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Abstract. We discuss the existence of an orthogonal basis consisting of de-
composable vectors for some symmetry classes of tensors associated with cer-
tain subgroups of the full symmetric group. The dimensions of these symmetry
classes of tensors are also computed.
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x1. Introduction

Denote by Sn the symmetric group on f1;2; : : : ;ng. Let V be a unitary
complex vector space of dimensionm. Suppose n is an integer ¸ 2. Let ­nV
be the n-th tensor power of V , and write v­ := v1­v2­¢ ¢ ¢­vn for the tensor
product of the indicated vectors.

For ¾ 2 Sn, there is a (unique) linear operator P (¾¡1) on ­nV which
has the e®ect P(¾¡1)(v1 ­ v2 ­ ¢ ¢ ¢ ­ vn) := v¾(1) ­ v¾(2) ­ ¢ ¢ ¢ ­ v¾(n), for
all v1; v2; : : : ; vn 2 V . Let G be a subgroup of Sn and ¸ be an irreducible
complex character of G. We de¯ne T (G; ¸) as a linear operator on ­nV with
the following de¯nition

T(G; ¸) :=
¸(1)
jGj

X

¾2G
¸(¾)P (¾):(1.1)

With respect to the induced inner product in ­nV , T (G; ¸) is an orthogonal
projection onto its range V n

¸ (G), (see [3], [8]). Let I(G) be the set of all the
irreducible complex characters ofG. It follows from the orthogonality relations
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for characters that fT(G; ¸)j¸ 2 I(G)g is a set of annihilating idempotents
which sum to the identity.

The image of v­ := v1 ­ v2 ­ ¢ ¢ ¢ ­ vn under T (G;¸) is denoted by v¸ :=
v1 ¤ v2 ¤ ¢ ¢ ¢ ¤ vn and it is called a decomposable tensor. V n

¸ (G) is called the
symmetry class of tensors associated with G and ¸, and the dimension of
V n¸ (G) is

dimV n¸ (G) =
¸(1)
jGj

X

¾2G
¸(¾)mc(¾)(1.2)

where c(¾) is the number of cycles, including cycles of length one, in the
disjoint cycle decomposition of ¾, (see [7]). With respect to the induced inner
product in ­nV , and the orthogonal relations for characters we have

­nV =
M

Â2I(G)

V n
Â (G)(1.3)

which is an orthogonal direct sum.
Let ¡nm be the set of all sequences ® = (®1;®2; : : : ; ®n), 1 · ®i · m, so

® is a mapping from a set of n elements into a set of m elements. Then the
group G acts on ¡nm by ¾ ¢ ® := ® ± ¾¡1; ¾ 2 G, which is a composition of
two functions. Let G® := f¾ 2 G j ¾ ¢ ® = ®g be the stabilizer of ®, and
O(®) = f¾ ¢® j ¾ 2 Gg be the orbit with representative ®. In this setting we
have G¾¢® = ¾G®¾¡1, for all ¾ 2 G.

Let ¢ be a system of distinct representatives of the orbits of G acting on
¡nm and de¯ne

¢ = f® 2 ¢j
X

¾2G®
¸(¾) 6= 0g:(1.4)

Let fe1; e2; : : : ; emg be an orthonormal basis of V . With respect to the induced
inner product, one easily obtains the condition e¸° := e°1 ¤ e°2 ¢ ¢ ¢ ¤ e°n 6= 0 if
and only if ° = (°1; °2; : : : ; °n) 2 ¢. Moreover we have:

< e¸®je¸¯ >=

8
<
:

(̧1)
jGj

X

¾2G¯
¸(¾¿¡1); if ®= ¿ ¢ ¯ for some ¿ 2 G;

0; if O(®) 6= O(¯):
(1.5)

For ° 2 ¢, V ¸° = he¸¾¢°j¾ 2 Gi is called the orbital subspace of V n¸ (G). In [3],
Freese proved that

dim V ¸
° =

¸(1)
jG°j

X

¾2G°
¸(¾):(1.6)
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In particular, if ¸ is a linear character of G, then dimV ¸
° = 1 for all ° 2 ¢.

By the de¯nition of V ¸
° , it follows that

V n¸ (G) =
M

°2¢

V ¸
°(1.7)

is an orthogonal direct sum.
If ®= ¾ ¢ ° and ¯ = ¿ ¢ °, then ¾¿¡1 ¢ ¯ = ®, therefore using formula (1.5),

we have:

< e¸¾¢° j e¸¿¢° >= ¸(1)
jGj

X

¼2¿G°¾¡1

¸(¼):(1.8)

An orthogonal basis of the form fe¸° j ° 2 Sg, where S is a subset of ¡nm, is
called an orthogonal basis of decomposable symmetrized tensor for V n

¸ (G), in
this case we say that V n

¸ (G) has an O-basis. By (1.7) V n¸ (G) has an O-basis
if an only if V ¸

° has an O-basis for all ° 2 ¢. In particular, if ¸ is a linear
character, since dimV ¸° = 1, for all ° 2 ¢, then V ¸° has an O-basis which
implies that V n¸ (G) has an O-basis.

