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On the Killing vector fields of generalized metrics

Rezső L. Lovas

(Received September 9, 2004)

Abstract We consider a manifold endowed with a metric tensor in its tangent
bundle pulled back by its own projection. We shall give necessary and sufficient
conditions for a vector field to be an infinitesimal isometry of a metric of this
type in general and for some special classes. We also examine translations, i.e.,
the special class of Killing vector fields whose integral curves are geodesics of an
associated Finsler manifold. As applications, we determine the Killing vector
fields of Funk metrics, and we give a new proof for the fact that perturbing
a Riemannian manifold by a one-form metrically equivalent to a Killing field
yields a Randers manifold for which the original vector field is a Killing field as
well.
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§1. Introduction

By a generalized metric we shall mean a symmetric, non-degenerate (0, 2)
tensor in the pull-back bundle τ∗τ of the tangent bundle τ : TM → M over
τ . The study of metrics of this type dates back to the 1950’s [13, 25]. A new
classification for them has been published recently [10]. These metrics are
natural generalizations of Finsler structures, since manifolds endowed with
generalized metrics are the most general spaces where ‘the metric depends
also on the direction’. Some of their characteristic properties in which they
differ from Finsler manifolds were already pointed out in [13], e.g., the fact that
their autoparallel and extremal curves do not necessarily coincide, even with
a natural choice of a covariant derivative. These metrics may be interesting
not only from a geometrical, but also from a physical viewpoint, since they
furnish a natural geometric description of the so-called bilocal field theories
introduced by Yukawa in the 1940’s. Yukawa’s main goal was to explain mass
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quantization and to eliminate certain types of divergences in quantum field
theory. For bilocal field theories, we may refer to Yukawa’s original papers
[27, 28], or, for more recent reviews on multi-local theories, see [15, 22]. In this
paper, however, we restrict ourselves to the geometric aspects of generalized
metrics; we wish to consider physical implications in a later article.

The infinitesimal symmetries of space-time are expressed by so-called Kil-
ling vector fields in general relativity. Therefore, it is an important problem to
determine the Killing vector fields of different classes of generalized metrics. In
a Euclidean space, translations are distinguished from other types of isometries
by the property that their orbits are straight lines. This property is used
to generalize the notion of translations to more general classes of metrics:
translations are Killing vector fields whose integral curves are at the same
time geodesics (in some sense). In this paper we also study the translations of
a certain type of generalized metrics.

The outline of the paper is the following. Sections 2 – 4 may be regarded as
preparatory sections, since they contain no new results; they only make the
paper more or less self-contained. Coming to the original results, in section
5 we have collected those which are relevant to all generalized metrics. We
discuss the Killing vector fields of special types of metrics in section 6. In
section 7 we study the translations of weakly normal and Miron regular met-
rics. Section 8 contains applications to Randers manifolds and Funk metrics.
Finally, in section 9 we discuss some open problems.

§2. Preliminary constructions

We begin by recalling some definitions and basic facts concerning the technical
tools that we shall use later. As a general reference, see [8, 21].

We work on an n-dimensional connected smooth manifold M whose topol-
ogy is of Hausdorff type and has a countable base. The symbol C∞(M) stands
for the ring of smooth real-valued functions on M , and X(M) is the C∞(M)-
module of (smooth) vector fields on M . The symbol τ : TM → M is the
tangent bundle of M , and the tangent bundle of TM is denoted by τTM . We
shall denote the open submanifold of TM formed by the non-zero tangent

vectors by
◦
TM , and the restriction of τ to

◦
TM by

◦
τ . If N is another mani-

fold, and f : M → N is a smooth map, then its tangent map is denoted by
f∗ : TM → TN . If f is a diffeomorphism, the push-forward of a vector field
X on M by f is

f�X := f∗ ◦ X ◦ f−1.

A subset W of the product manifold R × M is said to be radial if, for any
p ∈ M , W∩(R×{p}) = I×{p}, where I is an open interval that contains 0 ∈ R.
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Let X be a vector field on a manifold M . The flow of X is a map ϕ : W → M
such that W ⊂ R × M is a radial set, and cp := ϕ(., p) : Ip → M is the
maximal integral curve of X starting from the point p ∈ M , i.e., ċp = X ◦ cp,
cp(0) = p, and any other curve satisfying these two conditions is a restriction
of cp. If W = R × M , the vector field X is said to be complete.

If f is a smooth function on M , then the function

f c : TM → R, v ∈ TM �→ f c(v) := vf

is a smooth function on TM and is called the complete lift of f . It can be
shown that any vector field on TM is determined by its action on complete
lifts, and if X ∈ X(M), there is a unique vector field Xc on TM such that
Xcf c = (Xf)c for any smooth function f on M [21]. The vector field Xc is
said to be the complete lift of X. Let ϕ : W → M be the flow of X. If we
fix the first argument of ϕ, the map ϕt := ϕ(t, .) is a diffeomorphism between
two open submanifolds of M , and the map

ϕ̃ : (t, v) �→ ϕ̃(t, v) := (ϕt)∗(v) ((t, τ(v)) ∈ W )

is the flow of Xc.
The pull-back bundles of τ by τ and

◦
τ will play an important role in our

presentation, and will be denoted by τ∗τ and
◦
τ∗τ , respectively. The shorthand

for their sections will be X(τ) and X(
◦
τ ). These sections will also be called

vector fields along the projection.
We have the canonical short exact sequence

0 → τ∗TM
i→ TTM

j→ τ∗TM → 0,

where i(z, v) is the initial velocity of the parametrized straight line t �→ z + tv
for all (z, v) ∈ τ∗TM , and j is defined by w ∈ TzTM �→ (z, τ∗(w)). The set
of vertical vectors is V TM := Im i = Ker j, it is the total space of the vertical
subbundle of τTM , denoted by τv

TM . The module of the vertical vector fields
is Xv(TM). Note that the Lie bracket of two vertical vector fields is always
vertical.

