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Abstract. In this decade, nonlinear conjugate gradient methods have been
focused on as effective numerical methods for solving large-scale unconstrained
optimization problems. Especially, nonlinear conjugate gradient methods with
the sufficient descent property have been studied by many researchers. In this
paper, we review sufficient descent nonlinear conjugate gradient methods.
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§1. Introduction

In 1952, the linear conjugate gradient (LCG) method was originally proposed
by Hestenes and Stiefel [35] for solving symmetric positive definite linear sys-
tems of equations. Now the LCG method and its variants are major iterative
methods for solving linear systems (see [38,51], for example). In 1964, based on
the idea of the LCG method, Fletcher and Reeves [23] gave a nonlinear conju-
gate gradient (CG) method1 for solving unconstrained optimization problems.
In this decade, CG methods have been focused on as effective numerical meth-
ods for solving large-scale unconstrained optimization problems. Especially,
CG methods with the sufficient descent property have been studied by many
researchers.

In this paper, we review sufficient descent CG methods for solving the
following unconstrained optimization problem:

(1.1) minimize f(x),

1Although the CG method usually means the LCG method, we call the nonlinear conju-
gate gradient method the CG method in this paper.
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where f : Rn → R is at least continuously differentiable and its gradient ∇f
is denoted by g. The CG method is one of iterative methods that generate
the sequence {xk} by

xk+1 = xk + αkdk for k ≥ 0,(1.2)

where αk is a positive step size and dk is a search direction. The search
direction of the CG method is given by

(1.3) dk =

{
−gk, if k = 0,
−gk + βkdk−1, if k ≥ 1,

where gk denotes ∇f(xk) and βk is a scalar parameter that characterizes the
method. Throughout the paper, we fix the initial direction by d0 = −g0.

In the first CG method given by Fletcher and Reeves [23], the parameter
βk is given by

βFR
k =

∥gk∥2

∥gk−1∥2
.

We call the CG method with βFR
k the FR method, and adopt the same usage

for the other methods. Zoutendijk [68] proved the global convergence of the FR
method with the exact line search. Al-Baali [1] extended this result to inexact
line searches. Sorenson [53] applied the original Hestenes-Stiefel (namely the
LCG) formula:

βHS
k =

gTk yk−1

dTk−1yk−1

to general unconstrained optimization problems. Here, we define yk−1 = gk −
gk−1. Polak and Ribière [47] gave another choice of parameter βk:

βPR
k =

gTk yk−1

∥gk−1∥2
.

Powell [49,50] showed that the PR and HS methods can cycle infinitely without
approaching a solution, and suggested the following modification:

βPR+
k = max {βPR

k , 0}.

Gilbert and Nocedal [27] proved the global convergence of the PR+ method.
Flectcher [22] gave a modification of the FR method

βCD
k =

∥gk∥2

−gTk−1dk−1
.

Note that CD stands for “Conjugate Descent”. He showed that the CD method
with some appropriate line search rule satisfies the descent condition:

gTk dk < 0 for all k.(1.4)
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Liu and Storey [42] proposed the following parameter:

βLSk =
gTk yk−1

−gTk−1dk−1
.

After that, Shi and Shen [52] proved the global convergence of the LS method
with an Armijo-type line search. Dai and Yuan [17] proposed the CG method
that generates a descent search direction at every iteration if the Wolfe con-
ditions are satisfied, and they proved its global convergence. Their parameter
is presented as

βDY
k =

∥gk∥2

dTk−1yk−1
.

Note that the above six methods (the FR, HS, PR, CD, LS, and DY methods)
are known as typical CG methods, and are identical to the LCG method if
the objective function f is a strictly convex quadratic function and if αk is the
exact one-dimensional minimizer. The above typical CG methods are usually
classified by types of the numerators in the parameter βk. The FR, CD and
DY methods have the element ∥gk∥2 in the numerator of the parameter βk.
Under some appropriate line search rule, these methods satisfy the following
sufficient descent condition:

gTk dk ≤ −c̄∥gk∥2 for all k,(1.5)

where c̄ is a positive constant independent of k. the sufficient descent condition
is stronger than the descent condition (1.4), and ∥gk∥ tends to zero if this
condition holds and gTk dk → 0. Moreover, the sufficient descent condition
plays an important role in establishing the global convergence of the method.
On the other hand, the PR, HS, and LS methods have the element gTk yk−1 in
the numerator of the parameter βk. When the iterates stagnate and the steps
are too small, the element gTk yk−1 is very small (because usually ∥yk−1∥ =
O(∥xk−xk−1∥) holds) and the search direction is close to the steepest descent
direction. Thus, these methods can automatically adjust βk to avoid jamming
and are more effective than the other three methods. However, these methods
do not necessarily satisfy the descent condition.

Many other CG methods have been also proposed. For example, Iiduka
and Narushima [37] proposed two new choices for βk that incorporate the
objective function values. Based on the modified secant condition by Zhang
et al. [61, 62], Yabe and Sakaiwa [56] gave a modified DY method generating
descent directions if the Wolfe conditions was imposed in the line search. In
addition, many researchers have studied hybrid CG methods (see [4, 18, 19,
27, 36, 55], for example). On the other hand, Dai and Liao [16] proposed a
method based on the secant condition of quasi-Newton methods, and later
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some researchers derived CG methods based on other secant conditions [8,
26, 39, 57, 67]. More recently, Babaie-Kafaki and Ghanbari [7] studied some
suitable choices of parameters that was incorporated into Dai-Liao’s method.
Independently of Dai and Liao, Birgin and Mart́ınez [9] proposed a scaled
CG method (they called it the spectral CG method) based on the secant
condition. Based on the memoryless BFGS quasi-Newton method, Andrei [3,
5, 6] proposed some three-term CG methods that generate descent directions
under the Wolfe conditions.

Some CG methods introduced above satisfy the descent condition under
certain line search rules, but other CG methods do not necessarily satisfy
it. Recently, CG methods that satisfy the sufficient descent condition in-
dependently of line searches have been studied. By modifying the param-
eter βHS

k , Hager and Zhang [30, 33] proposed a CG method that generates
a sufficient descent direction. After that, following Hager-Zhang’s modifica-
tion scheme, some researchers proposed other sufficient descent CG meth-
ods [13, 40, 44, 58–60, 63]. Hager and Zhang [30–32] also developed a software
CG-DESCENT based on the HZ method, and now it is one of the major
softwares for solving large scale unconstrained optimization problems. Zhang,
Zhou and Li [64–66] and Cheng [11] proposed scaled/three-term CG meth-
ods, which always satisfy gTk dk = −∥gk∥2 for all k, independently of line
search. Furthermore, Narushima, Yabe and Ford [46] proposed a three-term
CG method that involves the above scaled/three-term CG methods.

In this paper, we survey CG methods satisfying the sufficient descent con-
dition independent of line searches and their related topics. This paper is or-
ganized as follows. In Section 2, we give some preliminaries related with line
searches and recall the properties of the typical CG methods. In Section 3,
we review the HZ method and its variants. Scaled/three-term CG methods
are introduced in Section 4. More recently, by combining Dai-Liao’s idea and
sufficient descent CG methods, some researchers proposed CG methods that
satisfy the sufficient descent condition and are based on secant conditions.
These methods are explained in Section 5. In Section 6, we introduce recent
advances of the software CG-DESCENT. Finally, some numerical results are
given in Section 7.

§2. Preliminaries and properties of the typical CG methods

In this section, we give some preliminaries related with line searches and recall
the properties of the typical CG methods.
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2.1. Line search conditions and their related properties

To achieve the global convergence of iterative methods, we need to choose an
appropriate step size αk. The most simple idea is the exact line search, namely

f(xk + αkdk) = min
α>0

f(xk + αdk).

However, it is too expensive or impossible to implement the exact line search
in practice. Therefore, many practical line search rules to choose a step size
have been proposed. Especially, the Wolfe conditions are well-known and these
are given by

f(xk + αkdk) ≤ f(xk) + δαkg
T
k dk,(2.1)

g(xk + αkdk)
Tdk ≥ σ1g

T
k dk,(2.2)

where 0 < δ < σ1 < 1. In addition, for CG methods, the generalized strong
Wolfe conditions: (2.1) and

−σ2gTk dk ≥ g(xk + αkdk)
Tdk ≥ σ1g

T
k dk(2.3)

are often used, where σ2 > 0. For the case σ1 = σ2, the generalized strong
Wolfe conditions reduce to the strong Wolfe conditions: (2.1) and

|g(xk + αkdk)
Tdk| ≤ −σ1gTk dk.(2.4)

The first condition of the Wolfe conditions (namely, (2.1)) is called the Armijo
condition and it or its variant is often used alone.

