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Abstract. Combining the results in Ikehata-Matsuyama [5] with the Nakao
inequality ([6], Lemma 2.2), we will derive more precise decay rate like E(t) <
C/(1 + t)? for the total energy E(t) to the mixed problem of the dissipative
linear wave equation in an exterior domain through the multiplier method only.
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8§1. Introduction

We are concerned with the following linear wave equation with linear dissipa-
tive term

(1.1) u(t,z) — Au(t,z) +we(t,z) =0, (t,x) € (0,00) x Q,
(1.2) uw(0,z) = ug(z), u(0,2) =ui(z), =€,
(1.3) ulon =0, t€(0,00),

where Q C RY(N > 2) is an exterior domain with smooth compact boundary
0€). Without loss of generality we may assume 0 ¢ €. In the sequal ||| means
the usual L?(2)-norm. The total energy for the equation (1.1) is defined by

B(t) = %(Hut(t, P+ [1Vult, ) |7).

*The research of the second author was in part supported by Grant-in-Aid for scientific
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268 A. SAEKI AND R. IKEHATA

In this paper we discuss the decay rate of E(t). First of all let us mention
the related works concerning this problem.

By relying on the spectral analysis Dan-Shibata [2] have obtained the local
energy decay estimate depending on the space dimension N:

(14)  Egp(t) = %/QHBRHUt(t’x)F + |Vu(t,z)[PYdz < C(1L+t) N

for the compactly supported initial data [ug,u1] € Hg(Q) x L*(Q), where
Br = {z € R"| |z| < R}. On the other hand, in Kawashima-Nakao-Ono
[6] they have also derived the total energy decay rate faster than (1 + ¢) !
to the Cauchy problem in R" of the equation (1.1) by using the Fourier
transformation. Simply speaking, however, we can not apply their method to
the exterior mixed problem (1.1)-(1.3) because of the existence of the boundary
0. Furthermore, they demand the slightly restricted assumptions on the
initial data: [ug,u1] € L"(RN) x L"(RN)(1 < r < 2). If we take r = 2, they
have merely derived the usual energy decay rate like E(t) < C/(1 + t) (for
another type of equation with strong dissipation, see Ikehata [4]).

The purpose of this paper is to obtain the total energy decay rate faster
than (1 +¢)~! in the framework of L2-space. It is easy to derive the decay
estimate: E(t) < C(1 +¢)~! by the usual energy method. But, it seems
unknown whether the total energy F(t) to the problem (1.1)-(1.3) with the
non-compact support initial data [ug,u1] decays faster than (1 +#)~! or not
without the L"(RY) x L"(RM)(1 < r < 2) assumptions of the initial data.

Now let us state our results. First let us define a function d(z) as follows:

{ |z, N >3,

1.5 d(z) =
(19 @ |z|log(Bz]), N =2,

where B is a constant such that B > 2sup{|z|!; € Q} > 0. Then it is well

known that the following Hardy type inequality holds (cf. Dan-Shibata [2]).

Lemma 1.1. Let u € H}(2). Then there exists a constant C > 0 such that
lu/d()?* < C|[Vull?,

where d(x) is the function defined by (1.5).

Based on this inequality, Tkehata-Matsuyama [5] have just proved the fol-
lowing L2-decay property of a weak solution u(t,z) to the ”exterior” problem
(1.1)-(1.3).

Theorem 1.2. ([5]) Let N > 2 and assume that the initial data
[ug,u1] € HE(Q) x L2(Q) further satisfies ||d(-)(uo + u1)|| < +oo. Then the
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weak solution u(t, z) € C([0,+o00); HE (£2))NC ([0, +00); L2(82)) to the problem
(1.1)-(1.3) satisfies

(L4 B)llut, )1* < Cllluollzp + lurl* + 1d() (uo +u)lI*),

(L+HE(®) < C(lluollz + [lur]l*)

for all t > 0 with some constant C' > 0 independent of t € [0,+00), where
|luo|| 2 denotes the usual H'(2)-norm of uy.

Now by applying the Nakao inequality (see [6], Lemma 2.2), our main result
reads as follows.

