
SUT Journal of Mathematics
Vol. 44, No. 1 (2008), 55–88

Moyal algebra: relevant properties, projective limits
and applications in noncommutative field theory

Joseph Ben Geloun, Mahouton Norbert Hounkonnou
and
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Abstract. From the definition of the Moyal ⋆-product in terms of projective
limits of the ring of polynomials of vector fields, the Moyal configuration space
of Schwartzian functions, equipped with the ⋆-product, is built as a formal
power series ring with elements assimilated to free indeterminates. We then
define the projector on the ideal depending on a fixed indeterminate, which
allows to use the definition of algebraic derivations with respect to any order
of field derivative. As a consequence and in a direct manner, Euler-Lagrange
equations of motion, in the framework of both the noncommutative scalar and
gauge induced Dirac fields, are deduced from the nonlocal Lagrange function.
A connection of this theory to a generalized Ostrogradski’s formalism is also
discussed here.
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§1. Introduction

One of the main features inherent to the noncommutativity in field theories
is the nonlocality, i.e. the existence of an infinite dimensional phase space
[5]. These field theories, where infinite order of time and spatial derivatives
occurs, are referred to as nonlocal field theories ([6] and references therein).
Historically, even if the noncommutative field theory (NCFT) was born in
the early days of quantum mechanics [24, 19], and have evolved through the
years with close entanglement with deformation quantization [1] and advanced
Weyl calculus [11], one must wait the 90’s with the development of the non-
commutative (NC) geometry, first applied to the Yang Mills fields [3, 4], before
observing a real infatuation of the theoretician community for this topic. Still
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more recently, NCFTs became the focus of intense research activities in gen-
eral quantum field theory since the advent of a class of renormalizable NCFTs
hightlighted by Grosse and Wulkenhaar [9][22] with particular translational
broken symmetry features [2].

The most common way to realize a NC spacetime in field theory consists in
defining a ⋆-product on its standard space of functions. Thus, the ⋆-product
appears as a source of the nonlocality of the theory. The nonlocality is itself
a source of additional difficulties in the computation of physical quantities
of the field theory such that the NC momentums and related properties. In
particular, the Hamiltonian formalism is highly affected by the higher order
time derivative dependence in the expressions of the conjugate momentums
and thus, obviously cannot be applied in the usual manner [6][21]. Indeed,
instead of the standard Legendre transformation giving the momentum rela-
tions, one deals here, in the framework of NCFT, with a θ-deformed Legendre
correspondence mapping the tangent bundle into the cotangent one over the
Minkowski manifold. However, one notes that the occurrence of time deriva-
tives of any order in the interaction Hamiltonian is not forbidden in nonlocal
theories, property which is not shared by local theories [6].

In this work, starting from basics, we investigate a new algebraic structure
of the Moyal algebra admitting the definition of formal power series, so that
the ⋆-product remains still defined, and such that functional derivatives are
viewed as algebraic derivations. We deduce, using the definition of the pro-
jective limit algebra of differential operators, some rules which render more
convenient the computation of physical quantities. The Ostrogradski formu-
las for momentums and Euler-Lagrange equations can be computed for this
nonlocal algebraic theory.

The paper is organized as follows. In Section 2, we present the theoret-
ical framework. Starting from the main known properties of the ⋆-product,
we deduce new relevant one, useful for the description of the deformed field
theory in the NC spacetime. Then, the nonlocal operators, induced by the
⋆-product, are investigated in the framework of the projective limit algebra
of differential operators. In the ring R of such projective limits, we define a
projector ia0 on the principal ideal generated by a given indeterminate a0 and
the corresponding equivalent class. Then, we derive some interesting proper-
ties, useful for the computation in NCFT. Section 3 provides a conjectured
NC Euler-Lagrange equation from pure Lagrangian formulation. Illustrations
of this claim follow from examples of the derivation of equations of motion in
the case of both the NC scalar and Dirac Lagrangian densities. The compu-
tation of Ostrogradski quantities is also performed. Finally, in Section 4, we
end with some concluding remarks.
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§2. Theory

In this section, we discuss the main properties of the ⋆-algebra and the algebra
of polynomials and series. Then, we define the ⋆-product as a projective limit
and deduce some relevant computational rules.

2.1. Main properties of the ⋆-algebra

The theoretical tools, the target spaces and objects are hereafter developed.
Consider M a differentiable manifold which can be viewed as RN , the set of

N -tuples of real numbers equipped with the Euclidean metric δµν , or the usual
Minkowski spacetime R1,N−1 endowed by the diagonal Lorentz metric ηµν with
mostly minus signs. It is worth noticing that the following developments can
be generalized to any (pseudo) Riemannian spaces. Throughout the text, the
term function refers to as any C∞ Schwartzian function (roughly speaking,
smooth function with rapid decay) defined on M with complex values. The
Latin letters f , g, h etc..., refer to such functions. Finally, Einstein summation
convention is assumed.

Definition 1. Let f and g be two complex valued functions defined on M .
Then, the ⋆-product of f and g is defined by:

∀x ∈M, (f ⋆ g)(x) = e
√
−1
2

θµν(∂xµ∂yν )f(x)g(y) |x=y,(2.1)

where θµν is a constant antisymmetric tensor.

The multiplication (2.1) can be expanded as follows:

(f ⋆ g)(x) = f(x) ⋆ g(x) = f(x)g(x)(2.2)

+
∞∑

n=1

(√
−1
2

)n 1
n!
θµ1ν1 . . . θµnνn∂µ1 . . . ∂µnf(x)∂ν1 . . . ∂νng(x).

Remark 1. The deformation tensor θµν may be chosen as θϵµν , where ϵµν

is the absolute antisymmetric tensor and θ is a constant real deformation pa-
rameter which can be fixed in order to ensure the convergence of the Moyal
product. In the context of NC symplectic geometry (the spacetime coordi-
nates xµ may be then replaced by phase space conjugate coordinates (qi, pi)),
the deformation parameter notation is ~ holding of course reminiscent ideas
of quantum mechanics [1, 11]. In a physical background, the parameter θ has
a dimension of length square. Clearly, as θ → 0, the ⋆-product collapse to the
ordinary multiplication of functions, canceling the NC character of the theory.
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Changing θ by −θ, one obtains the law ⋆−1-product. As a formal mathemat-
ical property and excluding any C⋆-algebra consideration, if we introduce a
complex θc = re

√
−1λ ∈ C, then, the following law is obtained

f ⋆θc g = f ⋆′r cos λ g +
√
−1f ⋆′r sin λ g,

with

f ⋆′r(cos↔sin)λ g =
∞∑

n=0

rn

n!
(cos ↔ sin)(nλ)(

√
−1
2

)n

×ϵµ1ν1ϵµ2ν2 . . . ϵµnνn∂µ1µ2...µnf∂ν1ν2...νng.

The usual ⋆-product is recovered as λ → 0 with real deformation parameter
θ = r.

Definition 2. The Moyal brackets, also called ⋆-commutator, denoted by [., .]⋆
are defined by

∀f, g, [f, g]⋆ = f ⋆ g − g ⋆ f.(2.3)

Applying (2.3) to the local coordinates xµ, one then finds:

[xµ, xν ]⋆ =
√
−1θµν(2.4)

which specifies the noncommutative geometry of the spaceM , in the sense that
the coordinates do not anymore commute, in opposite to the commutative
theory. The relation (2.4) confirms that θ has length square dimension. A
relevant identity follows

[xµ, ∂ν(·)]⋆ =
√
−1θµρ∂ρ∂ν(·).(2.5)

To prove that the ⋆-product is associative we need a technical lemma.

Lemma 1. Consider kµ, qµ, xµ ∈ M and the notation kx = kµx
µ. Then, we

have

e
√
−1kx ⋆ e

√
−1qx = e

√
−1(k+q)xe−

√
−1
2

(kθq),(2.6)

with kθq = kµθ
µνqν .

Proof. Since xµ and yν commute in the usual sense ([xµ, yν ] = 0), we get the
following relations:(√

−1
2

)n 1
n!
θi1j1 . . . θinjn∂i1 . . . ∂ine

√
−1kx∂j1 . . . ∂j1e

√
−1qx(2.7)

=
(√

−1
2

)n 1
n!
(
(
√
−1)2ki1θ

i1j1qj1
)
. . .
(
(
√
−1)2kinθ

injnqjn

)
e
√
−1(k+q)x

=
(√

−1
2

)n 1
n!

((
√
−1)2kθq)ne

√
−1(k+q)x.
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Now summing over all n, the result follows. There is, of course, an alternative
proof, using the Baker-Campbell-Hausdorf formula.

The following statement holds.

Proposition 2. The ⋆-product is associative, i.e.

∀f, g, h, f ⋆ g ⋆ h = (f ⋆ g) ⋆ h = f ⋆ (g ⋆ h) .

Proof. Let us introduce the momentum space by the usual inverse Fourier
transform with a normalized measure:

f(x) =
∫
dNk f̃(k) e

√
−1kx

and observe that, with (2.6), the ⋆-product of two functions f and g can be
written as:

(f ⋆ g)(x) =
∫
dNk dNq f̃(k) g̃(q) e

√
−1kx ⋆ e

√
−1qx(2.8)

=
∫
dNk dNq f̃(k) g̃(q) e−

√
−1
2

(kθq)e
√
−1(k+q)x.