We now recall some properties related with line searches. To the end, we
make some assumptions for the objective function.

Assumption 1. The objective function f is bounded below on Rn and is
continuously differentiable in an open convex neighborhood N of the level set
L = {x|f(x) ≤ f(x0)} at the initial point x0. In addition, the gradient g is
Lipschitz continuous in N , i.e. there exists a positive constant L such that

∥g(u)− g(v)∥ ≤ L∥u− v∥ for all u, v ∈ N .

Assumption 2. The level set L is bounded, namely, there exists a positive
constant â such that

∥x∥ ≤ â for all x ∈ L.

Throughout the paper, we assume that

gk ̸= 0

for all k ≥ 0, otherwise a stationary point has been found.
The following lemma is known as the Zoutendijk condition, which is very

critical to prove the global convergence of CG methods.
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Lemma 1. [68] Suppose that Assumption 1 is satisfied. Consider any iterative
method of the form (1.2) such that the descent condition (1.4) and the Wolfe
conditions (2.1)–(2.2) are satisfied. Then, the following holds:

∞∑
k=0

(gTk dk)
2

∥dk∥2
<∞.

Under Assumption 1, we have the following lemma, which is easily obtained
from the Zoutendijk condition. The proof of the lemma is given by [54], for
example.

Lemma 2. Suppose that Assumption 1 is satisfied. Consider any iterative
method of the form (1.2) such that the sufficient descent condition (1.5) and
the Wolfe conditions (2.1)–(2.2) are satisfied. If

∞∑
k=0

1

∥dk∥2
= ∞,

the following holds:

lim inf
k→∞

∥gk∥ = 0.(2.5)

Any CG method using the strong Wolfe line search possesses the following
useful property. This was proved by Dai et al. [14] (see Theorem 2.3 and
Corollary 2.4 in [14]).

Lemma 3. Suppose that Assumption 1 holds. Consider any CG method of the
form (1.2) and (1.3) such that the descent condition (1.4) and the generalized
strong Wolfe conditions (2.1) and (2.3) are satisfied. If

∞∑
k=0

1

∥dk∥2
= ∞,

then (2.5) holds.

2.2. Properties of the FR, CD and DY methods

In this section, we recall properties of the FR, CD and DY methods. Note
that these methods have the element ∥gk∥2 in the numerator of the parameter
βk. If the step size αk satisfies the generalized strong Wolfe conditions (2.1)
and (2.3), the following properties are obtained.

Proposition 4. The following statements hold:
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(a) For the FR method, if αk satisfies the generalized strong Wolfe conditions
(2.1) and (2.3) with σ1 + σ2 < 1, then

− 1

1− σ1
≤
gTk dk
∥gk∥2

≤ −1 +
σ2

1− σ1
.

(b) For the DY method, if αk satisfies the generalized strong Wolfe conditions
(2.1) and (2.3), then

− 1

1− σ1
≤
gTk dk
∥gk∥2

≤ − 1

1 + σ2
.

(c) For the CD method, if αk satisfies the generalized strong Wolfe conditions
(2.1) and (2.3) with σ2 < 1, then

−1− σ1 ≤
gTk dk
∥gk∥2

≤ −1 + σ2

Proposition 4 implies that the FR, CD and DY methods satisfy the suf-
ficient descent condition (1.5), dependent on line searches. The results (a)
and (b) are simple extensions of the results in [47], and (c) is easily shown
from (2.3). We now give the global convergence properties of the FR and DY
methods, which were proven in [1] and [17], respectively.

Theorem 5. Suppose that Assumption 1 holds. Let the sequence {xk} be
generated by the CG method of the form (1.2)–(1.3).

(a) If βk = βFR
k and αk satisfies the generalized strong Wolfe conditions

(2.1) and (2.3) with σ1 + σ2 < 1, then {xk} converges globally in the
sense that (2.5) holds.

(b) If βk = βDY
k and αk satisfies the Wolfe conditions (2.1)–(2.2), then dk

satisfies the descent condition (1.4) and {xk} converges globally in the
sense that (2.5) holds.

Note that the CD method satisfies the sufficient descent condition under
milder conditions than the FR method does. However, the global convergence
of the CD method have not been established under the (generalized) strong
Wolfe conditions. On the other hand, the global convergence and the sufficient
descent properties of the DY method can be obtained under mild conditions.
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2.3. Properties of the HS, PR and LS methods

In this section, we recall properties of the HS, PR and LS methods. Note that
these methods have the element gTk yk−1 in the numerator of the parameter
βk. We first introduce Property ⋆ for βk given by Gilbert and Nocedal [27].
Property ⋆ implies that βk is bounded and will be small when the step sk−1 =
xk − xk−1 is small.

Property ⋆. Consider the CG method (1.2)–(1.3) and suppose that there exists
a positive constant ε such that

(2.6) ε ≤ ∥gk∥ for all k.

If there exist b > 1 and ξ̄ > 0 such that |βk| ≤ b and

∥sk−1∥ ≤ ξ̄ =⇒ |βk| ≤
1

2b
,

then we say that the method has Property ⋆.

In order to prove that CG methods have Property ⋆, it suffices to show
that there exists a positive constant c1 such that

(2.7) |βk| ≤ c1∥sk−1∥ for all k,

under the assumption (2.6). Then, by putting ξ̄ = 1/(2bc1), we have |βk| ≤
max{1, 2âc1} ≡ b and

∥sk−1∥ ≤ ξ̄ =⇒ |βk| ≤
1

2b
,

which implies that Property ⋆ is satisfied. It is easily shown that (2.7) holds
for the HS, PR and LS methods, and thus these methods have Property ⋆.

Next we give the global convergence theorem of CG methods satisfying
Property ⋆. The proof of the theorem was first given in [27] and many re-
searchers showed its variants (see [15,16,30], for example).

Theorem 6. Suppose that Assumptions 1 and 2 hold. Let {xk} be the sequence
generated by the CG method (1.2)–(1.3) that satisfies the following conditions:

(C1) βk ≥ νk ≡ min{ν(1)k , ν
(2)
k , ν

(3)
k } for all k, where

ν
(1)
k =

−1

∥dk−1∥min{ν̄1, ∥gk−1∥}
, ν

(2)
k = ν̄2

gTk dk−1

∥dk−1∥2
, ν

(3)
k = ν̄3

gTk−1dk−1

∥dk−1∥2

and ν̄1, ν̄2 and ν̄3 are positive constants.



SURVEY OF SUFFICIENT DESCENT CG METHODS 175

(C2) The search direction satisfies the sufficient descent condition (1.5).

(C3) The Zoutendijk condition holds.

(C4) Property ⋆ holds.

Then the sequence {xk} converges globally in the sense that (2.5) holds.

Since condition (C1) may not hold in certain cases, we modify the param-
eter βk by

(2.8) β+k = max{ζk, βk},

where ζk ∈ [νk, 0], so that β+k ≥ νk. Note that the choices of ζk = 0, ζk = ν
(1)
k ,

ζk = ν
(2)
k and ζk = ν

(3)
k reduce formula (2.8) to those proposed in [27], [30], [15],

and [34] respectively. Although many CG methods use one of the above three
modifications to show the global convergence, we consider the unified form
(2.8) in this paper. For simplicity, we denote max{ζk, βHS

k } by βHS+
k and call

the CG method with βHS+
k the HS+ method. Moreover, we use the same

manner for all the other methods introduced in this paper.
We now give the global convergence results of the HS+, PR+ and LS+

methods.

Theorem 7. Suppose that Assumptions 1 and 2 hold. Let {xk} be the sequence
generated by the CG method (1.2)–(1.3) with βk = βHS+

k , βPR+
k or βLS+k . If dk

and αk satisfy the sufficient descent condition (1.5) and the Wolfe conditions
(2.1)–(2.2), then the sequence {xk} converges globally in the sense that (2.5)
holds.

