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Abstract. For a pseudo-convex CR-structure on an odd dimensional mani-
fold, we introduce a family of canonical torsion-free linear connections. Every
connection in this family is uniquely determined by an almost contact structure
associated with the given pseudo convex CR-structure. We study the change
of the connections in this family under the gauge transformations and, accord-
ingly, the corresponding change of the gauge tensor fields. The Bochner type
curvature tensor field we get is invariant under gauge transformations.
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§0. Introduction

In [5] the authors have introduced a Bochner type curvature tensor field for
the pseudo convex CR-structures by using an adapted connection with torsion
considered by N.Tanaka in [6]. Some results concerning this tensor field have
been obtained in [7], [8].

In this paper we use a torsion-free linear connection adapted to an almost
contact structure associated with a given pseudo-convex CR-manifold in order
to get a Bochner type curvature tensor field for the CR-manifold. The fun-
damental tensor field, the 1-form and the vector field defining the associated
almost contact structure are no longer parallel with respect to this connection.
The expression of the obtained curvature tensor field is very much similar to
the C-projective curvature tensor field in the case of the normal almost contact
manifolds [2], the H-projective curvature tensor field in the case of the com-
plex manifolds and the usual Bochner curvature tensor field in the case of the
Kaehler manifolds. At the end we establish the relation between our adapted
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linear connection and the Tanaka connection and get that our Bochner type
curvature tensor field and that obtained in [5] are the same, only their expres-
sions are different. However, it seems to us that our expression is simpler and
we use only the Ricci tensor field in order to get it.

The structure of the paper is as follows. In the first of two sections we
study the integrability problem for a CR-structure, obtaining a tensor field S
of type (1, 2) which is related to the tensor field used in defining the normal-
ity condition for an almost contact manifold and which vanishes in the case
of an integrable CR-structure. Next, we introduce the family of canonical
torsion-free linear connections for a pseudo convex CR-structure and study
their change under gauge transformations. From the curvature tensor fields
of the connections in the obtained family and their changes under the gauge
transformations, we get the Bochner type curvature tensor field.

§1. Preliminaries

Let M be a real hypersurface of a complex manifold (M̃, J) with dimCM̃ =
n + 1. Denote by TM the tangent bundle of M and let H(M) ⊂ TM be the
distribution of the holomorphic tangent vectors on M , i.e.

H(M) = {X ∈ TM |JX ∈ TM};

H(M) can be thought of as the decomplexification of the subbundle in the
complexification TM ⊗ C = T cM of TM denoted also by H(M) and defined
as:

H(M) = {X − iJX | X ∈ TM, JX ∈ TM}

(see [3] for more details). Then rankRH(M) = 2n.
Denote by Γ(H(M)) the C∞(M)−module of sections in H(M) where C∞(M)
is the ring of smooth functions on M . If H(M) is thought of as a complex
vector subbundle in T cM then its sections are the holomorphic vector fields.
For the holomorphic vector fields X − iJX and Y − iJY , X,Y ∈ Γ(H(M)),
the condition [X − iJX, Y − iJY ] ∈ Γ(H(M)) (which is natural if we think
these vector fields as holomorphic vector fields on the complex manifold M̃)
is expressed by the following involutivity conditions for H(M) [X,Y ] − [JX, JY ] ∈ Γ(H(M)),

[JX, JY ] − [X,Y ] − J [JX, Y ] − J [X,JY ] = 0.
(1.1)

So, taking into account the previous formulas, (M,H(M)) defines a CR-
structure on M [4], [5].

Further we shall consider that the CR-structure of M is a pseudo-convex
structure i.e. its Levi form is nondegenerate; then, if we denote by η the
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local 1-form on M which defines, locally, the 1-codimensional distribution
H(M) ⊂ TM

H(M) = {X ∈ TM | η(X) = 0},(1.2)

η is a contact form on M i.e. η ∧ (dη)n 6= 0 on M .