Keeping in mind (2.8), one has

(f ⋆ g) (x) ⋆ h(x)(2.9)

=
[∫

dNk dNq f̃(k) g̃(q)e−
√
−1
2

(kθq)e
√
−1(k+q)x

]
⋆

[∫
dNp h̃(p) e

√
−1px

]
=
∫
dNk dNq dNp f̃(k) g̃(q) h̃(p)

[
e−
√
−1
2

(kθq)e
√
−1(k+q)x

]
⋆
[
e
√
−1px

]
=
∫
dNk dNq dNp f̃(k) g̃(q) h̃(p) e−

√
−1
2

(kθq)e−
√
−1
2

((k+q)θp)e
√
−1(k+q+p)x

and

f(x) ⋆ (g ⋆ h) (x)(2.10)

=
[∫

dNk f̃(k)e
√
−1kx

]
⋆

[∫
dNq dNp g̃(q)h̃(p)e−

√
−1
2

(qθp)e
√
−1(q+p)x

]
=
∫
dNk dNq dNp f̃(k) g̃(q) h̃(p)e−

√
−1
2

(kθ(q+p))e−
√
−1
2

(qθp)e
√
−1(k+q+p)x.

The results (2.9) and (2.10) are identical.

Remark 2. This property leads to the comparison of the ⋆-product with the
product of matrices. Similar properties based on the associativity of matrices
are the same as in M-theory and non-Abelian Yang-Mills gauge theories.



60 J. BEN GELOUN, M. N. HOUNKONNOU AND F. MASSAMBA

Proposition 3. The Moyal-brackets [(.), (.)]⋆ are Lie brackets.

Proof. The bilinearity and the antisymmetry property of the ⋆-product are
immediate. The Jacobi identity is a consequence of the associativity of the
⋆-product.

Under integral, the behavior of the ⋆-product is now specified.

Proposition 4. The ⋆-product under integral has the following property, for
any f and g,∫

dNx (f ⋆ g) (x) =
∫
dNx f(x) g(x) =

∫
dNx (g ⋆ f) (x)(2.11)

⇔
∫
dNx [f, g]⋆ = 0.

Proof. The middle integral of the first line is taken over the usual product of
functions. This identity is obtained by integrating (2.8). We have:∫

dNx (f ⋆ g) (x) =
∫
dNx dNk dNq f̃(k) g̃(q) e−

√
−1
2

(kθq)e
√
−1(k+q)x

=
∫
dNk dNq f̃(k) g̃(q) δ(k + q)e−

√
−1
2

(kθq)

=
∫
dNk f̃(k) g̃(−k) e

√
−1
2

(kθk),

where use has been made of
∫
dNxe

√
−1kx = δ(k). But θ is antisymmetric

then kθk = kµθ
µνkν = kνθ

µνkµ = −kνθ
νµkµ = −kµθ

µνkν = −kθk, so kθk =
0. This shows that

∫
dNx (f ⋆ g) (x) does not depend on the ⋆-product but

only on the Fourier components of functions. In the same manner, it can be
observed that:∫

dNx f(x) g(x) =
∫
dNk f̃(k) g̃(−k) =

∫
dNx g(x) f(x)

which ends the proof.

Remark 3. This integral property turns out to be crucial in NCFT. Indeed,
when all interaction terms are neglected, the free NC field theory reduces to its
free commutative counterpart. Such a reduction is prohibited when interaction
terms appear at least in cubic ⋆-product factor, for instance in the presence of
the terms A ⋆ B ⋆ C. The typical examples of the non applicability of such a
reduction concern integral actions involving the interaction terms of the form
ϕ⋆3 or ϕ⋆4 in NC scalar field theory [18][2]. Other ’irreducible’ NCFTs count
the models with gauge interactions involving the spinors ψ,ψ† and a gauge
field Aµ for instance ψ ⋆ γµAµ ⋆ ψ and the ⋆-product of [Aµ, Aν ]⋆ which occur
in the NC electrodynamics model [10][12].
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Proposition 5. Let {fi}1≤i≤n, n ∈ N, be a set of functions, then, ∀1 ≤ k ≤ n,∫
dNx (f1 ⋆ f2 ⋆ . . . ⋆ fk ⋆ fk+1 ⋆ . . . ⋆ fn) (x)(2.12)

=
∫
dNx (fk+1 ⋆ . . . ⋆ fn ⋆ f1 ⋆ f2 . . . ⋆ fk) (x).

Proof. A consequence of Proposition 4 is the cyclicity property of a product
of ⋆-factors under the integral in the presence of more than two factors.

Corollary 1. For any three functions f, g and h,∫
dNx {f, g}±,⋆ ⋆ h =

∫
dNx f ⋆ {g, h}±,⋆ ,(2.13)

where {A,B}+,⋆ := A ⋆ B +B ⋆ A and {A,B}−,⋆ := [A,B]⋆.

Proof. We use (2.12) in order to obtain:∫
dNx {f, g}±,⋆ ⋆ h =

∫
dNx (f ⋆ g ± g ⋆ f) ⋆ h

=
∫
dNx (f ⋆ g ⋆ h± f ⋆ h ⋆ g) ,

which is the expected relation.

Proposition 6. Let f and g be two complex valued functions, then (f ⋆ g)∗ =
g∗ ⋆ f∗. Moreover, if f is real valued f ⋆ f is still real valued.

Proof. This can be immediately deduced from the definition of the ⋆-product.

Remark 4. Proposition 6 implies that the ⋆-product defines a ⋆-algebra. Note
that to choose θ as a complex scalar explicitly conflicts with the existence
of such a ⋆-algebra. However, mathematically, a complex θ leads to new
interesting bi-parametrized (r and λ) sub-laws which should be investigated
on their own (See Remark 1).

Proposition 7. For any functions f and g, ∂µ(f ⋆ g) = ∂µ(f) ⋆ g+ f ⋆ ∂µ(g).

Proof. The last equality can be obtained by computations from the expansion
of f ⋆ g and the usual Leibniz derivation rule on product of functions.

We consider the Moyal algebra of functions in the following sense.
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Definition 3. The Moyal algebra M of functions over M = RN is a sub-
set of the Schwartz class of complex valued functions of C∞(M), which is an
associative, involutive under complex conjugation, noncommutative algebra
equipped with the ⋆-Moyal product, endowed with a differential calculus sat-
isfying a Leibniz chain rule and an integration calculus in the ordinary sense.

Remark 5. As defined as in Definition 3, the Moyal algebra M is not unital
since nonvanishing constant functions do not belong to the Schwartz space
which entails that the latter space is not large enough to be physically in-
teresting ([26] and references therein). This statement can be improved by
extending, thanks to duality brackets and smoothening and integral proper-
ties of the ⋆-product, the Moyal algebra as an intersection of two tempered
distribution subspaces such that the unit constant function could belong to
M [26].

2.2. Algebra of polynomials and series

In this subsection, we first develop the projective limit of a ring of polynomials,
namely the ring of formal series. The connection to a new structure of the
Moyal field space follows. Within this framework, a new definition of the
⋆-product in terms of a projective limit as well as the projections onto the
principal ideals of the ring of series are provided.

Let us mention that the following treatment lies in pure algebra where
the notion of convergence and topology do not make obligatory a sense. For
instance, the ring of formal series and projective limits are well defined object
in abstract algebra, however the actual limit and convergence domain of their
elements are never studied from the point of view of topology. We will not
prospect in the direction of the convergence (this actually deserves a deep
study, of course worthy of interest on its own) of the series and quantities
in the subsequent developments, and will adopt the usual algebra formalism.
Finally, the applications of our study concern the notion of algebraic functional
differentiation, and clearly do not need in any case the notion of convergence.

2.2.1. Projective limit of a ring of polynomials

We extend here some of the developments available in Refs.[17][14].

Proposition 8. Let Rn = C [x1,x2, . . . ,xn] be the ring of polynomials in
the indeterminates {xi}1≤i≤n with complex coefficients. Then, Rn is a graded
ring and Rn =

⊕
r≥0 Rr

n, where Rr
n is the additive group of homogeneous

polynomials of degree r in the same indeterminates {xi}1≤i≤n.

Proof. See Refs.[17][14].
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Adding another indeterminate xn+1 to the set of indeterminates {xi}0≤i≤n,
we can naturally form the extended ring Rn+1 = C [x1,x2, . . . ,xn,xn+1] of
polynomials in the indeterminates {xi}1≤i≤n+1. There is a projection πn+1

from Rn+1 onto Rn defined by setting xn+1 = 0.

Lemma 9. πn+1 is a surjective homomorphism of graded rings, i.e.

πn+1 : Rn+1 → Rn is a surjective homomorphism of rings(2.14)
∀r ∈ N, πr

n+1 := πn+1 |Rr
n+1

: Rr
n+1 → Rr

n is a group homomorphism.(2.15)

Moreover, ∀ r ∈ N, πr
n+1 (2.15) is surjective.

Proof. The canonical injection Rn ⊂ Rn+1, ({xi}1≤i≤n ⊂ {xi}1≤i≤n+1), is
naturally graded. The surjectivity (of the group homomorphism πr

n+1 and
thus of ring homomorphism πn+1) comes from the fact that any polynomial of
a given degree r, expressed in n indeterminates, is also a polynomial in n+ 1
indeterminates of degree r where the indeterminate xn+1 does not occur. So,
there is also a canonical injection Rr

n ⊂ Rr
n+1.

Lemma 10. Let p and n be a two nonnegative integers. Then, the mapping
πn+p : Rn+p → Rn, defined by setting xk = 0, n+1 ≤ k ≤ n+p, is a surjective
homomorphism of graded rings, i.e.

πn+p : Rn+p → Rn is a surjective homomorphism of rings(2.16)
∀r ∈ N, πr

n+p = πn+p |Rr
n+p

: Rr
n+p → Rr

n is a group homomorphism.(2.17)

Moreover, ∀ r ∈ N, πr
n+p (2.17) is surjective.

Proof. This is trivial by induction from Lemma 9.