Note that the assumptions of Theorem 7 are stronger than those of The-
orem 5. Specifically, Theorem 7 needs to assume the sufficient descent con-
dition. Although the HS, PR and LS methods, as mentioned in Section 1,
are more effective than the other typical CG methods in practise, the global
convergence of the HS, PR and LS methods can be established only under the
stronger conditions. Therefore, to overcome this weakness, many researchers
have tried to develop robust and effective CG methods in this decade. In the
subsequent sections, we will survey recent advances of such CG methods.

§3. Hager-Zhang’s method and its variants

Hager and Zhang [30, 33] proposed a CG method in which the parameter βk
is given by

βHZ
k = βHS

k − µ∥yk−1∥2

(dTk−1yk−1)2
gTk dk−1 =

gTk yk−1

dTk−1yk−1
− µ∥yk−1∥2

(dTk−1yk−1)2
gTk dk−1,(3.1)
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where µ > 1/4. Note that Hager and Zhang first gave (3.1) with µ = 2 in [30],
and after that they extended it to µ > 1/4 in [33]. The search direction of the
HZ method satisfies the sufficient descent condition (1.5) with c̄ = 1− (4µ)−1,
independently of line searches. The global convergence property of the HZ+
method can be obtained under the Wolfe conditions (2.1)–(2.2).

Later on, Yu, Guan and Chen [58] suggested that the CG methods with

βMFR
k = βFR

k − µ∥gk∥2

∥gk−1∥4
gTk dk−1,

βMPR
k = βPR

k − µ∥yk−1∥2

∥gk−1∥4
gTk dk−1,

βMDY
k = βDY

k − µ∥gk∥2

(dTk−1yk−1)2
gTk dk−1,

βMCD
k = βCD

k − µ∥gk∥2

(−gTk−1dk−1)2
gTk dk−1,

βMLS
k = βLSk − µ∥yk−1∥2

(−gTk−1dk−1)2
gTk dk−1

also satisfy the sufficient descent condition (1.5) with c̄ = 1 − (4µ)−1, where
µ > 1/4. Yu, Guan and Li [59] showed that the MPR+ method is globally
convergent under the assumption that the step size αk satisfies an Armijo-
type condition. Also, Yuan [60] proved the global convergence of the MPR
method with the Wolfe conditions. However, Yuan assumed that the step
size αk was bounded away from zero, and this assumption is strong. In order
to establish the global convergence of the MPR+ method under the Wolfe
conditions, Zhang and Li [63] modified βMPR

k and gave

βZL
k =

gTk yk−1

max{h∥dk−1∥2, ∥gk−1∥2}
−

2∥yk−1∥2gTk dk−1

(max{h∥dk−1∥2, ∥gk−1∥2})2
,

where h is a positive constant. The ZL method converges globally under
the Wolfe conditions (2.1)–(2.2). Li and Feng [40] proved the global conver-
gence property of the MLS+ method under the strong Wolfe conditions (2.1)
and (2.4). Dai and Wen [20], motivated by the MBFGS method of Li and
Fukushima [41], proposed a modified HZ method:

βDW
k =

gTk yk−1

dTk−1vk−1
− µ∥yk−1∥2

(dTk−1vk−1)2
gTk dk−1,

where vk−1 = yk−1 + hk−1sk−1, hk−1 = h̄ +max {−sTk−1yk−1/∥sk−1∥2, 0} and
h̄ is a nonnegative constant.
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Dai [13] modified βk of the form βk = gTk zk by

βSDk = gTk zk − µ∥zk∥2gTk dk−1,(3.2)

where µ > 1/4 and zk ∈ Rn is any vector, and showed that the SD method
satisfies the sufficient descent condition (1.5). In fact, by using the inequality
uT v ≤ 1

2(∥u∥
2 + ∥v∥2) for any vectors u and v, (3.2) yields

gTk dk = −∥gk∥2 + βSDk gTk dk−1

= −∥gk∥2 +
(
gTk zk − µ∥zk∥2gTk dk−1

)
gTk dk−1

= −∥gk∥2 + gTk zkg
T
k dk−1 − µ∥zk∥2(gTk dk−1)

2

= −∥gk∥2 +
gTk√
2µ

(
√
2µgTk dk−1zk)− µ∥zk∥2(gTk dk−1)

2

≤ −∥gk∥2 +
1

2

(
∥gk∥2

2µ
+ 2µ∥zk∥2(gTk dk−1)

2

)
− µ∥zk∥2(gTk dk−1)

2

= −
(
1− 1

4µ

)
∥gk∥2.

Therefore, the SD method always satisfies the sufficient descent condition (1.5)
with c̄ = 1 − (4µ)−1. We note that the SD method involves several methods
mentioned in this section. For instance, if we set zk = yk−1/(d

T
k−1yk−1), then

we have βSDk = βHZ
k .

Nakamura, Narushima and Yabe [44] introduced the following property and
showed the global convergence of the SD+ method.

Property 1. Consider the SD+ method. We assume that there exists a pos-
itive constant ε > 0 such that ∥gk∥ ≥ ε holds for all k. Then we say that the
method has Property 1 if there exist positive constants c2 and c3 such that∣∣gTk zk∣∣ ≤ c2∥sk−1∥,

∥zk∥2|gTk dk−1| ≤ c3∥sk−1∥2

hold for all k.

We should note that if Property 1 is satisfied, the SD+ method has Prop-
erty ⋆. Thus, the following theorem is obtained by Theorem 6.

Theorem 8. Suppose that Assumptions 1 and 2 are satisfied. Assume that
the sequence {xk} is generated by the SD+ method and that αk satisfies the
Wolfe conditions (2.1)–(2.2). If the method has Property 1, then the sequence
{xk} converges globally in the sense that (2.5) holds.
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Theorem 8 plays an important role in establishing the global convergence
property of CG methods with concrete βk. For instance, the global conver-
gence results in [30] (which is related with βHZ+

k ) and [40] (which is related

with βMLS+
k ) are given as corollaries of Theorem 8.

Corollary 9. Suppose that Assumptions 1 and 2 are satisfied. Assume that the
sequence {xk} is generated by the SD+ method. Then the following statements
hold:

(a) Assume that αk satisfies the Wolfe conditions (2.1)–(2.2). Then the CG
method with βHZ+

k converges in the sense that (2.5) holds.

(b) Assume that αk satisfies the generalized strong Wolfe conditions (2.1)
and (2.3). Then the CG method with βMLS+

k converges in the sense that
(2.5) holds.

Also Nakamura et al. [44] proposed two descent hybrid CG methods. The
first one combines βHZ

k and βMPR
k , as follows:

βMHP
k =

gTk yk−1

max{dTk−1yk−1, ∥gk−1∥2}
−

µ∥yk−1∥2gTk dk−1

(max{dTk−1yk−1, ∥gk−1∥2})2
.

The second one combines βHZ
k and βMLS

k , as follows:

βMHL
k =

gTk yk−1

max{dTk−1yk−1, − gTk−1dk−1}
−

µ∥yk−1∥2gTk dk−1

(max{dTk−1yk−1, − gTk−1dk−1})2
.

In addition, they gave the global convergence of the proposed hybrid methods.

Corollary 10. Suppose that Assumptions 1 and 2 are satisfied. Assume that
the sequence {xk} is generated by the SD+ method and that αk satisfies the
Wolfe conditions (2.1)–(2.2). Then, the CG methods with βMHP+

k and βMHL+
k

converge in the sense that (2.5) holds, respectively.

Recently, Dai and Kou [15] pointed out a relation between the BFGS quasi-
Newton method and the HZ method and showed that the choice µ = 1 is
suitable. The search direction of the BFGS quasi-Newton method is given by

dQN
k = −Hkgk,

where Hk is an approximation matrix to ∇2f(xk), and Hk is updated by

Hk = Hk−1−
Hk−1yk−1s

T
k−1 + sk−1y

T
k−1Hk−1

sTk−1yk−1

+

(
1 +

yTk−1Hk−1yk−1

sTk−1yk−1

)
sk−1s

T
k−1

sTk−1yk−1
.
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By letting τk be a positive parameter and Hk−1 = 1
τk
I, the search direction

d̃QN
k ≡ τkd

QN
k , which is multiplied by τk, is given by

d̃QN
k = −gk +

gTk yk−1

dTk−1yk−1
dk−1−

(
τk +

∥yk−1∥2

sTk−1yk−1

)

×
gTk sk−1

dTk−1yk−1
dk−1 +

gTk dk−1

dTk−1yk−1
yk−1.