Several papers are devoted in investigation of the existence of an O-basis
for V n

¸ (G), for example [9]. In [5] a necessary and su±cient condition for the
existence of an O-basis for V n

¸ (G) is given, where G is a cyclic or a dihedral
group. Also in [1] a necessary and su±cient condition for the existence of
an O-basis for V n¸ (G) is given, where G is the dicyclic group, i.e. a group
generated by two elements a and b such that a2n = 1; b2 = an; b¡1ab = a¡1

and denoted by T4n in [6]; and in [2] a necessary and su±cient condition for
the existence of an O-basis for the symmetry classes of tensors associated with
the direct and central product of some permutation groups is given. In this
paper we study the symmetry classes of tensors associated with the groups U6n
and V8n, which are de¯ned by generators and relations in [6]. We investigate
the problem of ¯nding necessary and su±cient conditions for the existence of
an O-basis for the above mentioned groups. We also ¯nd the dimensions of
the symmetry classes of tensors associated with them.

x2. The Group U6n

The group U6n, n ¸ 1, is de¯ned in [6] as a group generated by the elements
a and b such that a2n = b3 = 1, a¡1ba = b¡1, i.e., U6n := ha; b j a2n = b3 = 1,
a¡1ba = b¡1i. It is obvious that hbi is a normal subgroup of U6n and U6n =
hbi : hai »= Z3 : Z2n, which is isomorphism to the semi-direct product of a
cyclic group of order 3 by a cyclic group of order 2n . This group is of order
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6n, and its elements are of the form U6n = far; arb; arb2 j 0 · r < 2ng. It is
not hard to see that U6n has 3n conjugacy classes which are

fa2rg; fa2rb; a2rb2g; fa2r+1; a2r+1b; a2r+1b2g; r = 0; 1; : : : ; n¡ 1;

and the character table of U6n is:

Table I
The character table of U6n

jCU6n(¾)j 6n 6n 3n 3n 2n 2n
¾ 1 a2r b a2rb a a2r+1

Âj 1 !2rj 1 !2rj !j !(2r+1)j

Ãk 2 2!2rk ¡1 ¡!2rk 0 0

! = exp(
2¼i
2n

); 1 · r · n¡ 1; 0 · j · 2n¡ 1; 0 · k · n¡ 1:

From the above table we see that U6n has 2n linear characters Âj ;0 ·
j · 2n¡1, and n non-linear irreducible characters Ãk;0 · k · n¡ 1 of de-
gree 2. Now we will embed this group in a suitable symmetric group. If
(1 2 ¢ ¢ ¢ 2n)(2n+1 2n+2) and (2n+1 2n+2 2n+3) are permutations inS2n+3,
then it can be veri¯ed that the mapping a 7! (1 2 ¢ ¢ ¢ 2n)(2n+ 1 2n+ 2),
b 7! (2n+1 2n+2 2n+3), embeds U6n in S2n+3. Now considering U6n as a
subgroup of S2n+3 we ¯nd the dimensions of the symmetry classes of tensors
associated with the group U6n.

Theorem 1. Let G = U6n; n ¸ 1 and let V be an m-dimensional inner
product space. Then considering G as a subgroup of S2n+3 as above, we have
the following formulae for the dimensions of the symmetry classes of tensors
associated with U6n.

dimV 2n+3
Âj (G) = m

6n

"
(m2 +2)

n¡1X

l=0

!2ljm(2l;2n) + 3m
n¡1X

l=0

!(2l+1)jm(2l+1;2n)

#
;

dimV 2n+3
Ãk

(G) = 2m(m2¡1)
3n

n¡1X

l=0

!2lkm2(l;n);

0 · j · 2n¡ 1; 0 · k · n¡ 1;

where (0;n) := n, and (k; n) denotes the greatest common divisor of k and n,
and ! = exp

¡2¼i
2n
¢
.

