Hamiltonian cycles through a linear forest

Takeshi Sugiyama

(Received July 8, 2004; Revised December 13, 2004)

Abstract. Let G be a graph of order n. A graph is *linear forest* if every component is a path. Let S be a set of m edges of G that induces a linear forest. An edge $xy \in E(G)$ is called an S-edge if $xy \in S$. An S-edge-length of a cycle in G is defined as the number of S-edges that it contains. We prove that if the degree sum in G of every pair of nonadjacent vertices of G is at least n + m, then G contains hamiltonian cycles of every S-edge-length between 0 and |S|.

AMS 2000 Mathematics Subject Classification. 05C38.

Key words and phrases. Hamiltonian cycle, Linear forest.

§1. Introduction

In this paper, we consider only finite undirected graphs without loops or multiple edges. For standard graph-theoretic terminology not explained in this paper, we refer the reader to [3]. For $R \subseteq V(G)$ and a vertex $x \in V(G)$, we denote $N_R(x) = N_G(x) \cap R$. We denote the degree of a vertex x in G by $d_G(x)$. A path P connecting two vertices x and y is denoted by xPy, and is called an x-y path. The distance $d_G(x,y)$ is the length of a shortest x-y path in G; if there is no such path in G, we define $d_G(x,y) = \infty$. We write a cycle C with a given orientation by \overrightarrow{C} . For $x, y \in V(\overrightarrow{C})$, we denote by $x\overrightarrow{C}y$ a path from x to y on \overrightarrow{C} . The reverse sequence of $x\overrightarrow{C}y$ is denoted by $y\overleftarrow{C}x$. For $x \in V(C)$, we denote the successor of x on \overrightarrow{C} by x^+ . Let X be a subset of V(C). The set X^+ (respectively, X^-) is the successors (predecessors, respectively) of the vertices of X in C and for $x, y \in C$, we define C[x, y] (C[x, y), C(x, y),respectively) to be the subgraph of C from x to y (from x to y^{-} , from x^{+} to y^{-}). A vertex v is called an *R*-vertex if $v \in R$. The *R*-length of a cycle in G is defined as the number of R-vertices that it contains. A graph on n vertices is called *pancyclic* if it contains cycles of every length $l, 3 \leq l \leq n$. The graph G is said R-pancyclable if it contains cycles of all R-lengths from 3 to |R|. A linear forest is a graph each of whose component is a path. Let S be a set of edges of G that induces a linear forest. An edge $xy \in E(G)$ is called an S-edge if $xy \in S$. An S-edge-length of a cycle in G is defined as the number of S-edges that it contains.

Among many sufficient conditions for a graph to be hamiltonian, the following sufficient condition is well-known.

Theorem A (Ore [5]). Let G be a graph of order $n \ge 3$. If $d_G(x) + d_G(y) \ge n$ for every pair of nonadjacent vertices x and y in G, then G is hamiltonian.

Bondy [2] showed that the same condition as Theorem A implies the existence of cycles of every length between 3 and |V(G)| (except for complete bipartite graphs).

Theorem B (Bondy [2]). Let G be a graph of order n. If $d_G(x) + d_G(y) \ge n$ for every pair of nonadjacent vertices x and y in G, then G is either pancyclic or the complete bipartite graph $K_{n/2,n/2}$.

About the cycles passing through some specified vertices, Bollobás and Brightwell [1] proved the following.

Theorem C (Bollobás and Brightwell [1]). Let G be a graph on n vertices and R a subset of V(G). If $|R| \ge 3$ and $d_G(x) + d_G(y) \ge n$ for every pair of nonadjacent vertices x and y in R, then G has a cycle that includes every vertex of R.

Theorem C is generalized as follows, which shows the existence of a cycle through a specified number of vertices of a vertex set.

