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Spherical t-designs and the Bernstein Theorem
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Abstract. In this paper we study the construction problem of spherical t-
designs as a generalization of the Chebyshev problem of Gauss type quadrature
formula. It is known that spherical t-designs can be constructed if we can

construct interval t-designs for the weight function (1 − x)
d−2
2 . We shall show

the exsitence and non-existence theorems of some interval t-desings.

AMS 2000 Mathematics Subject Classification. 05B30, 65D30.

Key words and phrases. Spherical designs, Gauss type quadrature formula, the
Gegenbauer polynomials.

§1. Introduction

Spherical t-designs on d-dimensional sphere Sd are defined in [4] by P.Delsarte,
J.M.Goethals and J.J.Seidel. There are existence theorems and sporadic ex-
amples but the general and explicit construction is unknown. B.Bajnok shows
in [3] that spherical t-designs can be constructed if we can construct interval
t-designs for the weight function (1 − x)

d−2
2 . To construct spherical t-designs

along Bajnok’s method, we have to find the finite subset {x1, · · · , xn} of [−1, 1]
which satisfies

1
α

∫ 1

−1
f(x)(1 − x2)

d−2
2 dx =

1
n

n∑
i=1

f(xi), where α =
∫ 1

−1
(1 − x2)

d−2
2 dx,

for every polynomial f(x) whose degree does not exceed t ( We simply call
such {x1, · · · , xn} an interval t-design ). When d = 2, this is the Chebyshev
problem in Gauss type quadrature formula. Supposing t = n, the Chebyshev
problem is solvable for 1 ≤ t = n ≤ 7 and t = n = 9, and unsolvable for
t = n = 8 and 10 ≤ t = n (see [5]). In this paper, we study the construction
problem of spherical designs as a generalization of the Chebyshev problem.
We show that the Chebyshev problem for d = 3 is solvable for 1 ≤ t = n ≤ 3
and t = n = 5, and unsolvable for t = n = 4 and 6 ≤ t = n.
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§2. The Chebyshev problem in Gauss type quadrature formula

In this section we study interval designs for the case t = n. First we state the
classical result for d = 2 ; Taking f(x) = xk (1 ≤ k ≤ t) in the definition of
the interval design, x1, · · · , xn must satisfy

Pk := xk
1 + xk

2 + · · · + xk
n =

{
0 if k is odd,
n

k + 1
if k is even.

This is necessary and sufficient. From the Newton formula

Pk − Pk−1S1 + Pk−2S2 − · · · + (−1)kkSk = 0,

where Sk = Sk(n) =
∑

i1<i2<···<ik

xi1xi2 · · · xik is the fundamental symmetric of

degree k in n variables, it follows


S2k+1 = 0,

S2k = − 1
2k

(P2k + P2k−2S2 + P2k−4S4 + · · · + P2S2k−2).

For a given t, we shall find an interval t-design {x1, · · · , xn} such that t = n
as a set of n distinct real roots in [−1, 1] of the polynomial

fn(X) =

{
X2m + S2(2m)X2m−2 + · · · + S2m(2m) if n = 2m,

X2m+1 + S2(2m + 1)X2m−1 + · · · + S2m(2m + 1)X if n = 2m + 1.

The list of such fn(X) is known:

n = t = 2 : f2(X) = X2 − 1
3
,

n = t = 3 : f3(X) = X3 − 1
2
X,

n = t = 4 : f4(X) = X4 − 2
3
X2 +

1
45

,

n = t = 5 : f5(X) = X5 − 5
6
X3 +

7
72

X,

n = t = 6 : f6(X) = X6 − X4 +
1
5
X2 − 1

105
,

n = t = 7 : f7(X) = X7 − 7
6
X5 +

119
360

X3 − 149
6480

X,

n = t = 9 : f9(X) = X9 − 3
2
X7 +

27
40

X5 − 57
560

X3 +
53

22400
X.

Each set of the roots of the above polynomial is the interval 3,3,5,5,7,7,9-design
for d = 2, respectively.