By convention, ∀r ∈ N, r ̸= 0,Rr
0 = ∅ and ∀n ≥ 0,R0

n = C. As a matter
of notation, any derivative of order k ≥ 0 relatively to the indeterminates is
denoted by ∂k in general discussion. The following statements are immediate

∀p, q ∈ N, xq
n+pRr

n ⊂ Rr+q
n+p,

∀k ∈ N, ∂kRr
n :=

{
∂kP, P ∈ Rr

n

}
⊂ Rr−k

n .

Definition 4. Let r a nonnegative integer. The projective or inverse limit
of the sequence (Rr

n)n∈N, as n tends to infinity, is the additive group denoted
by Rr = lim←−

n
Rr

n such that: ∀f r ∈ Rr, f r = (f r
1 , f

r
2 , . . . , f

r
n, . . .), where

f r
n = πn+1(f r

n+1) and f r
n ∈ Rr

n. The general term f r
n of the sequence is the

partial sum of f r. f r thus appears as the limit limn→∞ f r
n. Taking the sum

over all degrees, we obtain the graded ring

R =
⊕
r≥0

Rr.

The elements of R are called series. We have, ∀f ∈ R, f =
∑

r≥0 lim←−
n
f r

n.
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Remark 6. Let us pay attention to the fact that the elements of R are no
longer polynomials as they are expressed in terms of infinite sums. One usually
calls (Rr

n, π
r
n)n∈N a system. Besides, the ring structure of R is consistent as the

projective limit acts with respect to the ring structure, namely, the addition
and product of series are well defined through the inverse limit by the direct
sum

f r + gr = (f r
1 + gr

1, f
r
2 + gr

2, . . . , f
r
n + gr

n, . . . )

and the direct product

f r · gr = (f r
1g

r
1, f

r
2g

r
2, . . . , f

r
ng

r
n, . . . )

of groups. Note that (f r · gr)n = f r
n g

r
n is not an element of Rr

n but belongs
to R 2r

n and the series is still well defined by the homomorphism πn of graded
ring.

The following proposition is then straightforward from Lemma 10

Proposition 11. Let n be a nonegative integer. Then, the mapping Πn :
R → Rn defined by setting xp = 0, p ≥ n+ 1, is a surjective homomorphism
of graded ring.

2.2.2. Ring of series and phase space

Suppose an infinite dimensional phase space spanned by an infinite many de-
grees of freedom (dofs) generated by a family of complex valued fields (scalar
functions with rapid decay at infinity) {ϕi}i∈I acting on the Minkowski space-
time (R1,3, η). This is a conventional choice even though the space manifold
dimension could be D in general, without altering the following results.

The following maps

∀i ∈ I, ϕi : M → R
∀i ∈ I, ∀0 ≤ µ ≤ 3, ∂µϕi : M → R
∀i ∈ I, ∀0 ≤ µ1, µ2 ≤ 3, ∂µ1∂µ2ϕi : M → R
...

...
...

∀i ∈ I, ∀0 ≤ µ1, µ2, . . . , µk ≤ 3, ∂µ1∂µ2 . . . ∂µk
ϕi : M → R

∀i ∈ I, ∀0 ≤ µ1, µ2, . . . , µk, . . . ≤ 3, ∂µ1∂µ2 . . . ∂µk
. . . ϕi : M → R

define the suitable dofs of the configuration space. For the sake of simplicity,
let us adopt the following notation. Let a be a scalar field, then

(i) any derivative of order k of a field a with respect to the variables
xµ1 , xµ2 , . . . , xµk is denoted by ∂µk...µ2µ1a or by ∂[µ]k

a. Moreover, given
a nonnegative integer k, we write, when confusion does not arise,

ϵµ1ν1ϵµ2ν2 . . . ϵµkνk∂µ1µ2...µk
a = ϵ[µν]k∂[µ]k

a;(2.18)
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(ii) ∂a denotes an undetermined derivative of any order of a in general dis-
cussion; otherwise specifications are given;

(iii) D denotes the infinite set of all dofs spanning the field space:

D =
{
{ai} , {∂µai}µ=0,...,3 , . . . , {∂µ1µ2...µk

ai}µ1,µ2,...,µk= 0,...,3 , . . .
}

i ∈ I
= {ai, ∂ai, . . . }i∈I

Note that each ∂[µ]kai is regarded both as a dof and a kth order derivative
of ai.

In this section, I is a countable set and |I| denotes the cardinal of I. |I| may
be infinite. Following the set of indeterminates D, we can define the following
subsets of D:

D0 = {ai}i∈I = {a1,a2, . . . ,an, . . . },
D1 = {∂µai}{i ∈ I; µ=0,...,3},
Dk = {∂µ1µ2...µk

ai}{i ∈ I; µ1,µ2,...,µk= 0,...,3}.

By convention, a derivative of order 0 is the identity. Given n, a nonnegative
integer, we also define the finite subsets Dk

n of Dk for any 0 ≤ k, by

D0
n = {a1,a2, . . . ,an},

D1
n = {∂µai}{0≤i≤n; µ=0,...,3},

Dk
n = {∂µ1µ2...µk

ai}{0≤i≤n; µ1,µ2,...,µk= 0,...,3}.

Let us organize the sets of indeterminates as follows. Through the section, the
index n is reserved for indexing the fields, namely an, the coordinate indices
µ, ν, . . . denote the indices of variables relative to the derivations while the
index k displays the order of derivation. For instance, ∂[µ]kan is a kth-order
derivative taken on an relatively to the xµ’s. Given a nonnegative integer i
such that 1 ≤ i ≤ n, setting the singleton set D0

i = {ai}, then

D0
n =

∪
1≤i≤n

D0
i and D0 =

∪
i∈I

D0
i .

Given k ̸= 0, setting Dk
i =

∪
0≤µ1,µ2,...,µk≤3{∂µ1µ2...µk

ai}, it can be introduced

Dk
n =

∪
1≤i≤n

Dk
i and Dk =

∪
i∈I

Dk
i

and defined the finite set

Dn,k =
∪

1≤i≤n

∪
0≤d≤k

Dd
i .(2.19)
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Remark 7. It is noteworthy to point out the close relation between dof spaces
and jet (or prolongation)-spaces in differential geometry language. In the
above formalism, let ai be a field, i.e. a function from R1,3 to R, and let n
be a nonegative integer, the nth jet of ai, say prnai (in notations of [20]), is a
vector function mapping a point of R1,3 to the vector

(ai, ∂µai, . . . , ∂µ1µ2...µnai)
= (ai, ∂0ai, ∂1ai, . . . , ∂3ai, . . . , ∂00...0ai, ∂00...01ai, . . . , ∂33...3ai)(2.20)

evaluated at that point. Note that the vector (2.20) belongs to the target jet
space

Un
i ⊂ D0

i × {×µ=0,1,2,3D
1
i } × · · · × {×µ1,µ2,...,µn=0,1,2,3D

n
i }.

Definition 5. Given two positive integers n and k, the polynomial ring

C [a1,a2, . . . ,an, ∂µa1, ∂µa2, . . . , ∂µan, ∂µ1µ2a1, ∂µ1µ2a2, . . . , ∂µ1µ2an, . . . ,
∂µ1µ2...µk

a1, ∂µ1µ2...µk
a2, . . . , ∂µ1µ2...µk

an ] ,

where µ, µ1, µ2, µk ∈ {0, 1, 2, 3}, is denoted by Rn,k. Rn,k is a graded com-
mutative unitary ring. We denote also the additive group of homogeneous
polynomials of degree r by Rr

n,k.

Lemma 12. Let r, n and k be three positive integers, and let us denote the
cardinal of the set Dn,k by |Dn,k|. There is a group isomorphism Rr

n,k ≡ Rr
|Dn,k|

leading to a graded ring isomorphism Rn,k ≡ R|Dn,k|.

Proof. Dn,k is in bijection with
{
x1,x2, . . . ,x|Dn,k|

}
. The independence of

indeterminates requires that each of the ∂µ1µ2...µpan should correspond to a
unique xi. One can build a well defined one-to-one homomorphism between
the generators of Rr

n,k and those of Rr
|Dn,k|.

Let us introduce the definition.

Definition 6. Let n, k and r be nonnegative integers. Then,

(i) the group homomorphism vr
n+1,k : Rr

n+1,k → Rr
n,k defined by setting

an+1 = 0, (and consequently, we have ∂µan+1 = 0, . . . , ∂µ1µ2,...,µk
an+1

= 0,) is called the (n+ 1, k) vertical projection of degree r or simply the
v-projection when no confusion occurs.

(ii) The group homomorphism hr
n,k+1 : Rr

n,k+1 → Rr
n,k defined by setting

∂µ1µ2,...,µk+1
a1 = 0, ∂µ1µ2,...,µk+1

a2 = 0, . . . , ∂µ1µ2,...,µk+1
an = 0

is called (n, k + 1) horizontal projection of degree r or simply the h-
projection when no confusion occurs.



MOYAL ALGEBRA 67

(iii) The group homomorphism πr
n+1,k+1 : Rr

n+1,k+1 → Rr
n,k defined by set-

ting:

an+1 = 0, ∂µan+1 = 0, . . . , ∂µ1µ2,...,µk
an+1 = 0, ∂µ1µ2,...,µk+1

a1 = 0,
∂µ1µ2,...,µk+1

a2 = 0, ∂µ1µ2,...,µk+1
an = 0, and ∂µ1µ2...µk+1

an+1 = 0

is called the (n+ 1, k + 1) projection of degree r.

Remark 8. A simple observation of the above defined projections proves that
their definition does not depend on the degree r of their domain Rr

n,k. We can
admit henceforth that the way by which vr

n,k, h
r
n,k and πr

n,k act on Rr
n,k is the

same as that by which vr+p
n,k , hr+p

n,k and πr+p
n,k act on Rr

n,k, for all p ∈ N.