In addition, Dai and Kou defined their search direction by the solution of the
following minimization problem:

dk = argmin
d

{∥d− d̃QN
k ∥ | d = −gk + βdk−1, β ∈ R},

and they gave a search direction by (1.3) with

βDK
k =

gTk yk−1

dTk−1yk−1
−

(
τk +

∥yk−1∥2

sTk−1yk−1
−
sTk−1yk−1

∥sk−1∥2

)
gTk sk−1

dTk−1yk−1
.

By taking into account the relation τkI ≈ ∇2f(xk−1), τk = sTk−1yk−1/∥sk−1∥2
is one of suitable choices, and then βDK

k is identical to βHZ
k with µ = 1. Dai

and Kou confirmed the good numerical performance of the HZ method with
µ = 1 and claimed that the choice µ = 1 is superior not only in theory but
also in practice.

§4. Scaled and three-term CG methods

Zhang, Zhou and Li [64] proposed the modified FR method by

dk = −θ̄kgk + βFR
k dk−1, k ≥ 1,(4.1)

where θ̄k = dTk−1yk−1/∥gk−1∥2. Note that the search direction (4.1) can be

rewritten by dk = θ̄k(−gk + βDY
k dk−1), and hence it can be regarded as a

scaled DY method. Cheng [11] gave the modified PR method:

dk = −gk + βPR
k

(
I −

gkg
T
k

gTk gk

)
dk−1 k ≥ 1.(4.2)

Zhang, Zhou and Li proposed the three-term PR method [65] and the three-
term HS method [66], which are respectively given by

dk = −gk + βPR
k dk−1 − θ

(1)
k yk−1, k ≥ 1,(4.3)

dk = −gk + βHS
k dk−1 − θ

(2)
k yk−1, k ≥ 1,(4.4)
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where θ
(1)
k = gTk dk−1/∥gk−1∥2 and θ

(2)
k = gTk dk−1/d

T
k−1yk−1. They showed the

global convergence properties of their methods under appropriate line searches.
We note that these methods always satisfy gTk dk = −∥gk∥2 < 0 for all k, which
implies the sufficient descent condition with c̄ = 1.

Narushima, Yabe and Ford [46] proposed a three-term CG method:

dk = −gk + βk(g
T
k pk)

†{(gTk pk)dk−1 − (gTk dk−1)pk}, k ≥ 1,(4.5)

where pk ∈ Rn is a parameter vector and † denotes the generalized reciprocal
such that

a† =


1

a
a ̸= 0,

0 a = 0.

We emphasize that the method (1.2) and (4.5) always satisfies

gTk dk = −∥gk∥2,(4.6)

independently of choices of βk, pk and line searches. In addition, the relation
(4.6) implies that the sufficient descent condition (1.5) holds with c̄ = 1. If
gTk pk = 0, (4.5) implies dk = −gk, otherwise (4.5) can be rewritten by

dk = −gk + βkdk−1 − βk
gTk dk−1

gTk pk
pk = −gk + βk

(
I −

pkg
T
k

gTk pk

)
dk−1.(4.7)

The matrix (I − pkg
T
k /g

T
k pk) is a projection matrix into the orthogonal com-

plement of Span{gk} along Span{pk}. Especially, if we choose pk = gk, then
(I − gkg

T
k /∥gk∥2) is an orthogonal projection matrix.

If we use the exact line search and pk such that gTk pk ̸= 0, then (4.7)
becomes the usual CG method (1.3). The most typical choices are pk = gk
and pk = yk−1. The choice pk = gk yields

(4.8) dk = −
(
1 + βk

gTk dk−1

∥gk∥2

)
gk + βkdk−1, k ≥ 1.

The direction (4.8) can be regarded as a scaled CG method. When pk = yk−1,
gTk pk = gTk yk−1 = 0 can occur. In this case, the direction (4.5) becomes the
steepest descent direction dk = −gk, and then gTk yk−1 = 0 can be regarded
as a restart criterion. On the other hand, if we choose pk = dk−1, then (4.5)
implies dk = −gk for all k.

We should note that the search direction (4.5) includes the search directions
proposed in [11,64–66]. Since (4.1) satisfies gTk dk = −∥gk∥2 for all k, (4.1) can
be rewritten by the three-term form:

dk = −gk + βFR
k dk−1 − θ

(3)
k gk,
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where θ
(3)
k = gTk dk−1/∥gk−1∥2. Therefore, (4.5) with βk = βFR

k and pk = gk
becomes (4.1). The search direction (4.5) with βk = βPR

k and pk = gk becomes
(4.2). If gTk yk−1 ̸= 0, (4.5) with βk = βPR

k and pk = yk−1 becomes (4.3), and
(4.5) with βk = βHS

k and pk = yk−1 becomes (4.4).
Narushima et al. also showed the global convergence property of the

method (1.2) and (4.5). Note that some straightforward calculations yield
the following relation

∥dk∥2 ≤ ψ2
k∥dk−1∥2 + ∥gk∥2

for all k, where ψk is defined by

ψk = βk∥gk∥∥pk∥(gTk pk)†.(4.9)

Narushima et al. [46] introduced a property for ψk and gave the global con-
vergence theorem as follows. These correspond to Property ⋆ and Theorem 6,
respectively.

Property 2. Consider the three-term CG method (1.2) and (4.5), and suppose
that there exists a positive constant ε such that ε ≤ ∥gk∥ holds for all k. If
there exist constants b > 1 and ξ̄ > 0 such that |ψk| ≤ b and

∥sk−1∥ ≤ ξ̄ =⇒ |ψk| ≤
1

b

for all k, then we say that the method has Property 2

Theorem 11. Suppose that Assumptions 1 and 2 hold. Let {xk} be the se-
quence generated by the three-term CG method (1.2) and (4.5) that satisfies
the following conditions:

(C1) βk ≥ νk for all k,

(C2) Property 2 holds.

If αk satisfies the generalized strong Wolfe conditions (2.1) and (2.3), then the
method converges in the sense that (2.5) holds.

Theorem 11 plays an important role in establishing the global convergence
of the three-term CG methods. For instance, the following results are given
as a corollary of Theorem 11.

Corollary 12. Suppose that Assumptions 1 and 2 are satisfied. Let {xk} be
the sequence generated by the three-term CG method (1.2) and (4.5), where
αk satisfies the generalized strong Wolfe conditions (2.1) and (2.3). Then the
following statements hold :
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(i) The method with βk = βPR+
k and pk = yk−1 (or pk = gk) converges in

the sense that (2.5) holds.

(ii) The method with βk = βHS+
k and pk = yk−1 (or pk = gk) converges in

the sense that (2.5) holds.

More recently, by extending the three-term CG method (4.5), Al-Baali,
Narushima and Yabe [2] gave the following family of three-term CG methods:

dk =

{
−gk if k = 0 or |gTk pk| ≤ θ̄∥gk∥∥pk∥,

−gk + βkdk−1 + ηkpk otherwise,
(4.10)

where pk is any nonzero vector, 0 < θ̄ < 1 is a constant and

ηk = −
(γk − 1)∥gk∥2 + βkg

T
k dk−1

gTk pk
.(4.11)

Here, γk ∈ [γ̄1, γ̄2] is a parameter, where 0 < γ̄1 ≤ 1 ≤ γ̄2. Note that the
second case of (4.10) implies

gTk dk = −γk∥gk∥2,

and hence the directional derivative gTk dk can be controlled by changing the
parameter γk. Also note that (4.10) with γk = 1 reduces to (4.7). They
defined a property for the proposed method similar to Property ⋆, and showed
the global convergence of the method with such a property. In addition, by
using this result, they proved the global convergence of the method with βHS+

k ,

βPR+
k , βLS+k , βHZ+

k , βMPR+
k and βMLS+

k under the generalized strong Wolfe
conditions. They also proposed several choices for γk, and recommended the
following choice:

(4.12) γk = max

{
γ̄1,min

{
γ̄2, 1− γ̄

|βkgTk dk−1|
∥gk∥∥dk−1∥

}}
,

where γ̄ is a nonnegative constant.