Proof. Recall that for a permutation ¿ we let c(¿) denote the number of
cycles in the cycle structure of ¿ including cycles of length one. Note that
if ¿ is a cycle of length s and (t; s) = d, then ¿ t has d cycles of length s=d
and therefore c(¿ t) = d+ c(¿)¡ 1 so c(1) = 2n + 3, c(a2r) = (2r; 2n) + 3,
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c(a2rb) = (2r; 2n)+1 and c(a2r+1) = (2r+1; 2n)+2. Now using the character
table of U6n and the formula (1.2), the theorem holds. ¤

Now we discuss the existence of an O-basis associated with the group U6n.
Let V be an m-dimensional unitary space over the complex ¯eld, if m = 1,
then dim­2n+3V = 1, so dimV 2n+3

¸ (U6n) = 0 or 1, therefore it is trivial that
in the case of dim V = 1 an O-basis for every ¸ 2 I(U6n) exists. Therefore we
assume that m ¸ 2. As before, if Â is a linear character ofG, since the orbital
subspaces have dimension · 1, then the symmetry class of tensors associated
with G and Â has an O-basis. Therefore we will consider non-linear irreducible
complex characters of U6n, i.e. the characters Ãk 0 · k · n¡ 1.

Note that if n = 1, then U6
»= S­ where ­ = f3; 4;5g and S­ = ha1 =

(3 4); b1 = (3 4 5)i. In this case, we can consider Ã given by Ã(ar1bs1) :=
Ã0(arbs) as a nonlinear irreducible character of S­. we have

V 5
Ã0(U6) = V ­V ­ V 3

Ã (S­):

Since S­ is 2-transitive by [4], V 3
Ã(S­) does not have an O-basis, therefore

V 5
Ã0

(U6) does not have an O-basis.

Theorem 2. Let G = U6n; n ¸ 1, and Ã = Ãk; 0 · k · n ¡ 1 and let
m = dimV ¸ 2. Then V 2n+3

Ã (G) is non zero and does not have an O-basis.

Proof. Take ° := (1;
(2n+1)¡timesz }| {
2;2; : : : ;2 ; 1) 2 ¡2n+3

m . Since G is generated by the
permutations a= (1 2 ¢ ¢ ¢ 2n)(2n+1 2n+2) and b = (2n+ 1 2n+2 2n+3)
we can conclude that G° = 1, and by equation (1.6),

dimV Ã
° = 2

1
¢ 2 = 4:

Therefore V 2n+3
Ã (G) is non zero. Let fe1; e2; : : : ; emg be an orthogonal basis

of V . Now, by the equation (1.8), we have:

< eÃ¹¢°jeÃ¿¢° >=
2

6n
Ã(¿¹¡1):

Since ¿; ¹ 2 U6n, we have ¿ = ajbs and ¹ = akbt, for some j; k;s and t in
Z, then using the formula (1.8), we obtain:

< eÃ¹¢°jeÃ¿¢° >= 0, j + k is odd and s ´ t (mod 3):

Therefore from the set feÃ¾¢°j¾ 2 Gg we can choose at most two orthogonal vec-
tor, but dimVÃ° = 4, hence V Ã

° does not have an O-basis. Whence V 2n+3
Ã (U6n)

does have an O-basis. ¤
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x3. The Group V8n

In this section we de¯ne the group V8n, and we will study the existence of
an O-basis for the symmetry classes of tensors associated with this group and
irreducible characters of V8n. The dimensions of these symmetrized tensor
spaces are also given.

Let n be a positive integer. The group V8n is de¯ned in [6] for n odd. But
one can de¯ne it for arbitrary n as follows

V8n := ha;b j a2n = b4 = 1; aba = b¡1; ab¡1a = bi:

This group has order 8n and in the following we will discuss its conjugacy
classes and irreducible complex characters of V8n. Since our discuss in the
cases of n even or odd di®ers, therefore ¯rst we will assume that n is odd. To
describe the conjugacy classes and the irreducible characters of V8n from [6]
we see that V8n has 2n+3 conjugacy classes which are

f1g;fb2g; fa2r+1; a¡2r¡1b2g; r = 0; : : : ;n¡ 1
fa2s; a¡2sg;fa2sb2; a¡2sb2g; s = 1; : : : ; n¡1

2
fajbk : j even; k = 1 or 3g; and
fajbk : j odd; k = 1 or 3g:

The irreducible complex character table of V8n has four linear characters
Â1; Â2;Â3;Â4; and n characters Ãj ; 0 · j · n¡ 1, of degree 2, and a further
n¡ 1 characters Áj ; 1 · j · n¡ 1, of degree 2 as follows:

Table II
The character table of V8n n odd

jCV8n(¾)j 8n 8n 4n 4n 4n 4 4
¾ 1 b2 a2r+1 a2s a2sb2 b ab
Â1 1 1 1 1 1 1 1
Â2 1 1 1 1 1 ¡1 ¡1
Â3 1 1 ¡1 1 1 1 ¡1
Â4 1 1 ¡1 1 1 ¡1 1

