforated domains. Netw. Heterog. Media, 16(3):341-375, 2021.
[4] A. Giunti, R. Höfer, and J.J. L. Velázquez. Homogenization for the Poisson equation in randomly perforated domains under minimal assumptions on the size of the holes. Comm. in PDEs, 43:1377-1412, 2018.
[5] S. Kaizu. The Robin problems on domains with many tiny holes. Proc. Japan Acad. Ser. A Math. Sci., 61(7):39-42, 1985.
[6] J. Rauch and M. Taylor. Potential and scattering theory on wildly perturbed domains. J. Funct. Anal., 18(1):27-59, 1975.

Hiroto Ishida
Graduate School of Science, University of Hyogo
Shosha, Himeji, Hyogo 671-2201, Japan
E-mail: immmrfff@gmail.com

