p-BASIS OF A REGULAR SEMI-LOCAL RING

Tetsuzo KIMURA and Hiroshi NIITSUMA

(Received April 10, 1995)

Abstract. For a Frobenius-Sandwich of regular semi-local rings $R \subset R' \subset R^p$, R/R' has a p-basis if and only if R has constant rank as R'-module.

AMS 1991 Mathematics Subject Classification. Primary 13H05, 13H99.

Key words and phrases. p-basis, regular semi-local ring.

Let p be always a prime number, S a commutative ring with identity of characteristic p and $S^p = \{x^p \mid x \in S\}$. Let S' be a subring of S. A subset Γ of S is said to be p-independent over S' if, for any subset b_1, \ldots, b_n of Γ , the set of monomials $b_1^{e_1} \cdots b_n^{e_n} (0 \leq e_i < p)$ is linearly independent over $S'[S^p]$. A subset Γ of S is called a p-basis of S over S' (or a p-basis of S/S') if it is p-independent over S' and $S = S^p[S', \Gamma]$. Let L be a finite projective S-module. If $\operatorname{rg}_q(L) = n$ for any prime ideal q of S, we shall say that L has constant rank n (cf. [1, Chap. II, §5, 3, Def. 2], or [3]). For the another terminology used in this paper, we refer to [4].

The main result of this paper, Corollary 1 of Theorem is a generalization of the following;

Let R be a regular local ring of characteristic p > 0 and let $R'(\supset R^p)$ be a regular subring of R such that R is a finite R'-module. Then R has a p-basis over R' (Theorem of [2]).

To prove our main result, we have to prove the following theorem, a slight modification of Theorem 3.7 of [3, Chap. 1, §3];

Theorem. Let R be a semi-local ring of characteristic p and let R' be a subring of R such that R' contains R^p and such that R is a finite R'-module. Then the following conditions are equivalent:

(1) R/R' has a p-basis which consists of n elements.

- (2) For any prime ideal q of R, $R_q/R'_{q'}$ has a p-basis which consists of n elements, where $q' = R' \cap q$.
- (3) For any maximal ideal M of R, $R_M/R'_{M'}$ has a p-basis which consists of n elements, where $M' = R' \cap M$.
- *Proof.* (1) \Longrightarrow (2). For any prime ideal q of R, we put $q' = R' \cap q$. If $\{a_1, \ldots, a_n\}$ is a p-basis of R over R', $\{\phi(a_1), \ldots, \phi(a_n)\}$ is a p-basis of R_q over $R'_{q'}$, where ϕ is a canonical map $R \longrightarrow R_q$. Therefore $R_q/R'_{q'}$ has a p-basis which consists of n elements.
 - $(2) \Longrightarrow (3)$. It is trivial that (2) implies (3).
- $(3)\Longrightarrow (1)$. Let M_1,\ldots,M_r be the maximal ideals of the semi-local ring R, and let $M_i'=M_i\cap R'$ $(1\leq i\leq r)$. Then M_1',\ldots,M_r' are the maximal ideals of R'. By the assumption, $R_{M_i}/R'_{M_i'}$ has a p-basis $\Gamma_i=\{a_{i_1},\ldots,a_{i_n}\}$ contained in R, for $i=1,2,\ldots,r$. By the Chinese Remainder theorem, we have the following isomorphism:

$$R/(M_1' \cap \cdots \cap M_r')R \simeq R/M_1'R \times \cdots \times R/M_r'R.$$

From this isomorphism, there exist elements a_1,\ldots,a_n of R such that $a_j\equiv a_{ij}\pmod{M_i'R}$ for $i=1,\ldots,r,j=1,\ldots,n$. The set of p^n monomials $\Lambda_i:=\{a_{i_1}^{e_{i_1}}\cdots a_{i_n}^{e_{i_n}}:1\leq e_{i_j}\leq p-1\}$ is a free basis in the $R'_{M_i'}$ -module R_{M_i} . Then $\bar{\Lambda}_i:=\{\bar{a}_{i_1}^{e_{i_1}}\cdots \bar{a}_{i_n}^{e_{i_n}}:1\leq e_{i_j}\leq p-1\}$ is also a free basis in the $R'_{M_i'}/M_i'R'_{M_i'}$ -module $R_{M_i}/M_i'R_{M_i}$, where \bar{a}_{i_j} is the class of a_{i_j} modulo $M_i'R_{M_i}$. So $\bar{\Lambda}=\{\bar{a}_{i_1}^{e_{i_1}}\cdots \bar{a}_{i_n}^{e_{i_n}}:1\leq e_i\leq p-1\}$ is a free basis in the same $R'_{M_i'}/M_i'R'_{M_i'}$ -module $R_{M_i}/M_i'R_{M_i}$, where \bar{a}_i is the class of a_i modulo $M_i'R_{M_i}$. Hence $\Lambda=\{a_1^{e_1}\cdots a_n^{e_n}:1\leq e_i\leq p-1\}$ is a free basis in the $R'_{M_i'}$ -module R_{M_i} for $i=1,\ldots,r$. Therefore Λ is a free basis of R'-module R, by [1, Chap. II, §3, 3, Theorem 1]. It follows that the set $\{a_1,\ldots,a_n\}$ is a p-basis of R/R'. \square

Corollary 1. Let R be a regular semi-local ring of characteristic p and let R' be a regular subring of R such that R' contains R^p and such that R is a finite R'-module. Then the following conditions are equivalent:

- (1) R has a p-basis over R'.
- (2) R'-module R has constant rank.

Proof. For any maximal ideal M of R, we put $M' = R' \cap M$. It is sufficient to see that (2) implies (1). Since R_M and $R'_{M'}$ are regular local rings and R_M is a finite $R'_{M'}$ -module, R_M has a p-basis Γ_M over $R'_{M'}$, in virtue of Theorem of [2]. By the assumption, Γ_M consists of n elements free from the choice of M. It follows from the Theorem that R has a p-basis over R'.

Corollary 2. Let R be a regular semi-local ring of characteristic p such that R is a finite R^p -module. If R has constant rank as R^p -module, R has a p-basis over R^p .

References

- [1] N. Bourbaki, Commutative Algebra, Addison-Wesley, Reading, Mass., 1972.
- [2] T. Kimura and H. Niitsuma, On Kunz's conjecture, J. Math. Soc. Japan $\bf 34$ (1982), 371-378.
- [3] T. Y. Lam, Serre's Conjecture, Lecture Notes in Mathematics 635, Springer-Verlag, 1978.
- [4] H. Matsumura, Commutative ring theory, Cambridge University Press, 1986.

Tetsuzo Kimura

Faculty of Engineering, Science University of Tokyo 1-3, Kagurazaka, Shinjuku-ku, Tokyo 162, Japan

Hiroshi Niitsuma

Faculty of Science, Science University of Tokyo 1-3, Kagurazaka, Shinjuku-ku, Tokyo 162, Japan