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Homogenization for Poisson equations in domains
with concentrated holes
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Abstract. We consider solutions uε of Poisson problems with the Dirichlet
condition on domains Ωε with holes concentrated at subsets of a domain Ω non-
periodically. We show uε converges to a solution of a Poisson problem with a
simple function potential. This is a generalized result of a sample model given
by Cioranescu and Murat (1997). They showed a result for case that holes are
distributed at Ω periodically.
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§1. Introduction

Let Ω ⊂ Rd, d ≥ 2 be open and bounded with C2 boundary. We consider
a union Tε of holes concentrated at subsets of Rd as Figure 1, and domains
Ωε = Ω \ Tε. We consider Poisson problems on Ωε with the homogeneous
Dirichlet condition with f ∈ L2(Ω), that is,

(1.1) uε ∈ H1
0 (Ωε), −∆uε = f.

We will see uε converge to u as ε → 0 which satisfies

(1.2) u ∈ H1
0 (Ω), (−∆+ V )u = f,

where V is a simple function. Details of assumptions for Tε and the main
result are given in Section 2.1.
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Ω

Tε

Figure 1: A domain Ω and holes Tε.

1.1. Known results

There are many contributions to characterize the limit u of solutions uε on
domains Ωε when Ωε → Ω in a proper sense. The PDE of the form (1.2)
is often used to characterize the limit u. Many examples with V = 0 are
introduced at [6], for example, Ωε → Ω \K metrically with thin K.

On the other hand, there are examples for which V ̸= 0. The case when
Tε =

⋃
i∈2εZd B(i, aε) with the critical radius aε is introduced at [1, Example

2.1], where aε satisfies the same condition for aε,k of (2.3) below. In this
case, V is a constant. A similar result for Robin condition is given by [5]
with a different critical radius and a different constant V . These results can
be regarded as a strong resolvent convergence of Laplacian, and they were
improved to a norm resolvent convergence of Laplacian with Dirichlet, Robin
and Neumann conditions by [2]. In these cases, V is still a constant.

Other examples for which V ̸= 0 are also introduced at [1, Example 2.9].
If Tε is a union of holes on a hyper plane, V is a Dirac measure supported on
the hyper plane.

As for randomly perforated domains, convergence of solutions in a proper
sense with holes whose centers are generated by either Poisson or stationary
point process is given by [3], [4] with a constant V.
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§2. Assumption and the main result

2.1. Assumption

We denote Lebesgue measure on Rd by |·|.We use a class J of sets to determine
where holes concentrate.

Definition 1. Let
J = {E ⊂ Rd | |∂E| = 0}.

Remark 1. If E ⊂ Rd and |E| < ∞, E ∈ J if and only if |E| = |E̊| by
∂E = E \ |E̊|. Elements of J are measurable by completeness of Lebesgue
measure.

We shall construct holes Tε as follows (see Figure 2). Letm ∈ N, {Fk}mk=1 ⊂
J be a collection of disjoint sets and {Nk}mk=1 ⊂ N. We use

⊔
instead of

⋃
for the disjoint union of sets. Let A ⊂ Rd be measurable and bounded, and
Λ ⊂ Rd be countable such that

(2.1) Rd =
⊔
i∈Λ

(A+ i) (A+ i = {x+ i | x ∈ A}).

For x ∈ Rd and R > 0, we denote B(x,R) = {y ∈ Rd | |x − y| < R}. Choose
small C > 0 with

(2.2) |A| > max
k≤m

Nk|B(0, C)|.

We denote Aε
i = ε(A+ i) = {εx | x ∈ A+ i}. Remark Rd =

⊔
i∈ΛAε

i follows
from (2.1) for each ε > 0.

Definition 2. For E ⊂ Rd and ε > 0, let

Λ−
ε (E) = {i ∈ Λ | Aε

i ⊂ E}, Λ+
ε (E) = {i ∈ Λ | Aε

i ∩ E ̸= ∅}.

