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A. Omitted proofs

A.1. Proof of Proposition 1

We begin by giving an informal outline of the idea of the proof.
Consider a partition {Qi}i∈I of S, for some index set I. The measures µ and ν both

induce measures on each set in the partition. We will transport µ to ν by first moving
mass between sets in this partition, and then moving mass within each set in the partition.
If µ(Qi) 6= ν(Qi) for one of the sets Qi, we we need to transport an amount of mass equal
to |µ(Qi)− ν(Qi)| into or out of Qi. In total, we can transport the mass that µ assigns
to each set in the partition to its proper set under ν for a total cost of∑

i∈I
|µ(Qi)− ν(Qi)|diam(S) ≤

∑
i∈I
|µ(Qi)− ν(Qi)| ,

where we use the fact that diam(S) ≤ diam(X) ≤ 1 by assumption.
After the first step of the transport plan, µ has been transported so that each set in

the partition contains the correct total amount of mass. It therefore suffices in the second
step to properly arrange the mass within each set. Moving the mass within Qi cannot
cost more than diam(Qi), so the total cost of arranging the mass within each set is at
most ∑

i∈I
ν(Qi) diam(Qi) ≤ max

i∈I
diam(Qi) .

We have obtained a transport of µ to ν for a total cost of approximately

max
i∈I

diam(Qi) +
∑
i∈I
|µ(Qi)− ν(Qi)| .

This “single scale” bound is generally not tight, but a more refined bound can be
obtained by applying the above argument recursively: instead of näıvely bounding the
cost of moving the mass within Qi by the quantity diam(Qi), we can partition Qi into
smaller sets and estimate the cost of moving the mass within Qi by first moving it
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between the sets of the partition before moving it within each smaller set. Iterating the
argument k∗ times yields the bound.

We now show how to make the above argument precise. Given two measures µ and
ν on X, write C(µ, ν) for the set of couplings between µ and ν; that is, for the set of
measures on X ×X whose projection onto the first and second coordinate correspond to
µ and ν respectively.

Fix a k∗ ≥ 1. We will define two sequences of measure πk and ρk on X for 1 ≤ k ≤ k∗
such that

∑k∗

k=1 πk ≤ µ and
∑k∗

k=1 ρk ≤ ν. Given such a sequence, we set µ1 := µ and
ν1 := ν and write

µk := µ−
k−1∑
`=1

π`

νk := ν −
k−1∑
`=1

ρ`

for k ≤ k∗ + 1.
Note that if γk ∈ C(πk, ρk) for 1 ≤ k ≤ k∗ and γk∗+1 ∈ C(µk∗+1, νk∗+1), then

k∗+1∑
k=1

γk ∈ C

(
k∗∑
k=1

πk + µk∗+1,

k∗∑
k=1

ρk + νk∗+1

)
= C(µ, ν) ,

therefore

W p
p (µ, ν) ≤

k∗∑
k=1

W p
p (πk, ρk) +W p

p (µk∗+1, νk∗+1) .

For k ≥ 1, define

πk :=
∑

Qk
i ∈Q

k

µk(Q
k
i )>0

(
1− νk(Qki )

µk(Qki )

)
+

µk|Qk
i
,

ρk :=
∑

Qk
i ∈Q

k

νk(Q
k
i )>0

(
1− µk(Qki )

νk(Qki )

)
+

νk|Qk
i
.

Note that 0 ≤ πk ≤ µk and 0 ≤ ρk ≤ νk for all k, hence 0 ≤ µk ≤ µ and 0 ≤ νk ≤ ν
for all k as well.

Lemma A.1. If Q ∈ Qk−1, then

µk(Q) = νk(Q)

πk(Q) = ρk(Q) .
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Moreover,

πk(S) = ρk(S) ≤
∑

Qk
i ∈Qk

|µ(Qki )− ν(Qki )| .

Lemma A.2. If α and β are two measures on X such that

α(Q) = β(Q)

for all Q ∈ Qk−1, then
W p
p (α, β) ≤ δ(k−1)pα(S) .

We can now obtain the final bound. By Lemmas A.1 and A.2,

W p
p (πk, ρk) ≤ δ(k−1)p

∑
Qk

i ∈Qk

|µ(Qki )− ν(Qki )|

and
W p
p (µk∗+1, νk∗+1) ≤ δk

∗pµk∗+1(S) ≤ δk
∗pµ(S) ≤ δk

∗p .

The bound follows.

A.2. Proof of Proposition 2

We prove the inequalities in order. If d < dH(µ), then by [1, Proposition 10.3] there exists
a compact set K with positive mass and a r0 > 0 such that

µ(B(x, r)) ≤ rd

for all r ≤ r0 and all x ∈ K. (See also the proof of [2, Corollary 12.16].) Let τ < µ(K)/2. If
S is any set with µ(S) ≥ 1−τ , then µ(S∩K) > µ(K)/2. If Nε(S) = N , then in particular
there exists a covering of S ∩K by at most N balls of radius ε whose centers all lie in
K. Indeed, any set of diameter at most ε which intersects S ∩K is contained in a ball of
radius ε whose center is in K. If ε ≤ r0, then each such ball satisfies µ(B(x, r)) ≤ εd, so

N ≥ ε−dµ(K)/2 .

We therefore have for all τ sufficiently small,

lim inf
ε→0

logNε(µ, τ)

− log ε
≥ d .

Thus d∗(µ) ≥ d. Since d < dH(µ) was arbitrary, we have dH(µ) ≤ d∗(µ), as desired.
That d∗(µ) ≤ d∗p(µ) follows from the simple observation that for all positive α and τ ,

lim inf
ε→0

dε(µ, τ) ≤ lim inf
ε→0

dε(µ, ε
α) .

Finally, if dM (µ) ≥ 2p, then setting s > dM (µ) yields

lim sup
ε→0

dε(µ, ε
sp

s−2p ) ≤ lim sup
ε→0

dε(µ) = dM (µ) < s ,

so d∗p(µ) ≤ s. Since s > dM (µ) was arbitrary, we obtain d∗p(µ) ≤ dM (µ).
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A.3. Proof of Proposition 3

Write Nk := N3−(k+1)(Sk), where we recall that by assumption Sk ⊆ S. For 1 ≤ k ≤ k∗,
let Ck := {Ck1 , . . . } be a finite covering of S by balls of diameter 3−(k+1) such that
Ck1 , . . . , C

k
Nk

covers Sk. Such a covering can always be found by choosing an optimal
covering of Sk and extending this covering to a covering of all of S. Since N3−(k∗+1)(S) <
∞, this requires only a finite number of additional balls.

We begin by constructing Qk∗ . Let Qk∗1 := Ck
∗

1 , and for 1 < ` ≤ |Ck∗ | let

Qk
∗

` := Ck
∗

` \

(
`−1⋃
n=1

Qk
∗

n

)
.

Let Qk∗ := {Qk∗1 , . . . }. Note that diam(Qk∗` ) ≤ diam(Ck
∗

` ) = 3−(k
∗+1) < 3−k

∗
, that Qk∗

forms a partition of S, and that at most Nk∗ elements of Qk∗ intersect Sk∗ .
We now show how to construct Qk from Qk+1 and Ck. Let

Qk1 :=
⋃

Q∈Qk+1

Q∩Ck
1 6=∅

Q ,

and for 1 < ` ≤ |Ck∗ | let

Qk` :=
( ⋃
Q∈Qk+1

Q∩Ck
` 6=∅

Q
)
\
( `−1⋃
n=1

Qkn
)
.

Let Qk := {Qk1 , . . . }.
The sets in Qk clearly form a partition of S, and by construction at most Nk elements

of Qk intersect Sk Moreover, since diam(Ck` ) ≤ 3−(k+1) for all ` and diam(Q) ≤ 3−(k+1)

for all Q ∈ Qk+1, the distance between any two points in Qk` is at most 3 ·3−(k+1) = 3−k,
so each element of Qk has diameter at most 3−k. Finally, since each set in Qk is the
union of sets in Qk+1, the partition Qk+1 refines Qk, as desired.

A.4. Proof of Proposition 7

The only inequality that does not follow from Proposition 2 is the first. By absolute
continuity, for all τ > 0 there exists a σ > 0 such that any set T for which µ(T ) ≥ 1− τ
satisfies Hd(T ) ≥ σ. If Hd(T ) ≥ σ then , then in particular for any covering {B(xi, ε)}
of T by balls of radius ε for ε sufficiently small, we must have

∑
i ε
d ≥ σ/2. Therefore

such a covering contains at least σε−d/2 balls, so

logNε(µ, τ)

− log ε
≥ d+

log(σ/2)

− log ε
,

and taking limits yields that d∗(µ) ≥ d, as desired.
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A.5. Proof of Proposition 11

For all integers k ≥ 0, denote by Nk the smallest positive integer such that Nk is a power
of two and δNk

≤ 2−k. Such an integer always exists because the sequence δn decreases
to 0. We require the following lemma, whose proof is deferred to Section B.

Lemma A.3. The sequence Nk+1/Nk is bounded.

Let m be an integer large enough that Nk+1/Nk ≤ 2m for all n. Let Q be the standard
dyadic partition of [0, 1], with Qk being a partition of [0, 1]m consisting of 2km cubes of
side length 2−k.

Our measure µ will satisfy N2−k(µ) = Nk−2 for all k ≥ 2. We will define a sequence
of measures {µk}∞k=2 iteratively and construct µ as their limit in the weak topology.

Let µ2 be the uniform distribution on [0, 1/4]m. For each positive integer k, the measure
µk will be supported on Nk−2 cubes in Qk, and will be uniform on its support. We will
call a cube Qi ∈ Qk live if µk(Qi) 6= 0.

Fix an ordering x0, . . . , x2m−1 of the 2m elements of {0, 1}m. To produce µk+1 from
µk, divide each live cube of µk into 2m cubes of side length 2−(k+1). The ordering of
{0, 1}m induces an order on these 2m subcubes.

Given a live Q ∈ Qk, define the restriction µk+1|Q by requiring that µk+1(Q) = µk(Q)
and that µk+1|Q be uniform on the union of the first Nk+1/Nk subcubes of Q. Note that
Nk+1/Nk is an integer because both Nk+1 and Nk are powers of 2, and by assumption
Nk+1/Nk ≤ 2m, the total number of subcubes of Q. Since Qk forms a partition of
[0, 1]m, combining the measures µk+1|Q for Q ∈ Qk yields a probability measure µk+1 on
[0, 1]m. By Prokhorov’s theorem, this sequence of measures µk possesses a subsequence
converging in distribution to some measure µ.

The following lemma collects necessary properties of µ. Its proof appears in Section B.

Lemma A.4. If Nk ≤ n < Nk+1, then

N2−k−4(µ, 1/2) > n

Moreover,
2−k−2 ≤ δn ≤ 2−k

and
2−k−4 ≤ n−1/dn ≤ 2−k .

We can now obtain the lower bound. Let ν be any measure supported on at most n
points. If Nk ≤ n < Nk+1, then by Lemma A.4, if X ∼ µ, then

P[ min
y∈supp(ν)

‖X − y‖∞ ≤ 2−k−5] < 1/2 .

Markov’s inequality therefore implies for any coupling (X,Y ) of µ and ν that

E[‖X − Y ‖p∞]1/p ≥ 2−k−5P[ min
y∈supp(ν)

‖X − y‖∞ > 2−k−5]1/p ≥ 2−k−6 ≥ 2−6n−1/dn ,

as claimed.
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A.6. Proof of Proposition 19

Both claims are standard, and details can be found in [3, Theorem 5.10]. The first follows
follows from the assumption that X is a bounded Polish space. For the second, we use
the fact that the supremum is achieved by an f satisfying

f(x) = inf
y∈X

f c(y) +D(x, y)p ∀x ∈ X . (1)

Let f be a function achieving the supremum in (4) and satisfying (1). By adding a
constant to f and f c, we can assume that supx∈X f(x) = 1. Then for all y ∈ X,

f c(y) = sup
x∈X

f(x)−D(x, y)p ≥ 0 ,

and (1) then implies
f(x) ≥ 0 ∀x ∈ X ,

as claimed.

A.7. Proof of Lemma 1

If X ∼ ν is independent of Z ∼ N (0, σ2I), then by considering the coupling (X,X +Z),
we obtain

W p
p (µ, ν) ≤ E[‖Z‖p] ≤ σp(d+ 2p)p/2 ,

where we have applied a standard bound for the moments of the χ2 distribution.
We can couple empirical distributions µ̂n and ν̂n by letting X1, . . . , Xn ∼ ν i.i.d. and

Z1, . . . , Zn ∼ N (0, σ2) i.i.d. and independent of {Xi} and setting

ν̂n :=
1

n

n∑
i=1

δXi

µ̂n :=
1

n

n∑
i=1

δXi+Zi
.

We have for this coupling

W p
p (µ̂n, ν̂n) ≤ 1

n

n∑
i=1

‖Zi‖p ,

and
EW p

p (µ̂n, ν̂n) ≤ σp(d+ 2p)p/2

The triangle for Wp then implies

EW p
p (µ, µ̂n) ≤ E(Wp(µ, ν) +Wp(ν, ν̂n) +Wp(µ̂n, ν̂n))p

≤ 3p−1EW p
p (ν, ν̂n) + 2 · 3p−1σp(d+ 2p)p/2 .
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B. Additional lemmas

B.1. Proof of Lemma A.1

We first show that for any ` < k, if Q ∈ Q`, then

µk(Q) = νk(Q) .

Suppose first that Q ∈ Qk−1. By definition, µk = µk−1 − πk−1. We obtain

µk(Q) = (µk−1 − πk−1)(Q) = min{µk−1(Q), νk−1(Q)} ,

and likewise
νk(Q) = min{µk−1(Q), νk−1(Q)} .

Since Q is a dyadic partition, any Q ∈ Q` for ` < k can be written as a disjoint union
of Q1, . . . , Qm ∈ Qk−1. Hence

µk(Q) =

m∑
i=1

µk(Qi) =

m∑
i=1

νk(Qi) = νk(Q) ,

as claimed.
Note that this also implies for any ` < k, if Q ∈ Q`, then

πk(Q) = µk(Q)− µk+1(Q) = νk(Q)− νk+1(Q) = ρk(Q) .

We now prove the bound on πk(S). By definition,

ρk(S) =
∑

Qk
i ∈Qk

(νk(Qki )− µk(Qki ))+ =
1

2

∑
Qk

i ∈Qk

|νk(Qki )− µk(Qki )| .

We now show that, for any Q ∈ Qk−1, there exist scalars c1, c2 ∈ [0, 1] depending on
Q such that

µk|Q = c1µ|Q
νk|Q = c2ν|Q .

We proceed by induction on k. By symmetry, it suffices to prove the claim for µk and
µ. Since µ1 = µ, it holds for k = 1. Now assume µk−1|Q = c1µ|Q. We have

µk|Q = µk−1|Q − πk−1|Q = min

{
νk−1(Q)

µk−1(Q)
, 1

}
µk−1|Q = c′1µ|Q ,

where c′1 = min
{
νk−1(Q)
µk−1(Q) , 1

}
c1. This proves the claim.

Now, given such a Q ∈ Qk−1 and c1, c2 ∈ [0, 1], we have µk(Q) = νk(Q), so

c1µ(Q) = c2ν(Q) .
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Summing over the elements of Qk contained in Q, we obtain∑
Qk

i⊂Q

|µk(Qki )− νk(Qki )| =
∑
Qk

i⊂Q

|c1µ(Qki )− c2ν(Qki )|

≤
∑
Qk

i⊂Q

c1|µ(Qki )− ν(Qki )|+
∑
Qk

i⊂Q

ν(Qki )|c1 − c2|

=
∑
Qk

i⊂Q

c1|µ(Qki )− ν(Qki )|+ c2|µ(Q)− ν(Q)|

≤
∑
Qk

i⊂Q

(c1 + c2)|µ(Qki )− ν(Qki )|

≤ 2
∑
Qk

i⊂Q

|µ(Qki )− ν(Qki )| .

Finally, summing over all Q ∈ Qk−1 yields

ρk(S) =
1

2

∑
Qk

i ∈Qk

|νk(Qki )− µk(Qki )| ≤
∑

Qk
i ∈Qk

|µ(Qki )− ν(Qki )| ,

as claimed.

B.2. Proof of Lemma A.2

Let

γ :=
∑

Qk−1
i ∈Qk−1

α(Qk−1
i )>0

α⊗ β
α(Qk−1i )

.

Note that γ ∈ C(α, β). Indeed, for any measurable U ⊂ S, since Qk−1 is a partition of
S, we have

γ(S,U) =
∑

Qk−1
i ∈Qk−1

α(Qk−1i )β(Qk−1i ∩ U)

α(Qk−1i )
= β(U) .

On the other hand, by assumption, α(Qk−1i ) = β(Qk−1k ), so

γ(U, S) =
∑

Qk−1
i ∈Qk−1

α(Qk−1i ∩ U)β(Qk−1i )

β(Qk−1k )
= α(U) .
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We have∫
D(x, y)pdγ(x, y) =

∑
Qk−1

i ∈Qk−1

1

α(Qk−1i )

∫
Qk−1

i

D(x, y)pdα(x)dβ(y)

≤
∑

Qk−1
i ∈Qk−1

β(Qk−1i ) diam(Qk−1i )p

≤ α(S)δ(k−1)p .

B.3. Proof of Lemma A.3

By assumption, there exist constants c and α such that 1
cn

α ≤ δn ≤ cnα for all n

sufficiently large. Let M = (2c2)−1/α. Then for n sufficiently large,

δMn ≤ c(Mn)α =
1

2c
nα ≤ 1

2
δn .

This implies that for k sufficiently large, δNk
≤ 2−k implies that δMNk

≤ 2−k−1, so
that Nk+1 ≤ MNk. Hence Nk+1/Nk ≤ M for all k sufficiently large, so Nk+1/Nk is
bounded.

B.4. Proof of Lemma A.4

We first show the key property of µ. For any x ∈ [0, 1]m and r > 0, denote by B(x, r)
the open `∞ ball of radius r around x. We claim that for any x ∈ [0, 1]m and ` ≥ 2,

µ(B(x, 2−`−1)) ≤ 1

N`−2
.

It suffices to show this claim for all µk with k ≥ `, and conclude via the fact that µ is
the weak limit of a subsequence of the measures. The bound in question certainly holds
when B(x, 2−`−1) exactly coincides with one of the cubes in Q`, since each live cube in
Q` has mass exactly 1/N`−2 by construction.

For all other x, note that the restriction of µk to each live cube in Q` is the same
measure. In general, the cube B(x, 2−`−1) intersects 2m cubes cubes in G`, and we can
partition B(x, 2−`−1) into 2m pieces which, via translation, exactly cover a cube of Q`.
Each piece has mass at most the mass of the corresponding piece in a live cube, hence
the measure is at most the measure of a live cube.

This property immediately implies a bound on the number of balls needed to cover any
set S such that µ(S) ≥ 1/2. Since each ball of diameter 2−` has mass at most 1/N`−2,
to cover a set of mass 1/2 requires at least N`−2/2 balls. Therefore for all ` ≥ 2,

N2−`(µ, 1/2) ≥ N`−2/2 . (2)
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For all k ≥ 0, because Nk+1 is a power of 2 greater than one, Nk+1/2 is also a power
of 2. The definition of Nk+1 therefore implies that δNk+1/2 > 2−k−1. Because logn

− log δn
is

nondecreasing and at least 1 for all n ≥ 2, we have for all k ≥ 0

logNk+1

− log δNk+1

≥ log(Nk+1/2)

− log δNk+1/2
≥ logNk+1

− log(δNk+1/2/2)

and therefore δNk+1
≥ 1

2δNk+1/2 > 2−k−2, so that Nk+2 > Nk+1. Since Nk+2 is also a
power of 2, in particular Nk+2 ≥ 2Nk+1. This implies Nk+2/2 > n.

Choosing ` = k + 4 in (2) yields

N2−k−4(µ, 1/2) > n .

This proves the first claim.
We have just noted that δNk+1

> 2−k−2, and the definition of Nk implies δNk
≤ 2−k.

If Nk ≤ n < Nk+1, then the fact that δn is nonincreasing in n yields

2−k−2 < δNk+1
≤ δn ≤ δNk

≤ 2−k .

This proves the second claim.
To prove the third claim, we first note that the definition of dn implies that

n−1/dn

is nonincreasing as n increases. We can therefore prove an upper bound on n−1/dn by

proving an upper bound on N
−1/dNk

k .
Recall that

dNk
= inf
ε>0

max

{
d≥ε(µ, ε

p),
logNk
− log ε

}
.

Choosing ε = 2−(k+2) yields

dNk
≤ max{d≥2−(k+2)(µ),

log2Nk
k + 2

} .

To bound the first term, note that if ε′ ∈ [2−`, 2−`+1), then Nε′(µ) ≤ N2−`(µ) = N`−2.

We also have ε′ < 2−`+1 < δN`−2
. Therefore d′ε = logNε′ (µ)

− log ε′ ≤
logN`−2

δN`−2
.

The assumption that logn
− log δn

is nonincreasing therefore implies

d≥2−k+2(µ) ≤ max
2≤`≤k+2

logN`−2
− log δN`−2

≤ logNk
− log δNk

≤ log2Nk
k

.

We obtain

dNk
≤ log2Nk

k
,
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so n−1/dn ≤ N−1/dNk

k ≤ 2−k.
To obtain the lower bound, note that if ε ≤ 2−(k+4), then

d≥ε(µ, ε
p) ≥ d2−(k+4)(µ, 1/2) >

log2 n

k + 4
,

where we have used the fact proved above that N2−(k+4)(µ, 1/2) > n. If ε > 2−(k+4), then

log n

− log ε
>

log2 n

k + 4
.

Combining these bounds yields

dn = inf
ε>0

max

{
d≥ε(µ, ε

p),
log n

− log ε

}
>

log2 n

k + 4
,

so
n−1/dn > 2−(k+4) ,

as claimed.
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