Ãj
0· j· n¡1

2 ¡2 !2(2r+1)j ¡ !¡2(2r+1)j !4sj + !¡4sj ¡!4sj ¡!¡4sj 0 0

Áj
1· j· n¡1

2 2 !(2r+1)j + !¡(2r+1)j !2sj + !¡2sj !2sj +!¡2sj 0 0

! = exp
¡ 2¼i

2n
¢
; 0 · r · n¡ 1; 1 · s · n¡1

2 :

Now we embed V8n in a suitable symmetric group. It is easy to see that
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a 7¡! (1 2 ¢ ¢ ¢ 2n)(2n+1 2n+ 2 ¢ ¢ ¢ 4n) and

b 7¡! (1 2 2n+1 2n+2)

n+1
2Y

k=2

[(2k¡1 2(n¡k)+4 2(n+k)¡ 1 2(2n¡k)+4)

(2k 2(2n¡ k) + 3 2(n+ k) 2(n¡ k) +3)]

gives an embedding of V8n in S4n so we assume that V8n is a subgroup of
S4n. We need the following observation for the proof of the next theorem.
Suppose that t is an odd positive number and consider the disjoint sets A =
fa1; a2; : : : ; atg and B = fb1; b2; : : : ; btg. Let x = (a1 a2 ¢ ¢ ¢ at) and y =
(b1 b2 ¢ ¢ ¢ bt) be two cycles permuting elements of A and B respectively,
and let z = (a1 b1)(a2 b2) ¢ ¢ ¢ (at bt) be a permutation on A[ B. Then the
permutation xyz is a cycle of length 2t, and

xyz = (a1 b2 a3 ¢ ¢ ¢ at b1 a2 b3 ¢ ¢ ¢ bt):

In the following theorem we ¯nd the dimensions of the symmetry classes of
tensors associated with the group V8n.

Theorem 3. Let G = V8n, n odd, and let V be an m-dimensional inner
product space. Then considering G as a subgroup of S4n, we have the following:

dimV 4n
Â1 (V8n) = 1

4n

"
n¡1X

k=0

m2(2k+1;2n) +

n¡1
2X

k=0

(m2(2k;2n) +m(2k;2n))

+nmn +nm2n+1 ¡ m4n +m2n

2

#
,

dimV 4n
Â2 (V8n) = 1

4n

"
n¡1X

k=0

m2(2k+1;2n) +

n¡1
2X

k=0

(m2(2k;2n) +m(2k;2n))

¡nmn ¡nm2n+1 ¡ m4n +m2n

2

#
,

dimV 4n
Â3

(V8n) = 1
4n

"n¡1X

k=0

¡m2(2k+1;2n) +

n¡1
2X

k=0

(m2(2k;2n) +m(2k;2n))

+nmn ¡nm2n+1 ¡ m4n +m2n

2

#
,

dimV 4n
Â4 (V8n) = 1

4n

"
n¡1X

k=0

¡m2(2k+1;2n) +

n¡1
2X

k=0

(m2(2k;2n) +m(2k;2n))

¡nmn +nm2n+1 ¡ m4n +m2n

2

#
,
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dimV 4n
Ãj (V8n) = 1

n

"
m2n(m2n¡1)

2 +

n¡1
2X

k=1

m(2k;2n)(m(2k;2n)¡ 1) cos
4k¼j
n

#
,

0 · j · n¡ 1.

dimV 4n
Áj (V8n) = 1

n

"
m2n(m2n+1)

2 +
n¡1X

k=0

m2(2k+1;2n) cos(
(2k+ 1)¼j

n
)

+

n¡1
2X

k=1

(m2(2k;2n) +m(2k;2n)) cos(
2k¼j
n

)

#
,

1 · j · n¡ 1.
Here, (0;n) := n, and (k; n) denotes the greatest common divisor k and n.
Proof. As before, we know that if ¿ is a cycle of length s, then ¿ t has
(t; s) cycles and therefore c(¿ t) = (t; s) + c(¿) ¡ 1, where c(¿) denotes the
number of cycles in the cycle structure of ¿ including cycles of length one.
So c(1) = 4n, c(b2) = 2n, c(a2k+1) = 2(2k + 1;2n), c(a2k) = 2(2k; 2n) and
c(b) = n. Since the order of ab is 2 by calculation we obtain the only ¯xed
points of ab are n+1 and 3n+1, hence c(ab) = 4n¡2

2 + 2 = 2n +1. Also we
have b2 = (1 2n+1)(2 2n+2) ¢ ¢ ¢ (2n 4n) and the permutation a is a product of
two disjoint cycles (1 2 ¢ ¢ ¢ 2n) and (2n+1 2n+2 ¢ ¢ ¢ 4n). Since n is odd, by
previous observation, one can show that c(a2kb2) = 1

2c(a
2k) = (2k; 2n). Using

the character table of V8n, and the formula (1.2) the theorem follows. ¤
Now we discuss the existence of an O-basis associated with the group

V8n n odd. As before, let V be an m-dimensional unitary space andm¸ 2. If
n= 1, V8 »= D8, the dihedral group, and by [5] the symmetry classes of tensor
associated V8 has an O-basis.

