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Spherical t~-designs and the Bernstein Theorem
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Abstract. In this paper we study the construction problem of spherical ¢-
designs as a generalization of the Chebyshev problem of Gauss type quadrature

formula. It is known that spherical t-designs can be constructed if we can
d—2
construct interval ¢-designs for the weight function (1 —x) 2 . We shall show

the exsitence and non-existence theorems of some interval ¢-desings.
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§1. Introduction

Spherical ¢-designs on d-dimensional sphere S are defined in [4] by P.Delsarte,
J.M.Goethals and J.J.Seidel. There are existence theorems and sporadic ex-
amples but the general and explicit construction is unknown. B.Bajnok shows
in [3] that spherical t-designs can be constructed if we can construct interval
t-designs for the weight function (1 — x)% To construct spherical ¢t-designs
along Bajnok’s method, we have to find the finite subset {x1, -+ ,x,} of [-1,1]
which satisfies

! /1 fl@x)(1 x2)%d$ _! if(a:) where a = /1 (1 x2)%d$

a 71 n Z:1 1) 71 )
for every polynomial f(z) whose degree does not exceed ¢ ( We simply call
such {z1, -+ ,2z,} an interval t-design ). When d = 2, this is the Chebyshev
problem in Gauss type quadrature formula. Supposing t = n, the Chebyshev
problem is solvable for 1 <t =n < 7 and t = n = 9, and unsolvable for
t=n=2_8and 10 <t =n (see [5]). In this paper, we study the construction
problem of spherical designs as a generalization of the Chebyshev problem.
We show that the Chebyshev problem for d = 3 is solvable for 1 <t =n <3
and t = n = 5, and unsolvable for t =n =4 and 6 <t =n.
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§2. The Chebyshev problem in Gauss type quadrature formula

In this section we study interval designs for the case ¢t = n. First we state the
classical result for d = 2 ; Taking f(z) = 2 (1 < k < t) in the definition of
the interval design, x1,- - ,x, must satisfy

A A N 0 if ks odd,
Pk;:x1+x2_|_..._|_xn: n
k+1

if kis even.

This is necessary and sufficient. From the Newton formula
P, — P,_1S1+ Py_2Sy — - + (=1)*kS, = 0,
where S = Si(n) = > m,Tiy - x;, is the fundamental symmetric of

11 <ta<-<ip
degree k in n variables, it follows

Sokt1 = 0
Sok = —ﬂ(P% + Pog—252 + Pog—4S4 + - -+ + PaSop_2).
For a given ¢, we shall find an interval ¢-design {x1, -+ ,x,} such that t = n

as a set of n distinct real roots in [—1, 1] of the polynomial

£ (X) = {sz + So(2m) X2m=2 + _ + Som(2m) zf n = 2m,
X2l 4 So2m + D)XP 4 4 Sy (2m+1)X if n=2m+ 1.

The list of such f,,(X) is known:

imi=2 nm -l

n=t= f3(X) =X — %X,

n=t=4: fi(X)=X"- §X2+4—15,

n=t=5: f5s(X)=X"~ 2X3+7_72 :

n=t=6: fs(X)=X6— +5X2—H15

n=t=7: f7(X):X7—£ ;éix?»_% ,

n=t=09: fg(X):Xg—gX +%X5—%X3+%X

Each set of the roots of the above polynomial is the interval 3,3,5,5,7,7,9-design
for d = 2, respectively.

In a similar way we study for the case d > 3. If k is an odd integer,
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R (1 — xQ)% is an odd function. Thus

1
n —_
Py = —/ x2m+1(1 — x2)d72d$ =0.
aJ1

If k£ is an even integer, by integration by parts

n 1 d2 21
Py, = — 2l — )T dr = ||;
am (36/_1:'3 ( v) 7 da nl_1d+2l—1

Then we can find some interval designs as the set of n real roots in [—1, 1] of
the following f,,(X):

n=t=2: fQ(X):XZ_dL+31’
n=t=3: f3(X):X3_mX’ ( )

5 5(d—9
n=t=>5: f5(X):X5_2(d+1) 3_8(d+1)2(d+3)

Hence we have the following theorem.