The bundle maps i and j give rise to C∞(TM)-homomorphisms between
X(τ) and X(TM) denoted by the same symbols. Thus we obtain the exact
sequence

0 → X(τ) i→ X(TM)
j→ X(τ) → 0

of C∞(TM)-homomorphisms.
If X is a vector field on M , we define

X̂(z) := (z,X(τ(z))) (z ∈ TM), Xv := iX̂.
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Obviously, X̂ is a vector field along τ , while Xv is a vertical vector field. The
vector field X̂ is said to be a basic vector field along τ , and Xv is called the
vertical lift of X. Further important canonical objects are given by

δ(z) := (z, z) (z ∈ TM), C := iδ, and J := i ◦ j,

the canonical section of τ∗τ , the Liouville vector field on TM and the vertical
endomorphism, respectively. We associate to J the vertical differential dJ on
TM . By definition,

dJf := df ◦ J, f ∈ C∞(TM).

Then dJf is a (semibasic) one-form on TM .
If α ∈ T 0

k(M) is a symmetric or skew-symmetric k-form on M , then the
tensor fields α̂ and ᾱ defined by

α̂v(v1, . . . , vk) := αp(v1, . . . , vk), ᾱv(v1, . . . , vk−1) := αp(v, v1, . . . , vk−1)
(v, vi ∈ TpM, 1 � i � k; p ∈ M)

are symmetric or skew-symmetric k- and (k − 1)-forms along τ , respectively.
In particular, if f ∈ C∞(M), then f v := f̂ = f ◦ τ ∈ C∞(TM) is the vertical
lift of f .

Let X̃ and Ỹ be two vector fields along τ . Choose a vector field η on TM
such that jη = Ỹ . We define the canonical v-covariant derivative of Ỹ with
respect to X̃ by

∇v
X̃

Ỹ = ∇v
X̃
jη := j

[
iX̃, η

]
.

It can easily be seen that the definition is independent of the choice of η. The
operator ∇v

X̃
can be extended to any tensor α of type (0, s) along τ , to be a

kind of tensor derivation:

(∇v
X̃

α)
(
Ỹ1, . . . , Ỹs

)
:=
(
iX̃
)

α
(
Ỹ1, . . . , Ỹs

)
−

s∑
i=1

α
(
Ỹ1, . . . ,∇v

X̃
Ỹi, . . . , Ỹs

)
(
Ỹ1, . . . , Ỹs ∈ X(τ)

)
.

If X is a vector field on M , we may define a Lie derivative LX in the tensor
algebra of τ∗τ in the following way:

LX : f ∈ C∞(TM) �→ Xcf, Ỹ ∈ X(τ) �→ i−1
[
Xc, iỸ

]
,

and extend it to any types of tensors by the usual product rule (for details,
see [6, 21]). In particular, LXδ = 0, and, for Y ∈ X(M), we have

LX Ŷ = i−1[Xc, Y v] = i−1([X,Y ]v) = [̂X,Y ].
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§3. Generalized metrics

In this section we introduce generalized metrics and some of their special
classes. Our main source is reference [10].

Definition 3.1. Let g be a symmetric and non-degenerate tensor of type (0, 2)
in the bundle τ∗τ or in

◦
τ∗τ . Then g is said to be a generalized metric or briefly

a metric.

It is crucial that g need not be defined on the zero section, since, if g is
homogeneous and is defined in the whole τ∗τ (and, of course, is smooth), then
it is the lift of a pseudo-Riemannian metric on M .

Using non-degeneracy, the first Cartan tensor C and the lowered first Car-
tan tensor C� of a generalized metric g are defined by the following formulae:

g
(
C(X̃, Ỹ ), Z̃

)
:= C�

(
X̃, Ỹ , Z̃

)
:=
(
∇v

X̃
g
)(

Ỹ , Z̃
) (

X̃, Ỹ , Z̃ ∈ X(τ)
)

.

The one-form
ϑg : ξ ∈ X(TM) �→ ϑg(ξ) := g(jξ, δ)

on TM is called the Lagrange one-form associated to g, and its exterior deriva-
tive ωg := dϑg is the Lagrange two-form associated to g. The absolute energy
of g is E := 1

2g(δ, δ).

Definition 3.2. A metric g along τ or
◦
τ is said to be variational if the first

Cartan tensor C associated to it is symmetric, weakly variational if
C�

(
X̃, Ỹ , δ

)
= C�

(
Ỹ , X̃, δ

)
for every X̃, Ỹ ∈ X(τ), normal if C

(
X̃, δ

)
= 0 for

every X̃ ∈ X(τ), and weakly normal if C�

(
X̃, δ, δ

)
= 0 for every X̃ ∈ X(τ).

The metric is Miron regular [12] if the tensor

B̃ : X̃ ∈ X(τ) �→ B̃
(
X̃
)

:= X̃ + C
(
X̃, δ

)
has maximal rank at every point of TM (or

◦
TM).

Now, for the sake of the reader’s convenience, we summarize some results
of [10] we shall make use of.

(1) A metric g is variational if and only if there is a smooth function L on

TM (or on
◦
TM) such that g = ∇v∇vL. In this case, we shall call L a

Lagrangian.

(2) A metric g is weakly variational if and only if there is a smooth function

L on TM (or on
◦
TM) such that ϑg = dJL.
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(3) If g is weakly normal and Miron regular, then E is positively homoge-
neous of degree 2, and the symmetric tensor ∇v∇vE is non-degenerate.
In other words, E is a (possibly indefinite) Finsler energy function. Fur-
thermore, ϑg = dJE.

(4) If g is normal, then there is a (possibly indefinite) Finsler energy function
E such that g = ∇v∇vE.

§4. Ehresmann connections and covariant derivatives

Following the terminology used e.g. in [7], by an Ehresmann connection we
shall mean a split canonical short exact sequence:

0 � τ∗TM
i�
V

TTM
j

�
H

τ∗TM � 0.

The requirement that this is a splitting means that V ◦ i = j ◦ H = 1τ∗TM ,
and ImH = KerV. We allow the possibility that H and V are defined only on
◦
TM rather than on the whole TM . The type (1, 1) tensor field h := H ◦ j on
TM is said to be the horizontal projector belonging to H, and Imhv is called
the horizontal subspace of TvTM if v ∈ TM . The map v := 1TM − h is the
vertical projector belonging to h. As in the case of i and j, we denote by the
same symbols the arising C∞(TM)-homomorphism between the modules of
vector fields as the corresponding bundle maps. If X ∈ X(M) is a vector field
on M , then Xh := HX̂ = hXc ∈ X(TM) is its horizontal lift.