The following Lemma is satisfied.

Lemma 13. Given a positive integer n, the (n+ 1, 1) v-projection

vr
n+1,1 : Rr

n+1,1 → Rr
n,1

is surjective for all r ≥ 0.

Proof. We have from Lemma 12, Rr
n+1,1 ≡ Rr

|Dn+1,1| and Rr
n,1 ≡ Rr

|Dn,1|.

Proposition 14. (i) Given a positive integer n, ∀k ∈ N, the (n + 1, k)
v-projection of degree r is surjective for any r ≥ 0.

(ii) Given a positive integer k, ∀n ∈ N, the (n, k+1) h-projection is surjec-
tive for any r ≥ 0.

(iii) ∀k ∈ N, ∀n ∈ N, the (n+1, k+1) projection is surjective for any r ≥ 0.

Proof. The proofs of the surjections are immediate by induction on k using
Lemmas 12 and 13. Indeed, consider Lemma 13 for the order k = 1. (i)
becomes obvious. The points (ii) and (iii) can be shown in a similar way: one
has just to give the analogues of Lemma 13 (for k = 1) for hr

1,k+1, πn+1,1 and
π1,k+1.

The following statement holds.

Theorem 1. Let k be a nonnegative integer and

Rn,k =
⊕
r≥0

Rr
n,k = C [a1,a2, . . . ,an, ∂µa1, ∂µa2 . . . , ∂µan, . . . , ∂µ1µ2...µk

a1,

∂µ1µ2...µk
a2, . . . , ∂µ1µ2...µk

an] ,

be the graded ring of polynomials in the indeterminate elements of Dn,k over
C. Then, the (n, k + 1) h-projection

hn,k+1 : Rn,k+1 → Rn,k(2.21)
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defined by setting, for 1 ≤ p ≤ n, ∂µ1µ2...µk+1
ap = 0, defines the graded ring

Rn,. =
⊕

r≥0 lim←−
k
Rr

n,k of series in the infinite number of indeterminates of∪∞
k=0 Dn,k.

Proof. The projection hn,k+1 is a surjection from Rn,k+1 onto Rn,k as estab-
lished by Proposition 14. It readily defines a system having for projective
limit, a ring of series.

Remark 9. Of course, projective limits relatively to vertical and diagonal
projections, namely vn+1,k and πn+1,k+1, respectively, could be defined in a
similar way with adapted considerations. However, it turns out that the rele-
vant aspects useful in NCFTs are provided only by horizontal projection.

Lemma 15. Given three positive integers r, k and n, P r
.,k- an element of Rr

.,k

and Qr
n,.- an element of Rr

n,. then,

∀p ∈ N, vr+p
n+1,k(P

r
n+1,k) = P r

n,k, hr+p
n,k+1(Q

r
n,k+1) = Qr

n,k.(2.22)

Proof. See Lemma 13 and Proposition 11.

There are two equivalent ways to realize any monomial as a series. This
depends on the ring where the projective limit is built, namely, R.,k or Rn,..
One has to use the good representation to realize a relevant and easiest anal-
ysis. Given the positive integers m,n, k, the following realizations of ∂[µ]k

an

are valid

∂[µ]k
an = (0, . . . , 0, ∂[µ]k

an, ∂[µ]k
an, . . . ),(2.23)

where ∂[µ]k
an is at the kth position and the remainder of the terms are constant

and equal to ∂[µ]k
an. This series is used when the projective limit is done with

respect to Rn,.. The second way is denoted by a similar expression but, in this
case, ∂[µ]k

an appears at the nth position and the remainder of the terms are
constant and equal to ∂[µ]k

an. This series is used when calculations are done
in R.,k. Following this realization as series, ∂[µ]k

an belongs to R1
n,. or to R1

.,k.
Besides, am

n = (0, . . . , 0,am
n , . . . ) (the first am

n appearing at the nth position)
is viewed as an element of Rm

.,0, while written as (am
n ,a

m
n , . . . ,a

m
n , . . . ), am

n is
viewed as an element of Rm

n,..
Let us define the double sequence (qn

m)n,m∈N of positive integers such that:
∀n,m ∈ N , such that qn

m = 0 for m > n, i.e. explicitly

qn
0 = 0, ∀n ≥ 0,
q11 ∈ N, q12 = 0, . . . , q1n = 0, . . . ;
q21 ∈ N, q22 ∈ N, q23 = 0, . . . , q2n = 0, . . . ;
...
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qn
1 ∈ N, qn

2 ∈ N, . . . , qn
n ∈ N; qn

n+1 = 0 . . .

In the following, we do not take care of the index 0 in the first term of the
inverse limit. We assume that it is null. The following statement holds.

Lemma 16. Given n, r, k positive integers, P r
n,. ∈ Rr

n,. and P r
.,k ∈ Rr

.,k. Then,
for any positive integers p and q, we have

aq
n+pP

r
n,. ∈ Rr+q

(n+p),.; aq
n+pP

r
.,k ∈ Rr+q

.,k .(2.24)

Furthermore, for any positive integers m and p

∂[µ]m
an+pP

r
n,. ∈ Rr+1

n+p,.; ∂[µ]m
anP

r
.,k ∈ Rr+1

.,sup(m,k).(2.25)

Considering the following element of
⊕

n,m ≥1 R
∑n

i=1 qi
m

.,0 ⊂ R.,0 defined by

P̃.,0 =

(
P̃1,0 = aq1

1
1 , P̃2,0 = aq1

1
1 + aq2

1
1 aq2

2
2 , . . . , P̃n,0 =

n∑
i=1

aqi
1

1 aqi
2

2 . . .aqi
i

i , . . .

)
,

if
∑n

i=1 q
i
m = q11, ∀m ∈ N, i.e. the degree of each monomial term realizes a

partition of q11, then,

P̃.,0Rr
.,k ⊂ Rr+q1

1
.,k .(2.26)

Proof. Given P r
n,. ∈ Rr

n,., then, for any q, let us define Pq+r
n+p,k := aq

n+pP
r
n,k ∈

Rr+q
(n+p),k. The direct product of aq

n+p (realized as series) by P r
n,. lies in Rr+q

(n+p),..
Indeed, one gets

aq
n+pP

r
n,. = (aq

n+pP
r
n,0, . . . ,a

q
n+pP

r
n,k,a

q
n+pP

r
n,(k+1), . . . ).

From Lemma 15, any h-projection hr+q
(n+p),(k+1) has the same action as the

projection hr
(n+p),(k+1). We get

hr+q
(n+p),(k+1)P

q+r
(n+p),(k+1) = hr

(n+p),(k+1)(a
q
n+pP

r
n,(k+1))

= aq
n+ph

r
(n+p),(k+1)(P

r
n,(k+1)) = aq

n+pP
r
n,k = Pq+r

n+p,k.

This ends the proof of the l.h.s. relation of (2.24). The proof of the r.h.s
relation can be deduced by a similar procedure. Given P r

.,k ∈ Rr
.,k, for any q,

we set

Pr+q
n+p,k := aq

n+pP
r
n,k ∈ Rr+q

n+p,k.

We have the direct product

Pr+q
.,k = (0, . . . ,aq

n+p, . . . )(P
r
1,k, P

r
2,k, . . . , P

r
n,k, . . . )
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= (0, . . . ,aq
n+pP

r
(n+p),k,a

q
n+pP

r
(n+p+1),k, . . . ).

Then, for any integer m ≥ 0, applying the v-projection vr+q
(m+1),k(P

r+q
(m+1),k) = 0

if (m+1) ≤ n+ p, due to Pr+q
(m≤n+p),k = 0. Meanwhile, for any positive integer

l,

vr+q
(n+p+l+1),kP

r+q
(n+p+l+1),k = vr+q

(n+p+l+1),k(a
q
n+pP

r
(n+p+l+1),k)

which gives, using Lemma 15,

aq
n+pv

r+q
(n+p+l+1),k(P

r
(n+p+l+1),k) = aq

n+pP
r
(n+p+l),k.

This is simply Pr+q
(n+p+l),k = Pr+q

m,k if (m = n + p + l) ≥ n + p. This ends the
proof of (2.24).

The proof of (2.25) is given by the following. The direct product of the
realization of ∂[µ]k

an+p (See (2.23)) by the series P r
n,. ∈ Rr

n,. can be written

Pr+1
(n+p),. := ∂[µ]m

an+pP
r
n,. = (0, . . . , ∂[µ]m

an+pP
r
n,m, ∂[µ]m

an+pP
r
n,m+1, . . . )

with Pr+1
(n+p),k ∈ Rr+1

(n+p),k. The h-projection thus acts as follows:

hr+1
(n+p),(k+1)P

r+1
(n+p),(k+1) = hr+1

n+p,k+1(∂[µ]m
aq

n+pP
r
n,k+1).

Suppose m < k + 1. Using Lemma (15), we obtain

hr+1
(n+p),(k+1)(P

r+1
(n+p),(k+1)) = ∂[µ]m

aq
n+ph

r+1
(n+p),(k+1)(P

r
n,k+1) = ∂[µ]m

aq
n+pP

r
n,k.

Now, assume m ≥ k + 1. We get hr+1
(n+p),(k+1)P

r+1
(n+p),(k+1) = 0. This ends the

proof of the l.h.s. relation of (2.25). For the r.h.s. relation, given m and k,
let us set k0 = max(m, k). The direct product of the series (2.23) by P r

.,k is
defined by

Pr+1
.,k0

= ∂[µ]m
anP

r
.,k = (0, . . . , ∂[µ]m

anP
r
p,k, ∂[µ]m

anP
r
(p+1),k, . . . ),

where the general term of the sequence is given by

Pr+1
p,k0

= 0, ∀p < n and Pr+1
p,k = ∂[µ]m

anP
r+1
p,k , ∀p ≥ n.