Theorem 2.1. We have following interval t-designs such thatt = n ford > 3.

1
=204 /— 1
" Vd+1}
3
" 3190 V2d+2}

L 1 [5d+15+ /5(d +3)(7d - 3)
n=t=5:¢ 0,% \/ d+D(d+3) )

2
if and only if 3 < d < 8.

As for the case n = t = 5, we remark that 0 < 5d + 15 — \/5(d + 3)(7d — 3)
holds when d < 8.

§3. An application of Sturm’s Theorem

In the previous section, we solve some algebraic equations and find interval
t-designs under the assumption ¢ = n. In this section we study the same
problem without the assumption ¢ = n.

When n < t and the values of Py,--- , P,,---, P, are given, we can deter-
mine the values of Si,---,S; by the Newton formula. Thus the coefficients
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of fn(X) are determined by the first n conditions on Pj,---, P,. It implies
interval t-designs such that ¢ > n is unique if it exists. We will find such
t-design by showing that the roots of f,,(X) = 0 satisfy the other additional

conditions on Ppy1, -+, P;. When n > t and the values of Py, --- , P, are given,
the values of Sy, --- ,S; are determined by the Newton formula. It means that
only the coefficients of X"~ X"=2 ... X"t are fixed but there are no any

restrictions on the other cofficients. If we can take cofficients of some lower
terms in such a way that f,,(X) = 0 has n distinct real roots in [—1,1], then
the set of the roots presents an interval t-design. Although it is difficult to
find an algebraic representation of such roots, the degree of such polynomial
gives an upper bound of n for a fixed t.

In the particular case t = n— 1, we can modify the constant term of f,,(X).
Then we determine the range of the constant term for some ¢ by using Strum’s
theorem. Now we recall Sturm’s theorem ; Let f(X) be a polynomial with real
cofficients and f'(X) its derivative. Apply the Euclidean algorithm to f(X)
and f’(X) with changing the sign of the remainders and put

Fm71:QmFm_Fm+1 (m:1,2,“')
where Fy = f(X) and F; = f/(X). With seeing
Fy(a), Fi(a), Fa(a), -+, Fi(a)

from left to right, count how many times the sign is changed and denote the
number of the times by V(a). Then Sturm’s theorem says

Via) = V() =#{x€(ab]: f(z)=0}.

For example, we apply Sturm’s theorem to X% — X4 + %XQ + & where ¢ is a
parameter for the constant term of fg(X) for d = 2. We put X for X2 and
determine the range of § such that Fy(X) = X® — X%+ 1 X + 6 = 0 has 3 real
roots in (0, 1].

Hh(X) RX)  BX) F5(X)
_ 1 1 9 45 6075 52
Evaluate atX—O 6 5 —4—5—(5 %_F?é_l—ﬁé
1 6 1 9 45 6075
FEvaluate at X =1 | = +96 = =0 %4_?5_1_652

By the above table, we see that V' (0)—V (1) = 3 holds for 13z —2=v/10 < § < 0.
In short, for an arbitary § in this range, an interval 5-design is given by

{:l:\/é+ <oz% +ﬂ%), :I:\/é%— <wa% +w265), :I:\/é%— <w2a% +wﬁé>}.

2 — 2700 1
= — + — 2562 — 0—1
( {a, B} { 510 150 \/506 ) 750 5} )
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1
This is the set of 6 real roots of X6 — X4 + EXQ + 90 =01n [—1,1]. Similarly

we have the following theorem.

Theorem 3.1. Fach set of the roots of the following polynomial is an interval
4,5,6,7,8,9-design for d = 2, respectively.