Theorem D (Favaron et al. [4] and Stacho [7]). Let G be a graph of order n and R a subset of V(G) such that $|R| \ge 3$. If $d_G(x) + d_G(y) \ge n$ for every pair of nonadjacent vertices x and y of R, then either G is R-pancyclable or else n is even, R = V(G) and $G = K_{n/2,n/2}$ or $G[R] = K_{2,2} = C_4 = x_1x_2x_3x_4$ and the structure of G is as follows: V(G) is partitioned into $S \cup V_1 \cup V_2 \cup V_3 \cup V_4$; for any i, $1 \le i \le 4$, $G[V_i]$ is any graph on $|V_i|$ vertices with $|V_i| \ge 0$, and each vertex x_i is adjacent to all the vertices of V_{i+1} and V_i where the index i is taken as modulo 4.

On the other hand, on the existence of a cycle passing through a linear forest, the following theorem is known.

Theorem E (Pósa [6]). Let m be a nonnegative integer, G a graph on n vertices, where $n \ge 3$, and S a set of m edges of G that induces a linear forest. If $d_G(x) + d_G(y) \ge n + m$ for every pair of nonadjacent vertices x and y, then G contains a hamiltonian cycle that includes every edge of S.

In this paper, we prove the following theorem, which shows the existence of a hamiltonian cycle which contains a specified number of edges of a linear forest.

Theorem 1. Let m be a nonnegative integer, G a graph on n vertices, where $n \geq 5$, and S a set of m edges of G that induces a linear forest. If $d_G(x) + d_G(y) \geq n + m$ for every pair of nonadjacent vertices x and y, then G contains hamiltonian cycles of all the S-edge-lengths from 0 to m.

§2. Proof of Theorem 1

Let G be a graph on n vertices which satisfies the hypothesis. Let S be a set of m edges of G that induces a linear forest. By Theorem E, G contains a hamiltonian cycle H of G such that $S \subseteq E(H)$. We show that if G contains a hamiltonian cycle H of G such that $|E(H) \cap S| = l$, then there exists a hamiltonian cycle H' of G such that $|E(H') \cap S| = l - 1$. So we assume that G contains a hamiltonian cycle H of G such that $|E(H') \cap S| = l - 1$. So we assume that G contains a hamiltonian cycle H of G such that $|E(H) \cap S| = l$. Set $H = x_1x_2...x_nx_1$ and consider the subscripts as modulo n. Let $Y = \{x_i | x_i x_{i+1} \in S\}$, $Z = \{x_i | x_i x_{i+1} \notin S\}$ and $q = |S \setminus E(H)|$. Note that q = m - l.

Lemma 1. If there exist $x_i \in Y$ and $x_j \in Z$ such that $d_H(x_i, x_j) \ge 2$, $x_i x_j \in E(G) \setminus S$ and $x_{i+1}x_{j+1} \notin S$, then there exists a hamiltonian cycle H' such that $|E(H') \cap S| = l - 1$ and $x_i x_{i+1} \notin E(H')$.

Proof of Lemma 1.

We assume that G contains $x_i x_j \in E(G)$ such that $x_i \in Y, x_j \in Z$ and $d_H(x_i, x_j) \geq 2$. If $x_{i+1}x_{j+1} \in E(G) \setminus S$, then G contains a hamiltonian cycle $H' = x_i x_j \overleftarrow{H} x_{i+1} x_{j+1} \overrightarrow{H} x_i$ such that $|E(H') \cap S| = l - 1$. So we assume that $x_{i+1}x_{j+1} \notin E(G)$. Then $d_G(x_{i+1}) + d_G(x_{j+1}) \geq n + m$. Let $G' = (V(G), E(G) \setminus \{S \setminus E(H)\})$. Let $p = \min\{q, 3\}$. Then $d_{G'}(x_{i+1}) + d_{G'}(x_{j+1}) \geq n + m - p$. Let $C_1 = V(H[x_{i+1}, x_j])$ and $C_2 = V(H[x_{j+1}, x_i])$. Let $X_1 = N_{G'}^-(x_{i+1}) \cap C_1$, $Y_1 = N_{G'}(x_{j+1}) \cap C_1$, $X_2 = N_{G'}(x_{i+1}) \cap C_2$ and $Y_2 = N_{G'}^-(x_{j+1}) \cap C_2$. By $q \geq p$, we have

