
SUT Journal of Mathematics
Vol. 55, No. 1 (2019), 25–37

Extended marginal homogeneity models based on
complementary log-log transform for

multi-way contingency tables

Satoru Shinoda, Kouji Tahata, Kiyotaka Iki
and Sadao Tomizawa

(Received September 26, 2018; Revised February 7, 2019)

Abstract. For square contingency tables with ordered categories, Saigusa
et al. (2018) proposed the marginal cumulative complementary log-log model
being an extension of the marginal homogeneity model. The present paper con-
siders the marginal cumulative complementary log-log and conditional marginal
cumulative complementary log-log models for multi-way tables. It also gives the
decompositions of the marginal homogeneity model into the proposed model and
a model of the equality of marginal means for multi-way tables. An example is
given.
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§1. Introduction

For an R×R square contingency table with ordered categories, let pij denote
the probability that an observation will fall in the cell in row i and column j
(i = 1, . . . , R; j = 1, . . . , R), and let X1 and X2 denote the row and column
variables, respectively. The marginal homogeneity (MH) model is defined by

Pr(X1 = i) = Pr(X2 = i) for i = 1, . . . , R;

that is

pi· = p·i for i = 1, . . . , R,

where pi· =
∑R

k=1 pik and p·i =
∑R

k=1 pki. This model indicates that the row
marginal distribution is identical to the column marginal distribution (Stuart,
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1955; Bhapkar, 1966; Bishop, Fienberg and Holland, 1975, p.294). Some
extensions of the MH model were proposed by e.g., Agresti (1984, p.205), and
Miyamoto, Niibe and Tomizawa (2005).

Let F
(1)
i and F

(2)
i denote the marginal cumulative probabilities of X1 and

X2, respectively, i.e., F
(1)
i = Pr(X1 ≤ i) =

∑i
k=1 pk· and F

(2)
i = Pr(X2 ≤ i) =∑i

k=1 p·k for i = 1, . . . , R− 1. Then the MH model may be expressed as

F
(1)
i = F

(2)
i for i = 1, . . . , R− 1.

Let C
(1)
i and C

(2)
i denote the marginal cumulative complementary log-log

transform of X1 and X2, respectively; namely

C
(1)
i = log

(
− log

(
1− F

(1)
i

))
,

C
(2)
i = log

(
− log

(
1− F

(2)
i

))
,

for i = 1, . . . , R− 1. Then the MH model may also be expressed as

C
(1)
i = C

(2)
i for i = 1, . . . , R− 1.

Saigusa, Maruyama, Tahata and Tomizawa (2018) proposed the marginal cu-
mulative complementary log-log (MCL) model defined by

C
(1)
i = C

(2)
i + log∆ for i = 1, . . . , R− 1,

where the parameter ∆ is unspecified. The MCL model states that one
marginal distribution is a location shift of the other marginal distribution
on a complementary log-log scale. A special case of the MCL model obtained
by putting ∆ = 1 is the MH model.

Consider a specified monotonic function g(k) satisfying g(1) ≤ · · · ≤ g(R)
or g(1) ≥ · · · ≥ g(R), where at least one strict inequality holds. The marginal
mean equality (ME) model is defined by

R∑
i=1

g(i)pi· =
R∑
i=1

g(i)p·i (i.e., E(g(X1)) = E(g(X2))).

Saigusa et al. (2018) stated that the MH model holds if and only if both the
MCL and ME models hold.

Consider a multi-way RT contingency table (T ≥ 2). The MH model for RT

table was given by e.g., Bishop et al., 1975, p.303; Bhapkar and Darroch, 1990;
Agresti, 2002, p.440. Some extensions of the MH model were proposed by
e.g., McCullagh (1977), Tahata, Katakura and Tomizawa (2007), and Tahata,
Kobayashi and Tomizawa (2008).
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The purpose of the present paper is to extend the MCL model into the RT

table, and to give a decomposition of the MH model for the RT table. The MH
model does not depend on the main diagonal cell probabilities, however, the
MCL model depends on them. We are also interested in proposing the other
MCL model which does not depend on the main diagonal cell probabilities,
namely, in the conditional MCL model on condition that an observation will
fall in one of off-diagonal cells of the table. Also, we give a new decomposition
of the MH model using the conditional MCL model.