§2. CR-structures and almost contact structures

Given the pseudo-convex CR-structure (M,H(M)) with the contact form
η, let ϕ and ξ be the endomorphism and the vector field on M given, respec-
tively, by the relations

ϕ = J ◦ h, η(ξ) = 1, dη(ξ,X) = 0(2.1)

where X ∈ X− (M) and h = I − η ⊗ ξ is the projection operator on H(M).
It is not difficult to show that the equation

ϕ2 = −I + η ⊗ ξ(2.2)

holds (I still denotes the identity endomorphism), and (ϕ, ξ, η) defines an
(local) almost contact structure on M which is called associated with the
pseudo-convex CR-structures (M,H(M)) [1],[6].

It is a natural question to study the relation between the complex involu-
tivity conditions (1.1) of (M,H(M)) and the normality of the almost contact
structure (ϕ, ξ, η) given by the vanishing of the (1,2)-tensor [1]

N = Nϕ + dη ⊗ ξ,(2.3)

where Nϕ denotes the Nijenhuis tensor of the tensor ϕ.
So, starting from the equations (1.1), for every X,Y ∈ X− (M) we can write

[J(X − η(X)ξ), J(Y − η(Y )ξ)]

−[X − η(X)ξ, Y − η(Y )ξ] = J([J(X − η(X)ξ), Y − η(Y )ξ])

+J([X − η(X)ξ, J(Y − η(Y )ξ)])

(2.4)

and, after a long but straightforward computation, we obtain that the complex
involutivity conditions are equivalently expressed by the equation

S(X,Y ) = 0, X, Y ∈ X− (M)(2.5)

where

S(X,Y ) = Nϕ(X,Y ) + dη(X,Y )ξ + η(X)ϕ(Lξϕ)Y − η(Y )ϕ(Lξϕ)X.(2.6)

Here L denotes the Lie derivative. Taking into account that, on every normal
almost contact manifold Lξϕ = 0, it is clear how the normality of (ϕ, ξ, η)
implies S = 0.
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On the other hand, the equation (2.5) with S defined by (2.6) does not
guarantee the normality of (ϕ, ξ, η) without the further condition Lξϕ = 0.

Moreover it will be useful to know some relations concerning the tensor S
we defined; so, it is not difficult to verify the following equations



η(S(X,Y )) = dη(X,Y ) − dη(ϕX,ϕY ),

S(X, ξ) = 0,

S(ϕX,ϕY ) = −S(X,Y ),

ϕS(X,ϕY ) = S(X,Y ) − {dη(X,Y ) − dη(ϕX,ϕY )}ξ,

(2.7)

and, if we put

ψ =
1
2
Lξϕ,(2.8)

we have too

ψξ = 0, η ◦ ψ = 0, ϕψ + ψϕ = 0

dη(ψX, Y ) + dη(X,ψY ) = 0.
(2.9)

In the following the equality S = 0 will be assumed.

§3. The canonical torsion-free connections of pseudo-convex
CR-structures

Let (ϕ, ξ, η) be an almost contact structure associated with the pseudo-
convex CR-structure (M,H(M)). Looking for a torsion-free connection ∇ on
M related in a natural way to the 1-form η , we obtain the following

Theorem 3.1. If (ϕ, ξ, η) is the almost contact structure associated with
the pseudo-convex CR-structure (M,H(M)), then there exists one and only
one torsion-free connection ∇ such that for every X,Y ∈ X− (M)
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
(∇Xη)(Y ) =

1
2
dη(X,Y ), ∇Xdη = 0, ∇Xξ = 0

(∇Xϕ)Y = 2η(X)ψY − 1
2
dη(X,ϕY )ξ.