For ε > 0 and i ∈ Λ−
ε (Fk) (such k is unique for each i), consider centers

of holes {xεi,j | j = 1, ..., Nk} ⊂ Rd with
⊔Nk

j=1B(xεi,j , Cε) ⊂ Aε
i for ε ≪ 1. We

omit to write (ε → 0) for convergence of sequences indexed by ε > 0. Consider
radii of holes aε,k with the following condition for 1 ≤ k ≤ m:

(2.3) ε−d ×
{
(− log aε,k)

−1 (d = 2)

(aε,k)
d−2 (d ≥ 3)

→ µ̃k ∈ [0,∞).

We recall that Ω is bounded, open with C2 boundary. We denote

Tε,k =
⊔

i∈Λ−
ε (Fk),j≤Nk

B(xεi,j , aε,k), Tε =

m⊔
k=1

Tε,k, Ωε = Ω \ Tε.
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Ω

F1 F2
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i

Figure 2: Construction of holes Tε with m = 2, N1 = 6, N2 = 2.

2.2. Result

Using the surface area Sd of ∂B(0, 1), we write µd = Sd
|A| ×

{
1 (d = 2)

d− 2 (d ≥ 3)
.

For E ⊂ Rd, we denote 1E(x) =

{
1 (x ∈ E)

0 (x /∈ E)
. Our main result is stated as

follows.

Theorem 1. Under the assumptions as in Section 2.1, uε in (1.1) converges
to u weakly in H1

0 (Ω) and the limit u solves (1.2) with

V = µd

m∑
k=1

µ̃kNk1Fk
.

Remark 2. [1, Example 2.1] is just Theorem 1 with F1 = Rd, A = [−1, 1)d,Λ =
2Zd, N1 = 1, xεi,1 = iε. It means holes are distributed on Ω periodically. We
generalized it for the case where holes distributed concentrated at Fk non-
periodically. Moreover, each Fk can have different density µ̃kNk.

2.3. Outline of proof

The proof of our main result is based on the theorem below.
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Theorem 2 ([1, Theorem 1.2]). Assume that Tε ⊂ Rd is closed for each ε > 0.
Assume there is a sequence

(H.1) {wε} ⊂ H1(Ω)

satisfying

(H.2) wε = 0 on Tε for each ε > 0,

(H.3) wε → 1 weakly in H1(Ω),

and there is

(H.4) V ∈ W−1,∞(Ω)

(thus, V ∈ H−1(Ω)) such that

(H.5)
⟨−∆wε, φvε⟩H−1(Ω) → ⟨V, φv⟩H−1(Ω)

if φ ∈ C∞
0 (Ω), vε = 0 on Tε. v

ε → v weakly in H1(Ω).

Then, uε in (1.1) converges to u ∈ H1
0 (Ω) weakly in H1

0 (Ω) where u is solution
to (1.2).

We check the conditions (H.1)–(H.5) to prove Theorem 1. As mentioned in
[1], it is not unusual that assuming the condition (H.5).

We first prepare some lemmas in Section 3.1, and we introduce wε and verify
the conditions (H.1)–(H.4) in Section 3.2. Finally, we check the condition (H.5)
in Section 3.3 and complete the proof of Theorem 1.

§3. Proof

3.1. Approximation of sets by tiles Aε
i

We first state some properties for J .

Lemma 1. Let E1, E2 ∈ J , then |E1 ∩ E2| = |(E1 ∩ E2)
◦|.

Proof. A distributive property for sets shows E1 ∩ E2 ⊂ E1 ∩ E2 = (E̊1 ⊔
∂E1) ∩ (E̊2 ⊔ ∂E2) = (E̊1 ∩ E̊2) ∪E = (E1 ∩E2)

◦ ∪E with some E satisfying
|E| = 0.

Definition 3. For E ⊂ Rd and ε > 0, let

A±
ε (E) =

⊔
i∈Λ±

ε (E)

Aε
i .
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We remark that A−
ε (E) ⊂ E ⊂ A+

ε (E). We will see that they are approxi-
mations of E by Lemmas 2 and 3 below.