§2. Models

2.1. Marginal cumulative complementary log-log model

Consider an RT table (T ≥ 2) having ordered categories. Let Xt denote the t-
th random variable for t = 1, . . . , T and let Pr(X1 = i1, . . . , XT = iT ) = pi1...iT
for it = 1, . . . , R. The MH model is defined by

Pr(X1 = i) = · · · = Pr(XT = i) for i = 1, . . . , R;

that is
p
(1)
i = · · · = p

(T )
i for i = 1, . . . , R,

where
p
(t)
i = Pr(Xt = i) for t = 1, . . . , T.

Let F
(t)
i denote the marginal cumulative probability and let C

(t)
i denote

the complementary log-log transform of F
(t)
i for i = 1, . . . , R− 1; t = 1, . . . , T .

Namely, F
(t)
i =

∑i
s=1 p

(t)
s , and C

(t)
i = log

(
− log

(
1− F

(t)
i

))
. Then the MH

model may also be expressed as

C
(k)
i = C

(1)
i for i = 1, . . . , R− 1; k = 2, . . . , T.

Note that
C

(t)
1 < C

(t)
2 < · · · < C

(t)
R−1 for t = 1, . . . , T.

Consider a model defined by

C
(k)
i = C

(1)
i + log∆k−1 for i = 1, . . . , R− 1; k = 2, . . . , T,

where the parameter {∆k−1} is unspecified. We shall refer to this model as
the MCLT model. A special case of this model obtained by putting ∆1 =
· · · = ∆T−1 = 1 is the MH model.

By putting {C(1)
i = λi}, the MCLT model may be expressed as

F
(t)
i = 1− exp(− exp(λi + log∆t−1)) for i = 1, . . . , R− 1; t = 1, . . . , T,
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where ∆0 = 1. This model states that the marginal distribution F
(k)
i is a

location shift of the marginal distribution F
(1)
i in terms of above equation for

k = 2, . . . , T . Thus, since λi is monotone increasing, as the i approaches R−1

from 1, F
(t)
i may approach 1 more sharply than F

(1)
i when ∆t−1 > 1, but F

(t)
i

may approach 1 more slowly than F
(1)
i when ∆t−1 < 1 for t = 1, . . . , T .

Since the MCLT model may also be expressed as

1− F
(k)
i =

(
1− F

(1)
i

)∆k−1

for i = 1, . . . , R− 1; k = 2, . . . , T,

then for k1 and k2 (1 ≤ k1 < k2 ≤ T ),(
1− F

(k2)
i

) 1
∆k2−1 =

(
1− F

(k1)
i

) 1
∆k1−1 ,

thus

1− F
(k2)
i =

(
1− F

(k1)
i

)∆k2−1
∆k1−1 ,

where ∆0 = 1 for i = 1, . . . , R − 1. Then, this model indicates that the
probability that Xk is i + 1 or above, is equal to the probability that X1 is
i+1 or above to the power of ∆k−1, for i = 1, . . . , R−1; k = 2, . . . , T . In other
words, this model indicates that the probability that Xk2 is i + 1 or above,

is equal to the probability that Xk1 is i + 1 or above to the power of
∆k2−1

∆k1−1
,

for i = 1, . . . , R − 1. Therefore
∆k2−1

∆k1−1
> 1 is equivalent to F

(k2)
i > F

(k1)
i and

∆k2−1

∆k1−1
< 1 is equivalent to F

(k2)
i < F

(k1)
i . As a result, the parameter ∆k−1 in

the MCLT model reflects the degree of inhomogeneity between F
(1)
i and F

(k)
i .

2.2. Conditional MCL model

Using the conditional probabilities, the MH model may also be expressed as

Pr
(
Xk = i | (X1, . . . , XT ) ̸= (s, . . . , s), s = 1, . . . , R

)
= Pr

(
X1 = i | (X1, . . . , XT ) ̸= (s, . . . , s), s = 1, . . . , R

)
,

for i = 1, . . . , R; k = 2, . . . , T ; that is

p
c(k)
i = p

c(1)
i for i = 1, . . . , R; k = 2, . . . , T,

where, for t = 1, . . . , T ,

p
c(t)
i = Pr

(
Xt = i | (X1, . . . , XT ) ̸= (s, . . . , s), s = 1, . . . , R

)
=

p
(t)
i − pii...i

δ
,

δ = Pr
(
(X1, . . . , XT ) ̸= (s, . . . , s), s = 1, . . . , R

)
= 1−

R∑
i=1

pii...i.
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Let F
c(t)
i denote the conditional marginal cumulative probability of Xt given

that (X1, . . . , XT ) ̸= (s, . . . , s), s = 1, . . . , R, i.e.,

F
c(t)
i = Pr

(
Xt ≤ i | (X1, . . . , XT ) ̸= (s, . . . , s), s = 1, . . . , R

)
=

i∑
l=1

p
c(t)
l

for i = 1, . . . , R − 1; t = 1, . . . , T . Then the MH model may be further
expressed as

F
c(k)
i = F

c(1)
i for i = 1, . . . , R− 1; k = 2, . . . , T.

Consider now a model defined by

C
c(k)
i = C

c(1)
i + log∆∗

k−1 for i = 1, . . . , R− 1; k = 2, . . . , T,

where, for t = 1, . . . , T ,

C
c(t)
i = log

(
− log

(
1− F

c(t)
i

))
,

where the parameter {∆∗
k−1} is unspecified. We shall refer to this model as

the conditional marginal cumulative complementary log-log (CMCLT ) model.
A special case of this model obtained by putting ∆∗

1 = · · · = ∆∗
T−1 = 1 is the

MH model.

§3. Decompositions of the MH model

We shall consider two kinds of decompositions of the MH model.
Using the specified monotonic function g(k) in section 1, consider the ME

model defined by

R∑
i=1

g(i)p
(1)
i = · · · =

R∑
i=1

g(i)p
(T )
i (i.e.,E(g(X1)) = · · · = E(g(XT ))).

Using the conditional probabilities, the ME model may also be expressed as

R∑
i=1

g(i)p
c(1)
i = · · · =

R∑
i=1

g(i)p
c(T )
i .

We obtain the following theorem.

Theorem 3.1: For the RT table, the MH model holds if and only if both the
MCLT and ME models hold.
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Proof : If the MH model holds, then both the MCLT and ME models hold.
Assuming that both the MCLT and ME models hold, we shall show that the
MH model holds. We have

E(g(Xt)) = g(1) +

R−1∑
l=1

dl

(
1− F

(t)
l

)
for t = 1, . . . , T,

where

dl = g(l + 1)− g(l).

This is because

E(g(Xt)) =
R∑
i=1

g(i)p
(t)
i

=
R−1∑
l=1

g(l)

(
R∑
i=l

p
(t)
i −

R∑
i=l+1

p
(t)
i

)
+ g(R)p

(t)
R

= g(1)

R∑
i=1

p
(t)
i +

R−1∑
l=1

(
−g(l)

R∑
i=l+1

p
(t)
i + g(l + 1)

R∑
i=l+1

p
(t)
i

)

= g(1) +

R−1∑
l=1

dl

(
1− F

(t)
l

)
,

for t = 1, . . . , T .

Then, we have

R−1∑
l=1

dl

(
1− F

(1)
l

)
=

R−1∑
l=1

dl

(
1− F

(k)
l

)
=

R−1∑
l=1

dl

(
1− F

(1)
l

)∆k−1

,

for k = 2, . . . , T , because the ME and MCLT models hold. Then we obtain
∆k−1 = 1 for k = 2, . . . , T , i.e., the MH model holds because dl ≥ 0 (or dl ≤ 0)
for all l = 1, . . . , R − 1, with at least one of the {dl} being not equal to zero.
The proof is completed.

We also obtain the following theorem.

