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Abstract. We discuss the existence of an orthogonal basis consisting of de-
composable vectors for some symmetry classes of tensors associated with cer-
tain subgroups of the full symmetric group. The dimensions of these symmetry
classes of tensors are also computed.
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81. Introduction

Denote by S, the symmetric group on {1,2,... ,n}. Let V be a unitary
complex vector space of dimension m. Suppose n is an integer > 2. Let @™V
be the n-th tensor power of V', and write V2= 1 QUa®- - - Quy, for the tensor
product of the indicated vectors.

For o € Sy, there is a (unique) linear operator P(c~!) on ®"V which
has the effect P(c71)(v1 @12 @ -+ @ wy) = V(1) ® Vp(2) ® +*+ @ Ug(p), for
all vi,v2,...,v, € V. Let G be a subgroup of S, and A be an irreducible
complex character of G. We define T'(G, \) as a linear operator on ®"™V with
the following definition

(1.1) T(G, \) = %ZA(U)P(U).

oeG

With respect to the induced inner product in @V, T'(G, A) is an orthogonal
projection onto its range V{*(G), (see [3], [8]). Let I(G) be the set of all the
irreducible complex characters of GG. It follows from the orthogonality relations
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for characters that {T(G,\)|\ € I(G)} is a set of annihilating idempotents
which sum to the identity.

The image of v® := 11 Q2 ® - -+ ® v, under T(G, \) is denoted by v* :=
vl * V2 % -+ - x U, and it is called a decomposable tensor. V{(G) is called the
symmetry class of tensors associated with G and A, and the dimension of

Vi(G) s

(12) dim V(@) = % 3 Alo)me®

oeG

where ¢(o) is the number of cycles, including cycles of length one, in the
disjoint cycle decomposition of o, (see [7]). With respect to the induced inner
product in ®"V, and the orthogonal relations for characters we have

(1.3) "V = P V(G)
X€I(G)

which is an orthogonal direct sum.

Let I'" be the set of all sequences a = (a1,2,... ,ap), 1 & m, so
« is a mapping from a set of n elements into a set of m elements. Then the
group G acts on I'?, by 0+ a := ao o~ !, 0 € G, which is a composition of
two functions. Let G, := {c € G| 0 - a = a} be the stabilizer of o, and
O(a) = {o -« | 0 € G} be the orbit with representative . In this setting we
have G,.,, = 0G0 1, forallo € G.

Let A be a system of distinct representatives of the orbits of G acting on
Iy, and define

(1.4) K={aecAl 3 A0@) £0}
0€Ga

Let {e1, e, ... ,€,} beanorthonormal basis of V. With respect to the induced
inner product, one easily obtains the condition eé =€y K€y K ey, # 0if
and only if v = (71, %, .- , 1) € A. Moreover we have:

f\l_(c}l)_ Z )\(07-*1)’ if a =7 -0 for some 7 € G,
(15) < eley >= 0€Gs

0, if O(a) # O(B).

For v € A, V,YA = <e§_7\a € G) is called the orbital subspace of V}*(G). In [3],
Freese proved that

(1.6) dim V) = IAG(_:)L; o).
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In particular, if A is a linear character of G, then dim VW/\ =1 for all y € A.
By the definition of Vﬁf‘, it follows that

(1.7) (@) = Hvy
~EA

is an orthogonal direct sum.
Ifa=0-vand =177, then o7~
we have:

1. B = a, therefore using formula (1.5),

(1.8) <ey, e}, >:% > Awm).

TETGyo 1

An orthogonal basis of the form {eé | v € S}, where S is a subset of I'?, is
called an orthogonal basis of decomposable symmetrized tensor for V*(G), in
this case we say that V{'(G) has an O-basis. By (1.7) V{*(G) has an O-basis
if an only if V,f‘ has an O-basis for all v € A. In particular, if \ is a linear
character, since dim V,Y)‘ =1, for all v € A, then V7)‘ has an O-basis which
implies that V}*(G) has an O-basis.