Theorem 1.3. Let N > 2 and assume that the initial data [ug,u1] € H{ () x
L2(Y) further satisfies ||d(+)(uo + u1)|| < +o00. Then the associated solution
u(t,z) € C([0,+00); H} (2)) N C'([0,+00); L*(2)) to the problem (1.1)-(1.3)
satisfies

E(t) < C/(1 +1)*

for all t > 0 with some constant C > 0 depending on ||uo||g1,||u1] and
() (uo + ua)ll-

As a corollary, especially, in the case when N = 2, one has the extension of
the results in [2] (see (1.4)) through the quite simple multiplier method.

Corollary 1.4. Let N =2 and let R > 0 be arbitrarily fized such that 02 C
Bpg. Assume that the initial data [ug,u;] € HE(Q) x L2(2) further satisfies

suppug U suppuy C 2N Bp.

Then it holds that
E(t) < C/(1+1t)?

with some constant C > 0 depending on ||ug|| g1, |lurll and ||d(-)(uo + u1)l|, so
that the local energy Er(t) also decays with the same rate.

Moreover, by using Lemma 1.1 (cf. Escobedo-Kavian [3]) replaced by the
following Lemma, 1.5, one can also deal with the Cauchy problem in RV (N >

3):
(1' ) utt(tax) - A’U,(t,ZE) + Ut(t,(II) = 07 (t,(L‘) € (0,00) X RN,
(1.7) u(0,z) = up(x), u(0,2) =ui(z), zeRYN.

Lemma 1.5. Let N > 3 and u € H'(R"). Then there exists a constant
C > 0 such that

|U(*’JU)|2 2
—_— < .
/RN A oy < €IVl
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Our result reads as follows.

Theorem 1.6. Let N > 3 and assume that the initial data [ug,u1] € H'(RY)
x L2(RN) further satisfies ||(1+ |x|)(uo +u1)|| < +o0o. Then the weak solution
u € C([0,+00); HYRN)) N CL([0,+00); L2(RYN)) to the problem (1.6)-(1.7)
satisfies

E(t) < C/(1+1)?

for all t > 0 with some constant C > 0 depending on ||ug|| g1, ||u1|| and ||(1 +
|z)(uo + ua)]]-

In Theorem 1.6, in the framework of L?-space only, one can obtain the energy
decay rate faster than (1 +¢)~! without the so called L? — L7 estimate as in
Kawashima-Nakao-Ono [6]. Note that the assumption ||(1+]|z|)v|| < +o00 does
not necessarily imply v € L' (RY).

Finally, we shall present a mathematical example for which E(t) = O((1 +
t)73) as t — +oo.

Let us consider the following mixed problem in an exterior domain 2 C
RY(N > 2) with smooth compact boundary 9. For simplicity we may
assume 0 ¢ Q.

(1.8) u(t,x) — Au(t,x) + w(t,z) =0, (t,z) € (0,00) x Q,
(1.9) uw(0,2) = p(x), w(0,2) =—p(x), = €Q,
(1.10) u|39 =0, te (0, OO)

Our result reads as follows.

Theorem 1.7. Let N > 2. Assume that ¢ € H(Q) further satisfies ||d(-)¢||<
+00. Then the weak solution u(t,z) € C([0, +o0); H}(Q2))NCL([0, +00); L?(2))
to the problem (1.8)-(1.10) satisfies

E(t) < C/(1+1)3.

Remark 1.8. Although the problem treated in Theorem 1.7 may be very
rare, at least we have an example of the initial data for which the total energy
decays with a rate like (1 +#)73.

§2. Proof of Theorems 1.3 and 1.7.

The following fact concerning the well-posedness of the problem (1.1)-(1.3)
is well-known, and we shall prove Theorems 1.3 and 1.7 based on this Propo-
sition 2.1 below.
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Proposition 2.1. For each [ug,u1] € H} () x L%(Q) there evists a unique
solution u € C([0,+00); HE (2)) N CL([0,+00); L?(Q)) to the problem (1.1)-
(1.3) such that