(3.1)

Proof. Before starting with the actual proof of the theorem, let us briefly
remark that the first two conditions in (3.1) have been suggested by the well
known formulasdη(X,Y ) = (∇Xη)(Y ) − (∇Y η)(X),

0 = d2η(X,Y, Z) = (∇Xdη)(Y,Z) + (∇Y dη)(Z,X) + (∇Zdη)(X,Y ),
(3.2)

relating the exterior differential with the torsion free linear connection ∇,
while the third condition is simply obtained from the compatibility conditions.
The point was to get the last condition in order to assure the compatibility
conditions and the vanishing of the torsion of ∇ under the condition S = 0.
To get the connection ∇ we shall compute η(∇XY ) and dη(∇XY,Z). Taking
into account the first relation in (3.1), we easily find

2η(∇XY ) = 2X(η(Y )) − dη(X,Y ).(3.3)

On the other hand, from the symmetry of ∇ and (3.1) we also have

X(dη(Y,Z)) = dη(∇XY,Z) + dη(Y,∇XZ)(3.4)

ϕZ(dη(X,ϕY )) = dη(∇XZ, Y ) + 2η(X)dη(ψZ,ϕY )

−dη([X,ϕZ], ϕY ) − 2η(Y )dη(ϕX,ψZ) + dη(ϕX, [Y, ϕZ])

+dη(∇XY,Z) − dη([X,Y ], Z) − Y (dη(X,Z)),

(3.5)

and finally, adding (3.4), (3.5),

2dη(∇XY,Z) = 2η(X)dη(ϕY, ψZ) + 2η(Y )dη(ϕX,ψZ)

+ϕZ(dη(X,ϕY )) + dη([X,ϕZ], ϕY ) + dη([Y, ϕZ], ϕX)

+X(dη(Y,Z)) + Y (dη(X,Z)) + dη([X,Y ], Z).

(3.6)

Recalling that dη is not degenerate on H(M), it is easy to see that (3.3) and
(3.6) completely define ∇XY .

Furthermore, if ∇̃ is another connection satisfying the hypotheses of the
theorem, we obviously have η(∇XY ) = η(∇̃XY ) and dη(∇XY,Z) = dη(∇̃XY,Z)
which imply ∇ = ∇̃. 2
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Remark 3.2. In [6] the author already associated a non symmetric canoni-
cal connection to strongly pseudo-convex CR-structures asking the parallelism
of tensor fields ϕ, ξ, η together with some conditions on its nonvanishing tor-
sion. Such a connection has been used by different authors to study cur-
vature invariants on contact and on strongly pseudo-convex CR-manifolds
(see in particular [7], [8], [5] ). In the same way, we shall call our connec-
tion “torsion-free canonical connection associated to the pseudo-convex CR-
structure (M,H(M)).”

§4. Gauge transformations of almost contact structures

If, starting from the equation (1.2), we consider another 1-form η′ =
efη, f ∈ C∞(M) defining the same distribution H(M),then, examining the re-
lations between the associated almost contact structures (ϕ, ξ, η) and (ϕ′, ξ′, η′)
respectively induced by η and η′, we obtain

Proposition 4.1. The two almost contact structures (ϕ, ξ, η) and (ϕ′, ξ′, η′)
are associated to the same pseudo-convex CR-structure iff for some function
f ∈ C∞(M) they satisfy

η′ = εefη dη′ = εef{dη + df ∧ η}

ϕ′ = ϕ + η ⊗ A ξ′ = εe−f{ξ + ϕA}

ε = ±1

(4.1)

where, assuming ε = 1 (see (4.2)), the vector field A is defined by the condi-
tions

η(A) = 0, dη(ϕA,X) = df(hX)(4.2)

and df(X) = X(f).

Proof. See [4]. 2

Remark 4.2. The case where ε = −1 is similar and the final result, con-
cerning the invariance of the Bochner type tensor field, is the same.

Following [8], from now on, we shall call (4.1) a “gauge transformation of
almost contact structures”.



BOCHNER TYPE CURVATURE TENSOR 7

Proposition 4.3. The complex involutivity of the CR-structure (M,H(M))
is invariant under gauge transformations.