5 7
n=5t=4: XXt X+, <0<wke——Jw%0—wwvﬁ )

6 5400
n=6t=5:X0_x'+1lx2.s L4 Aj<s<o
’ ‘ 5 ’ 135 675
7 119 149 1
=7t=6: X" — X4+ X3 _ X4+ _—.
=0 6 * 360 6430 T 5000
929 148
=8t=7:X%— X6 XA X%
n=8i="17 3% T 9835 %
2 2
) 4 4 16 43
S A — ) —3 (A — ) o2 s )
( ( sl 135> < e 135) 14175 ~ = T 12525 )
3 927 57 53 1
—9t=8:X% X"+ x>~ x3 X )
g 5 T 10 560" T 22400°° T 100000
5 8 100 17 1
=10,t=9: X0 x84+ —x6_——x44 — x?2___—
= 5% Ty 567 T 1701 15000

For t = 6,8 and 9, the exact range of the constant term is unknown. But it
is easy to know by using computer whether all the roots are real and included
n [—1, 1] whenever the constant term is fixed. It is true for these polynomials
that all the roots are real and included in [—1,1] even if the constant term is
changed a little. For d > 3, we obtain the similar results.

Theorem 3.2. Let d > 3. We obtain interval t-designs from the following
polynomials.

2 1
=4,t=3: X'~ —"_X?1§ 0<d0< 75 |-
n ) =+ 0, < < <(d+1)2>

d+1
5 25
=51t=3:X"——— _X34+6X 0<§ .
"= 2d+1) T 0 < < <1a@+2¢+n>
5 5d — 45
n=>51t=4:X°— 3 _ X 494,
2(d+1) 8(d+3)(d+1)2

(A+d)5 (d+3)°

<0< 6] < 9—5d++/( d+3 (11d+9) \/3d+9 (d+3)(11d+9) B< d< 8)).

3 9
X+ X2+,

n=0t =5 X - N e
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(d+3)(2d—3) ~2d\/(d+3)d _ - _

(

(d+3)%2(1+d)?

) |

We modify not only the constant term but cofficients of some lower terms,
and find the following polynomials such that the set of its roots is an interval
t-design. It is true also for these polynomials that all the roots are real and
included in [—1, 1] even if the constant term is changed a little.

Proposition 3.1. Each set of the roots of the following polynomial is an in-
terval 7-design for d = 3, 11,13-design for d = 2, respectively.

X9 _ 2X7 + A5 s
8 128
7 91
x4 _ Ly12 P2 x10
3 * 45
X18 _3x16 4 ?XM

39

1

X34+ X,
1024 1000
U331 g 959 g 2723
405 6075 200475
1
_|__X2_ #7
2500 100000000
T 1340 282 12954 g
35 175 1925 875875
341, 51 ) 1
500000 5000000 1250000000

Now, the supplementary result of Theorem 2.1 is obtained by applying
Sturm’s theorem for f,,(X) when d > 3.

Theorem 3.3. Let d > 3. Interval designs do not exist if n =t =4,6,7.

Proof. The results are followed from the below tables.

4 2 32 d—3
fa(X) = X7 - pEs Rl G (d+1)2(d+3)
Fo(X) F1(X) Fy(X)
_ 3—d —2 2d
Evaluate at X = 0 m m m
- d(d*+3d—2) 2 2d
Evaluate at X =1 m m m
_ yvb6 3 4 9 2 3(2d? —5d+5)
[6(X) = X" = g5 X" + e X — @@ s
Fo(X) Fi(X) Fy(X) F3(X)
X —0 —3(2d? —5d+5) 9 6d(d—3) —9(5d>+2d? —35d+16)
- (d+1)3(d+3)(d+5)) (d+1)2(d+3)  (d+1)3(d+3)(d+5) (d+1)2(d+3)(d+5)2
X — ] |d°+8d*+12d°—23d>+8d 3d(d®>+3d—1) 2d(d?+9d—4) —9(2d? —35d+16+5d3)
- (d+1)3(d+3)(d+5) (d+1)2(d+3)) (d+1)3(d+3)(d+5))  (d+1)2(d+3)(d+5)?
T 7 5 7(d+15) 3 7(43d%—124d+225)
fi(X) = X' = 5@ X7 + sz X — W R s dr
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Fo(X) F(X) Fy(X) F3(X) |
X =0 —7(43d% —124d+225) 7(d+15) 7(61d%—256d+75) 1
- 48(d+1)3(d+3)(d+5) 8(d+1)2(d+3) 72(d+1)3(d+3)(d+5)
X =1 %2 24d3+64d%—49d+9  7(22d%+187d%—182d+45) 1
- 8(d+1)2(d+3) 72(d+1)3(d+3)(d+5)
$1=_3 13987d°% —11123d* —107558d34-147750d% —67005d+10125
— 78 (d+1)2(d+3)(11d—3)2 (d+5)?
%9 — L 48d°+360d"+378d° —1435d° +1018d—225
48 (d+1)3(d+3)(d+5)