Several papers are devoted in investigation of the existence of an O-basis
for Vi*(G), for example [9]. In [5] a necessary and sufficient condition for the
existence of an O-basis for V*(G) is given, where G is a cyclic or a dihedral
group. Also in [1] a necessary and sufficient condition for the existence of
an O-basis for V*(G) is given, where G is the dicyclic group, i.e. a group
generated by two elements a and b such that a®” = 1, b® = a”, b~ lab=a~!
and denoted by T}, in [6]; and in [2] a necessary and sufficient condition for
the existence of an O-basis for the symmetry classes of tensors associated with
the direct and central product of some permutation groups is given. In this
paper we study the symmetry classes of tensors associated with the groups Us,
and Vg, which are defined by generators and relations in [6]. We investigate
the problem of finding necessary and sufficient conditions for the existence of
an O-basis for the above mentioned groups. We also find the dimensions of
the symmetry classes of tensors associated with them.

§2. The Group Uy,

The group Usp, n > 1, is defined in [6] as a group generated by the elements
a and b such that a®” = b =1, a ba =b71, ie., Usy := (a,b | a®® =b3 =1,
alba = b~1). Tt is obvious that (b) is a normal subgroup of Us,, and Ug, =
(b) : (a) = Z3 : Zopn, which is isomorphism to the semi-direct product of a
cyclic group of order 3 by a cyclic group of order 2n . This group is of order
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6n, and its elements are of the form Us, = {a",a"b,a"? | 0 r < 2n}. It is
not hard to see that Usg, has 3n conjugacy classes which are
{a®"}, {a*"b, a™b?}, {a® 1 a* b, " T10?Y, r=0,1,... ,n—1,
and the character table of Us,, is:

Table 1
The character table of Uy,

|ICus,(0)] || 60 6n  3n  3n 2n 2n
o 1 a’r b a2rp a q?r+1
X; 1 w277 1 W2rd Wl W@t
i, 2 2wk 11—k 0
2ms .
w—exp(2 ), 1 r n—-1,0 45 2n—-1,0 k n-—1L1
n

From the above table we see that Ug, has 2n linear characters x;,0

7 2n-—1, and n non-linear irreducible characters ¥;,0 &k n—1 of de-
gree 2. Now we will embed this group in a suitable symmetric group. If
(12--2n)(2n+1 2n+2) and (2n+1 2n+2 2n+3) are permutations in Sop4-3,
then it can be verified that the mapping a+— (1 2 --- 2n)(2n+1 2n+ 2),
b— 2n+1 2n+2 2n+3), embeds Us, in Sa2p43. Now considering Us), as a
subgroup of Sa,43 we find the dimensions of the symmetry classes of tensors
associated with the group Usy,.

Theorem 1. Let G = Ugn, n > 1 and let V be an m-dimensional inner
product space. Then considering G as a subgroup of San+3 as above, we have
the following formulae for the dimensions of the symmetry classes of tensors
associated with Us,,.

n—1

dim ‘/><2jn+3(G) _ ?:# (m +2 Zw2ljm(21 ,2n) + gmzw(2l+1)jm(2l+1 ,2m)
l—O =0

dim V2n+3( —1 Zwﬂkm?(l n

0 7 2n—1,0 &k n—l,

where (0,n) :=n, and (k,n) denotes the greatest common divisor of k and n,
and w = exp (27”)

Proof. Recall that for a permutation 7 we let ¢(r) denote the number of
cycles in the cycle structure of 7 including cycles of length one. Note that
if 7 is a cycle of length s and (t,s) = d, then 7! has d cycles of length s/d
and therefore c(1t) = d+ ¢(1) — 1 s0 ¢(1) = 2n + 3, c¢(a®") = (2r,2n) + 3,
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c(a®'b) = (2r,2n) +1 and c(a® ") = (2r+1, 2n) +2. Now using the character
table of Us, and the formula (1.2), the theorem holds. O

Now we discuss the existence of an O-basis associated with the group Usy,.
Let V be an m-dimensional unitary space over the complex field, if m = 1,
then dim ®?"+3V = 1, so dim V" *3(Ug,) = 0 or 1, therefore it is trivial that
in the case of dim V' =1 an O-basis for every A\ € I(Usy,) exists. Therefore we
assume that m > 2. As before, if x is a linear character of G, since the orbital
subspaces have dimension 1, then the symmetry class of tensors associated
with G and x has an O-basis. Therefore we will consider non-linear irreducible
complex characters of Us,,, i.e. the characters ¢y, 0 k& n—1.