The torsion of an Ehresmann connection is the (1,2) tensor T along τ
determined by the formula

iT
(
X̂, Ŷ

)
:=
[
Xh, Y v

]
−
[
Y h,Xv

]
− [X,Y ]v (X,Y ∈ X(M)).

If a metric and an Ehresmann connection with vanishing torsion are given

on TM (or on
◦
TM), we can construct a metric covariant derivative D in τ∗τ

as follows (see [4, 10]). First, we consider Berwald’s covariant derivative in
τ∗τ given by

∇iX̃ Ỹ := j
[
iX̃,HỸ

]
, ∇HX̃ Ỹ := V

[
HX̃, iỸ

] (
X̃, Ỹ ∈ X(

◦
τ )
)

.

Observe that its vertical part coincides with the canonical v-covariant deriva-
tive. Next, we introduce the second Cartan tensor Ch by means of the relation

g
(
Ch
(
X̃, Ỹ

)
, Z̃
)

:= (∇HX̃g)
(
Ỹ , Z̃

) (
X̃, Ỹ , Z̃ ∈ X(τ)

)
.
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Third, using the Christoffel trick, we define two other tensors along τ :

g

(◦
C(X̃, Ỹ ), Z̃

)
= g

(
C(X̃, Ỹ ), Z̃

)
+ g

(
C(Ỹ , Z̃), X̃

)
− g

(
C(Z̃, X̃), Ỹ

)
,

g

(◦
Ch(X̃, Ỹ ), Z̃

)
= g

(
Ch(X̃, Ỹ ), Z̃

)
+ g

(
Ch(Ỹ , Z̃), X̃

)
− g

(
Ch(Z̃, X̃), Ỹ

)
.

With the help of
◦
C and

◦
Ch we define D by the rules

DiX̃ Ỹ := ∇iX̃ Ỹ +
1
2

◦
C
(
X̃, Ỹ

)
, DHX̃ Ỹ := ∇HX̃ Ỹ +

1
2

◦
Ch
(
X̃, Ỹ

)
(
X̃, Ỹ , Z̃ ∈ X(

◦
τ )
)

.

Finally, this covariant derivative operator can also be extended to any type
of tensors by the usual product rule. Then it will be metric, i.e., Dg = 0.
If g arises from a Finsler energy function, and H is the canonical Ehresmann
connection on the Finsler manifold (section 7), then D coincides with the
well-known Cartan’s covariant derivative [20, 21].

§5. Killing vector fields in general

In this section g will be a generalized metric on M . For the sake of definiteness,

we shall assume that g is defined only on
◦
TM . The same arguments, however,

remain valid when its domain is the whole TM .

Definition 5.1. A diffeomorphism f : U → V between two open subsets of
M is a local isometry if its tangent map leaves g invariant, i.e.,

gf∗(v)(f∗(w1), f∗(w2)) = gv(w1, w2)

for any p ∈ U and v,w1, w2 ∈
◦
T pM . A vector field X ∈ X(M) with flow

ϕ : W ⊂ R × M → M is said to be an infinitesimal isometry if ϕt is a local
isometry between two open subsets of M for all t ∈ R such that the domain
of ϕt is not empty. A vector field X ∈ X(M) is called a Killing vector field if
LXg = 0.

Proposition 5.2. Let g be a metric and X ∈ X(M) a vector field. Then X
is an infinitesimal isometry of M if and only if it is a Killing vector field.

Proof. We shall repeatedly use the dynamic interpretation of the Lie bracket
of two vector fields [24]: if X,Y ∈ X(M), and ϕ is the flow of X, then

[X,Y ](p) = lim
t→0

1
t
{(ϕ−t)∗[Y (ϕt(p))] − Y (p)} = lim

t→0

1
t
((ϕ−t)�Y − Y )(p),
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for all p ∈ M . Now let us begin with proving the necessity, and assume that
X is an infinitesimal isometry. For arbitrarily chosen vector fields Y and Z on

M , define a function f ∈ C∞( ◦TM
)

by f := g
(
Ŷ , Ẑ

)
. If v ∈

◦
T pM , t ∈ R and

(t, p) ∈ W , we have

f((ϕt)∗v) = g(ϕt)∗(v)(Y (ϕt(p)), Z(ϕt(p)))

= g(ϕt)∗(v){(ϕt)∗[(ϕ−t)�Y ](p), (ϕt)∗[(ϕ−t)�Z](p)}
= gv((ϕ−t)�Y (p), (ϕ−t)�Z(p)),

using, in the last step, that ϕt is a local isometry for every sufficiently small
t ∈ R. Now we use the fact that the curve cv : t �→ (ϕt)∗(v) is an integral
curve of Xc to obtain

Xc(v)f = lim
t→0

1
t
[f((ϕt)∗(v)) − f(v)]

= lim
t→0

1
t
[gv((ϕ−t)�Y (p), (ϕ−t)�Z(p)) − gv(Y (p), Z(p))]

= lim
t→0

[
gv((ϕ−t)�Y (p) − Y (p), (ϕ−t)�Z(p))

t
+

gv(Y (p), (ϕ−t)�Z(p) − Z(p))
t

]
= gv

(
lim
t→0

1
t
((ϕ−t)�Y (p) − Y (p)), lim

t→0
(ϕ−t)�Z(p)

)
+ gv

(
Y (p), lim

t→0

1
t
((ϕ−t)�Z(p) − Z(p))

)
= gv([X,Y ](p), Z(p))

+ gv(Y (p), [X,Z](p)) =
{
g
(
[̂X,Y ], Ẑ

)
+ g

(
Ŷ , [̂X,Z]

)}
(v),

Xcg
(
Ŷ , Ẑ

)
= Xcf = g

(
[̂X,Y ], Ẑ

)
+ g

(
Ŷ , [̂X,Z]

)
= g

(
LX Ŷ , Ẑ

)
+ g

(
Ŷ ,LX Ẑ

)
.

Thus we conclude

(LXg)
(
Ŷ , Ẑ

)
= Xcg

(
Ŷ , Ẑ

)
− g

(
LX Ŷ , Ẑ

)
− g

(
Ŷ ,LXẐ

)
= 0,

i.e., X is a Killing vector field.
To prove the converse, assume that X is a Killing vector field, consider the

flow ϕ : W ⊂ R×M → M of X, and let p ∈ M , v,w1, w2 ∈
◦
T pM be arbitrary.