Then, Pr+1
p,k0

∈ Rr+1
p,k0

. The v-projection acts as follows on Rr+1
(p+1),k0

:

vr+1
(p+1),k0

(Pr+1
(p+1),k0

) = 0, ∀ p+ 1 ≤ n

and

vr+1
(p+1),k0

(Pr+1
(p+1),k0

) = ∂[µ]m
anv

r+1
(p+1),k0

(P r
(p+1),k) = ∂[µ]m

anP
r
p,k, ∀ p+ 1 > n.
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This ends the proof of (2.25). The relation (2.26) is a corollary of the first rela-
tion of (2.24) and its proof proceeds from the same manner. The requirement
that any monomial must be of the same degree q11, i.e. qn

1 + · · · + qn
m = q11,

insures the stability of the direct product in the group Rr+q1
1

.,k .

Theorem 2. The direct product of series of Rr
n,. (resp.Rr

.,k) by series of Rd
n,.

(resp.Rd
.,k) belongs to Rr+d

n,. (resp.Rr+d
.,k ). The direct product of series of Rr

n,.

(resp.Rr
.,k) by series of Rd

m,. (resp.Rd
.,q) belongs to Rr+d

sup(n,m),. (resp.Rr+d
.,sup(k,q)).

Proof. This can be derived from the definition of direct product of series and
from Lemmas 15 and 16, considering that the double sequence P r

n,k for n, k ∈ N
can be viewed as an ordinary sequence when the second index is fixed. Indeed,
let P r

n. = (P r
n,1, P

r
n,2, . . . , P

r
n,k, . . . ) and Qd

n. = (Qd
n,1, Q

d
n,2, . . . , Q

d
n,k, . . . ) be,

respectively, two elements of Rr
n,. and Rd

n,.. Then, the direct product of P r
n.

by Qd
n., denoted by Pr+d

n,. is given by Pr+d
n,. = P r

n,.Q
d
n,., that is

Pr+d
n,. = (Pr+d

n,1 = P r
n,1Q

d
n,1,Pr+d

n,2 = P r
n,2Q

d
n,2, . . . ,Pr+d

n,k = P r
n,kQ

d
n,k, . . . ).

The projection hr+d
n,k+1 : Rr+d

n,k+1 → Rr+d
n,k is defined by setting zero any term of

the form ∂[µ]k+1
ai≤n = 0, using Lemma 15.

2.2.3. Ideals and projectors

Consider the sets of dofs Dn,k ⊂ D. The dofs taken in Dn,k are the indetermi-
nates of the polynomial graded ring

Rn,k ≡ C
[
a1,a2, . . . ,an, ∂[µ]k

a1, ∂[µ]k
a2, . . . , ∂[µ]k

an

]
.

Theorem 1 states the inverse limit Rn,. =
⊕

r≥0 lim←−
k
Rr

n,k in the infinite
number of indeterminate elements of D. We fix in this section the number
of indeterminates to be n which is no longer displayed. Rn,. is henceforth
denoted by R for the sake of simplicity. The dofs are taken in the general
form a or b. Let us also mention that the following developments are valid in
general algebra [14].

Proposition 17. Any principal ideal of R, generated by a fixed a0 ∈ D, can
be written as < a0 >= a0R.

The form of < a0 > is due to the fact that the ring R is commutative.
Given a fixed indeterminate a0 ∈ D, the projection ia0 onto the ideal < a0 >
can be defined as

ia0(P ) = P, if P ∈< a0 >,
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ia0(P ) = 0, if < P > ∩ < a0 >= ∅,(2.27)

< P > being the ideal generated by P , such that ia0 has the natural following
properties:

(i) i2a0
= ia0 ;

(ii) ia0 is linear on R;

(iii) R = Im ia0⊕Ker ia0 , where Im ia0 denotes the range of ia0 and Ker ia0

its kernel.

Now, we pay attention to more pratical and basic relations useful for com-
putational techniques in NCFT. The following properties are of particular
significance in NCFT.

Proposition 18. Let I be the unity of R, and a0 be a fixed dof in this space.
Then, the following relations hold, ∀a a non constant dof,

∀λ ∈ C \ {0} , ia0(λI) = 0, ia0(0) = 0,(2.28)
a ̸= λa0, ∀ λ ∈ C, ia0(a) = 0,(2.29)

if ∃ λ ∈ C, a = λa0, ia0(a) = a.(2.30)

Proof. The proposition is immediate if one considers that ia0 is a projection
and any dof is an independent and irreducible element of R.

Proposition 19. Given a0 a dof, the binary relation =a0 in R hereafter called
“to be equal to (modulo a0)” and defined as follows

∀F ,G ∈ R, F =a0 G ⇔ ia0(F) = ia0(G),(2.31)

is an equivalence relation in R.

Remark 10. The equivalence relation (2.31) has nothing to see with the
usual equivalence relation ‘to be equal to (modulo the ideal < a0 >)’. Indeed,
if F ≡ G modulo < a0 >, this means that F − G ∈ a0R, in other terms,
F = G+ a0 ·B, for some B ∈ R. This does not imply that F and G have the
same image under the projector onto < a0 >. Besides, in the ring of series,
the derivation with respect to a given indeterminate keeps its ordinary sense
satisfying the Leibniz rule. In symbol, we write

∂

∂a0
(f · g) =

∂

∂a0
(f) · g + f · ∂

∂a0
(g).

It is noteworthy that taking the derivative of series with respect to a given a0,
one must implicitly use the projection on the ideal spanned by a0, i.e.

∂

∂a0
(f) =

∂

∂a0
(ia0f) ⇔ ∂

∂a0
(f − ia0f) = 0.
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Hence, the derivation targets all terms included in f involving the quantity
a0, i.e. the sum of terms being equal to f modulo a0. The remaining terms
cancel under the projector ia0 .

2.3. ⋆-algebra revisited

In this subsection, we provide the definition of the ⋆-product in terms of pro-
jective limits of space functions. Some relevant calculations in NCFT are also
given.

2.3.1. a ⋆ b as a projective limit

Let Rn,. be the ring of series defined by inverse limits of sequences of the ring
of polynomials Rn,k in the indeterminates of Dn,k over C. From the relation
(2.2) and Theorem 1, we aim at constructing a star product a ⋆ b in the form
of an inverse limit.

Any partial sum of

a ⋆ b = ab +
√
−1
2

θµν∂µa∂νb + · · ·

is a homogeneous polynomial of degree r = 2 and is built with two indetermi-
nates which belong to D0

2 = {a,b}. Then, we set the following sequence

P 2
2,. =

(
P 2

2,0, P
2
2,1, P

2
2,2, P

2
2,3, . . . , P

2
2,k, . . .

)
,

∀k ∈ N, P 2
2,k =

k∑
p=0

1
p!

(√
−1
2

)p

θ[µν]p∂[µ]p
a∂[ν]p

b.(2.32)

∀k ∈ N, the (2, k + 1) h-projection, defined by vanishing all derivatives of the
form ∂[µ]k+1

a as well as that of the form ∂[µ]k+1
b, has the following action on

the general term P 2
2,k+1

h2
2,k+1(P

2
2,k+1) = P 2

2,k(2.33)

as expected. This result is summarized in the following

Theorem 3. Let a and b be two dofs of the field space. Then, a ⋆ b ∈ R2,.

and we have explicitly, a ⋆ b = P 2
2,. = lim←−

k
P 2

2,k.

It readily follows the statement

Corollary 2. For any dof a and b :

θ[µν]p∂[µ]p
(a ⋆ b) ∈ R2

2,., ∀p ∈ N, a⋆p ∈ Rp
1,..(2.34)
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For all n ∈ N, consider a multi-index I = (i1, i2, . . . , in) ∈ Nn such that p ̸= q,
ip ̸= iq and defining a family of dofs {aik}ik , and let J = (j1, j2, . . . , jn) ∈ Nn

be another multi-index. Then

aj1
i1
⋆ aj2

i2
· · · ⋆ ajn

in
∈ Rj1+j2+···+jn

max(i1,i2,...,in).(2.35)

Proof. For a fixed µ and by the Leibniz rule, we write

∂µ(a ⋆ b) = ∂µa ⋆ b + a ⋆ ∂µb.(2.36)

It is then immediate that (2.36), being a sum of ⋆-products of two ⋆-factors,
belongs to R2

2,.. Indeed, we give now a prescribed sequence which realizes
the l.h.s. term of (2.36) as an inverse limit (the r.h.s. is treated in the same
manner). The sequence which generates ∂µa ⋆ b by an inverse limit is given
by:

P 2
2,0 = 0, P 2

2,1 = ∂µab, P 2
2,2 = ∂µab +

√
−1
2

θρσ∂ρµa∂σb,

P 2
2,k =

k∑
d=0

(√
−1
2

)d 1
d!
θ[ρσ]d∂[ρ]d

(∂µa) ∂[σ]d
b.