Proof. Let S and S′ be the two (1,2)-tensor fields defined by (2.6), obtained
from the two almost contact structures (ϕ, ξ, η) and (ϕ′, ξ′, η′); we have to
prove that S = 0 iff S′ = 0.

Taking into account the equations (3.1) we get the following relation

S′(X,Y ) = S(X,Y ) − η(X)S(ϕA, Y ) − η(Y )S(X,ϕA)(4.3)

for every X,Y ∈ X− (M)
Obviously S = 0 implies S′ = 0. On the other hand, if we assume S′ = 0,

substituting in the last equation of (3.1) ξ for Y , we have as a consequence
S(X,ϕA) = 0 for every X ∈ X− (M) and, immediately S = 0. 2

Moreover, taking into account (3.1), we obtain

Theorem 4.4. A gauge transformation between two almost contact struc-
tures (ϕ, ξ, η) and (ϕ′, ξ′, η′) induces a transformation between their associated
torsion-free canonical connections ∇ and ∇′ given by

∇′
XY = ∇XY + P (X,Y ) X,Y ∈ X− (M)(4.4)

where P is the symmetric tensor field of type (1,2) with the following expres-
sion

2P (X,Y ) = df(hX)hY + df(hY )hX + dη(X,ϕY )A

−df(ϕX)ϕY − df(ϕY )ϕX + η(X){df(hY )ξ + df(hY )ϕA

−df(A)ϕY − 2df(ϕY )A − 2ϕ∇hY A} + η(Y ){df(hX)ξ

+df(hX)ϕA − df(A)ϕX − 2df(ϕX)A − 2ϕ∇hXA}

+2η(X)η(Y ){df(ξ)ξ + df(ξ)ϕA − [ξ, ϕA] − 3
2
df(A)A + ϕ∇ϕAA}.

(4.5)

Proof. We notice at first that, from equation (4.1)

(∇′
Xη′)(Y ) =

1
2
dη′(X,Y ) X,Y ∈ X− (M)

we find

η′(∇′
XY ) =

1
2
ef{df(X)η(Y ) + df(Y )η(X) − dη(X,Y )},(4.6)

which easily implies

η(P (X,Y )) =
1
2
{df(X)η(Y ) + df(Y )η(X)}.(4.7)
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On the contrary, to obtain the complete expression of P (X,Y ) we need a very
long computation. So, we shall describe here only the principal steps and
formulas we used to prove the theorem.

The first idea is to introduce an auxiliary partial metric tensor g′ on H(M)
given by

g′(X,Y ) = dη′(ϕ′X,Y )(4.8)

finding, by means of the equation

g′(P (X,Y ), Z) + g′(Y, P (X,Z)) = (∇Xg′)(Y,Z) − (∇′
Xg′)(Y,Z)(4.9)

true for every X,Y, Z ∈ X− (M), the formula

2g′(P (X,Y ), Z) = (∇Xg′)(Y,Z) + (∇Y g′)(X,Z) − (∇Zg′)(X,Y )

− (∇′
Xg′)(Y,Z) − (∇′

Y g′)(X,Z) + (∇′
Zg′)(X,Y )

(4.10)

Then, computing the right hand side of (4.10) by using the conditions (3.1),
the relations (4.1) and the formula (4.8) defining g′, we get the expression of
dη(P (X,Y ), Z).

By using the obvious formula

P (X,Y ) = P (hX, hY ) + η(X)P (ξ, hY ) + η(Y )P (hX, ξ) + η(X)η(Y )P (ξ, ξ),(4.11)

with X,Y ∈ X− (M) we see that it is more convenient to compute the expres-
sions of dη(P (X,Y ), Z) corresponding to the cases: (i) both X,Y are sections
in H(M), (ii) X is a section in H(M) and Y = ξ, (iii) X = Y = ξ.