§5. Sufficient descent CG methods based on secant conditions

In order to accelerate CG methods, some researchers proposed the CG meth-
ods based on secant conditions [16, 26, 57, 67], and such methods are known
as efficient CG methods. However, these methods do not necessarily gener-
ate descent directions. In order to overcome this weakness, some researchers
recently proposed sufficient descent CG methods based on secant conditions.
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In Section 5.1, we recall the CG methods based on secant conditions. In Sec-
tion 5.2, we survey sufficient descent CG methods based on the SD method
(recall (3.2)) and secant conditions. Furthermore, we review the sufficient de-
scent CG methods based on the scaled/three-term CG method (recall (4.8)
and (4.5)) and secant conditions in Section 5.3

5.1. CG methods based on secant conditions

In order to solve a symmetric positive definite system Ax = b or equivalently
minimize a strictly convex quadratic function 1

2x
TAx− bTx, the LCG method

generates search directions that satisfy the conjugacy condition:

dTi Adj = 0, ∀i ̸= j.(5.1)

On the other hand, for general nonlinear functions, it follows from the mean
value theorem that there exists some τ ∈ (0, 1) such that

dTk yk−1 = αk−1d
T
k∇2f(xk−1 + ταk−1dk−1)dk−1.

Therefore, it is reasonable to replace (5.1) by the following conjugacy condition
for general objective functions:

dTk yk−1 = 0.(5.2)

An extension of the conjugacy condition was studied by Perry [48]. Perry tried
to incorporate the second-order information of the objective function into the
CG method to accelerate it. Specifically, by using the secant condition and the
search direction of the quasi-Newton methods, which are respectively defined
by

Bksk−1 = yk−1 and Bkdk = −gk,(5.3)

the following relation is obtained:

dTk yk−1 = dTk (Bksk−1) = (Bkdk)
T sk−1 = −gTk sk−1,

where Bk is a symmetric approximation matrix to the Hessian ∇2f(xk). Then
Perry replaced the conjugacy condition (5.2) by the following condition

dTk yk−1 = −gTk sk−1.(5.4)

Furthermore, Dai and Liao [16] incorporated a nonnegative parameter t into
Perry’s condition and gave

dTk yk−1 = −tgTk sk−1.(5.5)
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For the case t = 0, (5.5) reduces to the usual conjugacy condition (5.2). On
the other hand, for the case t = 1, (5.5) becomes Perry’s condition (5.4). By
substituting (1.3) into (5.5), Dai and Liao derived the following formula:

βDL
k =

gTk (yk−1 − tsk−1)

dTk−1yk−1
.

Later on, following Dai and Liao, several CG methods have been presented.
Yabe and Takano [57] proposed a CG method based on the modified secant
condition by Zhang, Deng and Chen [61] and Zhang and Xu [62]:

Bksk−1 = y
(1)
k−1, y

(1)
k−1 = yk−1 + ρk

(
ϕk−1

sTk−1uk−1
uk−1

)
,(5.6)

where

ϕk−1 = 6(f(xk−1)− f(xk)) + 3(gk−1 + gk)
T sk−1,

ρk ≥ 0 is a scalar and uk−1 ∈ Rn is any vector such that sTk−1uk−1 ̸= 0 holds.
Yabe-Takano’s formula for βk is given by

βY T
k =

gTk (y
(1)
k−1 − tsk−1)

dTk−1y
(1)
k−1

.

On the other hand, Zhou and Zhang [67] proposed a CG method based on the
MBFGS secant condition by Li and Fukushima [41]:

Bksk−1 = y
(2)
k−1, y

(2)
k−1 = yk−1 + Γ∥gk−1∥qsk−1,(5.7)

where Γ > 0 and q > 0 are constants. Zhou-Zhang’s formula for βk is as
follows

βZZ
k =

gTk (y
(2)
k−1 − tsk−1)

dTk−1y
(2)
k−1

.

In addition, Ford, Narushima and Yabe [26] gave a CG method based on the
multi-step secant condition by Ford and Moghrabi [24,25]:

Bks
MS1
k−1 = yMS1

k−1 , sMS1
k−1 = sk−1 − ξk−1sk−2, yMS1

k−1 = yk−1 − ξk−1yk−2,

(5.8)

where

ξk−1 =
δ2k−1

1 + 2δk−1
, δk−1 = κk

∥sk−1∥
∥sk−2∥

,(5.9)
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and κk ≥ 0 is a scaling factor. The formula for βk is

βF1
k =

gTk (y
MS1
k−1 − tsMS1

k−1 )

dTk−1y
MS1
k−1

.

In the case κk = 0, this condition reduces to the usual secant condition (5.3).
Moreover, by using another multi-step secant condition:

Bks
MS2
k−1 = yMS2

k−1 , sMS2
k−1 = sk−1 − ξk−1sk−2, yMS2

k−1 = yk−1 − tξk−1yk−2,

(5.10)

they also proposed another formula

βF2
k =

gTk (y
MS2
k−1 − tsMS2

k−1 )

dTk−1y
MS2
k−1

.

In order to unify the above secant conditions, we consider the following
form:

Bkrk−1 = wk−1.(5.11)

In the case of rk−1 = sk−1 and wk−1 = yk−1, (5.11) reduces to the usual secant
condition (5.3). The unified secant condition (5.11) derived the condition
dTk−1wk−1 = −tgTk rk−1, which is associated with (5.5), and then we have the
following formula:

βk =
gTk (wk−1 − trk−1)

dTk−1wk−1
.(5.12)

Note that, if dTk−1wk−1 = 0, we set βk = 0 in practice. In Table 1, we give

wk−1 and rk−1 in (5.12) for the cases βDL
k , βY T

k , βZZ
k , βF1

k and βF2
k .

Table 1: wk−1 and rk−1 in (5.12)

βk wk−1 rk−1

βDL
k yk−1 sk−1

βY T
k y

(1)
k−1 in (5.6) sk−1

βZZ
k y

(2)
k−1 in (5.7) sk−1

βF1
k yMS1

k−1 in (5.8) sMS1
k−1 in (5.8)

βF2
k yMS2

k−1 in (5.10) sMS2
k−1 in (5.10)
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5.2. The SD method based on secant conditions

In order to establish the sufficient descent property of the CG method with

(5.12), Narushima and Yabe [45] chose zk =
wk−1 − trk−1

dTk−1wk−1
in (3.2) and pro-

posed

(5.13) βSSDk =
gTk (wk−1 − trk−1)

dTk−1wk−1
− µ

∥wk−1 − trk−1∥2

(dTk−1wk−1)2
gTk dk−1.

By Table 1, concrete formulae for βSSDk are respectively given by

βSSDDL
k =

gTk (yk−1 − tsk−1)

dTk−1yk−1
− µ∥yk−1 − tsk−1∥2

(dTk−1yk−1)2
gTk dk−1,

βSSDY T
k =

gTk (y
(1)
k−1 − tsk−1)

dTk−1y
(1)
k−1

−
µ∥y(1)k−1 − tsk−1∥2

(dTk−1y
(1)
k−1)

2
gTk dk−1,

βSSDZZ
k =

gTk (y
(2)
k−1 − tsk−1)

dTk−1y
(2)
k−1

−
µ∥y(2)k−1 − tsk−1∥2

(dTk−1y
(2)
k−1)

2
gTk dk−1,

βSSDF1
k =

gTk (y
MS1
k−1 − tsMS1

k−1 )

dTk−1y
MS1
k−1

−
µ∥yMS1

k−1 − tsMS1
k−1 ∥2

(dTk−1y
MS1
k−1 )2

gTk dk−1,

βSSDF2
k =

gTk (y
MS2
k−1 − tsMS2

k−1 )

dTk−1y
MS2
k−1

−
µ∥yMS2

k−1 − tsMS2
k−1 ∥2

(dTk−1y
MS2
k−1 )2

gTk dk−1.