Lemma 2. Let E ⊂ Rd be measurable and bounded, and satisfy |E| = |E|.
Then |A+

ε (E)| → |E|.

Proof. Let dε = diam(εA). Then dε → 0. Let Eε =
⋃

x∈E B(x, dε). Then⋂
ε>0Eε = E and |Eε| < ∞. Thus |Eε| → |E| = |E|. The assertion follows

from it and Eε ⊃ A+
ε (E) ⊃ E.

Lemma 3. Let E ⊂ Rd be a measurable set such that |E̊| = |E|. Then
|A−

ε (E)| → |E|.

Proof. Let V = E̊, g(x) = dist(x, ∂V ), dε = diam(εA) and

V−ε = V ∩ g−1((dε,∞)).

Then
⋃

ε>0 V−ε = V since V is open. The assertion follows from V−ε ⊂
A−

ε (V ) ⊂ E. We verify V−ε ⊂ A−
ε (V ). Let x ∈ V−ε. There is i ∈ Λ that

x ∈ Aε
i . We show i ∈ Λ−

ε (V ). It is equivalence with Rd \ V ⊂ Rd \ Aε
i . If

y /∈ V, we can get p ∈ ∂V from line segment which contain {x, y}. It is
pt = (1− t)x+ ty with minimal t ∈ [0, 1] that pt /∈ V. Construction of p imply
|x−y| = |x−p|+|p−y| ≥ dist(x, ∂V ) > dε. Thus y /∈ Aε

i . Thus i ∈ Λ−
ε (V ).

We can count how many tiles A±
ε (E) has.

Lemma 4. For E ⊂ Rd and ε > 0, the number of elements of Λ±
ε (E) is

|A±
ε (E)|
εd|A| .

We say E is a cube if E = [0, R)d + x with some x ∈ Rd, R > 0. We
prepare lemmas related to weak star topology of L∞(Rd) = L1(Rd)∗. We
denote ⟨g, h⟩L1(Rd)∗ =

∫
ghdx for g ∈ L∞(Rd) = L1(Rd)∗, h ∈ L1(Rd).

Lemma 5. Let {gε} ⊂ L∞(Rd) be bounded and g ∈ L∞(Rd). If

⟨gε, 1E⟩L1(Rd)∗ → ⟨g, 1E⟩L1(Rd)∗

for any cube E, gε → g weakly star in L∞(Rd).

Proof. If follows from the fact that the vector space generated by {1E |E :
cube} is dense at L1(Rd). And the fact follows from the facts that the set
of simple functions on Rd is dense in L1(Rd), the Lebesgue measure is outer
regular and any open set can be represented as the union of disjoint countable
cubes.
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Lemma 6. If fε → f in L2(Rd), |fε| ≤ 1 for ε ≪ 1 and gε → g weakly star in
L∞(Rd), we have fεgε → fg weakly star in L∞(Rd).

Proof. The existence of a subsequence of fε converging to f a.e. gives |f | ≤ 1
a.e. The assertion follows from c := supε>0 ∥gε∥L∞(Rd) < ∞, Lemma 5, and
| ⟨fεgε − fg, 1E⟩ | ≤ c∥fε − f∥L2(Rd)∥1E∥L2(Rd) + | ⟨gε − g, f1E⟩ | for any cube
E.

3.2. Error corrector wε

By (2.3), we have
maxk aε,k

ε → 0. Thus max
k≤m

aε,k < Cε for ε ≪ 1 (recall C > 0

is chosen to satisfy (2.2)). Let

wε
0,k(r) =


log aε,k − log r

log aε,k − logCε
(d = 2),

(aε,k)
−d+2 − r−d+2

(aε,k)−d+2 − (Cε)−d+2
(d ≥ 3),

(aε,k ≤ r ≤ Cε),

Bε,k =
⊔

i∈Λ−
ε (Fk),j≤Nk

B(xεi,j , Cε), Bε =
m⊔
k=1

Bε,k,

wε(x) =


0 (x ∈ Tε),

wε
0,k(|x− xεi,j |) (x ∈ B(xεi,j , Cε) \B(xεi,j , aε,k)),

1 (x /∈ Bε).