In a similar way we study for the case d ≥ 3. If k is an odd integer,
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xk(1 − x2)
d−2
2 is an odd function. Thus

P2m+1 =
n

α

∫ 1

−1
x2m+1(1 − x2)

d−2
2 dx = 0.

If k is an even integer, by integration by parts

P2m =
n

α

∫ 1

−1
x2m(1 − x2)

d−2
2 dx = n

m∏
l=1

2l − 1
d + 2l − 1

.

Then we can find some interval designs as the set of n real roots in [−1, 1] of
the following fn(X):

n = t = 2 : f2(X) = X2 − 1
d + 1

,

n = t = 3 : f3(X) = X3 − 3
2(d + 1)

X,

n = t = 5 : f5(X) = X5 − 5
2(d + 1)

X3 − 5(d − 9)
8(d + 1)2(d + 3)

X.

Hence we have the following theorem.

Theorem 2.1. We have following interval t-designs such that t = n for d ≥ 3.

n = t = 2 :

{
±
√

1
d + 1

}
.

n = t = 3 :

{
0, ±

√
3

2d + 2

}
.

n = t = 5 :


 0,±1

2

√
5d + 15 ±√5(d + 3)(7d − 3)

(d + 1)(d + 3)


 ,

if and only if 3 ≤ d ≤ 8.

As for the case n = t = 5, we remark that 0 < 5d + 15 −√5(d + 3)(7d − 3)
holds when d ≤ 8.

§3. An application of Sturm’s Theorem

In the previous section, we solve some algebraic equations and find interval
t-designs under the assumption t = n. In this section we study the same
problem without the assumption t = n.

When n < t and the values of P1, · · · , Pn, · · · , Pt are given, we can deter-
mine the values of S1, · · · , St by the Newton formula. Thus the coefficients



4 S. NISHIMURA

of fn(X) are determined by the first n conditions on P1, · · · , Pn. It implies
interval t-designs such that t > n is unique if it exists. We will find such
t-design by showing that the roots of fn(X) = 0 satisfy the other additional
conditions on Pn+1, · · · , Pt. When n > t and the values of P1, · · · , Pt are given,
the values of S1, · · · , St are determined by the Newton formula. It means that
only the coefficients of Xn−1,Xn−2, · · · ,Xn−t are fixed but there are no any
restrictions on the other cofficients. If we can take cofficients of some lower
terms in such a way that fn(X) = 0 has n distinct real roots in [−1, 1], then
the set of the roots presents an interval t-design. Although it is difficult to
find an algebraic representation of such roots, the degree of such polynomial
gives an upper bound of n for a fixed t.

In the particular case t = n−1, we can modify the constant term of fn(X).
Then we determine the range of the constant term for some t by using Strum’s
theorem. Now we recall Sturm’s theorem ;Let f(X) be a polynomial with real
cofficients and f ′(X) its derivative. Apply the Euclidean algorithm to f(X)
and f ′(X) with changing the sign of the remainders and put

Fm−1 = qmFm − Fm+1 (m = 1, 2, · · · )
where F0 = f(X) and F1 = f ′(X). With seeing

F0(a), F1(a), F2(a), · · · , Fk(a)

from left to right, count how many times the sign is changed and denote the
number of the times by V (a). Then Sturm’s theorem says

V (a) − V (b) = # { x ∈ (a, b] : f(x) = 0 } .

For example, we apply Sturm’s theorem to X6 − X4 + 1
5X2 + δ where δ is a

parameter for the constant term of f6(X) for d = 2. We put X for X2 and
determine the range of δ such that F0(X) = X3 −X2 + 1

5X + δ = 0 has 3 real
roots in (0, 1].

F0(X) F1(X) F2(X) F3(X)

Evaluate at X = 0 δ 1
5 − 1

45 − δ 9
80 + 45

8 δ − 6075
16 δ2

Evaluate at X = 1 1
5 + δ 6

5
1
15 − δ 9

80 + 45
8 δ − 6075

16 δ2

By the above table, we see that V (0)−V (1) = 3 holds for 1
135− 4

675

√
10 < δ < 0.