Theorem 3.2: For the RT table, the MH model holds if and only if both the
CMCLT and ME models hold.

The proof is omitted because it can be obtained in a similar manner to

the proof of Theorem 3.1 by replacing {F (1)
l } and {F (k)

l } with {F c(1)
l } and

{F c(k)
l }, respectively.
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§4. Goodness-of-fit test

Let ni1...iT denote the observed frequency in the (i1, . . . , iT ) cell of the R
T table

with n =
∑

· · ·
∑

ni1...iT and let mi1...iT denote the corresponding expected
frequency. We assume that {ni1...iT } have a multinomial distribution. The
maximum likelihood estimates (MLEs) of the expected frequencies under each
model can be obtained using a Newton-Raphson method to solve the likelihood
equations. See Appendix for the likelihood equations under the MCLT and
CMCLT models. Each of the MH, CMCLT and ME models do not depend
on the probabilities {pii...i} on the main diagonal of the table, but the MCLT

model depends on them. Notice that the estimated expected frequencies on
the main diagonal cells under the MCLT model are different from the observed
frequencies on the main diagonal.

The likelihood ratio chi-squared statistic for testing the goodness-of-fit of
model M is given by

G2(M) = 2
R∑

i1=1

· · ·
R∑

iT=1

ni1...iT log

(
ni1...iT

m̂i1...iT

)
,

where m̂i1...iT is the MLE of mi1...iT under the model. The numbers of degrees
of freedom (df) of statistics for testing the goodness-of-fit of the MH, MCLT

(also CMCLT ), and ME models are (T − 1)(R− 1), (T − 1)(R− 2), and T − 1,
respectively. Consider two nested models, say M1 and M2, such that if model
M1 holds, then model M2 holds. For testing the goodness-of-fit of model
M1 assuming that model M2 holds, the conditional likelihood ratio statistic
is given by G2(M1 | M2) = G2(M1) − G2(M2). The number of df for the
conditional test is the difference between the numbers of df for the models M1

and M2.

§5. Example

Consider the data in Table 1 obtained from the Meteorological Agency in
Japan (from Tahata et al., 2008). These are obtained from the daily at-
mospheric temperatures at Hiroshima, Tokyo, and Sapporo in Japan in 2003,
using three levels, (1) low, (2) normal, and (3) high. The variables X1, X2, and
X3 mean the temperatures at Hiroshima, Tokyo, and Sapporo, respectively.

Table 2 gives the values of the likelihood ratio chi-square statistic for
goodness-of-fit of models applied to these data. We set g(k) = k, for k = 1, 2,
and 3. The MH and ME models fit these data very poorly. However the MCL3

and CMCL3 models fit these data well.
Consider the hypothesis that the MH model holds under the assumption

that the MCL3 (CMCL3) model holds; namely, the hypothesis that ∆1 =
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∆2 = 1 (∆∗
1 = ∆∗

2 = 1) under the assumption. Since G2(MH|MCL3) =
G2(MH)−G2(MCL3) = 15.87 and G2(MH|CMCL3) = G2(MH)−G2(CMCL3)
= 15.78 with 2 df, we reject these hypotheses at the 0.05 level. These show
the rejection of ∆1 = ∆2 = 1 (∆∗

1 = ∆∗
2 = 1) in the MCL3 (CMCL3) model.

Therefore the MCL3 (CMCL3) model is preferable to the MH model for the
data.

Under the MCL3 (CMCL3) model, the MLEs of {∆k} are ∆̂1 = 0.92 and
∆̂2 = 1.23 (the MLEs of {∆∗

k} are ∆̂∗
1 = 0.89 and ∆̂∗

2 = 1.33). Hence, under
the MCL3 model, the probability that the category for Tokyo is i+1 or above,
is estimated to be equal to the probability that the category for Hiroshima
is i + 1 or above to the power of 0.92, for i = 1, 2, and that the category for
Sapporo is i + 1 or above, is estimated to be equal to the probability that
the category for Hiroshima is i+ 1 or above to the power of 1.23, for i = 1, 2.
Therefore, the temperature for Hiroshima tends to be stochastically lower than
that for Tokyo, but stochastically higher than that for Sapporo.

§6. Concluding Remarks

Under the MCLT (CMCLT ) model, one marginal distribution is a location
shift of the other marginal distribution. When the MH model fits the data
poorly, the decompositions of the MH model may be useful for seeing the
reason for its poor fit. Indeed, for the data in Table 1, the poor fit of the
MH model is caused by the poor fit of the ME model rather than the MCLT

model.

The MLEs of expected frequencies on the main diagonal cell under the
CMCLT model are equal to the observed frequencies, but that of MCLT model
are not. This is because the CMCLT model is expressed as the function of

{F c(k)
i }, on the other hand, the MCLT model is expressed as the function of

{F (k)
i }. Thus, if the analyst would be interested in inferring the structure

of only off-diagonal probabilities and not the main diagonal probabilities, the
decomposition of the MH model into the CMCLT and ME models may be
preferable to that into the MCLT and ME models. Conversely, if the analyst
would be interested in inferring the structure of probabilities including the
main diagonal cell, it may be appropriate to use the decomposition of the MH
model into the MCLT and ME models.

The decompositions of the MH model described here should be considered
for ordinal categorical data, because each of the decomposed models is not
invariant under the same arbitrary permutations of all categories.
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Appendix

For the R3 table, we give the likelihood equations under each of the MCL3

and CMCL3 models.

(a) Case of the MCL3 model:

To obtain the MLEs of expected frequencies under the MCL3 model, we
must maximize the Lagrangian

L =
R∑
i=1

R∑
j=1

R∑
t=1

nijt log pijt − λ

 R∑
i=1

R∑
j=1

R∑
t=1

pijt − 1


−

2∑
s=1

R−1∑
i=1

ϕsi

(
log
(
1− F

(s+1)
i

)
−∆s log

(
1− F

(1)
i

))
with respect to {pijt}, λ, {ϕ1i}, {ϕ2i}, ∆1 and ∆2. Setting the partial deriva-
tives of L equal to zeros, we obtain the equations

pijt = nijt

{
n+

2∑
s=1

R−1∑
l=1

ϕsl

(
F

(s+1)
l − Is+1(l)

1− F
(s+1)
l

−∆s
F

(1)
l − I1(l)

1− F
(1)
l

)}−1

,

where

I1(l) = I(i ≤ l), I2(l) = I(j ≤ l), I3(l) = I(t ≤ l),

for i = 1, . . . , R; j = 1, . . . , R; t = 1, . . . , R,

1− F
(s+1)
i =

(
1− F

(1)
i

)∆s

,

for i = 1, . . . , R− 1; s = 1, 2, and

R−1∑
i=1

ϕsi log
(
1− F

(1)
i

)
= 0,

for s = 1, 2, where I(·) is the indicator function.
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(b) Case of the CMCL3 model:
We must maximize the Lagrangian

L =

R∑
i=1

R∑
j=1

R∑
t=1

nijt log pijt − λ

 R∑
i=1

R∑
j=1

R∑
t=1

pijt − 1


−

2∑
s=1

R−1∑
i=1

ϕsi

(
log
(
1− F

c(s+1)
i

)
−∆∗

s log
(
1− F

c(1)
i

))
with respect to {pijt}, λ, {ϕ1i}, {ϕ2i}, ∆∗

1 and ∆∗
2. Setting the partial deriva-

tives of L equal to zeros, we obtain the equations

pijt = nijt

{
n+

2∑
s=1

R−1∑
l=1

ϕsl

δ

(
F

c(s+1)
l − Is+1(l)

1− F
c(s+1)
l

−∆∗
s

F
c(1)
l − I1(l)

1− F
c(1)
l

)}−1

,

where
I1(l) = I(i ≤ l), I2(l) = I(j ≤ l), I3(l) = I(t ≤ l),

for i, j, t = 1, . . . , R; (i, j, t) ̸= (i, i, i),

piii =
niii

n
,

for i = 1, . . . , R,

1− F
c(s+1)
i =

(
1− F

c(1)
i

)∆∗
s
,

for i = 1, . . . , R− 1; s = 1, 2, and

R−1∑
i=1

ϕsi log
(
1− F

c(1)
i

)
= 0,

for s = 1, 2.