Then we have

(3.1) ∆wε = 0 on Bε \ Tε.

and (H.2). We need the limit of 1Bε,k
to analyze wε.

Lemma 7. 1Bε,k
→ Nk|B(0,C)|

|A| 1Fk
= NkC

dSd
d|A| 1Fk

weakly star in L∞(Rd).

Proof. Let E be a cube. By |Bε,k ∩ Aε
i | =

{
Nk|B(0, Cε)| (i ∈ Λ−

ε (Fk))

0 (i /∈ Λ−
ε (Fk))

,

Lemma 4 and Bε,k ⊂ Fk, we have

|A−
ε (E ∩ Fk)|
εd|A|

Nk|B(0, Cε)| = |Bε,k ∩A−
ε (E ∩ Fk)| ≤

〈
1Bε,k

, 1E
〉
L1(Rd)∗

≤ |A+
ε (E ∩ Fk)|
εd|A|

Nk|B(0, Cε)|.
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By Lemmas 1 to 3,

|A−
ε (E ∩ Fk)|
εd|A|

Nk|B(0, Cε)| → |E ∩ Fk|Nk|B(0, C)|
|A|

=

〈
Nk|B(0, C)|

|A|
1Fk

, 1E

〉
.

These, Lemma 5 and |B(0, C)| = SdC
d

d imply the assertion.

Lemma 8. We have (H.1) and (H.3)

Proof. For i ∈ Λ−
ε (Fk), j ≤ Nk, k ≤ m, We have

∥∇wε∥2
L2(B(xε

i,j ,Cε)\B(xε
i,j ,aε,k))

= Sd

∫ Cε

aε,k

|∂rwε
0,k(r)|2rd−1dr

= Sd


1

logCε− log aε,k
(d = 2),

d− 2

(aε,k)−d+2 − (Cε)−d+2
(d ≥ 3),

which along with |wε| ≤ 1 implies wε is an extension of anH1
loc(Bε\Tε) function

by the boundary values on ∂(Bε \ Tε). Thus, ∇wε in the distributional sense
coincides with the pointwise, classical derivative and

∥∇wε∥2L2(Aε
i )
=



NkSd

logCε− log aε,k
(i ∈ Λ−

ε (Fk), d = 2),

NkSd(d− 2)

(aε,k)−d+2 − (Cε)−d+2
(i ∈ Λ−

ε (Fk), d ≥ 3),

0 (i /∈
⋃
k≤m

Λ−
ε (Fk)).

Using (2.3) for them, we have c := supε>0,i∈Λ ε−d∥∇wε∥2L2(Aε
i )

< ∞. Thus

∥∇wε∥2L2(Aε
i )
≤ cεd. It and Lemmas 2 and 4 imply

∥∇wε∥2L2(Ω) ≤ ∥∇wε∥2
L2(A+

ε (Ω))
≤ |A+

ε (Ω)|
εd|A|

cεd ≤
c|
⋃

x∈ΩB(x, 1)|
|A|

(ε ≪ 1),

which together with |wε| ≤ 1 implies (H.1), and {wε} ⊂ H1(Ω) is bounded.
Consider any subsequences of {wε} (we still denote wε) which converge

weakly in H1(Ω), and let w = w- limε→0w
ε. We show w = 1. Let F = ⊔kFk.