0+ [ s, I ds = B(0),
d

2 () u(t, ) + [1Vult ) + (uelts ) ult, ) = ()1

Before going to the proof of our main Theorem 1.3, for the reader’s conve-
nience, we shall review the proof of Theorem 1.2 (see [5]).
First we set

w(t,z) = /Otu(s,ac) ds.
Then w € C([0, +00); HE(2)) N C%([0, +00); L2(R)) satisfies
wy(t, ) — Aw(t, z) + wi(t,x) = uy +ug, (t,z) € (0,00) X Q,
w(0,z) =0, wi(0,z) =wup(z), z€Q,
wlaga =0, € (0,00)

and

—||wt( ? + —IIVw( ||2+/||wt )I? ds
2.1) = Slhuoll? +/0 (1 + wg, wi(s, ) ds.
Since

/Ot(u1 + g, wy(s, ) ds = /Ot d%(m + g, w(s, ) ds = (w(t,-), ur + ug),
and
w(t,-)
d(-)

(w(t, "), u1 +ug) < ||d(-)(u1 + uo)

I,

we see from Lemma 1.1 and (2.1) that
1
S llwe(t, I + ||Vw III? +/ [lwe (s, )I* ds

C
< gl + ) o + )l + 2| Vu(s, )P

with some constants C; > 0(i = 1,2). Because of w; = u, this inequality
implies

—IIU( )||+ (1=Cae) [[Vw(t, |I2+/||u ||2d3<_||U0||2+Cl||d()(UO+U1)||2

for ¢ > 0 with some constants C; > 0 (¢ = 1,2). Taking ¢ > 0 so small, we
have arrived at the following estimate.
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Lemma 2.2. Under the same assumptions as in Theorem 1.2, it holds that
—IIU o1k +/ lu(s, )| ds < ||UOII2 +Cilld() (up +w)|I” V¢ > 0.

On the other hand, one has the following estimate which has been known
more or less. For convenience of the readers, we shall sketch its proof briefly
again.

Lemma 2.3. Under the assumptions as in Theorem 1.2, one has

u+wm>W<@+@/m VZds Vi 0,

where C; > 0 (i = 3,4) are some constants.

Proof of Lemma 2.3. Multiplying the both sides of (1.1) by tus(t,z) and
integrating it over 2 and [0, t], one has

t t
| s st uts s = [ slus(s,)|%ds

t d
+/ SIVals, Y Pds + 5 [ s s, ) s =
Integrating by parts, we see that
tod 1 , 1.
| s s, ) s, )ds = e, )y ult ) = 5t )+ 5 ol

and

t 9
[ s bt s = thute, ) — [ s, ) P,
0

Thus, we get

22) tonlt, (e, ) + Gl + [ sFuts, ) Pds + 5 uts, )P

= 2t 7 + [ slhus(o, s + 5 [ s, )P,

On the other hand, it is easy to prove (cf. [5] or [6]) that

@3 I <k (+0B0 <BO+5, [ Be)s<p,
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1 1
where we set = EE(O) + gIO with Iy = 2|lugl|? + (ug,u1) +8E(0). Therefore,

integrating by parts with respect to ¢, one gets

ﬁZZjE@Ms:tEm—:AsE% +/nﬂus SIKE
from which it follows that
2.4 [ shusts s <,
where we have just used the relation E'(t) = —|lu(t,-)||?. Note that

(2.5) = (us(t,-), u(t, ) < flus(t, WM()HS?W@JW+HW@)W
From (2.2) and (2.5) it follows that

St [ slhus, )P+ 3 [ g, ) P
> tunlt, ), u(t, ) + 5 )|

t
> lult, I = )1

Therefore, we see that

t
NP + 5 [ s, Pds + [ sl Pds + 3 e, ) 2 e, I

Since (1 +t)E(t) < 8+ E(0) implies t||u(t,-)||? < 2(8 + E(0)), from (2.4) we
have the desired inequality. 1

Therefore, Theorem 1.2 is an immediate consequence of Lemmas 2.2 and
2.3.

Now, let us prove our main Theorem 1.3. Once we have obtained the L?-
decay property of a solution to the problem (1.1)-(1.3), the result is a direct
consequence of the following Nakao inequality.

Lemma 2.4. ([6], Lemma 2.2.) Let ¢(t) be a nonnegative function on [0, +00),
satisfying
sup §(s)' " < ko (1+ 1) {4(t) — $(1 + 1)}

t<s<t+1
for some ky >0, a > 0,8 < 1. Then ¢(t) has a decay property

p(t) < Co(l+t)" =,

where Cy > 0 denotes a positive constant depending on ¢(0) and other known
constants.
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As in [6], set
DW= B0~ B0+ = [ (s, Pds.

Then one has

Lemma 2.5. Let u(t,x) be a solution to the problem (1.1)-(1.3) as in Propo-
sititon 2.1. Under the hypothesis as in Theorem 1.3, one has

sup  E(s) <C{D(t)> +D(t) sup |lu(s,")l},
t<s<1+t t<s<1+t

with a generous constant C > 0.

Proof. Multiplying the equation (1.1) by u; and integrating it over {2 and
[t, 1+ t], we get

(2.6) /tm lus(s, )| 2ds = E(t) — E(t + 1) = D(t)*.

Applying the mean value theorem to the left-hand side of (2.6), there exist
numbers t; € [t,t + 1] and t5 € [t + 2,¢ + 1] such that

lus(ti, )l < 2D(F) (i =1,2).

Next, multiplying the equation (1.1) by u and integrating it over  and [ty, t2],
one has

[ 1, Pds = [ s, s + (s u(tn,) — Gz, ), )
t1 t1

= [ oot s

< DO + (e e, ) + o, e, )
S s Py P s, P

1

< D(t)*+4D(t) sup u(s, )| + D(t)(t2 — t1)"/* sup |fu(s,-)]|
t<s<l1+t t<s<1+t

(2.7) <D +5D(1) sup_[uls, )] = A).

On the other hand, we also have (see Proposition 2.1)

(2.8) E(t) = E(t2) + /tt2 lus (5, ) |*ds.
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Since tg — t1 > %, we see that
to 1
E(s)ds > (t2 — t1)E(t2) > §E(tz)-
t1
That is,

(2.9) Bt <2 [ B(s)ds.
t1

It follows from (2.7)-(2.9) that
Bt <2 [ ® B(s ds+/ s (5, )||2ds < A(t) + 2D (8)2.

Together with (2.7), we get the desired inequality. 1
Proof of Theorem 1.3. First we see from Lemma 2.5 that

(2.10) sup  E(s)* <2C*{D(t)* + ( sup |lu(s,-))*}D(1)*.
t<s<1+t t<s<1+t

On the other hand, it follows from Theorem 1.2 that
Et)<Ci1+t)7  Jut,)|? < Co(1+8)7 1
Therefore (2.10) together with (2.6) implies that

(2.11) sup E(s)? <20%{E(t) + Co(1 +t) N E(t) — E(t + 1))
t<s<1+t

<20%{C (L +t) L+ Co(1 +t) P HE(@) — E(t+1))
from which it follows that

sup E(s)2 < Ki(1+t)"YE(t) — E(1+1))
t<s<1+t

with some constant K; > 0. By applying Lemma 2.4, one has the desired
inequality. 1

Finally, let us prove Theorem 1.7. By applying Theorem 1.3 to the problem
(1.8)-(1.10), first we get

E(t) = 1(Ilu,s( P+ IVult,)II?) < /(1 +1)?

for the weak solution u € C([0,+o00); HS(2)) N CL([0, +00); L?(2)) to the
problem (1.8)-(1.10). Setting

w(t,z) = /Otu(s,x)ds,
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w(t, z) also becomes the solution to the problem:
(2.12) wi(t, ) — Aw(t, z) + wi(t,z) =0, (t,z) € (0,00) x £,

(2.13) w(0,z) =0, wi(0,z) =¢(z), z€Q,

(2.14) wlan =0, t€(0,00).

Since [|d(-)(0+¢)|| = ||d(-)¢|| < +o0, by applying Theorem 1.3 to this problem
(2.12)-(2.14) again, it follows that

%(““’t(tv WP+ [IVw(t,)IP) < C/(1+ 1),

Because of w; = u, one has the crucial L2-decay rate.

Lemma 2.6. Let N > 2 and ¢ € H(Q) further satisfies ||d(-)¢|| < +oo.
Then, the weak solution u(t,z) € C([0,+00); H}(2)) N C([0, +00); L?(2)) to
the problem (1.8)-(1.10) satisfies

lu(t,)II” < C/(1+0)%,  E(t) < C/(1+1)%

Proof of Theorem 1.7. Based on this lemma 2.6, by repeating the argument
as in the proof of Theorem 1.3, we obtain the desired decay estimate. I
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