One can see that the projection (2.21) is well defined. The inverse limit in
k is of degree 2 and defines ∂µa ⋆ b. This proves (2.34) for a single index µ.
Proceeding by induction, for p a nonnegative integer, we have

θ[µν]p∂[µ]p
(a ⋆ b) = θ[µν]p

p∑
l=0

C l
p ∂[µ]l

a ⋆ ∂[µ]p−l
b,(2.37)

C l
p = p!/(l!(p− l)!).(2.38)

This sum of ⋆-products belongs to R2
2,.. This ends the proof of the first relation

of (2.34).
The proof of (2.35) proceeds from induction on the number n of indeter-

minates. The case n = 2 corresponds to the definition of the Moyal product.
Assume that the relation is true up to the order n. Let us set

T j1,j2,...,jn

i1,i2,...,in
= aj1

i1
⋆ aj2

i2
· · · ⋆ ajn

in
∈ Rj1+j2+···+jn

max(i1,i2,...,in).(2.39)

The identity (2.34) proves, by induction on the number of indeterminate n,
that the derivative ∂[µ]kT

j1,j2,...,jn

i1,i2,...,in
∈ Rj1+j2+···+jn

max(i1,i2,...,in).
Now let ain+1 be another indeterminate and jn+1 another integer.

T j1,j2,...,jn

i1,i2,...,in
⋆ ajn+1

in+1
(2.40)

= T j1,j2,...,jn

i1,i2,...,in
ajn+1

in+1
+

∞∑
k=1

1
k!

(√
−1
2

)k

θ[µν]k∂[µ]kT
j1,j2,...,jn

i1,i2,...,in
∂[ν]ka

jn+1

in+1
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which is a sum of quantities belonging to the direct product of Rj1+j2+···+jn

max(i1,i2,...,in)

and Rjn+1

in+1
by Lemma 16 and Theorem 2. The remaining equality is obtained

by induction on the number n of indeterminates.

Remark 11. This definition of the ⋆-product as inverse limit allows to high-
light generalized n-ary laws [13] that one could further investigate. Consider
the generalized product combining n elements defined as a series element of
Rn,. such that

(a1, a2, . . . , an)⋆(2.41)

=
k∑

p=0

∑
p1+p2+···+pn=p

Θ[µ1µ2...µn]p∂[µ1]p1
a1∂[µ2]p2

a2 . . . ∂[µn]pn
an,

where Θ[µ1µ2...µn]p is some tensor which has to be chosen such that appropriate
properties of the generalized law, namely n-associativity or n-commutativity
is satisfied. The Moyal ⋆-product is a binary law and clearly defines some
restriction of this kind of product.

2.3.2. Some relevant computations

We are interested in such properties of the ⋆-product of polynomials, whatever
the powers, like those which are relevant in NCFT. Concrete examples have
been worked out in Section 3. The ⋆-product of any two dofs a and b is

a ⋆ b = ab +
(√

−1
2

)
θµν∂µa∂νb + · · · +

(√
−1
2

)n 1
n!
θ[µν]n∂[µ]n

a∂[ν]n
b + · · ·

Thus, each term of this series belongs to different ideals since each partial
derivative is considered as an irreducible generator of the total ring

a ⋆ b ∈< ab > ⊕ < ∂µa∂νb > ⊕ · · ·⊕ < ∂[µ]n
a∂[ν]n

b > ⊕ · · ·

Hence, the projection i(.) onto a fixed ideal generated by either a or ∂a is well
defined. The following proposition is straightforward.

Proposition 20. Let a,b, c, ∂a, ∂b, ∂c be independent irreducible indetermi-
nates chosen among the generators of the commutative ring of series R. Then,

(i) the following basic relations are valid:

a ⋆ b =a ab, b ⋆ a =a ab,(2.42)
∀P (ǎ,b, c, . . .) ∈ R, a ⋆ P (ǎ,b, c, . . .) =a aP (ǎ,b, c, . . .),(2.43)
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where P (ǎ,b, c, . . .) is some series which does not contain the dofs a.
Furthermore,

a ⋆ b =∂[µ]n
b

(√
−1
2

)n 1
n!
θ[ρµ]n∂[ρ]n

a∂[µ]n
b.(2.44)

(ii) Finally, we have the following relation with polynomial functions: For
all F,G ∈ R, if ibF = 0 then F ⋆ G =b F ⋆ ibG.

Proof. These relations are inferred from the expansion of the ⋆-product while
the last property can be deduced as follows

G = ib(G) +G0 with ibG0 = 0
F ⋆ G = F ⋆ ib(G) + F ⋆ G0

F ⋆ G =b ib(F ⋆ ib(G) + F ⋆ G0) =b (F ⋆ ib(G))

which is the expected relation.

Remark 12. When θ → 0, then ⋆-product becomes the usual multiplication
and the projection i(.) becomes a projection onto the dof ideals, and any
projection onto ideal generated by derivatives ∂a vanishes as expected.

§3. Applications

In this section, we give some relevant applications of the previous study in
NCFT. First, we need to define the classical extension of Lagrange formulation
of field theory for higher order dynamical systems [8, 7]. Such higher order
systems actually lie within the framework of NCFT, dealing with infinite order
of derivative. In particular, we address the issue of defining Euler-Lagrange
equations for NC and nonlocal field systems. Second, we discuss some features
of the Ostrogradski formulation of Hamiltonian dynamics in this context, by
computing the infinite discrete sequence of conjugate momenta recovering, by
the way and in a new manner, that the field phase space in NCFT is infinite
dimensional [5].

A higher order dynamics can be understood, in some simple situation, by
a given classical field system characterized by a dynamical scalar field ϕ and a
Lagrange function L = L(ϕ, ∂µϕ, . . . , ∂[µ]kϕ), k being the fixed maximal order
of derivation as occurring in the Lagrangian.

The general formula for the Euler-Lagrange equation of motion is obtained
by taking successively integration by part from the action variation. One gets

(3.1)
k∑

n=0

(−1)n ∂[µ]n

∂L
∂∂[µ]nϕ

= 0,
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where it is assumed that the sum runs over all different multi-indices [µ]n ̸=
[µ′]n making hence ∂[µ]nϕ ̸= ∂[µ′]nϕ.

In NCFT, the maximal order of differentiation is infinite. The sum (3.2)
now becomes infinite which is understood as an algebraic series of Section 2,
namely

(3.2)
∞∑

n=0

(−1)n ∂[µ]n

∂L
∂∂[µ]nϕ

= 0,

the same assumption on [µ]n as the above mentioned holds. Let us precise
that, here, the algebra of series is built over a singleton set D0

1 = {ϕ}.
In a more general statement, we introduce the following notation

[λ]k = (λ1, λ2, . . . , λk)(3.3)
≡ (χ1, χ1, . . . , χ1︸ ︷︷ ︸

q1−times

, χ2, χ2, . . . , χ2︸ ︷︷ ︸
q2−times

, . . . , χp, χp, . . . , χp︸ ︷︷ ︸
qp−times

)

where the equivalence is valid under some permutation of the indices of [λ]k.
Note that p ≤ k and

∑p
i=1 qi = k. The number of nontrivial permutations of

[λ]k is well-known to be the hypergeometric number

H([λ]k) :=
k!∏p

i=1(qi)!
, H([λ]0) := 1.

Claim 1. Let L⋆ = L⋆(ϕ, ∂µϕ, . . . , ∂[µ]kϕ, . . . ) be a NC Lagrange function in a
NC scalar field theory. The NC analogue of Euler-Lagrange equation of motion
of ϕ is expressed by

(3.4)
∞∑

k=0

(−1)k H([λ]k)−1 ∂[λ]k

∂L
∂∂[λ]kϕ

= 0.

Let us test the validity of such a statement in the particular case of the free
NC scalar field theory described by the NC Lagrangian in a D dimensional
Minkowski spacetime

(3.5) L⋆ =
1
2
∂µϕ ⋆ ∂

µϕ− m2

2
ϕ ⋆ ϕ.

The following statement holds

Proposition 21. The Euler-Lagrange equation of motion of the system de-
scribed by the Lagrangian (3.5) is the ordinary Klein-Gordon equation

(3.6)
∞∑

k=0

(−1)k H([λ]k)−1 ∂[λ]k

∂L
∂∂[λ]kϕ

= 0 = (∂µ∂
µ +m2)ϕ.
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Proof. Given a multi-index [λ]k, we have the equalities

∂(ϕ ⋆ ϕ)
∂∂[λ]kϕ

=
(√

−1
2

)k (1 + (−1)k)∏p
i=1(qi)!

θ[λσ]k ∂[σ]kϕ,(3.7)

∂(∂µϕ ⋆ ∂
µϕ)

∂∂[λ]kϕ
=
(√

−1
2

)k−1
(1 + (−1)k−1)

p∑
i=1

θ[λσ]ik−1∏p
j=1(qj − δji)!

∂χi

[σ]k−1
ϕ,(3.8)

θ[λσ]ik−1 := θχ1σ1θχ1σ2 · · · θχ1σq1︸ ︷︷ ︸
q1−times

θχ2σq1+1θχ2σq1+2 · · · θχ2σq1+q2︸ ︷︷ ︸
q2−times

· · ·

θχiσq1+q2+···+qi−1+1θχiσ. · · · θχiσ.︸ ︷︷ ︸
(qi−1)−times

· · · θχpσ.θχpσ. · · · θχpσ.︸ ︷︷ ︸
qp−times

.

In order to prove equations (3.7) and (3.8), we consider (2.44)

ϕ ⋆ ϕ =∂[λ]k
ϕ κk θ

[ρσ]k ∂[ρ]kϕ∂[σ]kϕ, κk :=
(√

−1
2

)k 1
k!

(3.9)

∂µϕ ⋆ ∂
µϕ =∂[λ]k

ϕ κk−1 θ
[ρσ]k−1 ∂[ρ]k−1µϕ∂

µ
[σ]k−1

ϕ.(3.10)

We can now deduce
∂(ϕ ⋆ ϕ)
∂∂[λ]kϕ

= κk θ
[ρσ]k

(
∂∂[ρ]kϕ

∂∂[λ]kϕ
∂[σ]kϕ+ ∂[ρ]kϕ

∂∂[σ]kϕ

∂∂[λ]kϕ

)
,(3.11)

from which, up to the combinatorial factor k!/(
∏p

i=1(qi)!) = H([λ]k) defin-
ing the number of permutations of [λ]k which can be reproduced in the sum
θ[ρσ]k∂[ρ]kϕ and θ[ρσ]k∂[σ]kϕ (keeping in mind that [λ]k may have repeated in-
dices), the relation (3.7) is obtained. In a similar manner, (3.8) can be obtained
from (3.10) noting however that one first has to choose a λ = χi = µ in the
sum θ[ρσ]k−1∂[ρ]kµϕ before computing the overall combinatorial factor.