Thus, it follows

P (hX, hY ) =
1
2
{df(hX)hY + df(hY )hX + dη(hX,ϕY )A

−df(ϕX)ϕY − df(ϕY )ϕX}

P (hX, ξ) =
1
2
{df(hX)ξ + df(hX)ϕA − df(A)ϕX}

−df(ϕX)A − ϕ∇hXA

P (ξ, ξ) = df(ξ)ξ + df(ξ)ϕA − [ξ, ϕA] − 3
2
df(A)A + ϕ∇ϕAA.

(4.12)

Before we conclude this section let us indicate some useful formulas for later
use.

First of all, we have the simple formulas df(ϕA) = 0,

(∇Xdf)(Y ) = (∇Y df)(X) X,Y ∈ X− (M)
(4.13)
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easily deduced from the relations df(hX) = dη(ϕA,X) and d2f = 0 respec-
tively; furthemore, we remark the following complicated but useful relation

between ψ =
1
2
Lξϕ and ψ′ =

1
2
Lξ′ϕ

′

2ψ′(X) = e−f{2ψ(X) + (df(ϕX) + η(X)df(A))(ξ + ϕA) + [ϕA,ϕX]

−ϕ[ϕA,X] + df(hX)A + η(X)[ξ + ϕA,A]},

(4.14)

obtained for every X ∈ X− (M) just applying (4.1). 2

§5. Curvature of torsion free canonical connections

Given the almost contact structure (ϕ, ξ, η) associated to the pseudo-
convex CR-structure (M,H(M)) and the torsion free canonical connection
∇ on M , consider the curvature tensor field R of ∇ defined by

RXY Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z X, Y, Z ∈ X− (M).

Since we are mainly interested in getting the curvature changes under gauge
transformations, we need at first to study some general relations and properties
of R, with special attention to the restriction of R on H(M).

Equations (3.1) easily imply for every X,Y, Z,W ∈ X− (M)

dη(RXY Z,W ) = −dη(Z,RXY W )

RXY ξ = 0

η(RXY Z) = 0

ϕRXY Z = RXY ϕZ − 2dη(X,Y )ψZ + η(X)dη(Y, ψZ)ξ

−η(Y )dη(X,ψZ)ξ + 2η(X)(∇Y ψ)Z − 2η(Y )(∇Xψ)Z.

(5.1)

Remark that, if X,Y, Z ∈ Γ(H(M)), the last formula in (5.1) becomes simply

ϕRXY Z = RXY ϕZ − 2dη(X,Y )ψZ.(5.2)

As before, let us introduce now the auxiliary metric g on H(M)

g(X,Y ) = dη(ϕX, Y ) X,Y ∈ Γ(H(M))

to define a “generalized Riemann-Christoffel tensor” R for ∇; given X,Y, Z,W ∈
X− (M) we put

R(W,Z,X, Y ) = g(W,RXY Z) = dη(ϕW,RXY Z);(5.3)
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Obviously R(W,Z,X, Y ) = −R(W,Z, Y,X); furthemore, considering the first
Bianchi identity σ

X,Y,Z
R(X,Y )Z = 0 fulfilled by R, we also have

σ
X,Y,Z

R(W,X, Y, Z) = 0,(5.4)

while, using (5.1) and (5.2), for X,Y, Z ∈ Γ(H(M)) we get

R(Z,Z,X, Y ) = dη(X,Y )dη(Z,ψZ)

which implies for X,Y, Z,W ∈ Γ(H(M)),

R(W,Z,X, Y ) + R(Z,W,X, Y ) = 2dη(X,Y )dη(W,ψZ).(5.5)

As a consequence of these two last equations, we obtain

R(X,Y,W,Z) + R(W,X, Y, Z)

+R(X,Z, Y,W ) = 2dη(Y,Z)dη(X,ψW ),

R(Y,Z,W,X) + R(X,Y,W,Z)

+R(W,Y,Z,X) = 2dη(W,Z)dη(X,ψY ) + 2dη(Z,X)dη(Y, ψW )

(5.6)

which, added each other give

2R(X,Y,W,Z) + R(W,X, Y, Z)