We shall again denote the maximal integral curve of Xc starting from v by
cv : Ip → TM . (The domain of this curve depends only on p.) We define the
function 	 : Ip → R in the following way:

	(t) := g(ϕt)∗(v)((ϕt)∗(w1), (ϕt)∗(w2)) = gcv(t)((ϕt)∗(w1), (ϕt)∗(w2)).
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It is enough to show that 	 is constant. To this end, we define two vector fields
along cv:

Y (t) := (ϕt)∗(w1), Z(t) := (ϕt)∗(w2) (t ∈ Ip).

Then Y and Z can be extended, at least locally, to vector fields Ỹ and Z̃ on
an open subset U of TM such that

Y (t) = Ỹ (cv(t)), Z(t) = Z̃(cv(t)) (t ∈ I)

(I ⊂ Ip is another open interval). Now with the help of the function given by

f(q) := gq(Ỹ (q), Z̃(q)) (q ∈ U),

we have 	 � I = f ◦ cv . Thus,

	′(t) = (f ◦ cv)′(t) = ċv(t)f = Xc(cv(t))f = (Xcf)(cv(t))

=
[
g(LX Ỹ , Z̃) + g(Ỹ ,LXZ̃)

]
(cv(t)),

i
(
LX Ỹ

)
(q) =

[
Xc, iỸ

]
(q) = lim

t→0

1
t

{
(ϕ−t)∗[iỸ (ϕt(q))] − iỸ (q)

}
= i lim

t→0

1
t

{
(ϕ−t)∗[Ỹ (ϕt(q))] − Ỹ (q)

}
= 0 (q ∈ cv(I))

due to the construction of Ỹ . We obtain, in a similar way, that LXZ̃ = 0.
Hence 	 is indeed constant.

If the metric g is positive definite and homogeneous, i.e., the function
g
(
X̂, Ŷ

)
is positively homogeneous of degree 0 for any X,Y ∈ X(M), then

we may define the length of an arc c : [α, β] → M by

	(c) :=
∫ β

α

√
E ◦ ċ =

∫ β

α

√
gċ(t)(ċ(t), ċ(t))dt.

The distance of two points p, q ∈ M is then given by

d(p, q) := inf{	(c)|c : [0, 1] → M, c(0) = p, c(1) = q}.

We say that g is reversible if g−v(w1, w2) = gv(w1, w2) for any v,w1, w2 ∈ TpM
and p ∈ M . In this case, d is symmetric, and (M,d) becomes a metric space.

It is known that every Killing field is complete on a complete Riemannian
manifold [17]. This result can be easily generalized as follows.

Proposition 5.3. Let g be a homogeneous, reversible and positive definite
metric, and suppose that X is a Killing vector field of g. If M is complete as
a metric space, the vector field X is complete as well.
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Proof. Let cp : [0, α[ → M be an integral curve of X starting from p. We show
that cp can be extended to [0, α]. Since c̈p = Xc ◦ ċp, and

XcE =
1
2
Xcg(δ, δ) =

1
2
(LXg)(δ, δ) = 0,

the function E ◦ ċp is constant. Let λ :=
√

E(ċp(t)) (t ∈ [0, α[ is arbitrary).
Thus, if t, t′ ∈ ]0, α[,

d(cp(t), cp(t′)) �
∣∣∣∣∣
∫ t′

t

√
E ◦ ċp

∣∣∣∣∣ = λ|t − t′|.

This implies, by the completeness of M , that the limit limt→α cp(t) exists.

Now we suppose that an Ehresmann connection is specified on M whose
torsion vanishes. Let D be the covariant derivative operator constructed in
section 4.

The following proposition was formulated in [19] for the special case of
Finsler manifolds. It generalizes the skew-symmetry of the covariant differen-
tial of a Killing field in Riemannian geometry.

Proposition 5.4. If X is a Killing vector field on M ,

g
(
DHỸ X̂, Z̃

)
+ g

(
Ỹ ,DHZ̃X̂

)
+ g

(
C
(
VXc, Ỹ

)
, Z̃
)

= 0

for any Ỹ , Z̃ ∈ X(
◦
τ ).

Proof. Since the left-hand side is tensorial in Ỹ , Z̃, it is enough to verify the
formula for basic vector fields Ŷ , Ẑ. Using the condition that X is a Killing
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field, we obtain

0 = (LXg)
(
Ŷ , Ẑ

)
= Xcg

(
Ŷ , Ẑ

)
− g

(
[̂X,Y ], Ẑ

)
− g

(
Ŷ , [̂X,Z]

)
Dg=0
= g

(
DXc Ŷ , Ẑ

)
− g

(
[̂X,Y ], Ẑ

)
+ g

(
Ŷ ,DXcẐ

)
− g

(
Ŷ , [̂X,Z]

)
= g

(
∇Xh Ŷ +

1
2

◦
Ch
(
X̂, Ŷ

)
+

1
2

◦
C
(
VXc, Ŷ

)
− [̂X,Y ], Ẑ

)
+ (Y ↔ Z)

= g

(
V
([

Xh, Y v
]
− [X,Y ]v

)
+

1
2

◦
Ch
(
X̂, Ŷ

)
+

1
2

◦
C
(
VXc, Ŷ

)
, Ẑ

)
+ (Y ↔ Z)

T=0= g

(
V
[
Y h,Xv

]
+

1
2

◦
Ch
(
X̂, Ŷ

)
+

1
2

◦
C
(
VXc, Ŷ

)
, Ẑ

)
+ (Y ↔ Z)

= g

(
∇Y hX̂ +

1
2

◦
Ch
(
Ŷ , X̂

)
, Ẑ

)
+

1
2

{
C�

(
VXc, Ŷ , Ẑ

)
+ C�

(
Ŷ , Ẑ,VXc

)
− C�

(
Ẑ,VXc, Ŷ

)}
+ (Y ↔ Z)

= g
(
DY hX̂, Ẑ

)
+ g

(
Ŷ ,DZhX̂

)
+ C�

(
VXc, Ŷ , Ẑ

)
= g

(
DY hX̂, Ẑ

)
+ g

(
Ŷ ,DZhX̂

)
+ g

(
C
(
VXc, Ŷ

)
, Ẑ
)

,

where the symbol (Y ↔ Z) means an expression consisting of all preceding
terms, with Y and Z interchanged.

§6. Special classes of generalized metrics

For any metric g, we introduce the (1,1) tensor
∗
C along τ by the prescription

∗
C : X̃ ∈ X(τ) �→ C

(
X̃, δ

)
,

where C is the first Cartan tensor of the metric.

Proposition 6.1. Let g be a weakly variatonal and Miron regular metric with
ϑg = dJL. A vector field X on M is a Killing vector field for g if and only if

the function XcL is a vertical lift and LX

∗
C = 0.

Proof.

(1) Necessity
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Suppose that X is a Killing field. If Y ∈ X(M), we have

Y vXcL = XcY vL − [Xc, Y v]L = Xc(dJL)(Y c) − dJL[X,Y ]c

= Xcϑg(Y c) − ϑg[X,Y ]c = Xcg
(
Ŷ , δ

)
− g

(
[̂X,Y ], δ

)
= (LXg)

(
Ŷ , δ

)
= 0,

thus XcL is a vertical lift. To verify the necessity of the second condition,
let Z be another vector field on M . Using our assumption LXg = 0
repeatedly, we get

g

(
(LX

∗
C)(Ŷ ), Ẑ

)
= g

(
LX(

∗
C(Ŷ )) −

∗
C [̂X,Y ], Ẑ

)
= Xcg

(∗
C(Ŷ ), Ẑ

)
− g

(∗
C [̂X,Y ], Ẑ

)
− g

(∗
C(Ŷ ), [̂X,Z]

)
= Xcg

(
C(Ŷ , δ), Ẑ

)
− g

(
C([̂X,Y ], δ), Ẑ

)
− g

(
C(Ŷ , δ), [̂X,Z]

)
= Xc

(
∇v

Ŷ
g
)(

δ, Ẑ
)
−
(
∇v
�[X,Y ]

g
)(

δ, Ẑ
)
−
(
∇v

Ŷ
g
)(

δ, [̂X,Z]
)

= XcY vg
(
δ, Ẑ

)
− Xcg

(
Ŷ , Ẑ

)
− [Xc, Y v]g

(
δ, Ẑ

)
+ g

(
[̂X,Y ], Ẑ

)
− Y vg

(
δ, [̂X,Z]

)
+ g

(
Ŷ , [̂X,Z]

)
= Y vXcg

(
δ, Ẑ

)
− Y vg

(
δ, [̂X,Z]

)
= Y v(LXg)

(
δ, Ẑ

)
= 0,

which implies, by the non-degeneracy of g, that LX

∗
C = 0.

(2) Sufficiency

If XcL is a vertical lift, we obtain

(LXcϑg)(Y c) = XcY vL − [Xc, Y v]L = Y vXcL = 0

for any vector field Y on M , which implies LXcϑg = 0. Since the Lie
derivative and the exterior derivative commute, we also have LXcωg =
LXcdϑg = 0. The second condition implies

LXB̃ = LX

(
1�(τ) +

∗
C
)

= 0.

As LXg is tensorial, and g is Miron regular, it is sufficient to show
that (LXg)

(
B̃(Ŷ ), Ẑ

)
= 0 for any vector fields Y and Z on M . Using
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ωg(Jξ, η) = g
(
B̃(jξ), jη

)
(ξ, η ∈ X(TM)), we get

(LXg)
(
B̃(Ŷ ), Ẑ

)
= Xcg

(
B̃(Ŷ ), Ẑ

)
− g

(
LXB̃(Ŷ ), Ẑ

)
− g

(
B̃(Ŷ ), [̂X,Z]

)
= Xcg

(
B̃(Ŷ ), Ẑ

)
− g

(
B̃ [̂X,Y ], Ẑ

)
− g

(
B̃(Ŷ ), [̂X,Z]

)
= Xcωg(Y v, Zc) − ωg([Xc, Y v], Zc) − ωg(Y v, [Xc, Zc])
= (LXcωg)(Y v, Zc) = 0,

thus concluding the proof.

The metric g does not determine L uniquely, since a vertical lift can be
added to L without changing dJL. Moreover, we have

Corollary 6.2. With conditions similar to those in 6.1, if g is defined on the
whole TM , and X is a Killing vector field, L can be chosen such that XcL = 0.

Proof. By 6.1, there is a smooth function L̃ on TM such that XcL̃ is a vertical
lift. Let us define L by

L(v) := L̃(v) − L̃(0τ(v)),

then L differs from L̃ only by a vertical lift, and XcL = 0.

Now we introduce two canonical inclusions. The first one will be

i1 : M → TM, p ∈ M �→ i1(p) := 0p.

In other words, i1 is an embedding of M into TM that assigns to each point
p the zero vector at p. The second inclusion is given by the prescription

i2 : TM → TTM, v ∈ TM �→ i2(v) := ċv(0),
where cv : t ∈ R �→ 0τ(v) + tv.

We shall also use the shorthand τ̄ := i1 ◦ τ .

Proposition 6.3. Let g be a variational metric defined on the whole TM . A
vector field X on M is a Killing vector field if and only if there is a Lagrangian
L for g such that XcL = 0.

Proof.
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(1) Necessity

Suppose that X is a Killing vector field, and L̃ is an arbitrary Lagrangian
for g. Then we obtain

0 = (LXg)
(
Ŷ , Ẑ

)
= Xcg

(
Ŷ , Ẑ

)
− g

(
[̂X,Y ], Ẑ

)
− g

(
Ŷ , [̂X,Z]

)
= XcY vZvL̃ − [Xc, Y v]ZvL̃ − Y v[Xc, Zv]L̃ = Y vZvXcL̃

for any vector fields Y,Z ∈ X(M). It follows that XcL̃ is an affine
function on each fibre. Now we define a new Lagrangian L by

L := L̃ − L̃ ◦ i1 ◦ τ − dL̃ ◦ i2.