84. The Bernstein Theorem for d = 3

The Gauss type quadrature formula in [—1, 1] for an weight function w(x) =
d—2

(1—22)2 is
1 m
(%) /1 f(@)w(z)dx = ZAif(Q), (deg f <2m —1)
- i=1
where (1, ,(n are zeros of the m™ degree Gegenbauer polynomial Cr (x)
for v = 451 and

2

Cm+d—3)(m+d—2)r,_ L
ST T T <7“”H:/_ m—1<x>2w<x>dx>

(see [1].) By using properties of the Legendre polynomials, which are the
Gagenbauer polynomials of d = 2, S.N.Bernstein proved that the Chebyshev
problem was unsolvable for 10 < ¢ = n. In this section we show that the
Chebyshev problem for d = 3 is unsolvable for 6 <t = n.

1 n
Lemma 4.1. If the quadrature formula / f(z)w(z)dr = %Zf(a;,) holds
-1 i=1

for every polynomial f(x) such that deg f =t < 2m — 1 where m < n, then,
enumerating x; in order of size,

Tn > Cm

d—1

where Cp, is the largest root of the Gegenbauer polynomial Cy,, (x) for v = %5=.
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Ch ()

m

v 2
Proof. Let F(z) = imﬂ

— Sm
it is orthogonal to C¥,(x). We therefore have

. Since the polynomial is of degree m — 1,

By

1 9 v d—2
/ F(a;)(l—xQ)%da::/ (@) SC¥(x)- (1 —2?)"2 dx=0.

-1 11'_Cm

Since deg F' = 2m — 1, we may take f(z) = F(z) in the assumption. Thus

a ! g\ d=2
E;F(xl):/_lF(a:)(l—x) 2 dx =0,

and hence

> F(a)=0
i=1

Because m < n, all z; do not satisfy C¥,(z;) # 0. Therefore there exist positive
and negative terms in the last sum. Since F'(x;) > 0 holds only for x; > (n,
we see Tp, > (- -

Lemma 4.2. If the quadrature formula / flx Zf (x;) holds

for every polynomial f(x) such that deg f =t <2m —1 where m < n, then

1
Ap > 2 <a:/(1—x2)d22da:>.
n —1

Ch(2)
Proof. Let F(x) =
( ) { (:C - Cm) m(

degree 2m — 2, we may take f(z) = F(z) in the assumption. Then we have

1 o
(4.1) / F(z)w(x)dr = " Z F(x;).
- i=1

2
0 } . Since the polynomial F(z) is of
(Cm)

1

Now, we obtain by the quadrature formula ()
(4.2) / F(x dx_ZAFQ = A,

(i =m)

From (4.1) and (4.2), it follows that
0 (1<i<m)

because F((;) = {
e Z F(z;) = Ay,. Since F(z) is a positive function, we see
n-

(4.3) ~F(2n) < Am.
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m—1
Now, F(x) = {Cﬁf”(gm)]ﬁ H (z — (;)? is an increasing function for & > (..
i=1
We see F(xy,) > F((n) = 1 since x, > (¢, by Lemma 4.1. It finally follows
from (4.3) that

«
— < Apn.
n

Lemma 4.3.

y d & (m—1)(m+d1—-{(n
G {14+ g~
(1= Cn)*mA(m +d—1)*) C¥(1)
> {1_ 24(d+6)(d+4)(d+2)d}1_gm'

Proof. Making use of Taylor’s series of C¥, (x) at = (,, with three terms and
the integral forms of the remainder;

(44) Chle) = OO (Gn) (@ — Gn) + 5CHO ) — G)?