$$\begin{aligned} |X_1 \cap Y_1| + |X_2 \cap Y_2| &= |X_1| + |Y_1| + |X_2| + |Y_2| - (|X_1 \cup Y_1| + |X_2 \cup Y_2|) \\ &\ge n + m - p - n \\ &= l + q - p \ge l. \end{aligned}$$

Since $x_i \notin \{X_1 \cap Y_1\} \cup \{X_2 \cap Y_2\}$, there exists a vertex $v \in \{X_1 \cap Y_1\} \cup \{X_2 \cap Y_2\}$ such that $v \notin Y$. If $v \in X_1 \cap Y_1$, then there exists a hamiltonian cycle $H' = x_{i+1} \overrightarrow{H} v x_{j+1} \overrightarrow{H} x_i x_j \overleftarrow{H} v^+ x_{i+1}$ such that $|E(H') \cap S| = l-1$. If $v \in X_2 \cap Y_2$, then there exists a hamiltonian cycle $H' = x_{i+1} \overrightarrow{H} x_j x_i \overleftarrow{H} v^+ x_{j+1} \overrightarrow{H} v x_{i+1}$ such that $|E(H') \cap S| = l-1$. Since G' is subgraph of G, G contains H'.

Lemma 2. If there exist $z_1, z_2, z_3 \in Z$ and $y \in Y$ such that $d_H(y, z_i) \ge 2$ and $yz_i \in E(G)$ for every $i, 1 \le i \le 3$, then there exists a hamiltonian cycle H' such that $|E(H') \cap S| = l - 1$.

Proof of Lemma 2.

Assume that $z_1, z_2, z_3 \in Z$ and $y \in Y$ such that $d_H(y, z_i) \ge 2$ for every i, $1 \le i \le 3$. Since edges of S induce a linear forest, without loss of generality, we may assume $yz_1, yz_2 \notin S$ and $y^+z_1^+ \notin S$. By Lemma 1, G contains a hamiltonian cycle H' such that $|E(H') \cap S| = l - 1$.

Case 1. $m \leq n - 4$.

If q = 0, since $|E(H) \setminus S| \geq 4$, there exist $z \in Z$ and $y \in Y$ such that $d_H(y, z) \geq 2$. If $yz, y^+z^+ \in E(G)$, then $H' = y^+ \overrightarrow{H} z y \overleftarrow{H} z^+$ is a hamiltonian cycle such that $|E(H') \cap S| = l - 1$. Hence we may consider only the case yz or $y^+z^+ \notin E(G)$. Concerning the reverse sequence of H in case of $y^+z^+ \notin E(G)$, we obtain that there exist $z \in Z$ and $y \in Y$ such that $yz \notin E(G)$. If q > 1, then $|E(H) \setminus S| \geq 5$ implies that, for any $y \in Y$, there exist $z_1, z_2, z_3 \in Z$ such that $d_H(y, z_i) \geq 2(1 \leq i \leq 3)$. If $yz_1, yz_2, yz_3 \in E(G)$, by Lemma 2, G contains a hamiltonian cycle H' such that $|E(H') \cap S| = l - 1$. Hence we may consider only the case where at least one of yz_1, yz_2 and yz_3 is not in E(G). Therefore, in both cases q = 0 and $q \geq 1$, we may assume that there exists $y \in Y$ and $z \in Z$ such that $yz \notin E(G)$ and $d_H(y, z) \geq 2$. Clearly $|\{y^+, y^-\} \cap Z| \leq 2$. It follows from the facts |Y| = l and $d_H(y, z) \geq 2$ that $|\{z^+, z^-\} \cap Y| \leq \min\{l - 1, 2\}$. Hence

$$|\{y^+, y^-\} \cap Z| + |\{z^+, z^-\} \cap Y| \leq 2 + \min\{l - 1, 2\} \\ \leq l + 1.$$
(1)