It is easy to see that the difference of L̃ and L is also a fibrewise
affine function, thus their Hessians are the same, i.e., g. We com-
pute the action of Xc on the difference L̃ − L over an induced chart
(τ−1(U), (xi)ni=1, (y

i)ni=1) in TM by a chart (U, (ui)ni=1) in M :

Xc
(
L̃ ◦ i1 ◦ τ + dL̃ ◦ i2

)
=
[
X
(
L̃ ◦ i1

)]v
+Xc

(
dL̃ ◦ i2

)
=

⎡⎣Xi
∂
(
L̃ ◦ i1

)
∂ui

⎤⎦v

+(Xi)v
∂

∂xi

(
dL̃ ◦ i2

)
+yj

(
∂Xi

∂uj

)v
∂

∂yi

(
dL̃ ◦ i2

)

= (Xi)v
(

∂L̃

∂xi
◦ τ̄

)
+(Xi)vyj

(
∂2L̃

∂xi∂yj
◦ τ̄

)
+yj

(
∂Xi

∂uj

)v
(

∂L̃

∂yi
◦ τ̄

)
.

This is a fibrewise affine function, just like XcL̃. To show that they are
equal, it is enough to check that they coincide on the zero section and
so do their linear parts on each fibre. The expression of XcL̃ over our
induced chart is

XcL̃ = (Xi)v
∂L̃

∂xi
+ yj

(
∂Xi

∂uj

)v
∂L̃

∂yi
.

Thus, XcL = XcL̃ − Xc
(
L̃ − L

)
vanishes indeed on the zero section:

XcL̃ ◦ i1 − Xc
(
L̃ − L

)
◦ i1 = Xi

(
∂L̃

∂xi
◦ i1

)
− Xi

(
∂L̃

∂xi
◦ i1

)
= 0,

whereas the linear part of XcL is

yi

(
∂

∂yi
XcL̃

)
◦ τ̄ − (Xi)vyj

(
∂2L̃

∂xi∂yj
◦ τ̄

)
−yj

(
∂Xi

∂uj

)v
(

∂L̃

∂yi
◦ τ̄

)
= 0.
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(2) Sufficiency

(LXg)
(
Ŷ , Ẑ

)
= Xcg

(
Ŷ , Ẑ

)
− g

(
[̂X,Y ], Ẑ

)
− g

(
Ŷ , [̂X,Z]

)
= XcY vZvL − [Xc, Y v]ZvL − Y v[Xc, Zv]L = Y vZvXcL = 0.

Corollary 6.4. If (M,E) is a Finsler manifold with Finslerian metric g =
∇v∇vE, then a vector field X on M is a Killing vector field of g if and only
if XcE = 0.

§7. Translations

In this section we shall work on a manifold endowed with a weakly normal and
Miron regular metric. It can be shown (see [10]) that in this case, the absolute
energy E is a Finsler energy function. Then E can be extended continuously

to the zero section. We shall denote by ξ ∈ X
( ◦
TM

)
the canonical spray of the

Finsler manifold (M,E) determined by the relation (ddJE)(ξ, η) = −ηE for

η ∈ X
( ◦
TM

)
. It is well-known that there is a canonical Ehresmann connection

on a Finsler manifold called the Barthel connection [21]. In this section we
shall use this connection and the corresponding metric covariant derivative D.
Then, for any vector field X on M ,

Xh =
1
2
(Xc + [Xv, ξ]), XhE = 0,

and ξ = Hδ is horizontal.

Definition 7.1. A Killing vector field X of g is called a translation if every
non-constant integral curve of X is a geodesic of the Finsler manifold (M,E).

For classical results on translations of Riemannian manifolds, see [2, 16,
26]. Now we generalize the important conservation lemma from Riemannian
geometry ([14], p. 252) as follows.

Proposition 7.2. If X ∈ X(M) is a Killing vector field, and c : I → M is a
geodesic of E, then the function

t ∈ I �→ gċ(t)(X(c(t)), ċ(t))

is constant.
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Proof. Let us denote the function in question by f . The curve ċ is an integral
curve of ξ, thus we have

f ′ = ξg
(
X̂, δ

)
◦ ċ.

Using (3) in section 3 and the relation XcE = 0, we obtain

ξg
(
X̂, δ

)
= ξϑg(Xc) = ξ(dJE)(Xc) = ξXvE = −XcE − XvξE + ξXvE

= −2XhE = 0,

and therefore f ′ = 0, which implies that f is constant.

Proposition 7.3. Let X be a Killing vector field of g. Then X is a translation
if and only if the function

p ∈ M �→ E(Xp)

is constant.

Proof.

(1) Necessity
Suppose that X is a translation. If X = 0, the statement is obvious.
Hence we assume that there is a point q ∈ M such that Xq 
= 0. We
define the following subset of M :

V := {p ∈ M |E(Xp) = E(Xq)}.

We shall show that V = M . First, V 
= ∅, since q ∈ V . Furthermore,
V is closed, since it is the inverse image of the closed set {E(Xq)} ⊂ R

under the function

f : p ∈ M �→ f(p) := E(Xp).

Thus it remains only to show that V is open.

To see this, take a point p ∈ V . By the straightening-out theorem (see
e.g. [1]), there is a chart (U, (ui)ni=1) around p such that X � U = ∂

∂u1 .
Consider an integral curve c : I → M of X, which is, by the definition
of translations, a geodesic as well. Its components ci := ui ◦ c have the
following form:

c1(t) = c1(0) + t, ci(t) = ci(0) (2 � i � n).

On the other hand, c satisfies the differential equations of the geodesics:

ci′′ + 2Gi ◦ ċ = 0,
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where

Gi =
1
2
gij

(
yk ∂2E

∂xk∂yj
− ∂E

∂xj

)
,

and (gij) is the inverse matrix of (gij). Putting these together, we infer
that Gi ◦ ∂

∂u1 = 0 on U . Since the matrix (gij) is non-degenerate, this
implies that

0 =
(

yk ∂2E

∂xk∂yj
− ∂E

∂xj

)
◦ ∂

∂u1
=
(

∂2E

∂x1∂yj
− ∂E

∂xj

)
◦ ∂

∂u1

= − ∂E

∂xj
◦ ∂

∂u1
= − ∂

∂uj

(
E ◦ ∂

∂u1

)
,

which, in turn, implies that the function E ◦ ∂
∂u1 is constant on U . Hence

p ∈ V is contained together with an open neighbourhood in V . We
conclude that V = M .

(2) Sufficiency
If the function f : p ∈ M �→ f(p) := E(Xp) is constant, then, in a chart
similar to that in the previous part, it can be seen that the integral
curves of X are geodesics as well.

§8. Some special cases

8.1. Randers manifolds

Let (M,α) be a Riemannian manifold and β a one-form on M . We recall from
section 2 that the tensor α̂ along τ and the function β̄ on TM are given by

α̂v(w1, w2) = αp(w1, w2), β̄(v) = βp(v) (v,w1, w2 ∈ TpM,p ∈ M).

We define the following functions on TM :

Fα(v) :=
√

ατ(v)(v, v) (v ∈ TM), F := Fα + β̄, E :=
1
2
F 2.

Then F and E are smooth on
◦
TM .

Due to the non-degeneracy of α, there is a unique vector field β� on M such
that β(Y ) = α(β�, Y ) for any vector field Y on M (Riesz’ lemma). Conversely,
if X is a vector field on M , then we have a one-form X� such that X�(Y ) =
α(X,Y ) for any vector field Y .

If ‖β�‖ < 1, (M,E) is a Finsler manifold, called the Randers manifold
obtained from the Riemannian manifold (M,α) by the perturbation with the
one-form β.
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Lemma 8.1 ([11]). Let (M,E) be the Randers manifold arising from the Rie-
mannian manifold (M,α) by perturbation with β such that ‖β�‖ < 1. Then
the metric tensor g of (M,E) takes the form

g =
F

Fα
α̂ − β̄

F 3
α

ᾱ ⊗ ᾱ +
1

Fα
ᾱ � β̂ + β̂ ⊗ β̂,

where � stands for the symmetric product.

In his paper [9], M. Matsumoto proved that β� is a Killing vector field of
the Randers manifold if and only if it is a Killing vector field of the original
Riemannian manifold (M,α) as well. Now we use the results of section 5 to
give a new proof of the sufficiency of this condition:

Proposition 8.2. Suppose that (M,α) is a Riemannian manifold, and X ∈
X(M) is a Killing vector field of (M,α) such that ‖X‖ < 1. Let β := X�,
F := Fα + β̄ and E = 1

2F 2. Then X is a Killing vector field of the Randers
manifold (M,E).

Proof. First, suppose that X(p) 
= 0 at p ∈ M . Consider a chart (U, (ui)ni=1)
around p and the induced chart (τ−1(U), (xi)ni=1, (y

i)ni=1) on TM . Let i, j ∈
{1, . . . , n} be arbitrary, then

(LXg)

(
∂̂

∂ui
,

∂̂

∂uj

)

= Xcg

(
∂̂

∂ui
,

∂̂

∂uj

)
+ g

(
LX

∂̂

∂ui
,

∂̂

∂uj

)
+ g

(
∂̂

∂ui
,LX

∂̂

∂uj

)
.

By the straightening-out theorem, we can choose a chart such that X = ∂
∂u1 .

Then the last two terms vanish since, e.g.,

LX
∂̂

∂ui
=

̂[
X,

∂

∂ui

]
=

̂[
∂

∂u1
,

∂

∂ui

]
= 0.

It remains to show that the first term also vanishes. We have the following
coordinate expressions:

α̂

(
∂̂

∂ui
,

∂̂

∂uj

)
= αv

ij, β̂

(
∂̂

∂ui

)
= βv

i , ᾱ

(
∂̂

∂ui

)
= αv

ijy
j,

β̄ = βv
i yi, Fα =

√
αv

ijy
iyj , F =

√
αv

ijy
iyj + βv

i yi.
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We substitute the expression in the preceding lemma for g:

(LXg)

(
∂̂

∂ui
,

∂̂

∂uj

)
=

∂

∂x1
g

(
∂̂

∂ui
,

∂̂

∂uj

)
(∗)

=
∂

∂x1

[(
1 +

βv
kyk

(αv
lmylym)1/2

)
αv

ij −
βv

kyk

(αv
lmylym)3/2

αv
irα

v
jsy

rys

+
1

(αv
lmylym)1/2

(αv
iry

rβv
j + βv

i αv
jry

r) + βv
i βv

j

]
,

and
βi = αijX

j = αijδ
j
1 = αi1.

On the other hand, since X is a Killing vector field of (M,α), we obtain

0 =
(
L ∂

∂u1
α
)( ∂

∂ui
,

∂

∂uj

)
=

∂αij

∂u1
.

Thus we have shown that all functions in the square bracket of (∗) have van-
ishing partial derivatives with respect to x1, and hence LXg = 0 on TpM if
X(p) 
= 0. On the other hand, if X(p) = 0, and there is a series (pn)∞n=0 such
that pn → p and X(pn) 
= 0 (n ∈ N), then LXg vanishes on TpM by continuity.
Finally, if there is a neighbourhood of p on which X vanishes, then LXg = 0
on TpM automatically.

8.2. Funk metrics

In this subsection we shall work on an open subset of Rn; Dv will denote the
directional derivative with respect to a vector v ∈ Rn and Di the ith partial
derivative (i = 1, . . . , n).

Let ϕ : Rn → R be a Minkowski functional [18], i.e., a function satisfying
the following conditions:

(1) ϕ is continuous on Rn and smooth on Rn \ {0};

(2) ϕ(0) = 0, and ϕ(p) > 0 if p 
= 0;

(3) ϕ is positively homogeneous of degree 1;

(4) the second derivative ϕ′′(p) is non-degenerate (and thus necessarily pos-
itive definite) if p 
= 0.

The set Ω := ϕ−1 [0, 1[ is the interior of the indicatrix of ϕ. We shall use the
canonical identification TΩ ∼= Ω×Rn and the natural projections π1 : TΩ → Ω
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and π2 : TΩ → Rn. A Finslerian fundamental function F : TΩ → R on Ω is
determined by the relation

ϕ ◦
(
π1 +

π2

F

)
= 1 on

◦
TΩ.

The Finsler structure determined by F is traditionally called the Funk metrics
on Ω. The Finsler energy is then E = 1

2F 2. For more about Funk metrics, see
[18].