In short, for an arbitary δ in this range, an interval 5-design is given by{
±
√

1
3

+
(
α

1
3 + β

1
3

)
, ±

√
1
3

+
(
ωα

1
3 + ω2β

1
3

)
, ±

√
1
3

+
(
ω2α

1
3 + ωβ

1
3

)}
.

(
{α, β} =

{
2 − 270δ

540
± 1

450

√
50625δ2 − 750δ − 15

} )
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This is the set of 6 real roots of X6 − X4 +
1
5
X2 + δ = 0 in [−1, 1]. Similarly

we have the following theorem.

Theorem 3.1. Each set of the roots of the following polynomial is an interval
4,5,6,7,8,9-design for d = 2, respectively.

n = 5, t = 4 : X5−5
6
X3+

7
72

X+δ,

(
0 < |δ| <

1
5400

√
39750 − 2790

√
155

)
.

n = 6, t = 5 : X6 − X4 +
1
5
X2 + δ,

(
1

135
− 4

675

√
10 < δ < 0

)
.

n = 7, t = 6 : X7 − 7
6
X5 +

119
360

X3 − 149
6480

X +
1

5000
.

n = 8, t = 7 : X8 − 4
3
X6 +

22
45

X4 − 148
2835

X2 + δ,

(
− 3

(
λ

2
3 ω2 +

4
135

)2

− 3
(

λ
2
3 ω2 +

4
135

)2

− 16
14175

< δ < − 43
42525

)
.

n = 9, t = 8 : X9 − 3
2
X7 +

27
40

X5 − 57
560

X3 +
53

22400
X +

1
100000

.

n = 10, t = 9 : X10 − 5
3
X8 +

8
9
X6 − 100

567
X4 +

17
1701

X2 − 1
15000

.

For t = 6, 8 and 9, the exact range of the constant term is unknown. But it
is easy to know by using computer whether all the roots are real and included
in [−1, 1] whenever the constant term is fixed. It is true for these polynomials
that all the roots are real and included in [−1, 1] even if the constant term is
changed a little. For d ≥ 3, we obtain the similar results.

Theorem 3.2. Let d ≥ 3. We obtain interval t-designs from the following
polynomials.

n = 4, t = 3 : X4 − 2
d + 1

X2 + δ,

(
0 < δ <

1
(d + 1)2

)
.

n = 5, t = 3 : X5 − 5
2(d + 1)

X3 + δX,

(
0 < δ <

25
16(d2 + 2d + 1)

)
.

n = 5, t = 4 : X5 − 5
2(d + 1)

X3 − 5d − 45
8(d + 3)(d + 1)2

X + δ,(
0 < |δ| <

9−5d+
√

(d+3)(11d+9)

8

√
3d+9−

√
(d+3)(11d+9)

(1+d)5(d+3)3
(3 ≤ d ≤ 8)

)
.

n = 6, t = 5 : X6 − 3
(d + 1)

X4 +
9

(d + 1)2(d + 3)
X2 + δ,
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(
(d + 3)(2d − 3) − 2d

√
(d + 3)d

(d + 3)2(1 + d)3
< δ < 0

)
.

We modify not only the constant term but cofficients of some lower terms,
and find the following polynomials such that the set of its roots is an interval
t-design. It is true also for these polynomials that all the roots are real and
included in [−1, 1] even if the constant term is changed a little.

Proposition 3.1. Each set of the roots of the following polynomial is an in-
terval 7-design for d = 3, 11,13-design for d = 2, respectively.

X9 − 9
8
X7 +

45
128

X5 − 39
1024

X3 +
1

1000
X,

X14 − 7
3
X12 +

91
45

X10 − 331
405

X8 +
959
6075

X6 − 2723
200475

X4

+
1

2500
X2 − 7

100000000
,

X18 − 3X16 +
18
5

X14 − 78
35

X12 +
134
175

X10 − 282
1925

X8 +
12954
875875

X6

− 341
500000

X4 +
51

5000000
X2 − 1

1250000000
.

Now, the supplementary result of Theorem 2.1 is obtained by applying
Sturm’s theorem for fn(X) when d ≥ 3.

Theorem 3.3. Let d ≥ 3. Interval designs do not exist if n = t = 4, 6, 7.

Proof. The results are followed from the below tables.

f4(X) = X4 − 2
d+1X2 − d−3

(d+1)2(d+3)

F0(X) F1(X) F2(X)
Evaluate at X = 0 3−d

(d+1)2(d+3)
−2
d+1

2d
(d+1)2(d+3)

Evaluate at X = 1 d(d2+3d−2)
(d+1)2(d+3)

2
d+1

2d
(d+1)2(d+3)

f6(X) = X6 − 3
d+1X4 + 9

(d+1)2(d+3)
X2 − 3(2d2−5d+5)

(d+1)3(d+3)(d+5)

F0(X) F1(X) F2(X) F3(X)
X = 0 −3(2d2−5d+5)

(d+1)3(d+3)(d+5))
9

(d+1)2(d+3)
6d(d−3)

(d+1)3(d+3)(d+5)
−9(5d3+2d2−35d+16)
(d+1)2(d+3)(d+5)2

X = 1 d5+8d4+12d3−23d2+8d
(d+1)3(d+3)(d+5)

3d(d2+3d−1)
(d+1)2(d+3))

2d(d2+9d−4)
(d+1)3(d+3)(d+5))

−9(2d2−35d+16+5d3)
(d+1)2(d+3)(d+5)2

f7(X) = X7 − 7
2(d+1)X

5 + 7(d+15)
8(d+1)2(d+3)X

3 − 7(43d2−124d+225)
48(d+1)3(d+3)(d+5)X
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F0(X) F1(X) F2(X) F3(X)
X = 0 −7(43d2−124d+225)

48(d+1)3(d+3)(d+5)
7(d+15)

8(d+1)2(d+3)
7(61d2−256d+75)

72(d+1)3(d+3)(d+5) ∗1
X = 1 ∗2 24d3+64d2−49d+9

8(d+1)2(d+3)
7(22d3+187d2−182d+45)

72(d+1)3(d+3)(d+5)
∗1

∗ 1 = −3
8

13987d5−11123d4−107558d3+147750d2−67005d+10125
(d+1)2(d+3)(11d−3)2(d+5)2

∗ 2 = 1
48

48d5+360d4+378d3−1435d2+1018d−225
(d+1)3(d+3)(d+5)

§4. The Bernstein Theorem for d = 3

The Gauss type quadrature formula in [−1, 1] for an weight function w(x) =
(1 − x2)

d−2
2 is

∫ 1

−1
f(x)w(x)dx =

m∑
i=1

Aif(ζi), (deg f ≤ 2m − 1)(∗)

where ζ1, · · · , ζm are zeros of the mth degree Gegenbauer polynomial Cν
m(x)

for ν = d−1
2 and

Ai =
(2m + d − 3)(m + d − 2)rm−1

m(1 − ζ2
i ){Cν(1)

m (ζi)}2
.

(
rm−1 =

∫ 1

−1
Cν

m−1(x)2w(x)dx

)

(see [1].) By using properties of the Legendre polynomials, which are the
Gagenbauer polynomials of d = 2, S.N.Bernstein proved that the Chebyshev
problem was unsolvable for 10 ≤ t = n. In this section we show that the
Chebyshev problem for d = 3 is unsolvable for 6 ≤ t = n.

Lemma 4.1. If the quadrature formula
∫ 1

−1
f(x)w(x)dx =

α

n

n∑
i=1

f(xi) holds

for every polynomial f(x) such that deg f = t ≤ 2m − 1 where m < n, then,
enumerating xi in order of size,

xn > ζm

where ζm is the largest root of the Gegenbauer polynomial Cν
m(x) for ν = d−1

2 .
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Proof. Let F (x) =
Cν

m(x)2

x − ζm
. Since the polynomial

Cν
m(x)

x − ζm
is of degree m − 1,

it is orthogonal to Cν
m(x). We therefore have∫ 1

−1
F (x)(1 − x2)

d−2
2 dx =

∫ 1

−1

Cν
m(x)

x − ζm
· Cν

m(x) · (1 − x2)
d−2
2 dx = 0.

Since deg F = 2m − 1, we may take f(x) = F (x) in the assumption. Thus

α

n

n∑
i=1

F (xi) =
∫ 1

−1
F (x)(1 − x2)

d−2
2 dx = 0,

and hence
n∑

i=1

F (xi) = 0.

Because m < n, all xi do not satisfy Cν
m(xi) �= 0. Therefore there exist positive

and negative terms in the last sum. Since F (xi) > 0 holds only for xi > ζm,
we see xn > ζm.

Lemma 4.2. If the quadrature formula
∫ 1

−1
f(x)w(x)dx =

α

n

n∑
i=1

f(xi) holds

for every polynomial f(x) such that deg f = t ≤ 2m − 1 where m < n, then

Am >
α

n

(
α =

∫ 1

−1
(1 − x2)

d−2
2 dx

)
.

Proof. Let F (x) =

{
Cν

m(x)

(x − ζm)Cν(1)
m (ζm)

}2

. Since the polynomial F (x) is of

degree 2m − 2, we may take f(x) = F (x) in the assumption. Then we have∫ 1

−1
F (x)w(x)dx =

α

n

n∑
i=1

F (xi).(4.1)

Now, we obtain by the quadrature formula (∗)∫ 1

−1
F (x)w(x)dx =

m∑
i=1

AiF (ζi) = Am,(4.2)

because F (ζi) =

{
1 (i = m)
0 (1 ≤ i < m)

. From (4.1) and (4.2), it follows that

α

n

n∑
i=1

F (xi) = Am. Since F (x) is a positive function, we see

α

n
F (xn) ≤ Am.(4.3)
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Now, F (x) = {Cν(1)
m (ζm)}2

m−1∏
i=1

(x − ζi)2 is an increasing function for x > ζm.

We see F (xn) > F (ζm) = 1 since xn > ζm by Lemma 4.1. It finally follows
from (4.3) that

α

n
< Am.

Lemma 4.3.

Cν(1)
m (ζm)

{
1 +

d

3
+

d2

24
− (m − 1)(m + d)

6
1 − ζm

1 + ζm

}

>

{
1 − (1 − ζm)4m4(m + d − 1)4

24(d + 6)(d + 4)(d + 2)d

}
Cν

m(1)
1 − ζm

.

Proof. Making use of Taylor’s series of Cν
m(x) at x = ζm with three terms and

the integral forms of the remainder;

Cν
m(x) = Cν(1)

m (ζm)(x − ζm) +
1
2
Cν(2)

m (ζm)(x − ζm)2(4.4)

+
1
6
Cν(3)

m (ζm)(x − ζm)3 +
1
6

∫ x

ζm

Cν(4)
m (u)(x − u)3du.

Differentiate Gegenbauer’s differential equation

(1 − x2)Cν(2)
m − dxCν(1)

m + m(m + d − 1)Cν
m = 0

k times, and we have

(1 − x2)Cν(2+k)
m − (d + 2k)xCν(k+1)

m + (m − k)(m + d + k − 1)Cν(k)
m = 0,

where we denote by C
ν(k)
m the kth derivative. Setting here x = 1, we obtain

Cν(k+1)
m (1) =

(m − k)(m + d + k − 1)
d + 2k

Cν(k)
m (1)(4.5)

=
Γ(m + 1)
Γ(m − k)

Γ(m + d + k)
Γ(m + d − 1)

Cν
m(1)

k∏
i=0

(d + 2i)
.