Note that if n = 1, then Us = S where Q = {3,4,5} and S = (a1 =
(34),b1 = (3 45)). In this case, we can consider ¢ given by ¢(a7bi) :=
1o(a"b’) as a nonlinear irreducible character of Sq. we have

Vi (Us) =V @V & Vi (Sa).

Since Sq is 2-transitive by [4], V;}(Sq) does not have an O-basis, therefore
V3, (Us) does not have an O-basis.

Theorem 2. Let G =Usn, n>1, and Y =, 0 k n—1 and let
m=dimV > 2. Then V$"+3(G) is non zero and does not have an O-basis.

(2n+1)—times

e N
Proof. Take v := (1, 2,2,...,2,1) € 23, Since G is generated by the
permutations a= (12 --- 2n)(2n+12n+2)and b = (2n+12n+2 2n +3)
we can conclude that G, = 1, and by equation (1.6),

. v _ 2 o
dimV}? = T 2=4
Therefore V$”+3(G) is non zero. Let {e1,e2,... ,en} be an orthogonal basis

of V. Now, by the equation (1.8), we have:
2 _
< eﬁv\efv >= 6—nw(7',u .

Since 7, it € Ugn, we have 7 = a/b® and pu = a¥b?, for some 5, k,s and ¢t in
Z, then using the formula (1.8), we obtain:

< eﬁ,ﬁyle;’f’,7 >=0<« j+kis odd and s =t (mod 3).

Therefore from the set {e?,b.v\cr € G} we can choose at most two orthogonal vec-

tor, but dim Vy =4, hence V,;b does not have an O-basis. Whence V$”+3 (Usn)
does have an O-basis. U
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83. The Group Vg,

In this section we define the group Vg, and we will study the existence of
an O-basis for the symmetry classes of tensors associated with this group and
irreducible characters of Vgz,. The dimensions of these symmetrized tensor
spaces are also given.

Let n be a positive integer. The group Vy,, is defined in [6] for n odd. But
one can define it for arbitrary n as follows

Van := {a,b | a®" = b* = 1,aba = b, ab ta =1).

This group has order 8n and in the following we will discuss its conjugacy
classes and irreducible complex characters of Vg,. Since our discuss in the
cases of n even or odd differs, therefore first we will assume that n is odd. To
describe the conjugacy classes and the irreducible characters of Vg, from [6]
we see that Vg, has 2n + 3 conjugacy classes which are

{1}, {0*}, {a® a7 %), r=0,...,n—1
{a2s’ a_25},{a2562, a—2sb2}’ s=1,... ,%
{a’b* : jeven, k=1 or 3}, and

{ajbk :jodd, k=1 or 3}.

The irreducible complex character table of Vg, has four linear characters
X1> X25 X3, X4, and n characters ¢;, 0 j n —1, of degree 2, and a further
n — 1 characters ¢;, 1 j n—1, of degree 2 as follows:

Table 11
The character table of V5,, n odd

[Cvsg,, (0)] 8n  8n an in In 4 4
I 1 b2 a?m T a® a*%b? b ab
X1 1 1 1 1 1 1 1
X2 1 1 1 1 1 -1 -1
X3 1 1 —1 1 1 1 —1
Xa 11 ~1 1 1 11
’fpj 2 ) w2(27‘+1)j _ w72(2r+1)j wisi + w—4si —wisi — y—4sj 0 0

0 5 n-1

1 .(z)j 1 2 2 w(2r+l)j + w—(2r+1)j w2sJ + w—28] w?2sJ +w—23j 0 0
J n—

w:exp(%), 0O r n—-1, 1 s n%l

Now we embed Vg, in a suitable symmetric group. It is easy to see that
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a— (1 2--- 2n)2n+1 2n+2 --- 4n) and

ntl

2

b— (1 2 2n+1 20+2)[[[(2k—1 2(n—k)+4 2(n+k)—1 2(2n—k)+4)

k=2
2k 22n—k)+3 2(n+k) 2(n—k)+3)]
gives an embedding of Vg, in Sy, so we assume that Vg, is a subgroup of
Sin. We need the following observation for the proof of the next theorem.
Suppose that ¢ is an odd positive number and consider the disjoint sets A =
{a1,a2, ... ,a:} and B = {b1,bo,... ,by}. Let x = (a1 a2 -+ a;) and y =
(b1 b2 --- b) be two cycles permuting elements of A and B respectively,
and let z = (a; b1)(ag by)---(a; by) be a permutation on AU B. Then the
permutation zyz is a cycle of length 2¢, and

xyz =(ag by ag -+ a; by ag by -+ by).