Note that, in [45], they dealt with the parameter of the form:

βSSDk = gTk (wk−1 − trk−1)(d
T
k−1wk−1)

†

−µ∥wk−1 − trk−1∥2gTk dk−1{(dTk−1wk−1)
2}†.

They proved the global convergence of the SSDZZ method as follows.

Theorem 13. Suppose that Assumptions 1 and 2 hold. Let {xk} be the se-
quence generated by the SSDZZ method, where αk satisfies the Wolfe condi-
tions (2.1)–(2.2). Then the method converges globally in the sense that (2.5)
holds.

They also proved the global convergence of the SSD+ method, namely, the
CGmethod with (1.2), (2.8) and (5.13). In order to establish the global conver-
gence of the SSDYT+ method, they modified βSSDY T

k and defined β̃SSDY T+
k

by (2.8) and (5.13) with rk−1 = sk−1 and

(5.14) wk−1 = yk−1 + ρk

(
max{0, ϕk−1}
sTk−1uk−1

uk−1

)
.
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Note that this modification yields dTk−1wk−1 ≥ dTk−1yk−1 > 0 under the Wolfe
conditions.

Theorem 14. Suppose that Assumptions 1 and 2 hold. Let {xk} be the se-
quence generated by the SSD+ method, where αk satisfies the Wolfe conditions
(2.1)–(2.2). Then the following statements hold :

(i) The SSDDL+ method converges globally in the sense that (2.5) holds.

(ii) Assume that ρk and uk satisfy 0 ≤ ρk ≤ ρ̄ and

|sTk−1uk−1| ≥ m̄∥sk−1∥∥uk−1∥,

where ρ̄ is any fixed positive constant and m̄ is some positive constant.
Then the SSDYT+ method (which uses β̃SSDY T+

k ) converges globally in
the sense that (2.5) holds.

(iii) Assume that there exists a positive constant φ1 such that, for all k,

max{|gTk−1dk−1|, |gTk dk−1|} ≤ φ1|dTk−1y
MS1
k−1 |(5.15)

holds. If κk satisfies 0 ≤ κk ≤ κ̄ for any fixed positive constant κ̄, then
the SSDF1+ method converges globally in the sense that (2.5) holds.

(iv) Assume that there exists a positive constant φ2 such that, for all k,

max{|gTk−1dk−1|, |gTk dk−1|} ≤ φ2|dTk−1y
MS2
k−1 |(5.16)

holds. If κk satisfies 0 ≤ κk ≤ κ̄ for any fixed positive constant κ̄, then
the SSDF2+ method converges globally in the sense that (2.5) holds.

Assumptions (5.15)–(5.16) look like strong assumptions. However, Narushima
and Yabe [45] claimed that these are reasonable if the generalized strong Wolfe
conditions (2.1) and (2.3) with σ2 < 1 are used. It follows from (2.3) that

|gTk dk−1| ≤ max{σ1, σ2}|gTk−1dk−1| ≤ |gTk−1dk−1|,

which implies that (5.15) holds if |gTk−1dk−1| ≤ φ1|dTk−1y
MS1
k−1 | is satisfied. From

the definition of yMS1
k−1 in (5.8), we have

dTk−1y
MS1
k−1 = dTk−1yk−1 − ξk−1d

T
k−1yk−2.(5.17)

If sTk−1yk−2 ≤ 0, then (5.17), ξk−1 > 0 and (2.3) yield

dTk−1y
MS1
k−1 ≥ dTk−1yk−1 ≥ −(1− σ1)g

T
k−1dk−1 (> 0).

If sTk−1yk−2 > 0, we can control the magnitude of the last term in (5.17) by
using the parameter κk in (5.9). Thus (5.15) is justified. The assumption
(5.16) is also reasonable by the same reason as in (5.15).
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5.3. Scaled/three-term CG methods based on secant conditions

Chen and Liu [12] and Livieris and Pintelas [43] respectively incorporated βY T
k

and a variant of βZZ
k into the scaled CG method (4.8). On the other hand,

Sugiki, Narushima and Yabe [54] gave the three-term CG method (4.5) with
the parameter βk in (5.12) and pk = wk−1 − trk−1. In addition, Sugiki et al.
proved the global convergence of their method as follows.

Theorem 15. Suppose that Assumptions 1 and 2 hold. Let {xk} be the se-
quence generated by the three-term CG method (1.2) and (4.5) with βk in (5.12)
and pk = wk−1 − trk−1, where αk satisfies the Wolfe conditions (2.1)–(2.2). If
there exist positive constants c4 and c5 such that wk−1 and rk−1 satisfy

∥wk−1 − trk−1∥ ≤ c4∥sk−1∥,
|dTk−1wk−1| ≥ c5αk−1∥dk−1∥2

for all k, then the method converges globally in the sense that (2.5) holds.

By using the above theorem, Sugiki et al. also showed the global con-
vergence of the concrete methods under the assumption that the objective
function is uniformly convex. We note that if f is a uniformly convex function
on a convex set N , then there exists a constant λ > 0 such that

(∇f(x)−∇f(x̃))T (x− x̃) ≥ λ∥x− x̃∥2, for all x, x̃ ∈ N .

Theorem 16. Suppose that Assumptions 1 and 2 hold and f is a uniformly
convex function. Let {xk} be the sequence generated by the three-term CG
method (1.2) and (4.5) with βk in (5.12) and pk = wk−1 − trk−1, where αk

satisfies the Wolfe conditions (2.1)–(2.2). Let x∗ be a unique optimal solution
of the problem (1.1). Then the following statements hold :

(i) The method with βDL
k converges globally in the sense that lim

k→∞
xk = x∗.

(ii) Assume that ρk and uk satisfy 0 ≤ ρk ≤ ρ̄ and

|sTk−1uk−1| ≥ m̄∥sk−1∥∥uk−1∥,

where ρ̄ is a positive constant such that ρ̄ < λ
3L , and m̄ is some positive

constant. Then the method with βY T
k converges globally in the sense that

lim
k→∞

xk = x∗.

(iii) If κk satisfies 0 ≤ κk ≤ κ̄ for some positive constant κ̄ < 2λ
L , then the

method with βF1
k converges globally in the sense that lim

k→∞
xk = x∗.
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(iv) If κk satisfies 0 ≤ κk ≤ κ̄ for some positive constant κ̄ < 2λ
Lt , then the

method with βF2
k converges globally in the sense that lim

k→∞
xk = x∗.

Sugiki et al. [54] also showed the following global convergence property for
general objective functions.

Theorem 17. Suppose that Assumptions 1 and 2 hold. Let {xk} be the se-
quence generated by the three-term CG method (1.2) and (4.5) with βZZ

k and
pk = wk−1 − trk−1, where αk satisfies the Wolfe conditions (2.1)–(2.2). Then
the method converges globally in the sense that (2.5) holds.

Since Sugiki et al. did not prove the global convergence of the methods
for general objective functions except for the method with βZZ

k , we now give
the global convergence theorem of the method with βDL+

k , βF1+
k and βF2+

k

and its sketch of proof. In addition, to establish the global convergence of
the method with βY T+

k , similarly to the SSDYT+ method in Theorem 14, we

need to modify the parameter βY T+
k and define β̃Y T+

k by (2.8) and (5.12) with
rk−1 = sk−1 and wk−1 given in (5.14).

Theorem 18. Suppose that Assumptions 1 and 2 hold. Let {xk} be the se-
quence generated by the three-term CG method (1.2) and (4.5) with βk in
(5.12) and pk = wk−1 − trk−1, where αk satisfies the generalized strong Wolfe
conditions (2.1) and (2.3). Then the following statements hold:

(i) The method with βDL+
k converges globally in the sense that (2.5) holds.

(ii) Assume that ρk and uk satisfy 0 ≤ ρk ≤ ρ̄ and

|sTk−1uk−1| ≥ m̄∥sk−1∥∥uk−1∥,

where ρ̄ is any fixed positive constant and m̄ is some positive constant.
Then the method with β̃Y T+

k converges globally in the sense that (2.5)
holds.

(iii) Assume that there exists a positive constant φ3 such that, for all k,

|gTk−1dk−1| ≤ φ3|dTk−1y
MS1
k−1 |(5.18)

holds. If κk satisfies 0 ≤ κk ≤ κ̄ for any fixed positive constant κ̄, then
the method with βF1+

k converges globally in the sense that (2.5) holds.

