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When targeting a distribution that is artificially invariant under some permutations, Markov
chain Monte Carlo (MCMC) algorithms face the label-switching problem, rendering marginal
inference particularly cumbersome. Such a situation arises, for example, in the Bayesian analysis
of finite mixture models. Adaptive MCMC algorithms such as adaptive Metropolis (AM), which
self-calibrates its proposal distribution using an online estimate of the covariance matrix of the
target, are no exception. To address the label-switching issue, relabeling algorithms associate
a permutation to each MCMC sample, trying to obtain reasonable marginals. In the case of
adaptive Metropolis [15], an online relabeling strategy is required. This paper is devoted to the
AMOR algorithm, a provably consistent variant of AM that can cope with the label-switching
problem. The idea is to nest relabeling steps within the MCMC algorithm based on the estima-
tion of a single covariance matrix that is used both for adapting the covariance of the proposal
distribution in the Metropolis algorithm step and for online relabeling. We compare the behavior
of AMOR to similar relabeling methods. In the case of compactly supported target distributions,
we prove a strong law of large numbers for AMOR and its ergodicity. These are the first results
on the consistency of an online relabeling algorithm to our knowledge. The proof underlines
latent relations between relabeling and vector quantization.
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1. Introduction

Markov chain Monte Carlo (MCMC) is a generic approach for exploring complex prob-
ability distributions based on sampling [23]. It has become the de facto standard tool
in many applications of Bayesian inference. However, a very common situation in which
MCMC algorithms face serious difficulties is when the target posterior distribution is
known to be invariant under some permutations (or block permutations) of the vari-
ables. In that case, the difficulties are both computational, as most often the MCMC
algorithm fails to validly visit all the modes of the posterior, and inferential, in partic-
ular rendering marginal posterior inference about the individual variables particularly
cumbersome [9]. In the literature, this latter difficulty is usually referred to as the label
switching problem [31]. The most well-known example of this situation is when perform-
ing Bayesian inference in a mixture model. In this case the mixture likelihood is invariant
to permuting the mixture components and, most often, the prior itself does not favor
any specific ordering of the mixture components [8, 31, 16, 17, 21, 30, 18]. Another im-
portant example arises in signal processing with additive decomposition models. In this
case, the observed signal is represented as the superposition of exchangeable signals, and
the main goal is to recover the individual signals or their parameters. In addition, often
the number of signals also has to be determined [29, 28, 6]. It was observed empirically
that when the dimension of the model is not known, the reversible jump sampler [22]
makes it easier to visit the multiple modes corresponding to the permutations but, of
course, marginal inference becomes harder due to the additional difficulty of associating
components between models of varying dimension.

In this contribution, we address the label switching problem in the generic case where
no useful external information on the target is known. This corresponds, for instance, to
a posterior distribution when neither the likelihood is assumed to have a specific form,
nor the prior is chosen to have conjugacy properties, which forbids the use of Gibbs
sampling or other specialized sampling strategies. We assume, however, that the target
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is known to be invariant under some permutations of the parameters. This framework
is typical, for instance, in experimental physics applications where the likelihood com-
putation is commonly deferred to a black-box numerical code. In those cases, one cannot
assume anything about the structure of the posterior or its conditional distributions,
except that they should be invariant to some permutations of the parameters. We also
restrict ourselves to the case where the dimension of the model is finite and known so
the parameters of the model are Rd-valued for some fixed and finite d.

Following [4], an adaptive MCMC algorithm is an algorithm which, given a family
of MCMC transition kernels (Pθ)θ∈Θ on a space X, produces a (X × Θ)-valued process
((Xn, θn))n≥0 such that the conditional distribution of the sample Xn+1 given the past
is Pθn(Xn, ·). In practice, adaptive MCMC are MCMC algorithms that can self-calibrate
their internal parameters along the iterations in order to reach decent performance with-
out (or with almost no) knowledge about the target distribution, eliminating the grueling
step of tuning the proposals. Adaptive MCMC has been an active field of research in the
last ten years, following the pioneering contribution of [15] — see [3] as well as the
other papers in the same special issue of Statistics and Computing, along with [4, 2, 27].
Adaptive Metropolis (hereafter AM; [15]) and its variants aim at identifying the un-
known covariance structure of the target distribution along the run of a random walk
Metropolis-Hastings algorithm with a multivariate Gaussian proposal. The rationale be-
hind this approach is based on scaling results which suggest that, when d tends to +∞,
the chain correlation is minimized when the covariance matrix used in the proposal distri-
bution matches, up to a constant that depends on the dimension, the covariance matrix of
the target, for a large class of unimodal target distributions with independent marginals
[24, 25]. AM thus progressively adapts, using a stochastic approximation scheme, the
covariance of the proposal distribution to the estimated covariance of the target.

It has been empirically observed in [5], and we provide further evidence of this fact
below in Section 2.2.1, that the efficiency of AM can be greatly impaired when label
switching occurs. The reason for such a difficulty is obvious: if label switching occurs, the
estimated covariance matrix no longer corresponds to the local shape of the modes of the
posterior and so the exploration can be far from optimal. In Section 2.2.1, we also provide
some empirical evidence that off-the-shelf solutions to the label-switching problem, such
as imposing identifiability constraints or post-processing the simulated sample, are not
fully satisfactory. A key difficulty here is that most of the approaches proposed in the
literature are based on post-processing of the simulated trajectories after the MCMC
algorithm has been fully run [31, 16, 17, 21, 30, 18, 29]. Unfortunately, in the case of
adaptive MCMC, post-processing cannot solve the improper exploration issue described
above. On the other hand, online relabeling algorithms [22, 9, 11] often require manual
tuning based on, for example, prior knowledge on the location of the redundant modes of
the target. Without such manual tuning they often yield poor samplers, as we will show
it in Section 2.2.1.

Our main purpose in this paper is to provide a provably consistent variant of AM that
can cope with the label-switching problem. In [5], we proposed an adaptive Metropolis
algorithm with online relabeling, called AMOR, based on the original idea of [8]. The
idea is to nest relabeling steps within the MCMC algorithm based on the estimation of
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a single covariance matrix that is used both for adapting the covariance of the proposal
distribution used in the Metropolis algorithm step and for online relabeling. Contrary to
[8], the AMOR algorithm also corrects for the relabelings using a modified acceptance
ratio. Similarly to [8], though, AMOR requires to loop over all possible relabelings of
proposed points, which limits the method in practice to applications with a relatively
small number of permutations. Modifications and heuristics that address this issue are
out of the scope of this paper.

In Section 2.2.1, we provide empirical evidence that the coupling established in AMOR
between the criterion used for relabeling and the estimation of the covariance of the local
modes of the posterior is beneficial to avoid the distortion of the marginal distributions.
Furthermore, the example considered in Section 2.2.1 also demonstrates that the AMOR
algorithm samples from non-trivial identifiable restrictions of the posterior distribution,
that is, truncations of the posterior on regions where the posterior marginals are distinct
but from which the complete posterior can be recovered by permutation. The study of the
convergence of AMOR in Section 3 reveals an interesting connection with the problem
of optimal probabilistic quantization [13] which was implicit in earlier works on label
switching. It was observed previously by [20] that some adjustments to the usual theory
of stochastic approximation are necessary to analyze online optimal quantification due
to the presence of points where the mean field of the algorithm is not differentiable.
To circumvent this difficulty, we introduce the stable AMOR algorithm, a novel variant
of the AMOR algorithm that avoids these problematic points of the parameter space.
Finally, we establish consistency results for the stable AMOR algorithm, showing that it
indeed asymptotically provides samples distributed under a suitably defined restriction
of the posterior distribution in which the parameters are marginally identifiable.

The paper is organized as follows. In Section 2, we describe the stable AMOR algorithm
and compare it with alternative approaches on an illustrative example. In Section 3, we
address the convergence of the algorithm. The detailed proofs are provided in Appendix.

2. The stable AMOR algorithm

In this section, we introduce the stable AMOR algorithm and illustrate its performance
on an artificial example.

2.1. The algorithm

Let π be a density with respect to (w.r.t.) the Lebesgue measure on Rd which is invariant
to the action of a finite group P of permutation matrices, that is,

∀x ∈ Rd, ∀P ∈ P, π(x) = π(Px) .

Denote by C+
d the set of d× d real positive definite matrices. For θ = (µ,Σ) with µ ∈ Rd

and Σ ∈ C+
d , define Lθ : Rd → R+ by

Lθ(x) = (x− µ)TΣ−1(x− µ) , (2.1)
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and let N (·|µ,Σ) denote the Gaussian density with mean µ and covariance matrix Σ.
Let Θ ⊆ Rd×C+

d and (Kq)q∈N be an increasing sequence of compact subsets of Θ such
that

⋃
q∈NKq = Θ.

Algorithm 1 describes the pseudocode of stable AMOR [5]. Choose θ0 ∈ K0.

Algorithm 1.

stableAMOR
(
π(·), X0, T, θ0 = (µ0,Σ0), c, (γt)t≥0, α, (Kψ)ψ≥0

)
1 S ← ∅
2 ψ ← 0 . Projection counter
3 for t← 1 to T
4 Σ← cΣt−1 . scaled adaptive covariance
5 X̃ ∼ N

(
· |Xt−1,Σ

)
. proposal

6 P̃ ∼ arg min
P∈P

Lθt−1

(
PX̃

)
. pick an optimal permutation

7 X̃ ← P̃ X̃ . permute

8 if
π(X̃)

∑
P N

(
PXt−1|X̃,Σ

)
π(Xt−1)

∑
P N

(
PX̃|Xt−1,Σ

)> U [0, 1] then

9 Xt ← X̃ . accept
10 else
11 Xt ← Xt−1 . reject
12 S ← S ∪ {Xt} . update posterior sample
13 µt ← µt−1 + γt

(
Xt − µt−1

)
+ αγt Pent−1,1

14 Σt ← Σt−1 + γt
(
(Xt − µt−1)(Xt − µt−1)ᵀ − Σt−1

)
+ αγt Pent−1,2

15 if (µt,Σt) /∈ Kψ then
16 (µt,Σt)← (µ0,Σ0) . Project back to K0

17 ψ ← ψ + 1 . Increment projection counter
18 θt ← (µt,Σt).
19 return S

To explain the proposal mechanism of stable AMOR, let µt−1 and Σt−1 denote the
sample mean and the sample covariance matrix, respectively, at the end of iteration t−1,
and let θt−1 = (µt−1,Σt−1). Let also S denote the MCMC sample at the end of iteration
t − 1. At iteration t, a point X̃ is first drawn from a Gaussian centered at the previous
state Xt−1 and with covariance cΣt−1, where c implements the optimal scaling results
in [24, 25] discussed in Section 1 (Steps 4 and 5). Then in Steps 6 and 7, X̃ is replaced
by P̃ X̃, where P̃ is a uniform draw over the permutations in arg minP Lθt−1

(PX̃) that
minimize the relabeling criterion (2.1)1. This relabeling step makes the augmented sample
S ∪ {P̃ X̃} look as Gaussian as possible among all augmented sets S ∪ {PX̃}, P ∈ P.
Formally, it can be seen as a projection onto the Voronoi cell Vθt−1

, where

Vθ = {x ∈ X / Lθ(x) ≤ Lθ(Px), ∀P ∈ P} . (2.2)

1Step 6 usually boils down to selecting the permutation P̃ that minimizes Lθt−1
. In case of ties,

however, P̃ should be drawn uniformly over the set on which the minimum is achieved.
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Then, in Steps 8 to 11, the candidate P̃ X̃ is accepted or rejected according to the usual
Metropolis-Hastings rule. The sample mean and covariance are adapted according to a
Stochastic Approximation (SA) scheme in Steps 13 and 14; α ∈ [0,∞) and Pent,i is
a penalty term used to drive the parameters θt = (µt,Σt) toward the set of interest
Θ. In Section 3, we will give examples of parameter set Θ and penalty terms Pent,i.
(γt)t≥1 is a sequence of non-negative steps, usually set according to a polynomial decay
γt ∼ γ?t

−β for some β ∈ (1/2, 1]. Finally, Steps 15 to 17 are a truncation mechanism
with random varying bounds to make the SA algorithm stable. In SA procedures, such a
step is a way to make the paths (θt)t≥0 bounded with probability one, which is a required
property to prove the convergence of these procedures (see e.g. [10]). We will provide in
Section 3 sufficient conditions implying that the number of random truncations is finite
along almost all paths (θt)t≥0, thus implying that after a finite number of iterations,
everything happens as if steps 15 to 17 were omitted. In practice, it is often reported in
the literature that SA is stable even when these stabilization steps are omitted.

Stable AMOR is a doubly adaptive MCMC algorithm since it is adaptive both in its
proposal and relabeling mechanisms. This means that, besides the proposal distribution,
its target also changes with the number of iterations. In Section 3 we will prove that,
at each iteration t, AMOR implements a random walk Metropolis-Hastings kernel with
stationary distribution πθ ∝ π 1Vθ .

(a) π (b) πseed

Figure 1. Panel 1(a) shows the target distribution π used in Section 2.2.1, obtained by symmetrizing the
Gaussian πseed shown in Panel 1(b). πseed has mean (0, 2) and covariance matrix with diagonal (16, 1)
and non-diagonal terms equal to −0.975.
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2.2. Illustrative examples

In Section 2.2.1, we consider an artificial target aimed at illustrating the gap in per-
formance between the AMOR algorithm and other common approaches to the label
switching problem, which are compatible with adaptive MCMC. In Section 2.2.2, we
illustrate the behaviour of AMOR on non-Gaussian and multimodal targets.

2.2.1. A comparison of AMOR with existing approaches

Consider the two-dimensional pdf π depicted in Figure 1(a), which satisfies π(x) = π(Px)
for P ∈ P, where

P =

{(
1 0
0 1

)
,

(
0 1
1 0

)}
.

The density π is a mixture of two densities with equal weights obtained by superpos-
ing the Gaussian pdf πseed represented in Figure 1(b) with a symmetrized version of
itself. This artificial target does not correspond to the posterior distribution in an actual
inference problem. In particular, although π itself is a mixture, it is not the posterior
distribution of the parameters of any specific mixture model. Nevertheless, it is rele-
vant because it is permutation invariant and the desired solution of the label switching
problem is well-defined: we know that, under suitable relabeling, we can obtain univari-
ate near-Gaussian marginals for both coordinates by recovering the marginals of the
two-dimensional Gaussian πseed in Figure 1(b). In spite of its simplicity, this example is
challenging because the two marginals of πseed have similar means (0 and 2) and one has
large variance, which makes them hard to separate. Given the modest dimension of the
problem, we fix the number of MCMC iterations to 20 000, of which 4 000 are discarded
as burn-in. For each algorithm, we assess the quality of the relabeling strategy by look-
ing at the corresponding restriction π′ of the target π, and we assess the efficiency of
the sampling by plotting the autocorrelation function of each sample and comparing the
sample histograms with the marginals of π′.

The results obtained when applying AM, without any relabeling, are shown in Figure 2.
The marginal posteriors are sampled quite well (Figures 2(c) and 2(d)) and the covariance
of the joint sample (indicated by a thick ellipse Figure 2(a)) is almost symmetric. This
is not surprising: the joint distribution, although severely non-Gaussian, is unimodal,
and the number of iterations is large enough for AM to explore both the original seed
πseed and its symmetric version by frequent label switching. On the other hand, the
covariance of the joint distribution π (Figure 1(a)) is broader than the covariance of
the seed πseed (Figure 1(b)). This results in poor adaptive proposals and slow mixing as
indicated by the slight differences between the marginals and the sample marginals, and
by the autocorrelation function of the first component of the sample in Figure 2(b). The
reference (dashed line) is the autocorrelation function of an MCMC chain with optimal
covariance (proportional to the covariance of the target) targeting the single Gaussian
πseed (Figure 1(b)).

We now consider a modified version of AM with online relabeling obtained by simply
ordering the variables, meaning that after each proposal x = (x1, x2), the components of
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Figure 2. Results of vanilla AM on the two-dimensional target π of Figure 1. The rest of the caption is
the same for Figures 3 to 6. On Panel 2(a), level lines of π are depicted in thin black lines; a thick ellipse
centered at the empirical mean µT of the sample S indicates the set {x : (x− µT )TΣ−1

T (x− µT ) = 1},
where ΣT is the sample covariance. When appropriate, the region of the space selected by (the last
iteration of) the algorithm corresponds to the unshaded background while the region not selected is
shaded. On Panel 2(b), the autocorrelation function (ACF) of the first component of S is plotted as a
solid line. The dashed line indicates the ACF obtained when sampling from the seed Gaussian πseed of
Figure 1(b) using a random walk Metropolis algorithm with an optimally tuned covariance matrix. Panels
2(c) and 2(d) display the histograms of the two marginal samples. The solid curves are the marginals of
π in this figure. In Figures 3 to 6, they are the marginals of π restricted to the unshaded region selected
by the algorithms.

the proposed point are permuted so that x1 ≤ x2. This strategy is known as imposing
an identifiability constraint. It is known to perform badly when the constraint does not
respect the topology of the target [18]. The results of this approach on our illustrative
example are shown in Figure 3. The unshaded triangle in Figure 3 shows that this time
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the sample is restricted to a sub-region of R2 where the components are identifiable.
Unfortunately, the marginals of π restricted to the unshaded triangle in Figures 3(c)
and 3(d) are even more highly skewed than the marginals of the full joint distribution
π. In addition, sampling from the restricted distribution π′ is not easier than before
indicated by the autocorrelation function in Figure 3(b).
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Figure 3. Results of AM with online ordering constraint. For details about the plots, see the caption of
Figure 2.

Applying the ordering constraint after the full sample has been drawn with AM leads
to similar results as shown in Figure 4. This shows that the problem lies with the rela-
beling criterion rather then with the online nature of the relabeling procedure.

Next, we consider the approach introduced by Celeux in [8]. Celeux’s algorithm builds
on a non-adaptive random-walk Metropolis, where online relabeling is performed in the
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Figure 4. Results of AM with ordering constraint applied as post-processing. For details about the
plots, see the caption of Figure 2.

following way: when a point x = (x(1), x(2)) is proposed at time t, it is relabeled by

x← arg min


(
x(1) − µ(1)

t

x(2) − µ(2)
t

)T
D−1
t

(
x(1) − µ(1)

t

x(2) − µ(2)
t

)
,

(
x(2) − µ(1)

t

x(1) − µ(2)
t

)T
D−1
t

(
x(2) − µ(1)

t

x(1) − µ(2)
t

) .

(2.3)

where µt = (µ
(1)
t , µ

(2)
t ) is the empirical mean of the current sample x1:t = x1, . . . , xt

and Dt is the diagonal matrix containing the empirical variances of the coordinates
of x1:t on its diagonal. Formally, this relabeling rule is equivalent to Steps 6 and 7 of
Algorithm 1, but with all non-diagonal elements of Σ equal to zero. The results of Celeux’s
algorithm are shown in Figure 5. It is hard to determine precisely the formal target of
the algorithm. In particular, given the non-isotropic shape of the target, we used a non-
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isotropic Gaussian proposal with diagonal covariance matrix, and while the preservation
of the detailed balance condition then requires incorporating a term into the acceptance
ratio to account for the relabeling, it is absent in this approach. It is still possible that
the algorithm is approximately sampling from the restriction π′ of π to this unshaded
area in Figure 5 (which represents the relabeling rule implemented at the end of the run)
in a certain sense. The histograms in Figures 5(c) and 5(d) are in agreement with the
solid line marginals. Certainly, there are no formal guarantees that this should happen.
On the other hand, in Section 3 we can prove the corresponding claim for the stable
AMOR algorithm.
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Figure 5. Results of Celeux’s algorithm. For details about the plots, see the caption of Figure 2.

This relabeling strategy seems to recover πseed better than the mere ordering of co-
ordinates as suggested by the marginal plots in Figures 5(c) and 5(d) which are less
skewed and now roughly centered at the correct values (0 and 2, respectively). However,
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using a diagonal covariance Dt also generates some distortion which results in a severely
non-Gaussian, bimodal marginal in Figure 5(c). Because of these imperfections and due
to the uncorrelated proposal, the autocorrelation in Figure 5(b) indicates, again, a much
less efficient sampling than in the case of an optimal Metropolis chain targeting πseed.
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Figure 6. Results of stable AMOR. For details about the plots, see the caption of Figure 2.

The significance of Celeux’s algorithm is that its adaptive relabeling rule (2.3) makes
it possible to resolve the permutation invariance problem in a non-trivial way which
appears to be more adapted to the true geometry of the target. It is still not perfect,
and, as suggested by [31], one should replace the diagonal covariance matrix in (2.3)
by the full covariance matrix of the sample. However, [31] explored this idea only as a
post-processing approach. A severe difficulty in this context is the computational cost: if
T denotes the number of drawn samples and p is the number of permutations to which
π is invariant, the required post-processing is a combinatorial problem with pT possible
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Adaptive MCMC with online relabeling 13

relabelings. This eventually led [31] to consider a more tractable alternative instead.
More importantly in our context, we have seen above (e.g., in Figure 2) that running an
adaptive MCMC on the full permutation-invariant target may result in a poor mixing
performance. To achieve both relevant relabeling and efficient adaptivity, the key idea of
stable AMOR is to link the covariance of the proposal distribution and the covariance
used for relabeling, which are proportional to each other in stable AMOR.

Figure 6 displays the results obtained using stable AMOR on our running example.
Stable AMOR does separate R2 in two regions that respect the topology of the tar-
get much more closely than the approaches examined previously. Figure 6(a) indicates
that the relabeled target is as Gaussian as possible among all partitionings based on a
quadratic criterion of the form (2.1). The marginal histograms in Figures 6(c) and 6(d)
now look almost Gaussian. They closely match the marginals of both the restricted distri-
bution π′ and the seed distribution πseed in Figure 1(b). Furthermore, the autocorrelation
function of stable AMOR (Figure 6(b)) is as good as the reference autocorrelation func-
tion corresponding to an optimally tuned random walk Metropolis-Hastings algorithm
targeting the seed Gaussian πseed in Figure 1(b). This perfect adaptation is possible be-
cause the sample covariance now matches the covariance of the target restricted to the
unshaded region of the plane (Figure 6(a)).

On this example, the stable AMOR algorithm thus automatically achieves, without
any tuning, a satisfactory result that cannot be obtained with any of the methods exam-
ined previously.

2.2.2. Other examples of the behavior of AMOR

We first consider a twisted, non-Gaussian version of the example in Section 2.2.1. Figure 7
illustrates how the selection of the target varies as the shape of the target becomes
more nonlinear. In Figure 7(a), a slightly twisted symmetrized Gaussian yields a non-
trivial target selection much similar to that of Figure 6(a). As nonlinearity in the seed
distribution is increased, the selection changes; see Figure 7(b). As in Figure 6(a), the
selected part of the target is as Gaussian as possible, among all partitionings based on a
quadratic criterion of the form (2.1). The same remark applies to the genuinely bimodal
target in Figure 8.

We are now ready to prove our main result which shows that, under suitable conditions,
stable AMOR indeed asymptotically samples from the target distribution restricted to a
region on which the marginals are identifiable, and that the sample mean and covariance
converge to the corresponding moments of the restricted target.

3. Convergence results

We prove the convergence of stable AMOR under the following condition on π

Assumption 1. π is a density w.r.t. the Lebesgue measure on Rd, which is bounded
and with compact support X, and which is invariant to permutations in the group P:

∀x ∈ X,∀P ∈ P, π(Px) = π(x) .
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Figure 7. Illustration of the behavior of AMOR on twisted versions of the example in Section 2.2.1.

This section is organized as follows. We first describe which version of the stable
AMOR algorithm we consider, and we show that it is an adaptive MCMC algorithm. We
then characterize the limiting behavior of the sequence (θt)t≥0 (see Theorem 3.2) and
address a strong law of large numbers for the samples (Xt)t≥0, as well as the ergodicity
of the sampler (see Theorems 3.3 and 3.4). All proofs are given in Section 5.

We are interested in finding a subset Vθ of X of the form (2.2) such that the cells
(PVθ)P∈P cover X. We will also ask that for any P,Q ∈ P, P 6= Q, the Lebesgue
measure of PVθ ∩QVθ is null. Therefore, we choose the parameter set Θ as follows (see
Lemma 5.1 in Section 5):

Θ = {(µ,Σ) ∈ Rd × C+
d / ∀P ∈ P∗, Σ−1µ 6= PΣ−1µ} , (3.1)

where P∗ = P\{Id}. The set Rd×C+
d is endowed with the scalar product 〈(a,A), (b, B)〉 =

aT b+Trace(ATB). We will use the same notation ‖.‖ for the norm induced by this scalar
product, for the Euclidean norm on Rd, and for the norm ‖A‖ = Trace(ATA)1/2 on d×d
real matrices.

Since we want to drive the parameter toward the set Θ, we address the convergence
of the stable AMOR when α > 0 and the penalty term is given by

Pent,1 = −
∑
P∈P∗

1

‖(I − P )Σ−1
t µt‖4

UPΣ−1
t µt , (3.2)

Pent,2 =
∑
P∈P∗

1

‖(I − P )Σ−1
t µt‖4

(
µtµ

T
t Σ−1

t UP + UPΣ−1
t µtµ

T
t

)
, (3.3)

where UP = (I − P )T (I − P ). For the stabilization step, we consider the sequence of
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Figure 8. Illustration of the behavior of AMOR on genuinely bimodal variants of the example in
Section 2.2.1.

compact sets (Kδq )q≥0 where

Kδ = {(µ,Σ) ∈ Θ : inf
P∈P∗

‖(I − P )Σ−1µ‖ ≥ δ} , (3.4)

and (δq)q≥0 is any decreasing positive sequence such that limq→∞ δq = 0 and Kδ0 is not
empty.

Stable AMOR can be cast into the family of adaptive MCMC algorithms, in which
the updating rule of the design parameter relies on a stochastic approximation scheme.
Adaptive MCMC can be described as follows: given a family of transition kernels (Pθ)θ∈Θ,
the algorithm produces a (X×Θ)-valued process ((Xt, θt))t≥0 such that the conditional
distribution of Xt given its past history X1, · · · , Xt−1 is given by the transition kernel
Pθt−1(Xt−1, ·). This algorithm is designed so that when t tends to infinity, the distribution
of Xt converges to the invariant distribution of the kernel Pθt . Sufficient conditions for the
convergence of such adaptive procedures were recently proposed by [26, 12]. In particular,
[26] provided sufficient conditions in terms of the so-called containment condition and
diminishing adaptation. Furthermore, [12] showed that when each transition kernel Pθ
has its own invariant distribution πθ, an additional condition on the convergence of
these distributions is also required. We prove below that in our settings, each transition
kernel of stable AMOR has its own invariant distribution; and this additional condition
is satisfied as soon as (θt)t≥0 converges almost surely. In order to establish this property,
we will resort to convergence results for stochastic approximation algorithms.

As a preliminary step for the convergence of stable AMOR, the stability and the
convergence of the design parameter sequence (θt)t≥0 is established. Sufficient conditions
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for the convergence of stochastic approximation procedures rely on the existence of a
(sufficiently regular) Lyapunov function on Θ, on the behavior of the mean field at the
boundary of the parameter set Θ, and on the magnitude of the step-size sequence (γt)t≥0.

The compactness assumption (Assumption 1) makes it simpler to analyze the limiting
behavior of the algorithm. The non-compact case is far more technical and will not be
addressed in this paper; see, e.g., [12] (respectively [1, section 3]) for examples of conver-
gence of adaptive MCMC (respectively a stochastic approximation procedure) when the
support of π is not compact (respectively when the controlled Markov chain dynamics is
not compactly supported).

Let us prove that stable AMOR is an adaptive MCMC algorithm. For any θ ∈ Θ,
define the transition kernel Pθ on (X,X ) by

Pθ(x,A) =

∫
A∩Vθ

αθ(x, y)qθ(x, y) dy + 1A(x)

∫
Vθ

(1− αθ(x, z)) qθ(x, z) dz , (3.5)

where Vθ is given by (2.2),

αθ(x, y) = 1 ∧ π(y)qθ(y, x)

π(x)qθ(x, y)
, (3.6)

and
qθ(x, y) =

∑
P∈P
N (Py|x, cΣ) . (3.7)

For θ ∈ Θ, define also
πθ = |P|1Vθπ . (3.8)

The following proposition shows that qθ(x, ·) is a density on Vθ and, the distribution
πθ given by (3.8) is invariant for the transition kernel Pθ. It also establishes that stable
AMOR is an adaptive MCMC algorithm: given (Xt−1, θt−1), Xt is obtained by one iter-
ation of a random walk Metropolis-Hastings algorithm with proposal qθt−1 and invariant
distribution πθt−1 .

Proposition 3.1. Under Assumption 1, the following assertions hold:

1. For any θ ∈ Θ and x ∈ X,
∫
Vθ

qθ(x, y) dy = 1.

2. For any θ ∈ Θ, πθPθ = πθ and for any x ∈ Vθ, Pθ(x, Vθ) = 1.
3. Let (θt, Xt)t≥0 be given by Algorithm 1. Conditionally on σ(X0, θ0, X1, θ1, ..., Xt−1, θt−1),

the distribution of Xt is Pθt−1(Xt−1, ·).

Note that the proof of Proposition 3.1 is independent of the update scheme of (θt)t≥0,
which makes the proposition valid whatever the choice of αPent,i.

Denote by Sd the set of d× d symmetric real matrices. Let α > 0 be fixed and define
H : X×Θ→ Rd × Sd by

H(x, θ) =
(
Hµ(x, θ), HΣ(x, θ)

)
(3.9)
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where

Hµ(x, θ) = x− µ− α
∑
P∈P∗

1

‖(I − P )Σ−1µ‖4 UPΣ−1µ ,

HΣ(x, θ) = (x− µ)(x− µ)T − Σ

+ α
∑
P∈P∗

1

‖(I − P )Σ−1µ‖4
(
µµTΣ−1UP + UPΣ−1µµT

)
.

Let

µπθ =

∫
x πθ(x) dx , (3.10)

Σπθ =

∫
(x− µπθ )(x− µπθ )T πθ(x) dx , (3.11)

be the expectation and covariance matrix of πθ, respectively. Define the mean field h :
Θ→ Rd × Sd by

h(θ) =
(
hµ(θ), hΣ(θ)

)
, (3.12)

where

hµ(θ) = µπθ − µ− α
∑
P∈P∗

1

‖(I − P )Σ−1µ‖4 UPΣ−1µ ,

hΣ(θ) = Σπθ − Σ + (µπθ − µ)(µπθ − µ)T

+ α
∑
P∈P∗

1

‖(I − P )Σ−1µ‖4
(
µµTΣ−1UP + UPΣ−1µµT

)
.

The key ingredient for the proof of the convergence of the sequence (θt)t≥0 is the existence
of a Lyapunov function w for the mean field h: we prove in the Appendix (see Lemma 5.2)
that the function w : Θ→ R+, defined by

w(θ) = −
∫

logN (x|θ)πθ(x) dx+
α

2

∑
P∈P∗

1

‖(I − P )Σ−1µ‖2 , (3.13)

is continuously differentiable on Θ and satisfies 〈∇w, h〉 ≤ 0. In addition, 〈∇w(θ), h(θ)〉 =
0 iff θ is in the set

L = {θ ∈ Θ : h(θ) = 0} = {θ ∈ Θ : ∇w(θ) = 0} . (3.14)

The convergence of the sequence (θt)t≥0 is proved by verifying the sufficient conditions
for the convergence of the stochastic approximation for Lyapunov stable dynamics given
in [1]. The first step is to prove that the sequence is bounded with probability one: we
prove that, almost surely, the number of projections ψ is finite so that the projection
mechanism (Steps 15 to 17 in Algorithm 1) never occurs after a (random) finite number
of iterations. We then prove the convergence of the stable sequence. To achieve that goal,
following the same lines as in [1], we make the following assumption.

imsart-bj ver. 2012/04/10 file: supplementary_Rev2.tex date: October 16, 2013



18 R. Bardenet et al.

Assumption 2. Let L be given by (3.14). There exists M? > 0 such that L ⊂ {θ :
w(θ) ≤M?}, and w(L) has an empty interior.

For x ∈ Rd and A ⊂ Rd, define d(x,A) = infa∈A ‖x−a‖. The following result is proved
in the Appendix.

Theorem 3.2. Let β ∈ (1/2, 1] and γ? > 0. Let (θt)t≥0 be the sequence produced by
Algorithm 1 with α > 0, the penalty term given by (3.2)-(3.3), the compact sets Kδ given
by (3.4) and γt ∼ γ? t−β when t→ +∞. Under Assumptions 1 and 2,

1. The sequence (θt)t≥0 is stable: almost surely, there exist M > 0 and t? > 0 such that
for any t ≥ t?, θt ∈ {θ ∈ Θ : w(θ) ≤M}. In addition, the number of projections is
finite almost surely.

2. Almost surely, (w(θt))t converges to w? ∈ w(L) and lim supt d(θt,Lw?)→ 0 where
Lw? = {θ ∈ L, w(θ) = w?}.

Theorem 3.2 states the convergence of (θt)t≥0 to the set L of the zeros of h; note that
this set neither depends on the initial values (θ0, X0) nor on other design parameters.
In our experiments, we always observed pointwise convergence. This is a hint that, in
practice, L does not contain accumulation points. We now state a strong law of large
numbers for the samples (Xt)t≥0.

Theorem 3.3. Let β ∈ (1/2, 1], γ? > 0, and θ? ∈ L. Let (Xt, θt)t≥0 be the sequence
generated by Algorithm 1 with α > 0, the penalty term given by (3.2)-(3.3), the compact
sets Kδ given by (3.4) and γt ∼ γ? t

−β when t → +∞. Under Assumptions 1 and 2, on
the set {limt θt = θ?}, almost surely,

lim
T→∞

1

T

T∑
t=1

f(Xt) = πθ?(f) ,

for any bounded function f .

It is easily checked (by using Lemma 5.1) that, when the function f is invariant to
permutations in the group P, πθ(f) = π(f) for any θ ∈ Θ. A careful reading of the proof
of this theorem (see the remark in Section 5.6) shows that for such a function f , when
the sequence (θt)t≥0 is stable but does not necessarily converge, it holds, almost surely,

lim
T→∞

1

T

T∑
t=1

f(Xt) = π(f) .

Finally, Theorem 3.4 yields the ergodicity of stable AMOR.

Theorem 3.4. Let β ∈ (1/2, 1], γ? > 0, and θ? ∈ L. Let (Xt, θt)t≥0 be the sequence
generated by Algorithm 1 with γt ∼ γ? t−β when t→ +∞. Under Assumptions 1 and 2,

lim
t→∞

sup
‖f‖∞≤1

∣∣∣∣E[f(Xt)1limq θq=θ?
]
− πθ?(f) P(lim

q
θq = θ?)

∣∣∣∣ = 0 .
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Here again, a careful reading of the proof shows that when f is invariant to permuta-
tions in the group P, we have (see the remark in Section 5.7)

lim
t→∞

∣∣E[f(Xt)
]
− π(f)

∣∣ = 0 .

The expression (3.13) of w provides insight into the links between relabeling and vector
quantization [13]. The first term is similar to a distortion measure in vector quantiza-
tion as noted in [5]. It can also be seen as the cross-entropy between πθ and a Gaussian
with parameters θ. The second term in (3.13) is similar to a barrier penalty in contin-
uous optimization [7]. From this perspective, Algorithm 1 can be seen as a constrained
optimization procedure that minimizes the cross-entropy. In that sense, if θ? denotes a
solution to this optimization problem, the relabeled target πθ? ∝ 1Vθ?π is the restriction
of π to one of its symmetric modes Vθ? that looks as Gaussian as possible among all such
restrictions.

Vector quantization algorithms have already been investigated using stochastic ap-
proximation tools [20]. However, stability was guaranteed in previous work by making
strong assumptions on the trajectories of the process (θt)t≥0, such as in [20, Theorem 32],
see also [20, Results 33 to 37 & Remark 38]. These assumptions ensure that (θt) stays
asymptotically away from sets where the function used elsewhere as a Lyapunov func-
tion is not differentiable. In this paper, we adopt a different strategy by introducing the
modifications of the stable AMOR algorithm and adding a barrier term in the definition
of our Lyapunov function (3.13) that penalizes these sets. One of the contributions of
this paper is to show that this penalization strategy leads to a stable algorithm, without
requiring any strong assumption on (θt).

4. Conclusion

We illustrated stable AMOR, an adaptive Metropolis algorithm with online relabeling
and proved that a strong law of large numbers holds for this sampler. The stable version of
AMOR, given in Algorithm 1, coincides with AMOR (proposed in [5]) when the penalty
coefficient α is set to zero and no re-projection is performed. In practice, we observed
that stable AMOR is very robust to the choice of α. Figure 4 illustrates this robustness
on the toy example of Section 2.2.1.

Our algorithm adapts both its proposal and its target on the fly, which makes it a
turn-key algorithm. Our results lead to a sound characterization of the target of stable
AMOR that does not depend on the initialization of the algorithm nor on the user. This
is the first theoretical analysis of an online relabeling algorithm to our knowledge. The
proof further shows how relabeling is related to vector quantization. Unlike previous
work on stochastic approximation schemes for vector quantization, we make no strong
assumptions on the trajectories of the process considered, rather, we ensure that the
appropriate constraint is satisfied by introducing penalization directly into the stochastic
approximation framework.

We now examine possible directions for future work. First, following our analysis
in Section 3, the question of the control of the convergence of stable AMOR arises, and
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Figure 9. Results of stable AMOR on the toy example of Section 2.2.1, with δq = 10−22−q , and
α = 10−3 (left) and α = 1 (right).

proving a central limit theorem would be a natural next step. Second, the online nature of
stable AMOR makes it cheaper than its post-processing counterpart, but it still requires
to sweep over all elements of P at each iteration. This is prohibitive in problems with
large |P|, such as additive models with a large number of components. In future work, we
will concentrate on algorithmic modifications to reduce this cost, potentially inspired by
probabilistic relabeling algorithms [16, 30], while conserving our theoretical results. Third,
we are interested in extending stable AMOR to trans-dimensional problems, such as
mixtures with an unknown number of components. Reversible jump MCMC (RJMCMC;
[14]) also suffers from label-switching and inferential difficulties. We will study algorithms
that combine RJMCMC and stable AMOR.

5. Appendix: proofs

Throughout the proof, let ∆π > 0 be such that

x ∈ X⇒ ‖x‖ ≤ ∆π . (5.1)

For any function f : D → R, we will denote by ‖f‖∞ = supx∈D |f(x)|.

5.1. Preliminary results

We restate (with a slight adaptation) Lemma 1 of the supplementary material from [5]
that we will use extensively.

Lemma 5.1. Let θ ∈ Θ.
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1. The sets {PVθ, P ∈ P} cover X, and for any P,Q ∈ P such that P 6= Q, the
Lebesgue measure of PVθ ∩QVθ is zero.

2. Let λ be a measure on (X,X ) with a density w.r.t. the Lebesgue measure. Fur-
thermore, let λ be such that for any A ∈ X and P ∈ P, λ(PA) = λ(A). Then
λ(Vθ) = λ(X)/|P|.

Proof. (1) Let θ ∈ Θ. We first prove that for any P,Q ∈ P and P 6= Q, the Lebesgue
measure of PVθ ∩QVθ is zero. Observe that PVθ ∩QVθ ⊆ {x : Lθ(P

Tx) = Lθ(Q
Tx)} and

Lθ(P
Tx) = Lθ(Q

Tx) iff

(x− Pµ)TPΣ−1PT (x− Pµ) = (x−Qµ)TQΣ−1QT (x−Qµ) ,

or, equivalently,

xT
(
PΣ−1PT −QΣ−1QT

)
x− 2µT

(
Σ−1PT − Σ−1QT

)
x = 0 .

Then {x : Lθ(P
Tx) = Lθ(Q

Tx)} is either a quadratic or a linear hypersurface, and thus
of Lebesgue measure zero, except if both Σ−1 = RTΣ−1R and Σ−1µ = RΣ−1µ with
R = QTP . Since P is a group, R ∈ P and the definition (3.1) of Θ now guarantees that
these two conditions never simultaneously hold when θ ∈ Θ.

We now prove that X ⊆ ⋃P∈P PVθ. For any x ∈ X , there exists P ∈ P such that
Lθ(Px) = minQ∈P Lθ(Qx). Then x ∈ PTVθ and this concludes the proof since P is a
group.
(2) Let θ ∈ Θ. Using item (1), it holds that

λ(X) =

∫
X
dλ =

∑
P∈P

∫
PVθ

dλ =
∑
P∈P

∫
Vθ

dλ = |P|
∫
Vθ

dλ .

5.2. The Lyapunov function

Lemma 5.2 establishes the existence of a Lyapunov function for the mean field h given
by (3.12).

Lemma 5.2. Under Assumption 1, the mean field h is continuous on Θ, the function
w defined by (3.13) is C1 on Θ and

1. ∇µw(θ) = −Σ−1hµ(θ) and ∇Σw(θ) = − 1
2Σ−1hΣ(θ)Σ−1.

2. 〈∇w(θ), h(θ)〉 ≤ 0 on Θ and 〈∇w(θ), h(θ)〉 = 0 iff θ ∈ L.
3. For any M > 0, the level set

WM = {θ ∈ Θ : w(θ) ≤M} (5.2)
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is a compact subset of Θ, and there exist δ1, δ2 > 0 such that

inf
θ∈WM

inf
P∈P∗

‖(I − P )Σ−1µ‖ ≥ δ1 and (5.3a)

inf
θ∈WM

λmin(Σ) ≥ δ2 , (5.3b)

where λmin(Σ) denotes the minimal eigenvalue of the real symmetric matrix Σ.

Remark 5.3. As a consequence of Lemma 5.2, observe that for any M > 0, there
exists δ > 0 such that WM ⊆ Kδ, where Kδ is defined in (3.4).

Proof. (Continuity of h) Since (I − P )Σ−1µ 6= 0 on Θ for any P ∈ P∗, it suffices to
show that θ 7→ µπθ and θ 7→ Σπθ are continuous. Since, by Lemma 5.1, the boundary
of Vθ is of Lebesgue measure zero, the continuity of θ 7→ µπθ follows from Lebesgue’s
dominated convergence theorem if, for any x ∈ X \ ∂Vθ, θ 7→ x1Vθ (x) is continuous. To
see this, note that if x is in the interior of Vθ, then there exists a neighborhood V of θ
such that for any θ′ ∈ V, x ∈ Vθ′ , and if x ∈ X \ Vθ, which is an open subset of X, then
there exists a neighborhood V of θ such that for any θ′ ∈ V, x ∈ X \ Vθ′ .

The case of θ 7→ Σθ is similar and omitted.
(w is C1 on Θ) It is shown in [5, Proposition 3 of the supplementary material] that the

first term in the RHS of (3.13) is continuously differentiable on Θ. Since ‖(I−P )Σ−1µ‖ 6=
0 for any P ∈ P∗ and (µ,Σ) ∈ Θ, the second term in the RHS of (3.13) is continuously
differentiable on Θ. By [5, Proposition 3 of the supplementary material], it holds for any
θ = (µ,Σ) ∈ Θ that

∇µw(θ) = −Σ−1(µπθ − µ) + α
∑
P

1

‖(I − P )Σ−1µ‖4 Σ−1UPΣ−1µ = −Σ−1hµ(θ)

∇Σw(θ) = −1

2
Σ−1(Σπθ − Σ + (µ− µπθ )(µ− µπθ )T )Σ−1

− α

2

∑
P

1

‖(I − P )Σ−1µ‖4 Σ−1
(
µµTΣ−1UP

)
Σ−1 + UPΣ−1µµT

= −1

2
Σ−1hΣ(θ)Σ−1 .

Hence, upon noting that hΣ(θ) and Σ−1 are symmetric,

〈∇w(θ), h(θ)〉 = −hµ(θ)TΣ−1hµ(θ)− 1

2
Trace

(
Σ−1hΣ(θ)Σ−1hΣ(θ)

)
= −hµ(θ)TΣ−1hµ(θ)− 1

2
Trace

(
Σ−1/2hΣ(θ)Σ−1hΣ(θ)Σ−1/2

)
.

The first term of the RHS is negative since Σ ∈ C+
d and the second term is negative since

(A,B) 7→ Trace(ATB) is a scalar product. Therefore 〈∇w(θ), h(θ)〉 ≤ 0 with equality iff
θ ∈ L.
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(WM is compact) We prove (5.3a). By the definition (3.13) of w, for any θ ∈ WM , we
have

−
∫

logN (x|θ)πθ(x) dx+
α

2

∑
P∈P∗

1

‖(I − P )Σ−1µ‖2 ≤M .

In particular, the first term in the LHS is a cross-entropy, and it is thus non-negative
(alternatively, see [5, Proposition 1 of the supplementary material]). Consequently, for
any θ ∈ WM , we have ∑

P∈P∗

1

‖(I − P )Σ−1µ‖2 ≤
2M

α
.

This yields ‖(I − P )Σ−1µ‖2 ≥ α
2M for any P ∈ P∗, thus concluding the proof of (5.3a).

We now prove (5.3b). Let θ = (µ,Σ) ∈ WM . Denote by (λi(Σ))i≤d the eigenvalues of
Σ. Since Σ is symmetric, there exist d × d matrices Qθ,Λθ such that Σ = QθΛθQ

T
θ , Qθ

is orthogonal, and Λθ = diag(λi(Σ)). Then

2M ≥ 2w(θ) ≥ −2

∫
logN (x|θ)πθ(x) dx

= d log(2π) + log det Σ + (µπθ − µ)TΣ−1(µπθ − µ) + Trace(Σ−1Σπθ ) (5.4)

≥
d∑
i=1

log λi(θ) + 0 + Trace(Σ−1Σπθ ) .

Set bi(θ) = (QTθ ΣπθQθ)ii. Then

Trace(Σ−1Σπθ ) = Trace(QθΛ
−1
θ QTθ Σπθ ) = Trace(QTθ ΣπθQθΛ

−1
θ ) =

d∑
i=1

bi(θ)

λi(θ)
. (5.5)

Therefore, for any θ ∈ WM ,

d∑
i=1

log λi(θ) +
bi(θ)

λi(θ)
≤ 2M . (5.6)

We now prove that for any i, infWM
bi > 0. This property, combined with (5.6), will

conclude the proof of (5.3b). Let ε > 0 be such that 2dε‖π‖∞∆d−1
π < |P| , and for

v ∈ {x ∈ Rd : ‖x‖ = 1}, let

Bvε (θ) = {x ∈ Supp(π) ∩ Vθ : |〈x− µπθ , v〉| ≤ ε}. (5.7)

Note that by Assumption 1,

π
(
Bvε (θ)

)
≤ ‖π‖∞Leb

(
Bvε (θ)

)
≤ 2dε‖π‖∞∆d−1

π .

Then, by definition of ε,

π
(
Vθ \Bvε (θ)

)
≥ |P| − 2dε‖π‖∞∆d−1

π > 0 . (5.8)
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Now, if (ei) denotes the canonical basis of Rd, then

bi(θ) = |P|eTi QTθ
(∫

Vθ

(x− µπθ )(x− µπθ )Tπ(x) dx

)
Qθei

= |P|
∫
Vθ

(Qθei)
T (x− µπθ )(x− µπθ )TQθei π(x) dx

= |P|
∫
Vθ

〈x− µπθ , Qθei〉2π(x) dx

≥ |P|
∫
Vθ\BQθeiε (θ)

〈x− µπθ , Qθei〉2π(x) dx

≥ ε2|P|π
(
Vθ \BQθeiε (θ)

)
, (5.9)

where the last inequality follows from the definition (5.7) of BQθeiε (θ). Thus, by (5.8),
bi(θ) is bounded away from zero on WM .

As w is continuous on Θ, {θ ∈ Θ, w(θ) ≤ M} is closed. From (5.3b), (5.4) and
Assumption 1, µ 7→ (µπθ −µ)TΣ−1(µπθ −µ) is bounded on WM . In addition, (5.4), (5.5)
and (5.9) imply that Σ 7→ log det Σ is bounded on WM . These properties combined with
(5.3b) imply that WM is bounded. Hence WM is compact.

5.3. Proof of Proposition 3.1

(1) By the definition (3.1) of Θ and Lemma 5.1, ∀θ ∈ Θ, x ∈ X, it holds that∫
Vθ

qθ(x, y) dy =
∑
P∈P

∫
Vθ

N (Py|x, cΣ) dy = 1 .

(2) Let (Xt)t≥0 and (θt)t≥0 be the random processes defined by Algorithm 1. Let Ft =
σ(X0, θ0, . . . , Xt, θt). We prove that for any measurable positive function f ,

E[f(Xt)|Ft−1] =

∫
f(xt)Pθt−1

(Xt−1, xt) dxt , w.p.1.

Let f be measurable and positive. Let (P̃ , X̃) be the r.v. defined by Steps 5 and 6. Let
U be a uniform r.v. independent of σ(X0, θ0, . . . , Xt−1, θt−1, P̃ , X̃). By construction, it
holds that

E[f(Xt)|Ft−1] = E
[
f(P̃ X̃)

(
1− αθt−1

(Xt−1, P̃ X̃)
)
|Ft−1

]
+f(Xt−1) E

[(
1− αθt−1

(Xt−1, P̃ X̃)
)
|Ft−1

]
. (5.10)

Now note that the projection mechanism (Steps 15 to 17 of Algorithm 1) guarantees
that θt−1 ∈ Θ with probability 1. By Lemma 5.1, θ ∈ Θ implies X = ∪P (PVθ) and

∀P,Q ∈ P such that P 6= Q, Leb(PVθ ∩QVθ) = 0.
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Thus, for any measurable and bounded function ϕ : X×Θ→ R, we have∫
X
ϕ(x, θ) dx =

∑
Q∈P

∫
QVθ∩(∪R 6=QRVθ)c

ϕ(x, θ) dx .

Applying this decomposition to the second term in the RHS of (5.10) yields

E[f(P̃ X̃)1U≤αθt−1
(Xt−1,P̃ X̃)|Ft−1]

=
∑
P∈P

∫
h(Px)

1

N(x, θt−1)
1Vθt−1

(Px)N (x|Xt−1, cΣt−1) dx

=
∑

P,Q∈P

∫
QVθt−1

∩(∪R 6=QRVθt−1
)c
h(Px)

1

N(x, θt−1)
1Vθt−1

(Px)N (x|Xt−1, cΣt−1) dx,

where N(x, θ) = |{Q ∈ P/Qx ∈ Vθ}|. Using Lemma 5.1 again,

θ ∈ Θ, x /∈ ∪P 6=Q(PVθ ∩QVθ)⇒ N(x, θ) = 1,

and thus

E[f(P̃ X̃)1U≤αθt−1
(Xt−1,P̃ X̃)|Ft−1] =

∑
P∈P

∫
h(y)1Vθt−1

(y)N (P−1y|Xt−1, cΣt−1) dy

=

∫
Vθt−1

h(y)qθt−1(Xt−1, y) dy ,

where in the last step we used the fact that P is a group. Similarly,

E
[(

1− αθt−1(Xt−1, P̃ X̃)
)
|X0, θ0, . . . , Xt−1, θt−1

]
=

∫
Vθt−1

(
(1− αθt−1

(Xt−1, y)
)
qθt−1

(Xt−1, y) dy ;

and this concludes the proof.
(3) (3) