Supplement to "Sharp asymptotic and finite-sample rates of convergence of empirical measures in Wasserstein distance"

JONATHAN WEED and FRANCIS BACH

A. Omitted proofs

A.1. Proof of Proposition 1

We begin by giving an informal outline of the idea of the proof.
Consider a partition $\left\{Q_{i}\right\}_{i \in \mathcal{I}}$ of S, for some index set \mathcal{I}. The measures μ and ν both induce measures on each set in the partition. We will transport μ to ν by first moving mass between sets in this partition, and then moving mass within each set in the partition. If $\mu\left(Q_{i}\right) \neq \nu\left(Q_{i}\right)$ for one of the sets Q_{i}, we we need to transport an amount of mass equal to $\left|\mu\left(Q_{i}\right)-\nu\left(Q_{i}\right)\right|$ into or out of Q_{i}. In total, we can transport the mass that μ assigns to each set in the partition to its proper set under ν for a total cost of

$$
\sum_{i \in \mathcal{I}}\left|\mu\left(Q_{i}\right)-\nu\left(Q_{i}\right)\right| \operatorname{diam}(S) \leq \sum_{i \in \mathcal{I}}\left|\mu\left(Q_{i}\right)-\nu\left(Q_{i}\right)\right|
$$

where we use the fact that $\operatorname{diam}(S) \leq \operatorname{diam}(X) \leq 1$ by assumption.
After the first step of the transport plan, μ has been transported so that each set in the partition contains the correct total amount of mass. It therefore suffices in the second step to properly arrange the mass within each set. Moving the mass within Q_{i} cannot cost more than diam $\left(Q_{i}\right)$, so the total cost of arranging the mass within each set is at most

$$
\sum_{i \in \mathcal{I}} \nu\left(Q_{i}\right) \operatorname{diam}\left(Q_{i}\right) \leq \max _{i \in \mathcal{I}} \operatorname{diam}\left(Q_{i}\right) .
$$

We have obtained a transport of μ to ν for a total cost of approximately

$$
\max _{i \in \mathcal{I}} \operatorname{diam}\left(Q_{i}\right)+\sum_{i \in \mathcal{I}}\left|\mu\left(Q_{i}\right)-\nu\left(Q_{i}\right)\right|
$$

This "single scale" bound is generally not tight, but a more refined bound can be obtained by applying the above argument recursively: instead of naïvely bounding the cost of moving the mass within Q_{i} by the quantity $\operatorname{diam}\left(Q_{i}\right)$, we can partition Q_{i} into smaller sets and estimate the cost of moving the mass within Q_{i} by first moving it
between the sets of the partition before moving it within each smaller set. Iterating the argument k^{*} times yields the bound.

We now show how to make the above argument precise. Given two measures μ and ν on X, write $\mathcal{C}(\mu, \nu)$ for the set of couplings between μ and ν; that is, for the set of measures on $X \times X$ whose projection onto the first and second coordinate correspond to μ and ν respectively.

Fix a $k^{*} \geq 1$. We will define two sequences of measure π_{k} and ρ_{k} on X for $1 \leq k \leq k^{*}$ such that $\sum_{k=1}^{k^{*}} \pi_{k} \leq \mu$ and $\sum_{k=1}^{k^{*}} \rho_{k} \leq \nu$. Given such a sequence, we set $\mu_{1}:=\mu$ and $\nu_{1}:=\nu$ and write

$$
\begin{aligned}
\mu_{k} & :=\mu-\sum_{\ell=1}^{k-1} \pi_{\ell} \\
\nu_{k} & :=\nu-\sum_{\ell=1}^{k-1} \rho_{\ell}
\end{aligned}
$$

for $k \leq k^{*}+1$.
Note that if $\gamma_{k} \in \mathcal{C}\left(\pi_{k}, \rho_{k}\right)$ for $1 \leq k \leq k^{*}$ and $\gamma_{k^{*}+1} \in \mathcal{C}\left(\mu_{k^{*}+1}, \nu_{k^{*}+1}\right)$, then

$$
\sum_{k=1}^{k^{*}+1} \gamma_{k} \in \mathcal{C}\left(\sum_{k=1}^{k^{*}} \pi_{k}+\mu_{k^{*}+1}, \sum_{k=1}^{k^{*}} \rho_{k}+\nu_{k^{*}+1}\right)=\mathcal{C}(\mu, \nu)
$$

therefore

$$
W_{p}^{p}(\mu, \nu) \leq \sum_{k=1}^{k^{*}} W_{p}^{p}\left(\pi_{k}, \rho_{k}\right)+W_{p}^{p}\left(\mu_{k^{*}+1}, \nu_{k^{*}+1}\right) .
$$

For $k \geq 1$, define

$$
\begin{aligned}
& \pi_{k}:=\left.\sum_{\substack{Q_{i}^{k} \in \mathcal{Q}^{k} \\
\mu_{k}\left(Q_{i}^{k}\right)>0}}\left(1-\frac{\nu_{k}\left(Q_{i}^{k}\right)}{\mu_{k}\left(Q_{i}^{k}\right)}\right)_{+} \mu_{k}\right|_{Q_{i}^{k}}, \\
& \rho_{k}:=\left.\sum_{\substack{Q_{i}^{k} \in \mathcal{Q}^{k} \\
\nu_{k}\left(Q_{i}^{k}\right)>0}}\left(1-\frac{\mu_{k}\left(Q_{i}^{k}\right)}{\nu_{k}\left(Q_{i}^{k}\right)}\right)_{+} \nu_{k}\right|_{Q_{i}^{k}} \\
&
\end{aligned}
$$

Note that $0 \leq \pi_{k} \leq \mu_{k}$ and $0 \leq \rho_{k} \leq \nu_{k}$ for all k, hence $0 \leq \mu_{k} \leq \mu$ and $0 \leq \nu_{k} \leq \nu$ for all k as well.

Lemma A.1. If $Q \in \mathcal{Q}^{k-1}$, then

$$
\begin{aligned}
& \mu_{k}(Q)=\nu_{k}(Q) \\
& \pi_{k}(Q)=\rho_{k}(Q)
\end{aligned}
$$

Moreover,

$$
\pi_{k}(S)=\rho_{k}(S) \leq \sum_{Q_{i}^{k} \in \mathcal{Q}^{k}}\left|\mu\left(Q_{i}^{k}\right)-\nu\left(Q_{i}^{k}\right)\right|
$$

Lemma A.2. If α and β are two measures on X such that

$$
\alpha(Q)=\beta(Q)
$$

for all $Q \in \mathcal{Q}^{k-1}$, then

$$
W_{p}^{p}(\alpha, \beta) \leq \delta^{(k-1) p} \alpha(S)
$$

We can now obtain the final bound. By Lemmas A. 1 and A.2,

$$
W_{p}^{p}\left(\pi_{k}, \rho_{k}\right) \leq \delta^{(k-1) p} \sum_{Q_{i}^{k} \in \mathcal{Q}^{k}}\left|\mu\left(Q_{i}^{k}\right)-\nu\left(Q_{i}^{k}\right)\right|
$$

and

$$
W_{p}^{p}\left(\mu_{k^{*}+1}, \nu_{k^{*}+1}\right) \leq \delta^{k^{*} p} \mu_{k^{*}+1}(S) \leq \delta^{k^{*} p} \mu(S) \leq \delta^{k^{*} p}
$$

The bound follows.

A.2. Proof of Proposition 2

We prove the inequalities in order. If $d<d_{H}(\mu)$, then by [1, Proposition 10.3] there exists a compact set K with positive mass and a $r_{0}>0$ such that

$$
\mu(B(x, r)) \leq r^{d}
$$

for all $r \leq r_{0}$ and all $x \in K$. (See also the proof of [2, Corollary 12.16].) Let $\tau<\mu(K) / 2$. If S is any set with $\mu(S) \geq 1-\tau$, then $\mu(S \cap K)>\mu(K) / 2$. If $\mathcal{N}_{\varepsilon}(S)=N$, then in particular there exists a covering of $S \cap K$ by at most N balls of radius ε whose centers all lie in K. Indeed, any set of diameter at most ε which intersects $S \cap K$ is contained in a ball of radius ε whose center is in K. If $\varepsilon \leq r_{0}$, then each such ball satisfies $\mu(B(x, r)) \leq \varepsilon^{d}$, so

$$
N \geq \varepsilon^{-d} \mu(K) / 2
$$

We therefore have for all τ sufficiently small,

$$
\liminf _{\varepsilon \rightarrow 0} \frac{\log \mathcal{N}_{\varepsilon}(\mu, \tau)}{-\log \varepsilon} \geq d
$$

Thus $d_{*}(\mu) \geq d$. Since $d<d_{H}(\mu)$ was arbitrary, we have $d_{H}(\mu) \leq d_{*}(\mu)$, as desired.
That $d_{*}(\mu) \leq d_{p}^{*}(\mu)$ follows from the simple observation that for all positive α and τ,

$$
\liminf _{\varepsilon \rightarrow 0} d_{\varepsilon}(\mu, \tau) \leq \liminf _{\varepsilon \rightarrow 0} d_{\varepsilon}\left(\mu, \varepsilon^{\alpha}\right)
$$

Finally, if $d_{M}(\mu) \geq 2 p$, then setting $s>d_{M}(\mu)$ yields

$$
\limsup _{\varepsilon \rightarrow 0} d_{\varepsilon}\left(\mu, \varepsilon^{\frac{s p}{s-2 p}}\right) \leq \limsup _{\varepsilon \rightarrow 0} d_{\varepsilon}(\mu)=d_{M}(\mu)<s
$$

so $d_{p}^{*}(\mu) \leq s$. Since $s>d_{M}(\mu)$ was arbitrary, we obtain $d_{p}^{*}(\mu) \leq d_{M}(\mu)$.

A.3. Proof of Proposition 3

Write $N_{k}:=\mathcal{N}_{3-(k+1)}\left(S_{k}\right)$, where we recall that by assumption $S_{k} \subseteq S$. For $1 \leq k \leq k^{*}$, let $C^{k}:=\left\{C_{1}^{k}, \ldots\right\}$ be a finite covering of S by balls of diameter $3^{-(k+1)}$ such that $C_{1}^{k}, \ldots, C_{N_{k}}^{k}$ covers S_{k}. Such a covering can always be found by choosing an optimal covering of S_{k} and extending this covering to a covering of all of S. Since $\mathcal{N}_{3^{-\left(k^{*}+1\right)}}(S)<$ ∞, this requires only a finite number of additional balls.

We begin by constructing $\mathcal{Q}^{k^{*}}$. Let $\mathcal{Q}_{1}^{k^{*}}:=C_{1}^{k^{*}}$, and for $1<\ell \leq\left|C^{k^{*}}\right|$ let

$$
\mathcal{Q}_{\ell}^{k^{*}}:=C_{\ell}^{k^{*}} \backslash\left(\bigcup_{n=1}^{\ell-1} \mathcal{Q}_{n}^{k^{*}}\right)
$$

Let $\mathcal{Q}^{k^{*}}:=\left\{\mathcal{Q}_{1}^{k^{*}}, \ldots\right\}$. Note that $\operatorname{diam}\left(\mathcal{Q}_{\ell}^{k^{*}}\right) \leq \operatorname{diam}\left(C_{\ell}^{k^{*}}\right)=3^{-\left(k^{*}+1\right)}<3^{-k^{*}}$, that $\mathcal{Q}^{k^{*}}$ forms a partition of S, and that at most $N_{k^{*}}$ elements of $\mathcal{Q}^{k^{*}}$ intersect $S_{k^{*}}$.

We now show how to construct \mathcal{Q}^{k} from \mathcal{Q}^{k+1} and C^{k}. Let

$$
\mathcal{Q}_{1}^{k}:=\bigcup_{\substack{Q \in \mathcal{Q}^{k+1} \\ Q \cap C_{1}^{k} \neq \emptyset}} Q
$$

and for $1<\ell \leq\left|C^{k^{*}}\right|$ let

$$
\mathcal{Q}_{\ell}^{k}:=\left(\bigcup_{\substack{Q \in \mathcal{Q}^{k+1} \\ Q \cap C_{\ell}^{k} \neq \emptyset}} Q\right) \backslash\left(\bigcup_{n=1}^{\ell-1} \mathcal{Q}_{n}^{k}\right)
$$

Let $\mathcal{Q}^{k}:=\left\{\mathcal{Q}_{1}^{k}, \ldots\right\}$.
The sets in \mathcal{Q}^{k} clearly form a partition of S, and by construction at most N_{k} elements of \mathcal{Q}^{k} intersect S_{k} Moreover, since $\operatorname{diam}\left(C_{\ell}^{k}\right) \leq 3^{-(k+1)}$ for all ℓ and $\operatorname{diam}(Q) \leq 3^{-(k+1)}$ for all $Q \in \mathcal{Q}^{k+1}$, the distance between any two points in \mathcal{Q}_{ℓ}^{k} is at most $3 \cdot 3^{-(k+1)}=3^{-k}$, so each element of \mathcal{Q}^{k} has diameter at most 3^{-k}. Finally, since each set in \mathcal{Q}^{k} is the union of sets in \mathcal{Q}^{k+1}, the partition \mathcal{Q}^{k+1} refines \mathcal{Q}^{k}, as desired.

A.4. Proof of Proposition 7

The only inequality that does not follow from Proposition 2 is the first. By absolute continuity, for all $\tau>0$ there exists a $\sigma>0$ such that any set T for which $\mu(T) \geq 1-\tau$ satisfies $\mathcal{H}^{d}(T) \geq \sigma$. If $\mathcal{H}^{d}(T) \geq \sigma$ then , then in particular for any covering $\left\{B\left(x_{i}, \varepsilon\right)\right\}$ of T by balls of radius ε for ε sufficiently small, we must have $\sum_{i} \varepsilon^{d} \geq \sigma / 2$. Therefore such a covering contains at least $\sigma \varepsilon^{-d} / 2$ balls, so

$$
\frac{\log \mathcal{N}_{\varepsilon}(\mu, \tau)}{-\log \varepsilon} \geq d+\frac{\log (\sigma / 2)}{-\log \varepsilon}
$$

and taking limits yields that $d_{*}(\mu) \geq d$, as desired.

A.5. Proof of Proposition 11

For all integers $k \geq 0$, denote by N_{k} the smallest positive integer such that N_{k} is a power of two and $\delta_{N_{k}} \leq 2^{-k}$. Such an integer always exists because the sequence δ_{n} decreases to 0 . We require the following lemma, whose proof is deferred to Section B.

Lemma A.3. The sequence N_{k+1} / N_{k} is bounded.
Let m be an integer large enough that $N_{k+1} / N_{k} \leq 2^{m}$ for all n. Let \mathcal{Q} be the standard dyadic partition of $[0,1]$, with \mathcal{Q}^{k} being a partition of $[0,1]^{m}$ consisting of $2^{k m}$ cubes of side length 2^{-k}.

Our measure μ will satisfy $\mathcal{N}_{2^{-k}}(\mu)=N_{k-2}$ for all $k \geq 2$. We will define a sequence of measures $\left\{\mu_{k}\right\}_{k=2}^{\infty}$ iteratively and construct μ as their limit in the weak topology.

Let μ_{2} be the uniform distribution on $[0,1 / 4]^{m}$. For each positive integer k, the measure μ_{k} will be supported on N_{k-2} cubes in \mathcal{Q}^{k}, and will be uniform on its support. We will call a cube $Q_{i} \in \mathcal{Q}^{k}$ live if $\mu_{k}\left(Q_{i}\right) \neq 0$.

Fix an ordering $x_{0}, \ldots, x_{2^{m}-1}$ of the 2^{m} elements of $\{0,1\}^{m}$. To produce μ_{k+1} from μ_{k}, divide each live cube of μ_{k} into 2^{m} cubes of side length $2^{-(k+1)}$. The ordering of $\{0,1\}^{m}$ induces an order on these 2^{m} subcubes.

Given a live $Q \in \mathcal{Q}^{k}$, define the restriction $\left.\mu_{k+1}\right|_{Q}$ by requiring that $\mu_{k+1}(Q)=\mu_{k}(Q)$ and that $\left.\mu_{k+1}\right|_{Q}$ be uniform on the union of the first N_{k+1} / N_{k} subcubes of Q. Note that N_{k+1} / N_{k} is an integer because both N_{k+1} and N_{k} are powers of 2 , and by assumption $N_{k+1} / N_{k} \leq 2^{m}$, the total number of subcubes of Q. Since \mathcal{Q}^{k} forms a partition of $[0,1]^{m}$, combining the measures $\left.\mu_{k+1}\right|_{Q}$ for $Q \in \mathcal{Q}^{k}$ yields a probability measure μ_{k+1} on $[0,1]^{m}$. By Prokhorov's theorem, this sequence of measures μ_{k} possesses a subsequence converging in distribution to some measure μ.

The following lemma collects necessary properties of μ. Its proof appears in Section B.
Lemma A.4. If $N_{k} \leq n<N_{k+1}$, then

$$
\mathcal{N}_{2^{-k-4}}(\mu, 1 / 2)>n
$$

Moreover,

$$
2^{-k-2} \leq \delta_{n} \leq 2^{-k}
$$

and

$$
2^{-k-4} \leq n^{-1 / d_{n}} \leq 2^{-k}
$$

We can now obtain the lower bound. Let ν be any measure supported on at most n points. If $N_{k} \leq n<N_{k+1}$, then by Lemma A.4, if $X \sim \mu$, then

$$
\mathbb{P}\left[\min _{y \in \operatorname{supp}(\nu)}\|X-y\|_{\infty} \leq 2^{-k-5}\right]<1 / 2
$$

Markov's inequality therefore implies for any coupling (X, Y) of μ and ν that

$$
\mathbb{E}\left[\|X-Y\|_{\infty}^{p}\right]^{1 / p} \geq 2^{-k-5} \mathbb{P}\left[\min _{y \in \operatorname{supp}(\nu)}\|X-y\|_{\infty}>2^{-k-5}\right]^{1 / p} \geq 2^{-k-6} \geq 2^{-6} n^{-1 / d_{n}}
$$

as claimed.

A.6. Proof of Proposition 19

Both claims are standard, and details can be found in [3, Theorem 5.10]. The first follows follows from the assumption that X is a bounded Polish space. For the second, we use the fact that the supremum is achieved by an f satisfying

$$
\begin{equation*}
f(x)=\inf _{y \in X} f^{c}(y)+D(x, y)^{p} \quad \forall x \in X \tag{1}
\end{equation*}
$$

Let f be a function achieving the supremum in (4) and satisfying (1). By adding a constant to f and f^{c}, we can assume that $\sup _{x \in X} f(x)=1$. Then for all $y \in X$,

$$
f^{c}(y)=\sup _{x \in X} f(x)-D(x, y)^{p} \geq 0
$$

and (1) then implies

$$
f(x) \geq 0 \quad \forall x \in X
$$

as claimed.

A.7. Proof of Lemma 1

If $X \sim \nu$ is independent of $Z \sim \mathcal{N}\left(0, \sigma^{2} I\right)$, then by considering the coupling $(X, X+Z)$, we obtain

$$
W_{p}^{p}(\mu, \nu) \leq \mathbb{E}\left[\|Z\|^{p}\right] \leq \sigma^{p}(d+2 p)^{p / 2},
$$

where we have applied a standard bound for the moments of the χ^{2} distribution.
We can couple empirical distributions $\hat{\mu}_{n}$ and $\hat{\nu}_{n}$ by letting $X_{1}, \ldots, X_{n} \sim \nu$ i.i.d. and $Z_{1}, \ldots, Z_{n} \sim \mathcal{N}\left(0, \sigma^{2}\right)$ i.i.d. and independent of $\left\{X_{i}\right\}$ and setting

$$
\begin{aligned}
\hat{\nu}_{n} & :=\frac{1}{n} \sum_{i=1}^{n} \delta_{X_{i}} \\
\hat{\mu}_{n} & :=\frac{1}{n} \sum_{i=1}^{n} \delta_{X_{i}+Z_{i}} .
\end{aligned}
$$

We have for this coupling

$$
W_{p}^{p}\left(\hat{\mu}_{n}, \hat{\nu}_{n}\right) \leq \frac{1}{n} \sum_{i=1}^{n}\left\|Z_{i}\right\|^{p}
$$

and

$$
\mathbb{E} W_{p}^{p}\left(\hat{\mu}_{n}, \hat{\nu}_{n}\right) \leq \sigma^{p}(d+2 p)^{p / 2}
$$

The triangle for W_{p} then implies

$$
\begin{aligned}
\mathbb{E} W_{p}^{p}\left(\mu, \hat{\mu}_{n}\right) & \leq \mathbb{E}\left(W_{p}(\mu, \nu)+W_{p}\left(\nu, \hat{\nu}_{n}\right)+W_{p}\left(\hat{\mu}_{n}, \hat{\nu}_{n}\right)\right)^{p} \\
& \leq 3^{p-1} \mathbb{E} W_{p}^{p}\left(\nu, \hat{\nu}_{n}\right)+2 \cdot 3^{p-1} \sigma^{p}(d+2 p)^{p / 2}
\end{aligned}
$$

B. Additional lemmas

B.1. Proof of Lemma A. 1

We first show that for any $\ell<k$, if $Q \in \mathcal{Q}^{\ell}$, then

$$
\mu_{k}(Q)=\nu_{k}(Q)
$$

Suppose first that $Q \in \mathcal{Q}^{k-1}$. By definition, $\mu_{k}=\mu_{k-1}-\pi_{k-1}$. We obtain

$$
\mu_{k}(Q)=\left(\mu_{k-1}-\pi_{k-1}\right)(Q)=\min \left\{\mu_{k-1}(Q), \nu_{k-1}(Q)\right\}
$$

and likewise

$$
\nu_{k}(Q)=\min \left\{\mu_{k-1}(Q), \nu_{k-1}(Q)\right\}
$$

Since \mathcal{Q} is a dyadic partition, any $Q \in \mathcal{Q}^{\ell}$ for $\ell<k$ can be written as a disjoint union of $Q_{1}, \ldots, Q_{m} \in \mathcal{Q}^{k-1}$. Hence

$$
\mu_{k}(Q)=\sum_{i=1}^{m} \mu_{k}\left(Q_{i}\right)=\sum_{i=1}^{m} \nu_{k}\left(Q_{i}\right)=\nu_{k}(Q)
$$

as claimed.
Note that this also implies for any $\ell<k$, if $Q \in \mathcal{Q}^{\ell}$, then

$$
\pi_{k}(Q)=\mu_{k}(Q)-\mu_{k+1}(Q)=\nu_{k}(Q)-\nu_{k+1}(Q)=\rho_{k}(Q)
$$

We now prove the bound on $\pi_{k}(S)$. By definition,

$$
\rho_{k}(S)=\sum_{Q_{i}^{k} \in \mathcal{Q}^{k}}\left(\nu_{k}\left(Q_{i}^{k}\right)-\mu_{k}\left(Q_{i}^{k}\right)\right)_{+}=\frac{1}{2} \sum_{Q_{i}^{k} \in \mathcal{Q}^{k}}\left|\nu_{k}\left(Q_{i}^{k}\right)-\mu_{k}\left(Q_{i}^{k}\right)\right|
$$

We now show that, for any $Q \in \mathcal{Q}^{k-1}$, there exist scalars $c_{1}, c_{2} \in[0,1]$ depending on Q such that

$$
\begin{aligned}
\left.\mu_{k}\right|_{Q} & =\left.c_{1} \mu\right|_{Q} \\
\left.\nu_{k}\right|_{Q} & =\left.c_{2} \nu\right|_{Q}
\end{aligned}
$$

We proceed by induction on k. By symmetry, it suffices to prove the claim for μ_{k} and μ. Since $\mu_{1}=\mu$, it holds for $k=1$. Now assume $\left.\mu_{k-1}\right|_{Q}=\left.c_{1} \mu\right|_{Q}$. We have

$$
\left.\mu_{k}\right|_{Q}=\left.\mu_{k-1}\right|_{Q}-\left.\pi_{k-1}\right|_{Q}=\left.\min \left\{\frac{\nu_{k-1}(Q)}{\mu_{k-1}(Q)}, 1\right\} \mu_{k-1}\right|_{Q}=\left.c_{1}^{\prime} \mu\right|_{Q}
$$

where $c_{1}^{\prime}=\min \left\{\frac{\nu_{k-1}(Q)}{\mu_{k-1}(Q)}, 1\right\} c_{1}$. This proves the claim.
Now, given such a $Q \in \mathcal{Q}^{k-1}$ and $c_{1}, c_{2} \in[0,1]$, we have $\mu_{k}(Q)=\nu_{k}(Q)$, so

$$
c_{1} \mu(Q)=c_{2} \nu(Q)
$$

Summing over the elements of \mathcal{Q}^{k} contained in Q, we obtain

$$
\begin{aligned}
\sum_{Q_{i}^{k} \subset Q}\left|\mu_{k}\left(Q_{i}^{k}\right)-\nu_{k}\left(Q_{i}^{k}\right)\right| & =\sum_{Q_{i}^{k} \subset Q}\left|c_{1} \mu\left(Q_{i}^{k}\right)-c_{2} \nu\left(Q_{i}^{k}\right)\right| \\
& \leq \sum_{Q_{i}^{k} \subset Q} c_{1}\left|\mu\left(Q_{i}^{k}\right)-\nu\left(Q_{i}^{k}\right)\right|+\sum_{Q_{i}^{k} \subset Q} \nu\left(Q_{i}^{k}\right)\left|c_{1}-c_{2}\right| \\
& =\sum_{Q_{i}^{k} \subset Q} c_{1}\left|\mu\left(Q_{i}^{k}\right)-\nu\left(Q_{i}^{k}\right)\right|+c_{2}|\mu(Q)-\nu(Q)| \\
& \leq \sum_{Q_{i}^{k} \subset Q}\left(c_{1}+c_{2}\right)\left|\mu\left(Q_{i}^{k}\right)-\nu\left(Q_{i}^{k}\right)\right| \\
& \leq 2 \sum_{Q_{i}^{k} \subset Q}\left|\mu\left(Q_{i}^{k}\right)-\nu\left(Q_{i}^{k}\right)\right|
\end{aligned}
$$

Finally, summing over all $Q \in \mathcal{Q}^{k-1}$ yields

$$
\rho_{k}(S)=\frac{1}{2} \sum_{Q_{i}^{k} \in \mathcal{Q}^{k}}\left|\nu_{k}\left(Q_{i}^{k}\right)-\mu_{k}\left(Q_{i}^{k}\right)\right| \leq \sum_{Q_{i}^{k} \in \mathcal{Q}^{k}}\left|\mu\left(Q_{i}^{k}\right)-\nu\left(Q_{i}^{k}\right)\right|
$$

as claimed.

B.2. Proof of Lemma A. 2

Let

$$
\gamma:=\sum_{\substack{Q_{i}^{k-1} \in \mathcal{Q}^{k-1} \\ \alpha\left(Q_{i}^{k-1}\right)>0}} \frac{\alpha \otimes \beta}{\alpha\left(Q_{i}^{k-1}\right)} .
$$

Note that $\gamma \in C(\alpha, \beta)$. Indeed, for any measurable $U \subset S$, since \mathcal{Q}^{k-1} is a partition of S, we have

$$
\gamma(S, U)=\sum_{Q_{i}^{k-1} \in \mathcal{Q}^{k-1}} \frac{\alpha\left(Q_{i}^{k-1}\right) \beta\left(Q_{i}^{k-1} \cap U\right)}{\alpha\left(Q_{i}^{k-1}\right)}=\beta(U)
$$

On the other hand, by assumption, $\alpha\left(Q_{i}^{k-1}\right)=\beta\left(Q_{k}^{k-1}\right)$, so

$$
\gamma(U, S)=\sum_{Q_{i}^{k-1} \in \mathcal{Q}^{k-1}} \frac{\alpha\left(Q_{i}^{k-1} \cap U\right) \beta\left(Q_{i}^{k-1}\right)}{\beta\left(Q_{k}^{k-1}\right)}=\alpha(U)
$$

We have

$$
\begin{aligned}
\int D(x, y)^{p} \mathrm{~d} \gamma(x, y) & =\sum_{Q_{i}^{k-1} \in \mathcal{Q}^{k-1}} \frac{1}{\alpha\left(Q_{i}^{k-1}\right)} \int_{Q_{i}^{k-1}} D(x, y)^{p} \mathrm{~d} \alpha(x) \mathrm{d} \beta(y) \\
& \leq \sum_{Q_{i}^{k-1} \in \mathcal{Q}^{k-1}} \beta\left(Q_{i}^{k-1}\right) \operatorname{diam}\left(Q_{i}^{k-1}\right)^{p} \\
& \leq \alpha(S) \delta^{(k-1) p}
\end{aligned}
$$

B.3. Proof of Lemma A. 3

By assumption, there exist constants c and α such that $\frac{1}{c} n^{\alpha} \leq \delta_{n} \leq c n^{\alpha}$ for all n sufficiently large. Let $M=\left(2 c^{2}\right)^{-1 / \alpha}$. Then for n sufficiently large,

$$
\delta_{M n} \leq c(M n)^{\alpha}=\frac{1}{2 c} n^{\alpha} \leq \frac{1}{2} \delta_{n}
$$

This implies that for k sufficiently large, $\delta_{N_{k}} \leq 2^{-k}$ implies that $\delta_{M N_{k}} \leq 2^{-k-1}$, so that $N_{k+1} \leq M N_{k}$. Hence $N_{k+1} / N_{k} \leq M$ for all k sufficiently large, so N_{k+1} / N_{k} is bounded.

B.4. Proof of Lemma A. 4

We first show the key property of μ. For any $x \in[0,1]^{m}$ and $r>0$, denote by $B(x, r)$ the open ℓ_{∞} ball of radius r around x. We claim that for any $x \in[0,1]^{m}$ and $\ell \geq 2$,

$$
\mu\left(B\left(x, 2^{-\ell-1}\right)\right) \leq \frac{1}{N_{\ell-2}}
$$

It suffices to show this claim for all μ_{k} with $k \geq \ell$, and conclude via the fact that μ is the weak limit of a subsequence of the measures. The bound in question certainly holds when $B\left(x, 2^{-\ell-1}\right)$ exactly coincides with one of the cubes in \mathcal{Q}^{ℓ}, since each live cube in \mathcal{Q}^{ℓ} has mass exactly $1 / N_{\ell-2}$ by construction.

For all other x, note that the restriction of μ_{k} to each live cube in \mathcal{Q}^{ℓ} is the same measure. In general, the cube $B\left(x, 2^{-\ell-1}\right)$ intersects 2^{m} cubes cubes in \mathcal{G}_{ℓ}, and we can partition $B\left(x, 2^{-\ell-1}\right)$ into 2^{m} pieces which, via translation, exactly cover a cube of \mathcal{Q}^{ℓ}. Each piece has mass at most the mass of the corresponding piece in a live cube, hence the measure is at most the measure of a live cube.

This property immediately implies a bound on the number of balls needed to cover any set S such that $\mu(S) \geq 1 / 2$. Since each ball of diameter $2^{-\ell}$ has mass at most $1 / N_{\ell-2}$, to cover a set of mass $1 / 2$ requires at least $N_{\ell-2} / 2$ balls. Therefore for all $\ell \geq 2$,

$$
\begin{equation*}
\mathcal{N}_{2^{-\ell}}(\mu, 1 / 2) \geq N_{\ell-2} / 2 \tag{2}
\end{equation*}
$$

For all $k \geq 0$, because N_{k+1} is a power of 2 greater than one, $N_{k+1} / 2$ is also a power of 2 . The definition of N_{k+1} therefore implies that $\delta_{N_{k+1} / 2}>2^{-k-1}$. Because $\frac{\log n}{-\log \delta_{n}}$ is nondecreasing and at least 1 for all $n \geq 2$, we have for all $k \geq 0$

$$
\frac{\log N_{k+1}}{-\log \delta_{N_{k+1}}} \geq \frac{\log \left(N_{k+1} / 2\right)}{-\log \delta_{N_{k+1} / 2}} \geq \frac{\log N_{k+1}}{-\log \left(\delta_{N_{k+1} / 2} / 2\right)}
$$

and therefore $\delta_{N_{k+1}} \geq \frac{1}{2} \delta_{N_{k+1} / 2}>2^{-k-2}$, so that $N_{k+2}>N_{k+1}$. Since N_{k+2} is also a power of 2 , in particular $N_{k+2} \geq 2 N_{k+1}$. This implies $N_{k+2} / 2>n$.

Choosing $\ell=k+4$ in (2) yields

$$
\mathcal{N}_{2^{-k-4}}(\mu, 1 / 2)>n
$$

This proves the first claim.
We have just noted that $\delta_{N_{k+1}}>2^{-k-2}$, and the definition of N_{k} implies $\delta_{N_{k}} \leq 2^{-k}$. If $N_{k} \leq n<N_{k+1}$, then the fact that δ_{n} is nonincreasing in n yields

$$
2^{-k-2}<\delta_{N_{k+1}} \leq \delta_{n} \leq \delta_{N_{k}} \leq 2^{-k}
$$

This proves the second claim.
To prove the third claim, we first note that the definition of d_{n} implies that

$$
n^{-1 / d_{n}}
$$

is nonincreasing as n increases. We can therefore prove an upper bound on $n^{-1 / d_{n}}$ by proving an upper bound on $N_{k}^{-1 / d_{N_{k}}}$.

Recall that

$$
d_{N_{k}}=\inf _{\varepsilon>0} \max \left\{d_{\geq \varepsilon}\left(\mu, \varepsilon^{p}\right), \frac{\log N_{k}}{-\log \varepsilon}\right\}
$$

Choosing $\varepsilon=2^{-(k+2)}$ yields

$$
d_{N_{k}} \leq \max \left\{d_{\geq 2^{-(k+2)}}(\mu), \frac{\log _{2} N_{k}}{k+2}\right\}
$$

To bound the first term, note that if $\varepsilon^{\prime} \in\left[2^{-\ell}, 2^{-\ell+1}\right)$, then $\mathcal{N}_{\varepsilon^{\prime}}(\mu) \leq \mathcal{N}_{2^{-\ell}}(\mu)=N_{\ell-2}$. We also have $\varepsilon^{\prime}<2^{-\ell+1}<\delta_{N_{\ell-2}}$. Therefore $d_{\varepsilon}^{\prime}=\frac{\log \mathcal{N}_{\varepsilon^{\prime}}(\mu)}{-\log \varepsilon^{\prime}} \leq \frac{\log N_{\ell-2}}{\delta_{N_{\ell-2}}}$.

The assumption that $\frac{\log n}{-\log \delta_{n}}$ is nonincreasing therefore implies

$$
d_{\geq 2^{-k+2}}(\mu) \leq \max _{2 \leq \ell \leq k+2} \frac{\log N_{\ell-2}}{-\log \delta_{N_{\ell-2}}} \leq \frac{\log N_{k}}{-\log \delta_{N_{k}}} \leq \frac{\log _{2} N_{k}}{k}
$$

We obtain

$$
d_{N_{k}} \leq \frac{\log _{2} N_{k}}{k}
$$

so $n^{-1 / d_{n}} \leq N_{k}^{-1 / d_{N_{k}}} \leq 2^{-k}$.
To obtain the lower bound, note that if $\varepsilon \leq 2^{-(k+4)}$, then

$$
d_{\geq \varepsilon}\left(\mu, \varepsilon^{p}\right) \geq d_{2^{-(k+4)}}(\mu, 1 / 2)>\frac{\log _{2} n}{k+4}
$$

where we have used the fact proved above that $\mathcal{N}_{2^{-(k+4)}}(\mu, 1 / 2)>n$. If $\varepsilon>2^{-(k+4)}$, then

$$
\frac{\log n}{-\log \varepsilon}>\frac{\log _{2} n}{k+4}
$$

Combining these bounds yields

$$
d_{n}=\inf _{\varepsilon>0} \max \left\{d_{\geq \varepsilon}\left(\mu, \varepsilon^{p}\right), \frac{\log n}{-\log \varepsilon}\right\}>\frac{\log _{2} n}{k+4}
$$

so

$$
n^{-1 / d_{n}}>2^{-(k+4)}
$$

as claimed.

References

[1] Falconer, K. (1997). Techniques in fractal geometry 3. Wiley Chichester (W. Sx.).
[2] Graf, S. and Luschgy, H. (2007). Foundations of quantization for probability distributions. Springer.
[3] Villani, C. (2008). Optimal transport: old and new 338. Springer Science \& Business Media.