By $yz \notin E(G)$,

$$|N_Y(y)| + |N_Z(y)| + |N_Y(z)| + |N_Z(z)| = d_G(y) + d_G(z)$$

$$\geq n + m.$$

By $|N_Y(y)| + |N_Z(z)| \le n - 2$,

$$|N_Z(y)| + |N_Y(z)| \ge m + 2 \ge l + q + 2.$$
⁽²⁾

From (1) and (2),

$$|N_Y(z) \setminus \{z^+, z^-\}| + |N_Z(y) \setminus \{y^+, y^-\}| \ge q+1.$$

Hence G contains a set of edges E' of cardinality q + 1 such that for any $uv \in E'$,

- (i) $|\{u, v\} \cap \{y, z\}| = 1$,
- (ii) $|\{u, v\} \cap Y| = 1, |\{u, v\} \cap Z| = 1,$
- (iii) $d_H(u, v) \ge 2$ and
- (iv) $uv \notin E(H)$.

Therefore, by pigeonhole principle, G contains $x_i \in Y$ and $x_j \in Z$ such that $d_H(x_i, x_j) \geq 2$, $x_i x_j \in E(G) \setminus S$ and $x_{i+1} x_{j+1} \notin S$. By Lemma 1, G contains a hamiltonian cycle H' such that $|E(H') \cap S| = l - 1$.

Case 2. $m \ge n-3$.

By the degree condition, G is complete. If $l \leq n-5$, there exist $y \in Y$ and $z_1, z_2, z_3 \in Z$ such that $d_H(y, z_i) \geq 2$ for every $i, 1 \leq i \leq 3$. By Lemma 2, G contains a hamiltonian cycle H' such that $|E(H') \cap S| = l-1$. Hence we assume $n-4 \leq l \leq n-1$. If q = 0, immediately G contains a hamiltonian cycle H' such that $|E(H') \cap S| = l-1$, then we have $n-4 \leq l \leq n-2$.

Subcase 2.1. l = n - 2.

In this case we have q = 1. Let $z_1, z_2 \in Z$. Since $n \geq 5$, there exist $y_1, y_2 \in Y$ such that $d_H(y_i, z_i) \geq 2$ (i = 1 and 2). It follows from q = 1 that $y_i z_i, y_i^+ z_i^+ \notin S$ for i = 1 or 2, hence $y_i H \overline{z_i^+ y_i^+ H z_i y_i}$ is a required cycle.

Subcase 2.2. l = n - 3.

By l = n - 3, we have $q \leq 2$. If n = 5, then we may assume $H = x_1x_2x_3x_4x_5x_1$. If $Y = \{x_1, x_2\}$ and $Z = \{x_3, x_4, x_5\}$, since edges of S induce a linear forest, we have $x_1x_3, x_2x_4 \notin S$. Hence $H' = x_1x_3x_2x_4x_5x_1$ is a required cycle. If $Y = \{x_1, x_3\}$, then $Z = \{x_2, x_4, x_5\}$. First we suppose $x_1x_4 \in S$. If $x_2x_5, x_3x_5 \in S$, then the edges of S do not induce linear forest. Hence, without loss of generality, we may assume $x_2x_5 \notin S$. Since the edges of S induce a linear forest, we have $x_1x_3 \notin S$. Then $H' = x_1x_4x_5x_2x_3x_1$ is a required cycle. Next, we suppose $x_1x_4 \notin S$. If $x_3x_5 \notin S$, then $H' = x_1x_2x_3x_5x_4x_1$ is a