Setting x = ζm for k = 0, we find

Cν(2)
m (ζm) =

ζm

1 − ζ2
m

dCν(1)
m (ζm)(4.6)
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and for k = 1

Cν(3)
m (ζm) =

1
1 − ζ2

m

(
ζ2

1 − ζ2
(d + 2)d − (m − 1)(m + d)

)
Cν(1)

m (ζm).(4.7)

By using (4.6) and (4.7), (4.4) for x = 1 becomes

Cν
m(1) = Cν(1)

m (ζm)(1 − ζm)

(
1 +

d

2
ζm

1 + ζm
+

(d + 2)d
6

(
ζm

1 + ζm

)2

− (m − 1)(m + d)
6

1 − ζm

1 + ζm

)
+

1
6

∫ 1

ζm

Cν(4)
m (u)(1 − u)3du.

Since 1 < ζm, we have
ζm

1 + ζm
<

1
2
. Since C

ν(3)
m is an monotonically increasing

function on [ζm, 1], we have

1
6

∫ 1

ζm

Cν(4)
m (u)(1 − u)3du <

1
24

(1 − ζm)4Cν(4)
m (1)

=
1
24

(1 − ζm)4
Γ(m + 1)
Γ(m − 3)

Γ(m + d + 3)
Γ(m + d − 1)

Cν
m(1)

(d + 6)(d + 4)(d + 2)d
.

Since

(m − k)(m + d + k − 1) = m(m + d − 1) − k(d + k − 1) < m(m + d − 1)

for a positive integer k, we obtain

Γ(m + 1)
Γ(m − 3)

Γ(m + d + 3)
Γ(m + d − 1)

< m4(m + d − 1)4.

Therefore

1
6

∫ 1

ζm

Cν(4)
m (u)(1 − u)3du <

1
24

(1 − ζm)4
m4(m + d − 1)4

(d + 6)(d + 4)(d + 2)d
Cν

m(1).

Using these inequalties, we prove the lemma

Lemma 4.4. When d = 3, the largest root ζm of Cν
m(x) = 0 satisfies the

inequality

3
m(m + 2)

< 1 − ζm <
8

m(m + 2)
.
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Proof. We remark that Cν
m(x) is a downwards convex function in [ζm, 1]. Hence

we know by (4.5) in the proof of Lemma 4.4

Cν
m(1)

1 − ζm
< Cν(1)

m (1) =
m(m + d − 1)

d
Cν

m(1).

The lower bound is just for d = 3.
Next we give the upper bound of 1−ζm. Gegenbauer’s differential equation

can be written by

d

dx

(
(1 − x2)Cν(1)

m

)
= (d − 2)xCν(1)

m − m(m + d − 1)Cν
m.

Integrate both hands from ζm to 1. Integrating first term in the righthand by
parts, we have

(1 − ζ2
m)Cν(1)

m = −(d − 2)Cν
m(1) + (m + 1)(m + d − 2)

∫ 1

ζm

Cν
m(x)dx.(4.8)

Since Cν
m(x) is a downwards convex function in [ζm, 1], the last integral is larger

than the area of the triangle surrounded by y = C
ν(1)
m (1)(x−1)+Cν

m(1), x = 1
and x-axis. Thus we know∫ 1

ζm

Cν
m(x)dx >

1
2

Cν
m(1)2

C
ν(1)
m (1)

=
1
2

d

m(m + d − 1)
Cν

m(1).

Using this estimate to (4.8), we get

(1 − ζ2
m)Cν(1)

m (ζm) >
1
2

{
4 − d +

d(d − 2)
m(m + d − 1)

}
Cν

m(1).

If d = 3, we have the inequality

2m(m + 2)
m2 + 2m + 3

(1 − ζ2
m)Cν(1)

m (ζm) > Cν
m(1).(4.9)

On the other hand, we can find another lower bound of
∫ 1

ζm

Cν
m(x)dx by taking

first two terms of Taylor’s series of Cν
m(x) at x = ζm. Because C

ν(k)
m (ζm) > 0

for k ≥ 1, we see

∫ 1

ζm

Cν
m(x)dx =

m∑
k=1

∫ 1

ζm

C
ν(k)
m (ζm)

k!
(x − ζm)kdx =

m∑
k=1

C
ν(k)
m (ζm)
(k + 1)!