References

[1] Agresti, A. (1984). Analysis of Ordinal Categorical Data. Wiley, New York.

[2] Agresti, A. (2002). Categorical Data Analysis, 2nd edition. Wiley, New York.

[3] Bhapkar, V. P. (1966). A note on the equivalence of two test criteria for hy-
potheses in categorical data. Journal of the American Statistical Association 61,
228-235.

[4] Bhapkar, V. P. and Darroch, J. N. (1990). Marginal symmetry and quasi sym-
metry of general order. Journal of Multivariate Analysis 34, 173-184.



EXTENDED MARGINAL HOMOGENEITY 35

[5] Bishop, Y. M. M., Fienberg, S. E. and Holland, P. W. (1975). Discrete Multivari-
ate Analysis: Theory and Practice. The MIT Press, Cambridge, Massachusetts.

[6] McCullagh, P. (1977). A logistic model for paired comparisons with ordered
categorical data. Biometrika 64, 449-453.

[7] Miyamoto, N., Niibe, K. and Tomizawa, S. (2005). Decompositions of marginal
homogeneity model using cumulative logistic models for square contingency ta-
bles with ordered categories. Austrian Journal of Statistics 34, 361-373.

[8] Saigusa, Y., Maruyama, T., Tahata, K. and Tomizawa, S. (2018). Extended
marginal homogeneity model based on complementary log-log transform for
square tables. International Journal of Statistics and Probability 7, 27-31.

[9] Stuart, A. (1955). A test for homogeneity of the marginal distributions in a
two-way classification. Biometrika 42, 412-416.

[10] Tahata, K., Katakura, S. and Tomizawa, S. (2007). Decompositions of marginal
homogeneity model using cumulative logistic models for multi-way contingency
tables. Revstat: Statistical Journal 5, 163-176.

[11] Tahata, K., Kobayashi, H. and Tomizawa, S. (2008). Conditional marginal cu-
mulative logistic models and decomposition of marginal homogeneity model for
multi-way tables. Journal of Statistics and Applications 3, 239-252.



36 S. SHINODA, K. TAHATA, K. IKI AND S. TOMIZAWA

Table 1

The daily atmospheric temperatures at Hiroshima, Tokyo, and Sapporo in
Japan in 2003, using three levels, (1) low, (2) normal, and (3) high (from
Tahata et al., 2008). The upper and lower parenthesized values are the MLEs
of expected frequencies under the MCL3 and CMCL3 models, respectively.

Hiroshima Tokyo Sapporo
(1) (2) (3)

(1) (1) 37 13 3
(37.26) (14.14) (3.05)
(37.00) (14.35) (3.07)

(1) (2) 21 17 5
(21.36) (18.69) (5.14)
(21.23) (18.72) (5.10)

(1) (3) 4 4 5
(4.04) (4.37) (5.11)
(4.05) (4.41) (5.11)

(2) (1) 19 15 5
(17.51) (14.82) (4.65)
(17.55) (14.98) (4.66)

(2) (2) 20 29 8
(18.60) (28.94) (7.51)
(18.44) (29.00) (7.44)

(2) (3) 20 20 12
(18.48) (19.83) (11.20)
(18.46) (19.96) (11.18)

(3) (1) 2 8 4
(1.96) (8.45) (3.96)
(1.96) (8.52) (3.96)

(3) (2) 8 15 14
(7.92) (16.02) (14.00)
(7.83) (15.95) (13.83)

(3) (3) 7 21 29
(6.89) (22.27) (28.82)
(6.86) (22.36) (29.00)
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Table 2

Likelihood ratio statistic G2 for models applied to the data in Table 1.

Models df G2

MH 4 16.80∗

MCL3 2 0.93
CMCL3 2 1.02
ME 2 16.39∗

Note: g(k) for the ME model is the equal-interval scores.
∗ means significant at 0.05 level.
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