required cycle. So we assume $x_3x_5 \in S$. If $x_2x_5 \notin S$, then $H' = x_1x_4x_3x_2x_5x_1$ is a required cycle. If $x_2x_5 \in S$, then $x_1x_3 \notin S$. Thus $H' = x_1x_3x_2x_5x_4x_1$ is a required cycle. We can prove the other case in n = 5 by the same argument as above, so we assume $n \ge 6$. Let $y_1, y_2, y_3 \in Y$, then there exist $z_1, z_2, z_3 \in$ $Z, z_i \neq z_j (i \neq j, 1 \le i \le 3, 1 \le j \le 3)$ such that $d_H(y_i, z_i) \ge 2, 1 \le i \le 3$. Since $q \le 2$, $y_i z_i \notin S$ and $y_i^+ z_i^+ \notin S$ for some i with $1 \le i \le 3$. Hence $y_i H z_i^+ y_i^+ H z_i y_i$ is a required cycle.

Subcase 2.3. l = n - 4.

If n = 5, without loss of generality we may assume $Y = \{x_1\}$ and $Z = \{x_2, x_3, x_4, x_5\}$. If $x_1x_3, x_2x_4 \notin S$, then $H' = x_1x_3x_2x_4x_5x_1$ is a required cycle. If $x_2x_4 \in S$, since the edges of S induce a linear forest, we have $x_1x_4, x_2x_5 \notin S$. Hence $H' = x_1x_4x_3x_2x_5x_1$ is a required cycle. If $x_1x_3 \in S$ and $x_2x_4 \notin S$, then we have $x_1x_4 \notin S$. If $x_2x_5 \notin S$, then $H' = x_1x_4x_3x_2x_5x_1$ is a required cycle. If $x_2x_5 \in S$, then we obtain $x_3x_5 \notin S$. Thus $H' = x_1x_4x_2x_3x_5x_1$ is a required cycle. Hence we may assume $n \ge 6$. Let $y_1, y_2 \in Y$, then there exist $z_1, z'_1, z_2, z'_2 \in Z$ such that $d_H(z_i, y_i) \ge 2$ and $d_H(z'_i, y'_i) \ge 2$ for i = 1, 2. Since $q \le 3$, $\{y_iz_i, y_i^+z_i^+\} \cap S = \phi$ or $\{y_iz'_i, y_i^+z'_i^+\} \cap S = \phi$ holds for i = 1 or 2. Without loss of generality, we may assume that $\{y_iz_i, y_i^+z_i^+\} \cap S = \phi$. Then $y_i H z_i^+ y_i^+ H z_i y_i$ is a required cycle.

Acknowledgments

I would like to thank Dr. Tomoki Yamashita for stimulating discussions and important suggestion. I am thankful to the referee for carefully reading the manuscript and many helpful suggestions.

References

- B. Bollobás and G. Brightwell, Cycles through specified vertices, *Combinatorica* 13 (1993) 147–155.
- [2] J.A. Bondy, Pancyclic graphs, I, J. Combin. Theory **11** (1971) 80–84.
- [3] R. Diestel, *Graph Theory*. second edition. Springer, 2000.
- [4] O. Favaron, E. Flandrin, H. Li and F. Tian, An Ore-type condition for pancyclability, *Discrete Math.* 206 (1999) 139–144.
- [5] O. Ore, Note on Hamilton circuits, Amer. Math. Monthly 67 (1960) 55.

- [6] L. Pósa, On the circuits of finite graphs (Russian summary), Magyar Tud. Akad. Mat. Kutató Int. Közl. 8 (1963) 355–361.
- [7] L. Stacho, Locally Pancyclic Graphs, J. Combin. Theory Ser. B 76 (1999) 22-40.

Takeshi Sugiyama Department of Mathematics, Kobe University Rokkodai 1-1, Nada, Kobe 657-8501, JAPAN *E-mail*: sugiyama@math.sci.kobe-u.ac.jp