+R(X,Z, Y,W ) + R(Y,Z,W,X)

+R(W,Y,Z,X) = 2{dη(Y,Z)dη(X,ψW )

+dη(W,Z)dη(X,ψY ) + dη(Z,X)dη(Y, ψW )}

(5.7)

Repeating the same computations with the pairs (X,Y ), (W,Z) interchanged,
we get

R(W,Z,X, Y ) −R(X,Y,W,Z) = dη(Y,W )dη(X,ψZ) + dη(W,X)dη(Y, ψZ)

−dη(W,Z)dη(X,ψY ) − dη(Z,X)dη(Y, ψW )

+dη(X,Y )dη(Z,ψW ) − dη(Y,Z)dη(X,ψW ).

(5.8)

On the other hand, formula (5.2) becomes at once for R

R(ϕW,ϕZ,X, Y ) = R(W,Z,X, Y ) − 2dη(X,Y )dη(Z,ψW )(5.9)

which, together with the previous formula (5.9), implies for X,Y, Z,W ∈
Γ(H(M))
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R(ϕW,ϕZ,ϕX,ϕY ) = R(W,Z,X, Y ) − 2dη(X,Y )dη(Z,ψW )

+dη(Z,X)dη(Y, ψW ) −−dη(Y,W )dη(X,ψZ)

+dη(X,W )dη(Y, ψZ) + dη(ϕY,W )dη(ϕX,ψZ)

+dη(X,ϕW )dη(ϕY, ψZ) −−dη(ϕY,Z)dη(ϕX,ψW )

−dη(Z,ϕX)dη(ϕY, ψW ) + dη(Y,Z)dη(X,ψW ).

(5.10)

We are now able to find some conditions fulfilled by the Ricci tensor field
ρ(R) of ∇ as a consequence of the relations proved for R. Then, if we consider
the two times covariant tensor

ρ(R)(Y,Z) = trace(X → RXY Z) X,Y, Z ∈ X− (M),

from (5.8), (5.10) and taking into account (5.1), for X,Y ∈ Γ(H(M)), we
obtain respectively

 ρ(R)(X,Y ) = ρ(R)(Y,X),

ρ(R)(ϕX,ϕY ) = ρ(R)(X,Y ) − 2ndη(ϕX,ψY )
(5.11)

while from (5.2) we derive for X,Y, Z ∈ Γ(H(M))

ρ(R)(ϕY,Z) + 2dη(Y, ψZ) = trace(X → ϕRXY Z).

§6. Changes of the curvature tensor field under gauge
transformations

Let ∇ and ∇′ be two torsion-free canonical connections related by (4.4).
Then the curvature tensor fields R,R′ of ∇,∇′ respectively are related by the
well known formula

R′
XY Z = RXY Z + (∇XP )(Y,Z) − (∇Y P )(X,Z) + P (X,P (Y,Z))

−P (Y, P (X,Z)).

(6.1)

Because of the complicated and very long expression found for P (see formula
(4.5)), from now on we shall do our computations for the sections in the
subbundle H(M). So, if P reduces to the first equation in (4.12), we get, after
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a straightforward computation, for X,Y, Z ∈ Γ(H(M))

R′
XY Z = RXY Z + C(X,Z)Y − C(Y,Z)X + C(Y, ϕZ)ϕX

−C(X,ϕZ)ϕY − {C(X,ϕY ) − C(Y, ϕX)}ϕZ

−dη(X,Y )DZ − 1
2
dη(X,Z)DY +

1
2
dη(Y,Z)DX

+
1
2
dη(X,ϕZ)ϕDY − 1

2
dη(Y, ϕZ)ϕDX,

(6.2)

where, by denoting α =
1
2
df

C(X,Y ) = (∇Xα)(Y ) − α(X)α(Y ) + α(ϕX)α(ϕY ) − 1
4
α(A)dη(X,ϕY ),

DX = ϕ∇XA + α(ϕX)A − α(X)ϕA +
1
2
α(A)ϕX + α(ξ)X.

(6.3)

Besides the symmetry of C (see the second equation in (4.13)), it is not difficult
to check that traceD = 0 and C,D are related by

1
2
dη(DX,Y ) = C(X,Y ) X,Y ∈ Γ(H(M)).(6.4)

From (6.2) we easily get the following relation between the Ricci tensor fields
ρ(R′) and ρ(R) of ∇′ and ∇ respectively:

ρ(R′)(X,Y ) = ρ(R)(X,Y ) − 2(n + 1)C(X,Y ) − 2C(ϕX,ϕY )

−1
2
dη(X,ϕY )trace(ϕD)

(6.5)

from which, contracting with the 2-contravariant tensor field g−1, inverse of
the partial metric g on H(M), we find, after a brief computation,

trace(ϕD) =
1

2(n + 1)
{efτ(R′) − τ(R)},(6.6)

where τ(R) = trace(ρ(R)) is a kind of scalar curvature of R obtained by using
the partial metric g on H(M). Finally we find the following expression for C

C(X,Y ) = − n + 1
2n(n + 2)

{ρ(R′)(X,Y ) − ρ(R)(X,Y )}

+
1

2n(n + 2)
{ρ(R′)(ϕ′X,ϕ′Y ) − ρ(R)(ϕX,ϕY )}

− 1
8(n + 1)(n + 2)

{efτ(R′) − τ(R)}dη(X,ϕY ).

(6.7)

So, we obtain the following
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Theorem 6.1. Let (ϕ, ξ, η) be an almost contact structure on M associ-
ated with the pseudo-convex CR-structure (M,H(M)). Then for X,Y, Z ∈
Γ(H(M)) the tensor field

B(R)XY Z = RXY Z + L(X,Z)Y − L(Y,Z)X + L(Y, ϕZ)ϕX

−L(X,ϕZ)ϕY − {L(X,ϕY ) − L(Y, ϕX)}ϕZ

−1
2
dη(X,Z)KY +

1
2
dη(Y,Z)KX +

1
2
dη(X,ϕZ)ϕKY

−dη(X,Y )KZ − 1
2
dη(Y, ϕZ)ϕKX

(6.8)

where

L(X,Y ) =
n + 1

2n(n + 2)
ρ(R)(X,Y ) − 1

2n(n + 2)
ρ(R)(ϕX,ϕY )

+
1

8(n + 1)(n + 2)
τ(R)dη(X,ϕY )

=
1

2(n + 2)
{ρ(R)(X,Y ) + 2dη(ϕX,ψY )}

+
1

8(n + 1)(n + 2)
τ(R)dη(X,ϕY ),

(6.9)

and
1
2
dη(KX,Y ) = L(X,Y )

is invariant under gauge transformations.

Proof. Substitute (6.7) in (6.2) to find B(R′) = B(R). 2

Note that, doing the necessary computations in local coordinates we get:

trace(B(R)XY ) = 0, trace(X → B(R)XY Z) = 0,

trace(ϕB(R)XY ) = 0, trace(X → ϕB(R)XY Z) = 0.

So, it is natural now to define B(R) as a “Bochner type curvature tensor”
associated with the pseudo-convex CR-structure (M,H(M)).

§7. The relation with the Bochner tensor field obtained by using
the Tanaka connection

Recall that, as we explained in Remark 3.2, different authors already stud-
ied invariant curvature tensors for strongly pseudo-convex CR-structures by
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means of Tanaka connection. Remark that in [5] the authors have obtained a
quite complicated expression for such a tensor field. In this section we shall
show that our tensor field B(R) is the same as that obtained in [5]. However,
its expression is more convenient , being similar to the C−projective curva-
ture tensor field of the normal almost contact manifolds, [2], the H−projective
curvature tensor field for the complex manifolds and the Bochner curvature
tensor field for the Kaehler manifolds.

Denote by ∇T the Tanaka connection of the almost contact structure
(ϕ, ξ, η) associated with the pseudo-convex structure (M,H(M)) and denote
by RT the curvature tensor field of ∇T (see [6],[4],[7]). Then, for every
X,Y, Z,W ∈ X− (M), ∇T and RT are related to our torsion free linear connec-
tion ∇ and our curvature tensor fields R respectively by the formulas

∇T
XY = ∇XY + η(X)ψϕY + 1

2dη(X,Y )ξ(7.1)

RT
XY Z = RXY Z + dη(X,Y )ψϕZ + η(Y )(∇Xψ)ϕZ − η(X)(∇Y ψ)ϕZ

+1
2η(Y )dη(ϕX,ψZ)ξ − 1

2η(X)dη(ϕY, ψZ)ξ.

(7.2)

So, if X,Y, Z ∈ Γ(H(M)), we simply have

RT
XY Z = RXY Z + dη(X,Y )ψϕZ.(7.3)

As a consequence, for the corresponding Ricci tensor fields ρ(RT ), ρ(R) we
obtain by

ρ(RT )(X,Y ) = ρ(R)(X,Y ) − dη(ϕX,ψY ) , X, Y ∈ Γ(H(M)).(7.4)

Now we are able to get the expressions of the tensor fields k, l,m,L,M used
in [5] to express the Bochner curvature tensor field in terms of our torsion free
linear connection ∇, its curvature tensor field R, its Ricci tensor field ρ(R)
and the tensor fields L,K. By using the expressions from [5], we get for
X,Y ∈ Γ(H(M)) the following formulas



k(X,Y ) = ρ(R)(X,Y ) − ndη(ϕX,ψY )

l(X,Y ) = −L(X,Y ) + 1
2dη(ϕX,ψY )

m(X,Y ) = L(X,ϕY ) + 1
2dη(X,ψY )

LX = 1
2 (ϕKX + ψX)

MX = 1
2 (−KX + ϕψX),

(7.5)
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and the expression for the tensor field B0 from [5] is obtained by a straight-
forward computation:

B0,XY Z = RXY Z − L(Y,Z)X + L(X,Z)Y

−2L(X,ϕY )ϕZ + +L(Y, ϕZ)ϕX − L(X,ϕZ)ϕY

−dη(X,Y )KZ + 1
2dη(Y,Z)KX −− 1

2dη(X,Z)KY

+1
2dη(ϕY,Z)ϕKX − 1

2dη(ϕX,Z)ϕKY + 1
2dη(ϕY, ψZ)X

−1
2dη(ϕX,ψZ)Y + 1

2dη(Y, ψZ)ϕX − 1
2dη(X,ψZ)ϕY

−1
2dη(Y, ϕZ)ψX + + 1

2dη(X,ϕZ)ψY − 1
2dη(Y,Z)ϕψX

+1
2dη(X,Z)ϕψY − dη(X,ψY )ϕZ.

(7.6)

Next, the expression of B1 is directly deduced from (7.3)

B1,XY Z = 1
2{R

T
ϕXϕY Z − RT

XY Z}

= 1
2{RϕXϕY Z − RXY Z}

(7.7)

with X,Y ∈ Γ(H(M)). Then by using (5.10) for X,Y, Z ∈ Γ(H(M)) we
obtain

B1,XY Z = 1
2{−dη(ϕY, ψZ)X + dη(ϕX,ψZ)Y − dη(Y, ψZ)ϕX

+dη(X,ψZ)ϕY + dη(Y, ϕZ)ψX − dη(X,ϕZ)ψY

+dη(Y,Z)ϕψX − dη(X,Z)ϕψY

(7.8)

and finally, the equality
B(R) = B0 + B1

easily follows by cancelling the terms in B0+B1 and using the expression (6.9)
of L to get L(X,ϕY ) + L(Y, ϕX).
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Iaşi, România