Rellich’s theorem gives wε1Rd\F = 1Rd\F tend to w1Rd\F = 1Rd\F in L2(Ω).
Thus, w = 1 a.e. on Ω \ F. On the other hand, Lemma 7 gives 1Fk\Bε,k

=

1Fk
(1 − 1Bε,k

) → 1Fk
(1 − ck1Fk

) = (1 − ck)1Fk
weakly star in L∞(Rd) where

ck = Nk|B(0,C)|
|A| . Hence wε1Ω1Fk\Bε,k

= 1Ω1Fk\Bε,k
tends to w1Ω(1 − ck)1Fk

=

1Ω(1−ck)1Fk
weakly star in L∞(Rd) for each k by Lemma 6. Since 0 < ck < 1

by (2.2), we have w = 1 on Ω ∩ Fk. Since Rd = (Rd \ F ) ∪ (⊔kFk), we have
w = 1 on Ω.
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We use a special function to analyze a distribution −∆wε. Let

qε0(r) =
r2 − (Cε)2

2
(0 ≤ r ≤ Cε),

qε(x) =

{
qε0(|x− xεi,j |) (x ∈ B(xεi,j , Cε))

0 (x /∈ Bε)
.

Then we have

(3.2) −∆qε = −d (x ∈ Bε), ∂rq
ε
0(Cε) = Cε, qε0(Cε) = 0.

Now we decompose the restricted distribution (−∆wε)|H1
0 (Ωε) by using qε.

Lemma 9. Suppose v ∈ H1
0 (Ωε). Then we have

⟨−∆wε, v⟩H−1(Ω) =
∑
k≤m

∂rw
ε
0,k(Cε)

Cε

(∫
Bε,k

∇qε ·∇vdx+ d
〈
1Bε,k

, v
〉
H−1(Ω)

)
.

Proof. By (3.2) and integration by parts,∫
Bε,k

∇qε ·∇vdx = Cε

∫
∂Bε,k

vdσ − d
〈
1Bε,k

, v
〉
H−1(Ω)

for v ∈ H1
0 (Ωε). By assumption,

∫
∂Tε,k

vdσ = 0. Using them and (3.1), we have

⟨−∆wε, v⟩H−1(Ω) =
∑
k≤m

∫
Bε,k\Tε,k

∇wε ·∇vdx =
∑
k≤m

∂rw
ε
0,k(Cε)

∫
∂Bε,k

vdσ

=
∑
k≤m

∂rw
ε
0,k(Cε)

Cε

(∫
Bε,k

∇qε ·∇vdx+ d
〈
1Bε,k

, v
〉
H−1(Ω)

)
.

This completes the proof.

The following lemma is very similar to (H.5).

Lemma 10. Suppose that vε ∈ H1
0 (Ωε) and vε → v weakly in H1

0 (Ω), Then

⟨−∆wε, vε⟩H−1(Ω) →

〈
µd

m∑
k=1

µ̃kNk1Fk
, v

〉
H−1(Ω)

.

Proof. By (2.3), we have
∂rw

ε
0,k(Cε)

Cε
→ µ̃k

Cd
×
{
1 (d = 2)

d− 2 (d ≥ 3)
. We also have

∣∣∣∣∣
∫
Bε,k

∇qε ·∇vεdx

∣∣∣∣∣ ≤ Cε sup
δ>0

∥∥∥vδ∥∥∥
W 1,1(Ω)

→ 0.
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Rellich’s theorem gives |
〈
1Bε,k

, vε − v
〉
H−1(Ω)

| ≤ ∥1∥L2(Ω)∥vε − v∥L2(Ω) → 0.

It and Lemma 7 give〈
1Bε,k

, vε
〉
H−1(Ω)

=
〈
1Bε,k

, vε − v
〉
H−1(Ω)

+
〈
1Bε,k

, 1Ωv
〉
L1(Rd)∗

→
〈
NkC

dSd

d|A|
1Fk

, v

〉
H−1(Ω)

.

The assertion follows from these limit and Lemma 9.

3.3. Proof of Theorem 1

Proof. Since V = µd
∑m

k=1 µ̃kNk1Fk
∈ L∞(Ω) = L1(Ω)∗ ⊂ W−1,∞(Ω), we

have (H.4). We shall verify (H.5). Indeed, the multiplier of φ : H1(Ω) →
H1

0 (Ω) is a bounded operator. Thus, φvε → φv weakly in H1
0 (Ω). It and

Lemma 10 imply (H.5). Since we already checked (H.1)–(H.3) in Section 3.2,
Theorem 1 follows from Theorem 2.
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