Theorem 4. Let G = V8n, n odd, n 6= 1, Á = Áj ; 1 · j · n ¡ 1. Assume
that m = dimV ¸ 2. Then V 4n

Á (G) is non-zero and does not have an O-basis.

Proof. Take ° := (
2n¡timesz }| {

1; 2;2;2; : : : ;2;
2n¡timesz }| {

1; 1;2;2; : : : ;2) = (°1; °2; : : : ; °4n) 2 ¡4n
m ,

by the structure of permutations a and b in G, i.e., a = (1 2 ¢ ¢ ¢ 2n)(2n +
1 2n+ 2 ¢ ¢ ¢ 4n) and

b = ( 1 2 2n+ 1 2n+ 2 )
( 3 2n 2n+ 3 4n )
( 4 4n¡ 1 2n+ 4 2n¡ 1 )
( 5 2n¡ 2 2n+ 5 4n¡ 2 )

...
...

...
...

( n¡ 1 3n+4 3n¡ 1 n+4 )
( n n+ 3 3n 3n+ 3 )
( n+ 1 3n+2 3n+ 1 n+2 )
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one can conclude that hai \G° = 1. Since n 6= 1, therefore hbi \G° = 1.
Since (arb)¡1(1) 6= 1;2n+1;2n+2 for r = 1; 2; : : : ; 2n¡ 2 and (a¡1b)¡1(2n+
2) = 2n 6= 1; 2n + 1; 2n + 2, hence arb 62 G° 8r 2 Z: Since (arb¡1)¡1(1) 6=
1;2n+1; 2n+2 for r = 1; 2; : : : ; 2n¡2 and (a¡1b¡1)¡1(2n+2) = ba(2n+2) =
b(2n+3) = 4n 6= 1; 2n+ 1;2n+2, hence arb¡1 62 G° 8r 2 Z.
Also (arb2)¡1(1) 6= 1;2n+1;2n+2 for r = 1; 2; : : : ; 2n¡2 and (a¡1b2)¡1(2n+
1) = b2a(2n+1) = b2(2n+2) = 2 6= 1; 2n+1;2n+2, hence arb2 62 G° 8r 2 Z.
Conclude that G° = 1. Therefore dimV Á

° = 4. Hence V 4n
Á (G) is non zero.

Now we let fe1; e2; : : : ; emg be an orthonormal basis of V and calculate the
inner product < eÁ¹¢°jeÁ¿¢° > for all ¹; ¿ 2 V8n. Let ¹= akbs and ¿ = arbt, then
we have

< eÁ¹¢°jeÁ¿¢° >=
2
8n
Á(¿¹¡1) =

1
4n
Á(akbs¡ta¡r)

therefore from table II we get < eÁ¹¢°jeÁ¿¢° >= 0, js¡ tj is odd. Hence we can
choose at most two orthogonal vector from the set feÁ¾¢°j¾ 2 Gg, therefore V Á

°
does not have an O-basis. Hence V 4n

Á (V8n) does not have an O-basis. ¤

Theorem 5. Let G = V8n; n odd; and let Ã = Ãj 0 · j · n¡ 1. Assume
that m = dimV ¸ 2, then V 4n

Ã (G) has an O-basis.
Proof. Let H be a subgroup of G, Ã = Ãj 0 · j · n¡ 1. Since Ãj(1) = 2,
we have < Ã #H j1H >= 0;1 or 2. If < Ã #H j 1H >= 1, then there is a linear
non identity character Â of H such that Â = Ã #H ¡1. Since Â is a linear
character, jÂ(h)j = 1, for all h 2 H . First we ¯nd the general form of the
elements of H using only the condition jÂ(h)j = jÃ(h)¡ 1j = 1.

Since Ã(b2)¡1 = ¡2¡ 1 =¡3, we have b2 62H , i.e. H\hbi= 1. As before
(n; j) denotes the greatest common divisor of n and j. Let (n; j) = d, one can
conclude that the elements of H can only be chosen from the set:

f atn=d; a(2t+1)n=db2; atb; atb¡1 j t 2 Z g:
Because from table II we see thatÃ(a(2t+1)n=d) = Ã(a(2t+1)n=db2) = Ã(atb§1) =
0 and Ã(a2tn=d) = 2. Since

X

¾2H
Ã(¾) = jHj, therefore half of elements of H

must be of the form a2tn=d, where t 2 Z. Hence the group H is a subgroup of
han=di or ha2n=d; a(2k+1)b§1i; for some k 2 Z.