In the following theorem we find the dimensions of the symmetry classes of
tensors associated with the group V3.

Theorem 3. Let G = Vg, n odd, and let V be an m-dimensional inner
product space. Then considering G as a subgroup of Sin, we have the following:

n—1
n—1 -

dim V" (Vay) = = Z m2(2k+1.2n) | Z(mz(zmn) + (k20
k=0 k=0

an 2n
i1 M +m

+nm"™ +nm 5

)

n—1
n—1 -
dim V)én(‘/én) — ﬁ [Z m2(2k+1,2n) + Z(m2(2k,2n) + m(?k,2n))

k=0 k=0

4n 2n
n m2n+1 . m +m

—nm" —n 5 ,
n—1 art
dimV;;L(Vén) _ Zlﬁ [Z_m2(2k:+1,2n) + Z(m2(2k,2n) + m(2k,2n))
k=0 k=0
4 2
o — el M
2 b
n—1 TLTfl
dimV;f(Vén) _ % [Z_m2(2k+1,2n) + Z(m2(2k,2n) n m(2k,2n))
k=0 k=0
—nm" +nm> Tt — —m4n +m®
2 b




8 M.R. DARAFSHEH AND N.S. POURSALAVATI

~ n—1

= ]
: n _ 2n(m2n_1 2%,2 %2 4kmyj
dim V4n(Vay) = & | 22200 ;m( ) 2420 1) cos 247 ] |
0 j n-—1 ) B
i n—1 i
"(m?2" 2k+1
dim Vin(Viy) = & | B0 | N 200k 42m) cos( J; )7
i k=0
n—1
e _
+ S (@20 | @62m)) o Qkﬁj)
k=1 n |
1 5 n-—-1

Here, (0,n) :=n, and (k,n) denotes the greatest common divisor k and n.
Proof. As before, we know that if 7 is a cycle of length s, then 7¢ has
(t,s) cycles and therefore ¢(7t) = (t,s) + ¢(7) — 1, where ¢(r) denotes the
number of cycles in the cycle structure of 7 including cycles of length one.
So c(1) = 4n, c(b?) = 2n, c(a?**1) = 2(2k + 1,2n), c(a®*) = 2(2k, 2n) and
¢(b) = n. Since the order of ab is 2 by calculation we obtain the only fixed
points of ab are n +1 and 3n + 1, hence c(ab) = 442 + 2 =2n + 1. Also we
have b* = (1 2n+1)(2 2n+2) - - - (2n 4n) and the permutation a is a product of
two disjoint cycles (12 --- 2n) and (2n+1 2n+2 --- 4n). Since n is odd, by
previous observation, one can show that c¢(a?*b?) = %c(a%) = (2k, 2n). Using
the character table of Vg, and the formula (1.2) the theorem follows. O

Now we discuss the existence of an O-basis associated with the group
Ve, m odd. As before, let V' be an m-dimensional unitary space and m > 2. If
n=1, Vg & Dg, the dihedral group, and by [5] the symmetry classes of tensor
associated V3 has an O-basis.

Theorem 4. Let G = Vg, nodd, n #1, ¢ =¢;, 1 j n—1. Assume

that m =dim V' > 2. Then Kf" (G) is non-zero and does not have an O-basis.
2n—Jtirnes 2n—Jtimes

Proof. Take v :=(1,2,2,2,...,2,1,1,2,2,...,2) = (71,72, -+ ,Yan) € ¥,

by the structure of permutations @ and b in G, ie., a = (1 2 --- 2n)(2n +

12n+2 -+ 4n) and

b= 2 2n+1 2n+2
2n 2n + 3 4n
dn—1 2n+4 2n—1

2n—2 2n+4+5 4n—2

A~ NN
Tt W
— — — —

(n—1 3n+4 3n—1 n+4
( n n+3 3n  3n+3
( n+1 3n+2 3n+1 n+2 )

~— —
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one can conclude that (a) NG, = 1. Since n # 1, therefore (b)) NG, = 1.
Since (a"b)1(1) # 1,2n+1,2n+2 forr =1,2,... ,2n—2and (a~1b) 1 (2n+
2) =2n # 1,2n +1,2n + 2, hence a"b ¢ G, Vr € Z. Since (a"b~1)71(1) #
1,2n+1,2n+2forr =1,2,...,2n—2 and (a6~ "1 (2n+2) = ba(2n+2) =
b(2n+3)=4n #1,2n+1,2n+2, hence a"b~* & G, Vr € Z.
Also (a"¥?)71(1) #1,2n+1,2n+2forr = 1,2,... ,2n—2 and (a~16?)~1(2n +
1) =ta(2n+1) =0?(2n+2) =2 #1,2n+1,2n+2, hence a"b? ¢ G, Vr € Z.
Conclude that G, = 1. Therefore dim Vf = 4. Hence V;;m (@) is non zero.

Now we let {e1, €2,. .., en} be an orthonormal basis of V and calculate the
inner product < eﬂq!efﬁ > for all ji, 7 € Vgn. Let p= d*b® and 7 = a’b’, then
we have 5 1

< eﬁ,”ei’ﬁ >= %gb(nfl) = E¢(akb57ta*7")

therefore from table IT we get < eﬁﬁ\e?q >=0<« |s—t|is odd. Hence we can

choose at most two orthogonal vector from the set {ef.ﬂa € G}, therefore Vf
does not have an O-basis. Hence V(;ln(‘/én) does not have an O-basis. O

Theorem 5. Let G = Vg,, nodd, and letp =¢; 0 j mn—1. Assume
that m = dimV > 2, then Vf”(G) has an O-basis.
Proof. Let H be a subgroup of G, v =1; 0 j mn—1. Since ¢;(1) = 2,
we have < ¢ g |1y >=0,10r 2. If <® |y | 1g >=1, then there is a linear
non identity character x of H such that x = ¢ |y —1. Since x is a linear
character, |x(h)| =1, for all h € H. First we find the general form of the
elements of H using only the condition |x(h)| = [¢(h) — 1| = 1.

Since ¢(b?) —1 = —2—1 = —3, we have b* ¢ H,i.e. HN (b) = 1. As before
(n, j) denotes the greatest common divisor of n and j. Let (n, j) = d, one can
conclude that the elements of H can only be chosen from the set:

{ at™d qRHDMAR2 gty gty | te 7 ).

Because from table IT we see that ¢p(a@tHD7/d) = 4)y(q2tH1n/dp2) — q)(atbF1) =
0 and 9 (a?™/?) = 2. Since Zd)(a) = |H|, therefore half of elements of H
ocH

must be of the form a?/4, where t € Z. Hence the group H is a subgroup of
(@™ or (a4, o(+DpED)  for some k € Z.

Now instead of H we consider G, as a subgroup of G. If < ¢ |q | lg, >=
1, we have dim V,yw = 2 and by the above remark G, (a/?), then { e, e, }
is an O-basis for V. If G, (a®¥, a@*Dp) or G, (a2V/4, a(Z+HD)p~1),
then { ey,eq~ } is an O-basis for VA}D.

If <+ lg | 1g >=2, then H is a subgroup of keryp. Note that cos(%4sj)
= #1 if and only if Z4sj = kn for some k € Z, if and only if Z|4s, therefore
ker ¢p  (a*™/4). In this case dim\@ = 4 and the set {e, €;n/d., €by; €gn/dyy |
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is an O-basis of Vf. The theorem now follows. Note that the order of a1 is
d and ¢(aZ 1) = —p(a=&*D), rc Z. O

Now we assume that n is even. In this case the group G = Vg, has 2n 4+ 6
conjugacy classes which are:

{1}, {0} {a"}, {a"},

{aZr+1 q—Cr+Dp2), r=0,1,...,n—1
{a%, a2}, {a®b?, a 2502}, s=1,...,n/2—1
{a®b(D%0 k& n—1}

{a2kb(fl)k+1 0 k& n-—1},

{a?+1pD 0 K n—1},

{aZ+1pD 0 ko op— 1)

The derived subgroup of G is (a2b2>, hence G has eight linear characters
X1, X2,- -+ , X8 Since H = (b2> is a normal subgroup of G and G/H = Dy, we
obtained n — 1 irreducible characters ¢; 1 j n —1, of degree 2. Since b2
is not in the derived subgroup and (b%)2 = 1, there exists a linear character o
such that y2(b?) = —1. The product of the linear character xo with 1;, gives
further n —1 irreducible characters ;- x2, 1 j n—1, of degree 2. Since
character values in cases n = 0 (mod 4) and n = 2 (mod 4) differ, therefore
we distinguish these cases and give the character table of Vg, in Table III and
Table IV respectively.

The embedding of G in Si,, n =even, is different from the case n =odd.
In this case if we take the following permutations in Sy,
a—~(12---2n)(2n+1 2n+2 --- 4n), and

n/2
b (12 2n+1 2n+2)[[[(2k—1 2(n—k)+4 2(n+k)—1 22n—k)+4)
k=2
2k 22n—k)+3 2(n+k) 2(n—k)+3)](n+1 n+2 3n+1 3n+2),
then we see that we have a monomorphism of G into S4,. So we assume that
G is a subgroup of Su,. Take Q = {{1,2n+1},{2,2n+2},... ,{2n,4n}}. The
group G/H acts on Q by oH -{i,2n+1i} := {o(i), 0(2n+14)} and this action is
faithful. We put i :={i,2n+i},1 i 2n, and consider G/H as a subgroup
of Sop, therefore the cycle structure of aH and bH on €2 are as follows:

aH :=(12---2n)and bH :=(1 2)(3 2n)(4 2n—1)--- (n n+3)(n+1 n+2).

Therefore we consider Dy, := (aH,bH) as a subgroup of Sa,.

Let G = Vs, n even, and H = {1,6%}, v =1, 1 j n—1. Since H
keri the character ¥(oH) = (0) is an irreducible character of G/H = Djyy,.
Let W be a p-dimensional inner product space, p > 2. Lety = (1,1,2,2,...,2
be in 1"12," and note that bH € (Dyyp) special one can conclude that (Dyy ), =
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{1,bH}. Similar to the proof of (Theorem 3.1, [5]), if Wffj (D4p) has an O-
basis, then @j(a ) = 2cos 2’273]“ = 0 for some k in Z. In other words % =
(21 4+ 1)% for some integer I. This implies 2jo divide n, where j = jojor, jor
odd and j2 a power of 2, i.e.,

(3.1) W;p_j(Dzm) has an O—basis = 2n =0 (mod 4j2).

Theorem 6. Let G = Vg, and assume that dim V > 2. Then ®*"V has an
O-basis if and only if n is a power of 2.
Proof. Foryy=4;,1 j n—1and (a1,a9,...,02,, 01,3, ., Bm) € TH,

we may assume that « = (a1,9,... ,a2,) and 8 = (01, B2, ... ,[2n) are ele-
ments of T2* and therefore we will set (o, 8) := (a1, , . .. , 2n, B1, B2, ... , Bon)-

In this setting we have:

_ )
¢y =TOT Z¢ € ()

= %ll% [§¢(U)€?_(a’ﬁ) + ;}w(alﬁ)e?bz-(a,ﬂ)]

_ @%KZG%) [e;?.a Rel;+e2,® ei?ia]

= LS 29(0) [, @ e, + ey 0el]
ceG/H

- 3 V) [ @2y +e2y 0 e,
oeG/H

—\ ,® ®
Y(@)e2  ®e2 .

Hence < ezpa o) | e (8, >=0if and only if < el ] eﬁ >= (0, moreover

¢/(H; | Z (o) = dim Vg.

oc G/H)a

" (G/H)al

Therefore VJ has an O-basis if and only if V(w o) has an O-basis. Note that

b* € G(4,) and the stabilizer of o under G/(b%) is G(a o)/ (0%).
If V4” (G) has an O-basis, then for every y € T20 1/'(47?7) has an O-basis.

Hence by the above remark we obtain an O-basis for Vj’_ . So Vé—n(G /H) has
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an O-basis. If 1 = 1; and j = jojor where jor is the odd part of j and j2 is a
power of 2, then by formula (3.1) we have 2n = 0 (mod 4j2), which holds all
j from 1,2,... ,n— 1. This implies that n is a power of 2.

Conversely, assume that n is a power of 2, and ¢ = v; (or ;- x2 ). Let

v = (a,3) € A, where o, 3 € T2". If a = 3, by the above remark I&,wj has an
O-basis and

el = MRS (o) x2(0)ed )

o€G
= s z;ﬂ’(a)m (©)eg o) + 2¢(052)X2(0b2)€?62-(a,a)
%S o€
= %%%Zw(a)m (0) [eFa ®eFq — €50 ®eds] =0,
ceG

hence V;pj.XQ =0.

If o # 3, then b? € G- which implies that (b) (| Gy = 1. As in the proof of
Theorem 5, < ¥ la, | lg, >=0,1o0r 2.

If <9 lg, | 1lg, >= 2, then G,  kery and by the formula (1.6),

dimVWw = 4. Using the character table of Vg,, Tables III and IV, we obtain

2n
G  (a72). In this case, using formula (1.8) and Tables IIT and IV one can
show that the set {ey, ey, € } is an orthogonal basis for wa (G).

az%"y,ea?%b—lq
Hence V7¢(G) has an O-basis.

If <9 la, |lg, >=1, then ¢ g, —1 is a non-identity linear character of
G, and the norm |¢p(z)—1| =1, i.e. ¥(x) = 0 or 2 for all z € G,. By formula
(1.6), dime = 2. From here on we must deal with the cases ¢ = 1; and
;- x2 separately. First assume that ¥ =1;, 1 j n —1. The elements of
G, are of the form {aQtH)%, a(2t+1)%b2,atbi1 | t € Z} on which the value of
1) is zero, and {a%%, ' | t € Z} on which the value of ¢ is 2. The equality
Z Y(0) = |G,| implies that the values of ¥ on exactly half of elements of
oGy
G, must be zero. If a’b*! € G, then (a’b*')? =1 or b2, and since ¥* & G,
therefore ¢ must be odd. Therefore G, <a%21> - K or <a%bz> - K, where
K = <a%> or (a %b% or (@@ *Vp*) In the case K = (a@TpF1), the set
{ey,e o} and in other cases {ey,ev} is an orthogonal for W Hence Vw

a“’2- Y
has an O-basis.

If v = 1 - xo, similar to the previous case, G, is a subgroup of the
form (a%) - K where K = (aZ+Dptl) or (a (2t+1)%> or (a (@) 575 2 v?). If
K = (a@HDpH) take the set {e-,e A } and the other cases the set {e, €.}

a2

are the orthogonal basis for Vy O
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Theorem 7. Let G = Vg, n even. Assume m = dim V > 2. Then the di-
mensions of symmetry classes of tensors associated with G and the irreducible
characters of G are:

dimV!™(G) = %{m‘m +nm? 2 4 (34 n)m?" + 2nm"

n/2—1
+ 22m2(2k+1 ,2n) +4 Z ’ITL 2(2s, 2n)}

s=1

dimVé"(G) = 81% {m4" —nm?" 2 4+ (n — 1)m 2"}

dimV,(G) = %{m‘m +nm* 2 + (34 n)m*" — 2nm™

n/2—1 n—1
+4 Z m2(25,2n) . 2Zm2(2k+1,2n)},
s=1 k=0

dimVy(G) = & {m* — nm** ™ + (n — 1)m*"},
dimV"(G) = %{m‘m —nm?t2 + (3 — n)m2" — 2nm™

n/2—1 n—1
+4 Z m2(25,2n) + 2Zm2(2k+1,2n)}’

s=1 k=0

dimVI(G) = g {m* + nm? 2 — (n+ 1)ym?"}
dimV;l?”(G) = 8%{1714" —nm?t2 — (n = 3)m2" + 2nm™

n/2—1 n—1
+4 Z m2(28,2n) _ 22m2(2k+1,2n)}7

s=1 k=0

dimVE(G) = g5 {m* + nm?"2 — (n+ 1)m*"}
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n/2—1 .
: 2
dimV;"™(G) = ﬁ{zm‘*" +2(1+2(=1))m™ +8 >~ m?*2™ cos el

s=1 n

n—1 .

+4Zm2(2k+1,2n) cos 7j(2k + 1) }’
n

k=0

dimVlfj’%xz(G) = 4 {(2m* — 2m™) },

wherel j n—1

Proof. Similarly to the proof of the Theorem 3, note that ¢(1) = 4n,

c(b?) = c(a™) = c(a™b?) = 2n, c(a”) =2(r,2n), c(a**b*) = 2(4s,2n),
c(a*2?) = 2(4t + 2, 2n), (b)) =n, c(ab) =2n and c(ab™!) =2n+2. O
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