1

= /r CYM (u)(x — u)>du.

1w AR
+ 507 (Gn)(@ = Gn)” + 2

Cm

Differentiate Gegenbauer’s differential equation
(1 —2%)cv® — dzC? Y 4 m(m +d —1)C% =0
k times, and we have

(1= 2?)Cp™) — (d+ 2k)aCy*F D + (m — k) (m + d+ k — 1)Cp) =0,

where we denote by C’,lf,b(k) the k™ derivative. Setting here z = 1, we obtain

'm+1)T(m+d+k) Cr(1)

T T(m—k)T(m+d—1) lﬁ[(d+2i).

i=0
Setting = = (,, for k = 0, we find
(46) O (Cn) = T D (G

1-¢,
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and for £k =1

40 e - =g (

By using (4.6) and (4.7), (4.4) for z = 1 becomes

C2
1-¢2

(d+2)d— (m —1)(m+ d)> M (Cp).

2
0,2(1)=Cz£”(<m><1—<m)<1+il m +<d+2)d< G )

214+ (m 6 1+ (G
(m—1)(m+d)1—(n 1M W 3
_ ! 1+Cm> 5 GO~ widu

1 (3) . : . .
™ < . Since C'm(g) is an monotonically increasing
14+Cn 2
function on [(y,, 1], we have

Since 1 < (,, we have

L 1 )
6 . Cm(4)(u)(1 — U)3du < ﬂ(l _ Cm)4cm(4)(1)

— i(l ¢ )4F(m+1) I'(m+d+3) cv (1)

S 240 " T(m=3)T(m+d—1) (d+6)(d+4)(d+2)d
Since

(m—k)(m+d+k—-—1)=m(m+d—-1)—k(d+k—1) <m(m+d—1)
for a positive integer k, we obtain

F'm+1)T(m+d+3)

T —3) T(m 1 d 1) <mi(m+d- 1)

Therefore

1/t 1 m(m+d —1)4

~ | YY) - u)Pdu < (1 —Cn)t v (1).

6 ), Cm (W —wldu <o (U=l GGy @t ayd + 2d Y
Using these inequalties, we prove the lemma -

Lemma 4.4. When d = 3, the largest root (, of Ck(x) = 0 satisfies the
inequality

3 1 8
m(m + 2) <1=tm< m(m+2)
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Proof. We remark that C¥ (z) is a downwards convex function in [,, 1]. Hence
we know by (4.5) in the proof of Lemma 4.4

cr(1 d—1

all) oy = M= Ve )

1—(nm d

The lower bound is just for d = 3.
Next we give the upper bound of 1—(,,. Gegenbauer’s differential equation

can be written by

di ((1 - x2)c,¢51>) = (d—2)2C"Y —m(m +d —1)C%,.
X

Integrate both hands from (,, to 1. Integrating first term in the righthand by
parts, we have

1
(48) (1-¢)cvM = —(d-2)C% (1) + (m+1)(m+d—2) | CY(z)dx.
Cm
Since C¥, () is a downwards convex function in [(,,, 1], the last integral is larger

than the area of the triangle surrounded by y = C;/,L(I)(l)(x— N+Ch(),z=1
and z-axis. Thus we know

! 1Ccv(1)? 1 d
CY (v)dx > = —2 = cv (1).

Using this estimate to (4.8), we get

(-G > 3 fa- s H=D A,

If d = 3, we have the inequality

2m(m + 2)

4.9 _—
(4.9) m2+2m+3

(1= )OI (Gm) > Cr(1).