(iv) Assume that there exists a positive constant φ4 such that, for all k,

|gTk−1dk−1| ≤ φ4|dTk−1y
MS2
k−1 |(5.19)

holds. If κk satisfies 0 ≤ κk ≤ κ̄ for any fixed positive constant κ̄, then
the method with βF2+

k converges globally in the sense that (2.5) holds.
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Proof. By Theorem 11, we only need to prove that each method satisfies Prop-
erty 2. Moreover, similarly to the case of Property ⋆, it suffices to show that
there exists a positive constant c6 such that

(5.20) |ψk| ≤ c6∥sk−1∥

holds for all k under the assumption that ε ≤ ∥gk∥ holds for all k and some
positive constant ε.

By (4.9), (5.12) and pk = wk−1 − trk−1, we have

|ψk| =

∣∣∣∣∣gTk (wk−1 − trk−1)

dTk−1wk−1

∣∣∣∣∣ ∥gk∥∥wk−1 − trk−1∥|gTk (wk−1 − trk−1)|†(5.21)

≤ ∥gk∥∥wk−1 − trk−1∥
|dTk−1wk−1|

.

Assumptions 1 and 2 yield that ∥gk∥ is bounded. In a similar way to the
proof of Theorem 14 (namely, [45, Theorem 3.5]), we can show that there
exist positive constants c7 and c8 such that ∥wk−1 − trk−1∥ ≤ c7∥sk−1∥ and
|dTk−1wk−1| ≥ c8 hold for each method. Therefore, (5.21) implies (5.20), and
hence the proof is complete.

Although the assumptions (5.18) and (5.19) look like strong assumptions,
we can justify these by the same reason as in (5.15) and (5.16).

§6. CG-DESCENT

CG-DESCENT [30–32,34] is a software developed by Hager and Zhang, which
is based on the HZ+ method, and now it is one of major software for solv-
ing large-scale unconstrained optimization problems. Until Version 5.3, CG-
DESCENT implemented the usual HZ+ method with an efficient line search,
and from Version 6.0, a subspace iteration and a preconditioning step tech-
niques are inserted into the previous version. The latest version is 6.7. Codes
of CG-DESCENT are written by Fortran or C, and are provided in Hager’s
web page [29].

Hager and Zhang improved the line search such that the HZ+ method
becomes more effective. In the line search of each iteration, by using the
bisection method and the quadratic and cubic interpolations, the step size
αk is obtained so that the Wolfe conditions (2.1)–(2.2) are satisfied. If the
condition

|f(xk + αkdk)− f(xk)| ≤ ωCk
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is satisfied, then CG-DESCENT switches permanently the Wolfe conditions
to the condition

f(xk + αkdk) ≤ f(xk) + ϵ|f(xk)|

and the approximate Wolfe conditions

−(1− 2δ)gTk dk ≥ g(xk + αkdk)
Tdk ≥ σ1g

T
k dk,

where ϵ > 0 and ω > 0 are small numbers, 0 ≤ ∆ ≤ 1, and Ck and Qk are
updated by

Ck = Ck−1 + (|f(xk)| − Ck−1)/Qk, C−1 = 0,

Qk = 1 +∆Qk−1, Q−1 = 0.

Moreover, from Version 6.0, the subspace iteration and the preconditioning
step are used, which are given in Hager-Zhang’s paper [34]. When gk ∈ Sk =
Span{dk−1, . . . , dk−m} for some integer m, iterates may converge very slowly.
In order to avoid this phenomenon, they considered the following subspace
minimization problem:

(6.1) min
z∈Sk

f(xk + z).

If zk is a solution of this problem and xk+1 = xk+zk, then we have g(xk+1)
T v =

0 for all v ∈ Sk by the first order optimality condition of (6.1). Therefore,
g(xk+1) ̸∈ Sk or g(xk+1) = 0 holds. Furthermore, in order to accelerate the
method, they used the following preconditioned HZ+ method:

dk = −Pkgk + β+k dk, βk =
gTk Pkyk−1

dTk−1yk−1
− µ

yTk−1Pkyk−1

(dTk−1yk−1)2
gTk dk−1,(6.2)

β+k = max

{
βk, ν̄3

gTk−1dk−1

dTk−1P
−
k dk−1

}
,

where µ and ν̄3 are constants such that µ > 1/4 and ν̄3 > 0, Pk is a precondi-
tioner matrix made by using information obtained in the subspace minimiza-
tion problem (6.1), and P−

k is the pseudoinverse of Pk. The outline of the
algorithm is given by the following procedures, where ϑ1 and ϑ2 are positive
constants such that 0 < ϑ1 < ϑ2 < 1 and dist{x,Sk} = inf{∥y − x∥ | y ∈ Sk}.

Standard CG iteration. Perform the HZ+ method (CG-DESCENT 5.3) as
long as dist{gk,Sk} > ϑ1∥gk∥. When dist{gk,Sk} ≤ ϑ1∥gk∥ is satisfied,
branch to the subspace iteration.
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Subspace iteration. Solve the subspace minimization problem (6.1) by us-
ing the preconditioned HZ+ method (6.2) with Pk = ZP̂kZ

T , where Z
is a matrix whose columns are an orthonormal basis for the subspace
Sk and P̂k is a preconditioner in the subspace. Stop at the iteration
where dist{gk+1,Sk} ≥ ϑ2∥gk+1∥ is satisfied, and then branch to the
preconditioning step.

Preconditioning step. When the subspace iteration terminates and we re-
turn to the full space standard CG iteration, we have found that the
convergence can be accelerated by performing the preconditioned HZ+
method (6.2). Define σk by

σk = max

{
σmin,min

{
σmax,

sTk−1yk−1

yTk−1yk−1

}}
,

where σmax and σmin are parameters such that 0 < σmin ≤ σmax <
∞. Let Z be a matrix whose columns are an orthonormal basis for
the subspace Sk, and set Pk = ZP̂kZ

T + σk(I − ZZT ), where P̂k is
a preconditioner defined in Subspace iteration. After completing the
preconditioning iteration, return to the standard CG iteration.

CG-DESCENT (from Version 6.0) is implemented based on the above pro-
cedures. If the preconditioned HZ+ method (6.2) with µ = 1 is precondi-
tioned by the Hessian approximation gotten from a quasi-Newton method,
then β+k = 0, and the method reduces to the quasi-Newton method. There-
fore, in the subspace iteration, the quasi-Newton method is used. More details
of implementation of CG-DESCENT are given in [34]. We also find from the
numerical results in [34] that the subspace iteration and the preconditioning
step are very efficient. We note that it is expected that these techniques work
efficiently for other CG methods.

§7. Numerical results

In this section, we present some numerical results of the CG methods surveyed
in this paper. The programs were coded in C by modifying the software
package CG-DESCENT Version 5.3 [30–32]. All computations were carried
out on Lenovo G570 PC with Intel Core i5-2430M CPU (2.40GHz×2) and
8.0Gb RAM. We run virtual Linux OS Ubuntu 11 on Windows 7 by using
VMware Player 4.04, and assigned one processor and 5.9Gb RAM to Ubuntu
11.