(1 − ζm)k+1

>
1
2
Cν(1)

m (ζm)(1 − ζm)2 +
1
6
Cν(2)

m (ζm)(1 − ζm)3.
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From (4.6) in the proof of Lemma 4.4 and
1

1 + ζm
>

1
2
, it follows

∫ 1

ζm

Cν
mdx >

1
2
Cν(1)

m (ζm)(1 − ζm)2(1 +
d

6
ζm).

Using this estimate to (4.8), we get

(1 − ζ2
m)Cν(1)

m + (d − 2)Cν
m(1)

>
1
2
(m + 1)(m + d − 2)Cν(1)

m (ζm)(1 − ζm)2(1 +
d

6
ζm).

When d = 3, we thereby have the inequality

(1 − ζ2
m)Cν(1)

m + Cν
m(1) >

1
4
(m + 1)2Cν(1)

m (ζm)(1 − ζm)2(2 + ζm).(4.10)

Combining (4.9) and (4.10), we have

1
4
(m + 1)2(1 − ζm)(2 + ζm) < (1 + ζm)

(
1 +

2m(m + 2)
m2 + 2m + 3

)
.

Under the condition ζm > 0, this inequality means

ζm >
1
2
−m2 − 2m − 15 +

√
(3(m + 1)2 + 2)2 + 128

m2 + 2m + 3

>
1
2
−m2 − 2m − 15 + 3(m + 1)2 + 2

m2 + 2m + 3
= 1 − 8

m2 + 2m + 3
.

Since m(m + 2) < m2 + 2m + 3, finally we have

1 − ζm <
8

m(m + 2)
.

Theorem 4.1. For 6 ≤ t = n, there does not exist a finite subset {x1, · · · , xn}
of [−1, 1] which satisfies

∫ 1

−1
f(x)

√
1 − x2dx =

α

n

n∑
i=1

f(xi), where α =
∫ 1

−1

√
1 − x2dx,

for every polynomial f(x) whose degree does not exceed t.

Proof. Let d = 3. By Lemma 4.3, Lemma 4.4 and Cν
m(1) =

(
m+d−2

m

)
= m+1,

we obtain

1

C
ν(1)
m (ζm)2

<
8037225
5396329

(34m2 + 68m − 45)2

(m + 1)2m2(m + 2)2(2m2 + 4m − 3)2
.
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Hence

Am =
(2m + d − 3)(m + d − 2)rm−1

m(1 − ζ2
m)Cν(1)

m (ζm)2
=

(m + 1)π

(1 − ζ2
m)Cν(1)

m (ζm)2

<
2679075
10792658

π(34m2 + 68m − 45)2

(m + 1)(2m2 + 4m − 3)2(m2 + 2m − 4)
.

Note that rm−1 =
π

2
for d = 3. By Lemma 4.2 for α =

π

2
, we obtain

π

2n
< Am.

Suppose that n is an odd integer and put n = 2m − 1. Then the upper and
lower bounds of Am yield the inequality

π

2n
<

10716300
5396329

π(17n2 + 102n − 5)2

(n + 3)(n2 + 6n − 1)2(n2 + 6n − 11)
.

Hence

0 >5396329n7 + 113322909n6 − 5389968379n5 − 72466523295n4

− 220771255585n3 + 15401846187n2 + 1638905587n − 178078857.

The last inequality does not hold when 31 ≤ n (The largest root of the poly-
nomial in n of degree 7 in the righthand is about 29.613 · · · ).

Suppose n is an even integer and put n = 2m − 2. Similary we have the
inequality

π

2n
<

10716300
5396329

π(17n2 + 136n + 114)2

(n + 4)(n2 + 8n + 6)2(n2 + 8n − 4)
.

Hence

0 >5396329n7 + 151097212n6 − 4596708016n5 − 91333628640n4

− 462977360460n3 − 654307450384n2 − 281387331312n − 3108285504.

The last inequality does not hold when 30 ≤ n (The largest root of the poly-
nomial in n of the degree 7 in the righthand is about 28.029 · · · )

It is easily checked on computer that there does not exist an interval t-
design if t = n ≤ 29. Therefore we prove the theorem.
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