We show now the identity (3.6). Let us set
∞∑

k=0

(−1)k H([λ]k)−1 ∂[λ]k

∂L
∂∂[λ]kϕ

=
1
2

∞∑
k=1

(−1)k H([λ]k)−1

×∂[λ]k

[(√
−1
2

)k−1

(1 + (−1)k−1)
p∑

i=1

θ[λσ]ik−1∏p
j=1(qj − δji)!

∂χi

[σ]k−1
ϕ

]

−m
2

2

∞∑
k=0

(−1)k H([λ]k)−1 ∂[λ]k

[(√
−1
2

)k (1 + (−1)k)∏p
i=1(qi)!

θ[λσ]k ∂[σ]kϕ

]
.

The antisymmetry of the deformation tensor implies ∂[λ]kθ
[λσ]k∂[σ]k = 0, if

k ̸= 0. Furthermore, if k = 0, the quantities qi cancel. Besides, ∂[λ]k = ∂χi[λ]k−1

so that ∂χi[λ]k−1
θ[λσ]k−1∂χi

[σ]k−1
= 0, if k ̸= 1. Finally, we get

∞∑
k=0

(−1)k H([λ]k)−1 ∂[λ]k

∂L
∂∂[λ]kϕ

= −m2ϕ+ (−1)k=1 ∂χi ∂
χiϕ(3.12)
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which achieves the proof.

Remark 13. The final Klein-Gordon equation was of course expected since
we well know that the free NCFT perfectly coincides with its commutative
counterpart from the action formulation. However here, and for the first time
to our best knowledge of the literature, we can use only the Lagrange formula-
tion to describe the dynamics of the free NC system. Lagrange formulation is
indeed more difficult to handle but this actually can be considered as the first
steps towards a well-defined generalized Hamiltonian formulation according to
Ostrogradski [21].

Now let us consider a new system with an interaction leading to a nontrivial
NCFT, in the sense that the dynamics of this system cannot be reduced to its
commutative analogue.

Consider a NC U(1) induced gauge theory described by the following La-
grangian density in NC Minkowski spacetime in 1 + 1 dimensions, i.e. R1,1:

LD =
√
−1ψ̄ ⋆

(
γµ∂µ +

√
−1eγµAµ⋆

)
ψ.(3.13)

where the real valued gauge potential is Aµ, ψ and ψ̄ are the two spinors
describing fermionic particles, e is the gauge constant coupling which is nothing
but the absolute value of the charge of the fermionic particle (electron or
positron), γµ are the Dirac matrices generated by the usual Pauli matrices
σi=1,2,3, obeying the Clifford anticommuting algebra:

{ γµ, γν} = γµγν + γνγµ = 2ηµν .(3.14)
γ0 = σ1, γ1 =

√
−1σ2, γ0γ1 = γ5 = −σ3, ψ̄ = ψ†γ0.(3.15)

Units such that ~ = 1 = c are considered. We read off the dofs from these
actions: Aµ, ψ and ψ̄. Thenceforth, the algebra of series is built over the set
D0

3 = {Aµ, ψ, ψ̄}.
Explicitly, the Lagrangian (3.13) is written as:

LD =
√
−1ψ† ⋆

(
∂0 +

√
−1eA0⋆

)
ψ +

√
−1ψ†γ5 ⋆

(
∂1 +

√
−1eA1⋆

)
ψ.

From the variation calculus of the actions S =
∫
d2xLD, we can deduce the

following statement.

Proposition 22. The equations of motion of ψ and ψ̄ with respect to the NC
Lagrangian LD defined by (3.13) are

δS

δψ
= 0 ⇔ ∂µψ̄γ

µ −
√
−1eψ̄ ⋆ Aµγ

µ = 0,(3.16)

δS

δψ̄
= 0 ⇔ γµ∂µψ +

√
−1eγµAµ ⋆ ψ = 0.(3.17)
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The equation of motion of Aµ is the Lagrangian constraint

δS

δAµ
= 0 ⇔ −e γµψ ⋆ ψ̄ = 0.(3.18)

Now, let us prove that according to our previous formulation, we can de-
fine rigorous analogues of Euler-Lagrange equations for spin fields from the
Lagrangian.

Proposition 23. The NC Euler-Lagrange equations of ψ, ψ̄ and Aµ are
∞∑

k=0

(−1)k H([λ]k)−1 ∂[λ]k

∂LD

∂∂[λ]kψ
= 0 ⇔ ∂µψ̄γ

µ −
√
−1eψ̄ ⋆ Aµγ

µ = 0,(3.19)

∞∑
k=0

(−1)k H([λ]k)−1 ∂[λ]k

∂LD

∂∂[λ]k ψ̄
= 0 ⇔ γµ∂µψ +

√
−1eγµAµ ⋆ ψ = 0,(3.20)

∞∑
k=0

(−1)k H([λ]k)−1 ∂[λ]k

∂LD

∂∂[λ]kAµ
= 0 ⇔ −e γµψ ⋆ ψ̄ = 0.(3.21)

The proof of Proposition 23 requires a preliminar lemma applying the pro-
jective limit formulation in the current situation.

Lemma 24. For any fields Φ and Υ with the Grassmann parity ϵ(Υ) = ϵ =
0, 1 , for any integer k = 0, 1, . . . , we obtain

∂(Φ ⋆Υ)
∂∂[λ]kΥ

= (−1)ϵ κk H([λ]k) θ[νλ]k∂[ν]kΦ, κk =
(√

−1
2

)k 1
k!

(3.22)

∂(Υ ⋆ Φ)
∂∂[λ]kΥ

= κk H([λ]k) θ[λν]k∂[ν]kΦ.(3.23)

Given a field A

∂(Φ ⋆ A ⋆Υ)
∂∂[λ]kA

= H([λ]k) θ[ρλ]k

k∑
m=0

κm
(−1)k−m

(k −m)!
∂[ρ]m(Φ ⋆ ∂[ρ̄]k−m

Υ)(3.24)

where [ρ̄]k−m denotes the complementary index of [ρ]m in [ρ]k, namely [ρ̄]k−m =
(ρm+1, ρm+2, . . . , ρk).

Proof. From (2.44),

Φ ⋆Υ =∂[µ]k
Υ κkθ

[ρµ]k∂[ρ]kΦ ∂[µ]kΥ.(3.25)

The equations (3.22) and (3.23) are obtained from (3.25), keeping in mind
that derivatives are left derivatives with respect to the Grassmann parity of
fields. For instance,

∂

∂∂µΥ
(Φ ⋆Υ) = (−1)ϵ

√
−1
2

θρµ∂ρΦ.
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The remaining factor is obtained by similar consideration as previously dis-
cussed.

The proof of (3.24) may start with the momentum Fourier space. We have,
with normalized measures

(f ⋆ g)(x) =
∫
dNk dNp f̃(k) g̃(p) e−

√
−1kθpe

√
−1px ⋆ e

√
−1kx

=
∫
dNk dNp f̃(k) g̃(p)

∞∑
n=0

(
√
−1)n

n!
θ[µν]n∂[ν]ne

√
−1px ⋆ ∂[µ]ne

√
−1kx

=
∞∑

n=0

(
√
−1)n

n!
θ[µν]n∂[ν]ng(x) ⋆ ∂[µ]nf(x).(3.26)

Then, one readily obtains

Φ ⋆ A ⋆Υ = Φ ⋆

∞∑
n=0

(
√
−1)n

n!
θ[µν]n∂[ν]nΥ ⋆ ∂[µ]nA

=
∞∑

m=0

κm θ[ρσ]m

∞∑
n=0

(
√
−1)n

n!
θ[µν]n ∂[ρ]m(Φ ⋆ ∂[ν]nΥ)∂[σ]m [µ]nA.(3.27)

The projection onto the term of kth order derivative of A can be written

Φ ⋆ A ⋆Υ =∂[λ]k
A(3.28)

k∑
m=0

κm θ[ρσ]m (
√
−1)k−m

(k −m)!
θ[µν]k−m ∂[ρ]m(Φ ⋆ ∂[ν]k−m

Υ)∂[σ]m [µ]k−m
A.

Renaming the independent variables such that µ1, . . . , µk−m as σm+1, . . . , σk

and ν1, . . . , νk−m as ρm+1, . . . , ρk, and using the antisymmetry of θρσ, one
proves that

θ[ρσ]mθ[µν]k−m∂[ρ]m(Φ ⋆ ∂[ν]k−m
Υ)∂[σ]m [µ]k−m

A

= (−1)k−mθ[ρσ]k∂[ρ]m(Φ ⋆ ∂[ρ̄]k−m
Υ)∂[σ]kA.

Combining the last relation and (3.28), it can be deduced the identity (3.24)
after taking the derivative in ∂[λ]kA onto (3.28). This ends the proof of the
lemma.