Our test problems consist of 132 tests used by Hager [29] and belong to the
CUTEr library [10, 28] for unconstrained optimization. The names of these
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Table 2: Test problems (names & dimensions); Collected by CUTEr

Name n Name n Name n Name n

AKIVA 2 DIXMAANE 3000 HEART8LS 8 PALMER7C 8
ALLINITU 4 DIXMAANF 3000 HELIX 3 PALMER8C 8
ARGLINA 200 DIXMAANG 3000 HIELOW 3 PENALTY1 1000
ARGLINB 200 DIXMAANH 3000 HILBERTA 2 PENALTY2 200
ARWHEAD 5000 DIXMAANI 3000 HILBERTB 10 POWELLSG 5000
BARD 3 DIXMAANJ 3000 HIMMELBB 2 POWER 10000
BDQRTIC 5000 DIXMAANK 15 HIMMELBF 4 QUARTC 5000
BEALE 2 DIXMAANL 3000 HIMMELBG 2 ROSENBR 2
BIGGS6 6 DIXON3DQ 10000 HIMMELBH 2 S308 2
BOX3 3 DJTL 2 HUMPS 2 SCHMVETT 5000
BRKMCC 2 DQDRTIC 5000 JENSMP 2 SENSORS 100
BROWNAL 200 DQRTIC 5000 KOWOSB 4 SINEVAL 2
BROWNBS 2 EDENSCH 2000 LIARWHD 5000 SINQUAD 5000
BROWNDEN 4 EG2 1000 LOGHAIRY 2 SISSER 2
BROYDN7D 5000 ENGVAL1 5000 MANCINO 100 SNAIL 2
BRYBND 5000 ENGVAL2 3 MARATOSB 2 SPARSINE 5000
CHNROSNB 50 ERRINROS 50 MEXHAT 2 SPARSQUR 10000
CLIFF 2 EXPFIT 2 MOREBV 5000 SPMSRTLS 4999
COSINE 10000 EXTROSNB 1000 MSQRTALS 1024 SROSENBR 5000
CRAGGLVY 5000 FLETCBV2 5000 MSQRTBLS 1024 STRATEC 10
CUBE 2 FLETCHCR 1000 NONCVXU2 5000 TESTQUAD 5000
CURLY10 10000 FMINSRF2 5625 NONDIA 5000 TOINTGOR 50
CURLY20 10000 FMINSURF 5625 NONDQUAR 5000 TOINTGSS 5000
DECONVU 63 FREUROTH 5000 OSBORNEA 5 TOINTPSP 50
DENSCHNA 2 GENHUMPS 5000 OSBORNEB 11 TOINTQOR 50
DENSCHNB 2 GENROSE 500 OSCIPATH 10 TQUARTIC 5000
DENSCHND 3 GROWTHLS 3 PALMER1C 8 TRIDIA 5000
DENSCHNE 3 GULF 3 PALMER1D 7 VARDIM 200
DENSCHNF 2 HAIRY 2 PALMER2C 8 VAREIGVL 50
DIXMAANA 3000 HATFLDD 3 PALMER3C 8 WATSON 12
DIXMAANB 3000 HATFLDE 3 PALMER4C 8 WOODS 4000
DIXMAANC 3000 HATFLDFL 3 PALMER5C 6 YFITU 3
DIXMAAND 3000 HEART6LS 6 PALMER6C 8 ZANGWIL2 2

tests and their dimension n are given in Table 2. Hager [29] dealt with 145 test
problems, while we did not consider the remaining tests here due to the fact
that the memory of our PC was insufficient for some of them and different local
solutions were obtained when different solvers were applied to those omitted
problems.

Table 3 presents the methods used in our experiments, where the first
column consists of abbreviation names of these methods.

As mentioned above, we have implemented all the methods under con-
siderations on the basis of the software package CG-DESCENT Version 5.3.
Although this version is not the most recent one, we used it for a fair compar-
ison of the CG methods. In the line search, we used the default procedures
of CG-DESCENT, which are described in Section 6. We used the parameters
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Table 3: Tested methods

HS The HS+ method
CGD 5 CG-DESCENT Version 5.3 (namely, the HZ+ method)

3THS The three-term CG method (4.5) with βk = βHS+
k and pk = gk

G3THS The three-term CG method (4.10)

with (4.12), βk = βHS+
k and pk = gk

DL The DL+ method
SSDDL The SSDDL+ method

3TDL The three-term CG method (4.5) with βk = βDL+
k and pk = yk−1 − tsk−1

values of δ = 0.1, σ1 = 0.9 for the Wolfe and the approximate Wolfe conditions,
and used ϵ = 10−6, ω = 10−3 and ∆ = 0.7 for the parameters of the switching.
For the other parameters, we set µ = 2 for CGD 5 and SSDDL, t = 1 for
DL, SSDDL and 3TDL, and γ̄1 = 0.01, γ̄2 = 100, θ̄ = 10−12 and γ̄ = 0.8 for

G3THS. Moreover, we used, for all methods, modification (2.8) with ζk = ν
(2)
k

and ν̄2 = 0.4. Since HS and DL do not necessarily generate descent search
directions, we used the restart strategy (namely, we set dk = −gk) when the
descent condition (1.4) was not satisfied. We stopped the algorithm if either

∥gk∥∞ ≤ 10−6

held or the CPU time exceeded 600 seconds (10 minutes).
To compare performances among the tested methods, we adopt the perfor-

mance profiles of Dolan and Moré [21]. For ns solvers and np problems, the
performance profile P : R → [0, 1] is defined as follows:

Let P and S be the set of problems and the set of solvers, respectively. For
each problem p ∈ P and for each solver s ∈ S, we define tp,s = computing
time (similarly for the number of iterations) required to solve problem p by
solver s. The performance ratio is given by rp,s = tp,s/mins∈S tp,s. Then, the
performance profile is defined by P (τ) = 1

np
size{p ∈ P|rp,s ≤ τ}, for all τ > 0,

where sizeA, for any set A, stands for the number of the elements in that set.
Note that P (τ) is the probability for solver s ∈ S such that the performance
ratio rp,s is within a factor τ > 0 of the best possible ratio. Note that np = 132
was used in each figure.

In Figures 1 and 2, we give the performance profiles based on the CPU
time. In order to prevent a measurement error, we set the minimum of the
measurement 0.2 seconds. We see from Figure 1 that G3THS is superior to
the other methods, and 3THS also worked well. On the other hand, HS did
not perform so well. Figure 2 shows that SSDDL outperforms CGD 5 a little,
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and DL is almost comparable with CGD 5. In this numerical experiment,
3TDL performed poorly. 3TDL was stopped for a few problems because the
number of line search iterations exceeds the pre-given criterion number. This
is the reason why the performance profile of 3TDL looks poor. For the other
problems, 3TDL worked well.

As mentioned in Section 6, the CG-DESCENT Version 6.7 (stands for
CGD 6) [34] is the latest one, which was superior to the other tested meth-
ods. Since we expect that the subspace iteration and the preconditioning step
also work efficiently for other CG methods, we incorporate these procedures
into G3THS and SSDDL. The resulting methods (referred to as G3THS 6
and SSDDL 6, respectively) differ from CG-DESCENT 6.7 in the following
three points. First, in the standard CG iteration, we used the search direc-
tion of G3THS or SSDDL instead of Hager-Zhang’s direction. Second, in
the line search technique, we impose the generalized strong Wolfe conditions
(2.1) and (2.3) with δ = 0.001, σ1 = 0.2 and σ2 = 0.6, instead of the Wolfe
conditions (2.1)–(2.2). Third, in the preconditioning step, we use the precon-
ditioned steepest descent direction (namely, a kind of quasi-Newton direction
dk = −Pkgk), instead of the direction (6.2). The performance profiles of these
methods are given in Figure 3. We see from Figure 3 that CGD 6, SSDDL 6
and G3THS 6 are clearly superior to CGD 5, SSDDL and G3THS. This fact
implies that the subspace iteration and the preconditioning step are very ef-
ficient. We also find that SSDDL 6 and G3THS 6 performed better than
CGD 6.
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Figure 1: CPU Performance profile of HS, CGD 5, 3THS and G3THS.
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Figure 3: CPU Performance profile of usual CG methods and CG methods
with the subspace iteration and the preconditioning step.

§8. Conclusions

In this decade, CG methods satisfying the sufficient descent property inde-
pendent of line searches have been focused on by many researchers. In this
paper, we have surveyed such sufficient descent CG methods. In order to es-
tablish the sufficient descent property, two kinds of strategies are well-known.
The first one modifies the parameter βk similarly to Hager-Zhang’s method.
The second one adds a term or incorporates a scaling factor to the search
direction, which includes the three-term CG method by Narushima, Yabe and
Ford. These methods overcome the weakness of the typical CG methods and
work well in practice.

Moreover, CG methods based on secant conditions have been also studied.
In this paper, we have introduced some sufficient descent CG methods based
on secant conditions. CG-DESCENT is a software based on Hager-Zhang’s CG
method, and it is one of major software for solving large-scale unconstrained
optimization problems. We have reviewed recent advances of CG-DESCENT.

We have confirmed performances of some sufficient descent CG methods.
Moreover, we have incorporated the acceleration techniques into sufficient de-
scent CG methods, and have seen that the resulting methods are very effective.
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