1
On the other hand, we can find another lower bound of Cr,(x)dz by taking
Cm
first two terms of Taylor’s series of C},(z) at x = (;,. Because C,Zf’“’(gm) >0
for kK > 1, we see

! =t o () ke O () k
CY (x)dxr = M (g — ) d = S (] — ()R
. Y (z)dx ;;1 /Cm o (x — Gn)"dx ;;1 1) (1—=¢m)

> SO G (1= Gu)? + FOHD () (1= G,
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1
> —, it follows

From (4.6) in the proof of Lemma 4.4 and
(4.6) P 1+ Cn 2

! v 1 v(1 2 d
Crdr > =CrD (Gn) (1= 6n)* (1 + —Gm).
Cm 2 6

Using this estimate to (4.8), we get
(1= IO + (d = 2Ch()
> S+ 1)m+d = DO (Gu) (1= )1+ 56,
When d = 3, we thereby have the inequality
(110) (1= G)CHD + (1) > 2+ DACED Gu)(1 = G2+ G,

Combining (4.9) and (4.10), we have

L 1201 = ) 2+ G) < (14 G) (1 N

. 2m(m + 2) >

m2+2m+3

Under the condition (,, > 0, this inequality means

s 1—m?—2m — 15+ /(3(m + 1) + 2)2 + 128
s =

2 m2+2m + 3
>1—m2—2m—15—|—3(m—|—1)2+2_ 8
2 m2 +2m + 3 T mZ42m 43

Since m(m + 2) < m? + 2m + 3, finally we have

8
1-— < —.
G m(m + 2) ]
Theorem 4.1. For6 <t = n, there does not exist a finite subset {x1,--- ,z,}

of [—1,1] which satisfies
1 n 1
/ f(:c)\/l—JUQda::g Zf(xl), wherea:/ V1 —a2dx,
-1 nia -1

for every polynomial f(x) whose degree does not exceed t.

m

Proof. Let d = 3. By Lemma 4.3, Lemma 4.4 and C};, (1) = (m+d*2) =m+1,

we obtain

1 _ 8037225 (34m? + 68m — 45)?
sz(l)(ﬁm)Q 5396329 (m + 1)2m?(m + 2)%2(2m? + 4m — 3)?’




SPHERICAL t-DESIGNS AND THE BERNSTEIN THEOREM 13

Hence
Cm+d—-3)(m+d—2)rp_ (m+ )7
Am = v(1) - v(1)
m(l = ¢3)Cm " (Gn)? (1= ¢2)Cm " (Gm)?
2679075 7(34m? 4 68m — 45)?

10792658 (m + 1)(2m? + 4m — 3)2(m? + 2m — 4)

Note that r,,_1 = g for d = 3. By Lemma 4.2 for a = g, we obtain

T
— < A,.
2n mn
Suppose that n is an odd integer and put n = 2m — 1. Then the upper and
lower bounds of A,, yield the inequality

7 10716300 m(17n2 + 102n — 5)2

< .
2n " 5396329 (n+ 3)(n + 6n — 1)2(n% + 6n — 11)

Hence

0 >5396329n" + 1133229091 — 5389968379n° — 724665232950
— 2207712555851° + 15401846187n% + 16389055870 — 178078857.

The last inequality does not hold when 31 < n (The largest root of the poly-
nomial in n of degree 7 in the righthand is about 29.613--- ).
Suppose n is an even integer and put n = 2m — 2. Similary we have the
inequality
© 10716300 7(17n% + 136n + 114)?

< .
2n 5396329 (n+ 4)(n?+ 8n+ 6)%(n? + 8n — 4)

Hence

0 >5396329n" + 151097212n°% — 4596708016n° — 91333628640n*
— 462977360460n° — 654307450384n% — 2813873313121 — 3108285504

The last inequality does not hold when 30 < n (The largest root of the poly-
nomial in n of the degree 7 in the righthand is about 28.029--- )

It is easily checked on computer that there does not exist an interval ¢-
design if t = n < 29. Therefore we prove the theorem. -
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