Proof of Propostion 23. The proof is immediate from the addition of different
quantities already computed in the Lemma 24. Using the relation (3.23) and
considering Υ = ψ̄ and Φ to be ∂µψ or γµAµ ⋆ ψ, it comes

∞∑
k=0

(−1)k H([λ]k)−1 ∂[λ]k

∂LD

∂∂[λ]k ψ̄
(3.29)

=
∞∑

k=0

(−1)k ∂[λ]k

(√
−1κk θ

[λσ]kγµ∂[σ]kµψ − eκk θ
[λσ]k∂[σ]k(γµAµ ⋆ ψ)

)
.
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The antisymmetry of θ[λσ]k cancels any term such that k ̸= 0. It clearly
remains the usual covariant derivative equation of motion of ψ (3.19). Similar
computations lead to the equation of motion of ψ̄ (3.20). Let us now derive
the constraint (3.21). We have from (3.24)

∞∑
k=0

(−1)k H([λ]k)−1 ∂[λ]k

∂LD

∂∂[λ]kAµ
(3.30)

= −e
∞∑

k=0

(−1)k θ[ρλ]k

k∑
m=0

(−
√
−1)k−mκm

(k −m)!
∂[λ]k[ρ]m(ψ̄ ⋆ γµ∂[ρ̄]k−m

ψ).

Due still to the antisymmetry of θρλ, it turns out that if m ̸= 0, the sum over
m vanishes. Indeed, assume m ≥ 1, one sees that for any function B,

θ[ρλ]k∂[λ]k[ρ]mB = θρ1λ1 · · · θρmλm · · · θρkλk∂ρ1λ1...ρmλmB = 0.

Therefore, we get from (3.30)

∞∑
k=0

(−1)k H([λ]k)−1 ∂[λ]k

∂LD

∂∂[λ]kAµ
(3.31)

= −e
∞∑

k=0

(−1)2k(
√
−1)k

k!
θ[ρλ]k∂[λ]k(ψ̄ ⋆ γµ∂[ρ]kψ)

=
∞∑

k=0

(
√
−1)k

k!
θ[ρλ]k∂[λ]k(ψ̄ ⋆ γµ∂[ρ]kψ).

Furthermore,

θ[ρλ]k∂[λ]k(ψ̄ ⋆ γµ∂[ρ]kψ) = θ[ρλ]k

k∑
l=0

C l
k ∂[λ]lψ̄ ⋆ γ

µ∂[λ]k−l[ρ]kψ,

with C l
k = k!/(l!(k−l)!), the last sum vanishes unless l = k. Finally, we obtain

∞∑
k=0

(−1)k H([λ]k)−1 ∂[λ]k

∂LD

∂∂[λ]kAµ
(3.32)

= −e
∞∑

k=0

(
√
−1)k

k!
θ[ρλ]k∂[λ]k ψ̄ ⋆ γ

µ∂[ρ]kψ = −eγµψ ⋆ ψ̄,

where the last identity stems from (3.26).

Remark 14. In NCFTs, most of computations are usually performed under
integral, namely within an action formulation, since the main suitable proper-
ties are satisfied only under the integral (see Section 2). Actually, one should,
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in more general framework of a NC module field theory over Moyal algebra
seen as a Hilbert space, work with the generalized trace class integral action
which involves the same relevant properties [5]. Hence, the integral action
formulation seems to be a way of predilection of the study of NCFTs. How-
ever, we have now shown that the Lagrangian algebraic formulation could also
have a well defined sense with a connection to the action calculus. In partic-
ular, the equation of motion extracted from action variational principle could
correspond to the NC Euler-Lagrange equations. We point out that a clear
Lagrangian and Hamiltonian formulations of the dynamics are still lacking in
NCFTs [6]. The above development shows that the nonlocal character of the
NC theory, manifested by algebraic formal series, can be usefully exploited to
extend the classical Euler-Lagrange equation of motion to the framework of
the NC theory.

As particular application of Lemma 24, let us study the formal NC mo-
mentums obtained by derivation of inverse limit series. We have to define
first the meaning of NC momentums in the sense of nonlocal theories, i.e. NC
analogues of Ostrogradski formulas. The following statement can be found in
[8].

Proposition 25. Let L = L(xn, ẋn, ẍn, . . . , x
(mn)
n ) be a Lagrange function

describing a system with xn(t) as dofs, n = 1, 2, . . . and mn being the maximal
order of all time derivatives of the coordinate xn appearing in L.

The quantities pn,αn (αn = 0, 1, . . . ,mn − 1) defined by the recurrence rela-
tions

pn,mn−1 =
∂L

∂x
(mn)
n

,(3.33)

pn,in−1 =
∂L

∂x
(in)
n

− d

dt
pn,in , in = 1, 2, . . . ,mn − 1(3.34)

allow to redefine the Euler-Lagrange equations of motion as
mn∑

kn=0

(−1)kn

(
d

dt

)kn ∂L

∂x
(kn)
n

=
∂L

∂xn
− d

dt
pn,0 = 0, n = 1, 2, . . . .(3.35)

Proof. See [8].

The NC counterpart in field theory of Proposition 25 is now investigated.
From the NC Euler-Lagrange equation (3.4)

∞∑
n=0

(−1)nH([λ]n)−1 ∂[λ]n

∂L
∂∂[λ]nϕ

(3.36)

=
∂L
∂ϕ

+ (−1)∂λ1

∞∑
n=1

(−1)n−1H([λ]n)−1 ∂[λ̄]n−1

∂L
∂∂[λ̄]n−1λ1

ϕ
,
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we can define the initial value

π0,λ1 =
∂L

∂∂λ1ϕ
+

∞∑
n=2

(−1)n−1H([λ]n)−1 ∂[λ̄]n−1

∂L
∂∂[λ̄]n−1λ1

ϕ
(3.37)

and the general term of the Ostrogradski formulas, k ≥ 1

πk−1,[λ]k = H([λ]k)−1 ∂L
∂∂[λ]kϕ

(3.38)

+
∞∑

n=k+1

(−1)n−k H([λ]n)−1 ∂[λ̄]n−k

∂L
∂∂[λ̄]n−k[λ]k

ϕ
.

The NC Euler-Lagrange equation can now be written in a simple way

∂L
∂ϕ

− ∂λπ0,λ = 0.(3.39)

The following proposition is henceforth proved.

Proposition 26. Let L⋆ = L⋆(ϕ, ∂µϕ, . . . , ∂[µ]kϕ, . . . ) be a NC Lagrange func-
tion describing a system with ϕ and ∂ϕ as dofs.

The quantities πk−1,[λ]k (k = 1, 2, . . . ) defined by the general term

πk−1,[λ]k = H([λ]k)−1 ∂L
∂∂[λ]kϕ

(3.40)

+
∞∑

n=k+1

(−1)n−k H([λ]n)−1 ∂[λ̄]n−k

∂L
∂∂[λ̄]n−k[λ]k

ϕ
.

allow to redefine the Euler-Lagrange equations of motion as

∞∑
n=0

(−1)nH([λ]n)−1 ∂[λ]n

∂L
∂∂[λ]nϕ

=
∂L
∂ϕ

− ∂λ π0,λ = 0.(3.41)

Remark 15. As a first remark, the classical Ostrogradski quantities pn,in

(3.34) are defined recursively with a certain initial value pn,mn (3.33) defined
by the fixed maximal order of time derivative of the dof xn. According to the
above construction in NCFT, the definition of these quantities actually uses
a different route defining at first the series of the fundamental quantity π0,λ

from which the general term can be deduced. Secondly, the quantity π0,λ,
as one easily observes, converges to the usual momentum conjugated to the
field ϕ (leading term in (3.37)) in the limit θ → 0 and for first order derivative
theories. The classical commutative Euler-Lagrange equation is well recovered
by the identity (3.41). In addition, the Ostrogradski formalism is established
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provided that the derivatives x(kn)
n of each dof xn up to the order mn − 1 are

considered as independent. Here, the construction meets this idea by seeing
the fields and their derivatives as totally free indeterminates. This is a new
reason why the Ostrogradski formalism makes sense in the projective limit
ring. Finally, the quantities πk,[λ]k , k = 0, 1, . . . , explicitly prove the existence
of an infinite dimensional phase space. Indeed, they could be used to define
the canonical conjugate momentums in an extended Ostrogradski Hamiltonian
formulation which has to be properly defined in a forthcoming work.

§4. Concluding remarks

In this paper, we have investigated in detail, from the fundamental point of
view of the noncommutativity, new properties which are straightforwardly
involved in the relevant computational aspects of the NCFT, built on the ⋆-
product. In order to avoid cumbersome calculations arising from the nonlocal-
ity of the theory, source of difficulties, different approaches have been proposed
such as the theories of lowest order terms of the Seiberg Witten Map [23] and
“two-time” generalized Ostrogradski formalism [6]. Here we adopt a different
approach where the Moyal algebra of functions is developed as an appropriate
ring of formal series or ring of projective limits of polynomials in the inde-
terminate defined by the fields and their derivatives. Thus, a new definition
of the ⋆-product has been provided, making functional derivations as alge-
braic derivations with respect to a given indeterminate field. The ⋆-product is
regarded as an inverse limit operator. It appears then possible to set appropri-
ate rules operating over nonlocal quantities in the NC spacetime, preserving
all the NC properties of the ⋆-algebra at all levels of computation. Avoiding
the action formulation, we have given concrete examples in any dimensions
by making explicit directly by Lagrange formalism, the NC Euler-Lagrange
equations of the NC free scalar field theory and a U(1) induced gauge theory
coupled to NC Dirac Lagrangian density. Applications of this study allow also
to consider Ostrogradski formulas for higher order theories even if an infinite
dimensional phase space is considered.

In the forthcoming work, we expect to give a new insight to the nonlo-
cal theories induced by infinite series generated by the Moyal product in the
framework of the ring of projective limits of vector fields with a thorough study
of their convergence domain. A second issue which remains to be understood
within the framework of this study concerns the Hamiltonian formulation of
the dynamics in NCFTs.
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