Proposition 8.3. With notations and hypotheses as above, for a vector field
X on Ω the following conditions are equivalent:

(1) X is a Killing vector field of (Ω, F );

(2) for every point p ∈ Ω and vector v ∈ Rn such that p+ v ∈ ∂Ω, the vector
X(p) + DvX(p) is parallel to the tangent hyperplane of ∂Ω in p + v.

Proof. Let (ui)ni=1 be the restriction of the canonical coordinate system of
Rn to Ω and ((xi)ni=1, (y

i)ni=1) the induced coordinate system on TΩ. If the
coordinate expression of X is Xi ∂

∂ui , its complete lift is

Xc =
(
Xi
)v ∂

∂xi
+ yj

(
∂Xi

∂uj

)v
∂

∂yi
.

If we act by Xc on both sides of the relation defining F , we obtain

0 =
[
Dkϕ ◦

(
π1 +

π2

F

)] [(
Xi
)v ∂

∂xi

(
xk +

yk

F

)
+yj

(
∂Xi

∂uj

)v
∂

∂yi

(
xk +

yk

F

)]
=
[
Dkϕ ◦

(
π1 +

π2

F

)] [(
Xi
)v (

δk
i − yk

F 2

∂F

∂xi

)
+yj

(
∂Xi

∂uj

)v (
δk
i

F
− yk

F 2

∂F

∂yi

)]
=
[
Dkϕ ◦

(
π1 +

π2

F

)] [(
Xk
)v

+
yj

F

(
∂Xk

∂uj

)v

− yk

F 2

((
Xi
)v ∂F

∂xi
+ yj

(
∂Xi

∂ui

)v
∂F

∂yi

)]
=
[
Dkϕ ◦

(
π1 +

π2

F

)] [(
Xk
)v

+
yj

F

(
∂Xk

∂uj

)v

− yk

F 2
XcF

]
.
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X is a Killing field if and only if XcF = 0. Furthermore, if vp(
= 0) ∈ TΩ is
arbitrary, and z := p + v

F (vp)(∈ ∂Ω), then

vkDkϕ(z) =
gz(z, v)
ϕ(z)

= gz(z, v) 
= 0.

Therefore, it follows that X is a Killing field if and only if

(∗)
[
Dkϕ ◦

(
π1 +

π2

F

)] [(
Xk
)v

+
yj

F

(
∂Xk

∂uj

)v]
= 0.

From now on, we suppose that vp is of the form as in the proposition, i.e.,
p + v ∈ ∂Ω. By the homogeneity of F , if (∗) is satisfied for such vp’s, it is
satisfied for all. In that case, F (vp) = 1, and evaluating (∗) at vp we obtain

(Dkϕ)(p + v)(Xk(p) + vjDjX
k(p)) = (Dkϕ)(p + v)(Xk(p) + DvX

k(p))
= 〈gradϕ(p + v),X(p) + DvX(p)〉 = 0,

or, equivalently, the vector X(p)+DvX(p) is parallel to the tangent hyperplane
of the indicatrix at p + v.

§9. Discussion

It is known that a geodesic on a Riemannian manifold meets a translation at
constant angles [2, 16, 26]. In the general case, if g is positive definite, the
angle ϕ of a translation X and a geodesic c may be given by

cos ϕ(t) :=
gċ(t)(X(c(t)), ċ(t))√

gċ(t)(X(c(t)),X(c(t)))gċ(t)(ċ(t), ċ(t))
.

The numerator is constant by 7.2, and the second factor in the denominator
is constant as well even in the most general case. It follows from 7.3 that in
the Riemannian case the first factor is also constant, since then the function
g
(
X̂, X̂

)
is constant on each fibre. From our results, however, it does not

follow that the first factor is constant in general, even for Finsler manifolds.
Therefore, it does not follow that ϕ is constant. It remains an open question
whether there exists any class of metrics in which this angle is constant and
which is more general than the Riemannian case.

Moreover, there is a broad class of metrics that have no non-trivial transla-
tions at all. For example, the hyperbolic plane does not have any. In Poincaré’s
upper half-plane model with canonical coordintates (u1, u2) the Killing fields
have the form

X = (αu1 + βu2 + γ)
∂

∂u1
+ αu2 ∂

∂u2
,
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with some α, β, γ ∈ R. If α 
= 0, the integral curves of X are given by

c(t) =
(
(c1 + βc2t)eαt − γ

α
, c2e

αt
)

,

with c1, c2 ∈ R, c2 > 0, which are no geodesics. That is, however, not sur-
prising, since, if the hyperbolic plane had a non-trivial translation, a geodesic
quadrangle with angle sum 2π could be constructed, in contradiction with the
Gauss –Bonnet theorem.

In summary, we have tried to generalize some theorems of Riemannian
geometry and Finsler geometry, and found that those not relying on the notion
of translation may be successfully generalized.
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közleményei, XIII/I (1963), 17 – 64.

[20] J. Szilasi, Notable Finsler connections on a Finsler manifold, Lect. Mat. 19
(1998), 7 – 34.

[21] J. Szilasi, A Setting for Spray and Finsler Geometry, in: Handbook of Finsler
Geometry Vol. 2 (ed. P. L. Antonelli), Kluwer Academic Publishers, Dordrecht,
2003.

[22] T. Takabayasi, Relativistic Mechanics of Confined Particles as Extended Models
of Hadrons, Prog. Theor. Phys. Suppl. 67 (1979), 1 – 68.

[23] Y. Takano, On the theory of fields in Finsler spaces, Proc. Intern. Symp. Rela-
tivity & Unified Field Theory, Calcutta, 1975, 17 – 26.

[24] M. E. Taylor, Partial Differential Equations I, Basic Theory, Applied Mathemat-
ical Sciences 115, Springer-Verlag, Berlin, 1996.

[25] J. R. Vanstone, A generalization of Finsler geometry, Canad. J. Math. 14 (1962),
87 – 112.

[26] K. Yano, The theory of Lie derivatives and its applications, North-Holland, Am-
sterdam, 1957.



156 R. L. LOVAS

[27] H. Yukawa, Structure and Mass Spectrum of Elementary Particles I. General
Consideration, Phys. Rev. 91 (1953), 415.

[28] H. Yukawa, Structure and Mass Spectrum of Elementary Particles II. Oscillator
Model, Phys. Rev. 91 (1953), 416.
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