Now instead of H we consider G° as a subgroup of G. If< Ã #G° j 1G° >=
1, we have dimV Ã

° = 2 and by the above remark G° · han=di, then f e°; eb¢° g
is an O-basis for VÃ° . If G° · ha2n=d; a(2k+1)bi or G° · ha2n=d; a(2k+1)b¡1i,
then f e°; ea¢° g is an O-basis for V Ã

° .
If < Ã #H j 1H >= 2, then H is a subgroup of kerÃ. Note that cos(¼n4sj)

= §1 if and only if ¼
n4sj = k¼ for some k 2 Z, if and only if n

d j4s, therefore
ker Ã · ha4n=di. In this case dimVÃ

° = 4 and the set fe°; ean=d¢°; eb¢°; ean=db¢° g
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is an O-basis of V Ã
° . The theorem now follows. Note that the order of a

2n
d is

d and Ã(a2r+1) =¡Ã(a¡(2r+1)); r 2 Z: ¤

Now we assume that n is even. In this case the group G = V8n has 2n+ 6
conjugacy classes which are:

f1g; fb2g;fang; fanb2g;
fa2r+1; a¡(2r+1)b2g; r = 0; 1; : : : ; n¡ 1
fa2s; a¡2sg;fa2sb2; a¡2sb2g; s= 1; : : : ; n=2¡ 1
fa2kb(¡1)kj0 · k · n¡ 1g;
fa2kb(¡1)k+1 j0 · k · n¡ 1g;
fa2k+1b(¡1)k j0 · k · n¡ 1g;
fa2k+1b(¡1)k+1j0 · k · n¡ 1g:

The derived subgroup of G is ha2b2i, hence G has eight linear characters
Â1; Â2; : : : ; Â8. Since H = hb2i is a normal subgroup of G and G=H »=D4n, we
obtained n¡ 1 irreducible characters Ãj 1 · j · n¡ 1, of degree 2. Since b2

is not in the derived subgroup and (b2)2 = 1, there exists a linear character Â2
such that Â2(b2) =¡1. The product of the linear character Â2 with Ãj , gives
further n¡ 1 irreducible characters Ãj ¢ Â2; 1 · j · n¡ 1, of degree 2. Since
character values in cases n ´ 0 (mod 4) and n ´ 2 (mod 4) di®er, therefore
we distinguish these cases and give the character table of V8n in Table III and
Table IV respectively.

The embedding of G in S4n; n =even, is di®erent from the case n =odd.
In this case if we take the following permutations in S4n,
a 7! (1 2 ¢ ¢ ¢ 2n)(2n+ 1 2n+2 ¢ ¢ ¢ 4n); and

b 7! (1 2 2n+1 2n+2)[
n=2Y

k=2

(2k¡ 1 2(n¡ k)+4 2(n+ k)¡1 2(2n¡k)+4)

(2k 2(2n¡ k) + 3 2(n+ k) 2(n¡ k) +3)](n+1 n+ 2 3n+ 1 3n+2);
then we see that we have a monomorphism of G into S4n. So we assume that
G is a subgroup of S4n. Take ­ = ff1;2n+1g; f2; 2n+2g; : : : ;f2n;4ngg. The
group G=H acts on ­ by ¾H ¢ fi; 2n+ig := f¾(i); ¾(2n+ i)g and this action is
faithful. We put i := fi; 2n+ ig;1 · i · 2n, and consider G=H as a subgroup
of S2n, therefore the cycle structure of aH and bH on ­ are as follows:

aH := (1 2 ¢ ¢ ¢ 2n) and bH := (1 2)(3 2n)(4 2n¡1) ¢ ¢ ¢ (n n+3)(n+1 n+2):

Therefore we consider D4n := haH; bHi as a subgroup of S2n.
Let G= V8n; n even, and H = f1; b2g; Ã = Ãj; 1 · j · n¡ 1. Since H ·

kerÃ the character Ã(¾H) = Ã(¾) is an irreducible character of G=H = D4n.
LetW be a p-dimensional inner product space, p¸ 2. Let° = (1; 1;2;2; : : : ;2)
be in ¡2n

p and note that bH 2 (D4n)° special one can conclude that (D4n)° =
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f1; bHg. Similar to the proof of (Theorem 3.1, [5]), if WÃj
° (D4n) has an O-

basis, then Ãj(ak) = 2 cos 2¼jk
2n = 0 for some k in Z. In other words 2¼jk

2n =
(2l + 1) ¼2 for some integer l. This implies 2j2 divide n, where j = j2j20, j20
odd and j2 a power of 2, i.e.,

WÃj
° (D4n) has an O¡basis ) 2n ´ 0 (mod 4j2):(3.1)

Theorem 6. Let G = V8n and assume that dim V ¸ 2. Then ­4nV has an
O-basis if and only if n is a power of 2.
Proof. For Ã = Ãj ; 1 · j · n¡1 and (®1;®2; : : : ; ®2n; ¯1; ¯2; : : : ; ¯2n) 2 ¡4n

m ,
we may assume that ® = (®1;®2; : : : ;®2n) and ¯ = (¯1; ¯2; : : : ;¯2n) are ele-
ments of ¡2n

m and therefore we will set (®;¯) := (®1;®2; : : : ; ®2n; ¯1; ¯2; : : : ; ¯2n).
In this setting we have:

eÃ(®;¯) = Ã(1)
jGj
X

¾2G
Ã(¾)e­¾¢(®;¯)

= Ã(1)
jGj

1
2

"X

¾2G
Ã(¾)e­¾¢(®;¯) +

X

¾2G
Ã(¾b2)e­¾b2¢(®;¯)

#

= Ã(1)
jGj

1
2

X

¾2G
Ã(¾)

h
e­¾¢® ­ e­¾¢¯ + e­¾¢¯ ­ e­¾¢®

i

= Ã(1)
jGj

1
2

X

¾2G=H
2Ã(¾)

h
e­¾¢® ­ e­¾¢¯ + e­¾¢¯ ­ e­¾¢®

i

= Ã(1)
jG=Hj

X

¾2G=H
Ã(¾)

1
2

h
e­¾¢® ­ e­¾¢¯ + e­¾¢¯ ­ e­¾¢®

i

specially, when ®= ¯, we have

eÃ(®;®) = Ã(1)
jG=H j

X

¾2G=H
Ã(¾)e­¾¢® ­ e­¾¢®:

Hence < eÃ(®;®) j e
Ã
(¯;¯) >= 0 if and only if < eÃ® j eÃ¯ >= 0, moreover

dim V Ã
(®;®) =

Ã(1)
jG(®;®)j

X

¾2G(®;®)

Ã(¾) =
Ã(H)

j(G=H)®j
X

¾2(G=H)®

Ã(¾) = dim V Ã
® :

Therefore V Ã
® has an O-basis if and only if V Ã

(®;®) has an O-basis. Note that
b2 2 G(®;®) and the stabilizer of ® under G=hb2i is G(®;®)=hb2i.

If V 4n
Ã (G) has an O-basis, then for every ° 2 ¡2n

m ; V 4n
(°;°) has an O-basis.

Hence by the above remark we obtain an O-basis for V Ã
° . So V 2n

Ã
(G=H) has
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an O-basis. If Ã = Ãj and j = j2j20 where j20 is the odd part of j and j2 is a
power of 2, then by formula (3.1) we have 2n ´ 0 (mod 4j2), which holds all
j from 1;2; : : : ; n¡ 1. This implies that n is a power of 2.

Conversely, assume that n is a power of 2, and Ã = Ãj (or Ãj ¢ Â2 ). Let
° = (®;¯) 2 ¢, where ®;¯ 2 ¡2n

m . If ® = ¯, by the above remark VÃj° has an
O-basis and

eÃ¢Â2
(®;®) = Ã(1)¢Â2(1)

jGj
X

¾2G
Ã(¾)Â2(¾)e­¾¢(®;®)

= Ã(1)
jGj

1
2

"X

¾2G
Ã(¾)Â2(¾)e­¾¢(®;®) +

X

¾2G
Ã(¾b2)Â2(¾b2)e­¾b2¢(®;®)

#

= Ã(1)
jGj

1
2

X

¾2G
Ã(¾)Â2(¾)

£
e­¾¢® ­ e­¾¢® ¡ e­¾¢® ­ e­¾¢®

¤
= 0;

hence V Ãj¢Â2
° = 0.

If ® 6= ¯, then b2 2 G° which implies that hbiTG° = 1. As in the proof of
Theorem 5, < Ã #G° j 1G° >= 0;1 or 2.

If < Ã #G° j 1G° >= 2, then G° · kerÃ and by the formula (1.6),
dimV Ã

° = 4. Using the character table of V8n, Tables III and IV, we obtain
G · ha

2n
j2 i. In this case, using formula (1.8) and Tables III and IV one can

show that the set fe°; eb¢°; e
a

n
2j2 ¢°

; e
a

n
2j2 b¡1¢°

g is an orthogonal basis for V Ã
° (G).

Hence V Ã
° (G) has an O-basis.

If < Ã #G° j 1G° >= 1, then Ã #G° ¡1 is a non-identity linear character of
G°, and the norm jÃ(x)¡1j = 1, i.e. Ã(x) = 0 or 2 for all x 2 G°. By formula
(1.6), dimV Ã

° = 2. From here on we must deal with the cases Ã = Ãj and
Ãj ¢ Â2 separately. First assume that Ã = Ãj; 1 · j · n¡ 1. The elements of
G° are of the form fa(2t+1) n

2j2 ; a(2t+1) n
2j2 b2; atb§1 j t 2 Zg on which the value of

Ã is zero, and fa2t nj2 ; a2t
n
j2 b2 j t 2 Zg on which the value of Ã is 2. The equalityX

¾2G°
Ã(¾) = jG°j implies that the values of Ã on exactly half of elements of

G° must be zero. If atb§1 2 G°, then (atb§1)2 = 1 or b2, and since b2 62 G°

therefore t must be odd. Therefore G° · ha
2n
j2 i ¢ K or ha

2n
j2 b2i ¢ K , where

K = ha
n

2j2 i or ha
n

2j2 b2i or ha(2t+1)b§1i. In the case K = ha(2t+1)b§1i, the set
fe°; e

a
n

2j2 ¢°
g and in other cases fe° ; eb¢°g is an orthogonal for VÃ° . Hence V Ã

°

has an O-basis.
If Ã = Ãj ¢ Â2, similar to the previous case, G° is a subgroup of the

form ha
n
j2 i ¢ K where K = ha(2t+1)b§1i or ha(2t+1) n

2j2 i or ha(2t+1) n
2j2 b2i. If

K = ha(2t+1)b§1i take the set fe°; e
a

n
2j2 ¢°

g and the other cases the set fe°; eb¢°g
are the orthogonal basis for VÃ° . ¤
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Theorem 7. Let G = V8n, n even. Assume m = dim V ¸ 2. Then the di-
mensions of symmetry classes of tensors associated with G and the irreducible
characters of G are:

dimV 4n
Â1 (G) = 1

8n

(
m4n +nm2n+2 +(3 + n)m2n+ 2nmn

+ 2
n¡1X

k=0

m2(2k+1;2n) + 4
n=2¡1X

s=1

m2(2s;2n)

)
;

dimV 4n
Â2 (G) = 1

8n
©
m4n ¡ nm2n+2 +(n¡ 1)m2nª ;

dimV 4n
Â3 (G) = 1

8n

(
m4n +nm2n+2 +(3 + n)m2n¡ 2nmn

+ 4
n=2¡1X

s=1
m2(2s;2n)¡ 2

n¡1X

k=0
m2(2k+1;2n)

)
;

dimV 4n
Â4 (G) = 1

8n
©
m4n ¡ nm2n+2 +(n¡ 1)m2nª ;

dimV 4n
Â5 (G) = 1

8n

(
m4n ¡nm2n+2 +(3¡ n)m2n¡ 2nmn

+ 4
n=2¡1X

s=1
m2(2s;2n) + 2

n¡1X

k=0

m2(2k+1;2n)

)
;

dimV 4n
Â6 (G) = 1

8n
©
m4n + nm2n+2 ¡ (n+ 1)m2n

ª
;

dimV 4n
Â7 (G) = 1

8n

(
m4n ¡nm2n+2 ¡ (n¡ 3)m2n+ 2nmn

+ 4
n=2¡1X

s=1

m2(2s;2n)¡ 2
n¡1X

k=0

m2(2k+1;2n)

)
;

dimV 4n
Â8 (G) = 1

8n
©
m4n + nm2n+2 ¡ (n+ 1)m2n

ª
;
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dimV 4n
Ãj (G) = 1

4n

(
2m4n +2(1 +2(¡1)j)m2n + 8

n=2¡1X

s=1
m2(2s;2n) cos

2¼sj
n

+4
n¡1X

k=0

m2(2k+1;2n) cos
¼j(2k+ 1)

n

)
;

dimV 4n
Ãj¢Â2

(G) = 1
4n
©¡

2m4n ¡ 2m2n
¢ª
;

where 1 · j · n¡ 1.
Proof. Similarly to the proof of the Theorem 3, note that c(1) = 4n;
c(b2) = c(an) = c(anb2) = 2n; c(ar) = 2(r; 2n); c(a4sb2) = 2(4s;2n);
c(a4t+2b2) = 2(4t+ 2; 2n); c(b§1) = n; c(ab) = 2n and c(ab¡1) = 2n+ 2. ¤

Acknowledgement: The authors would like to thank the referee for his
valuable comments which improved the present paper.
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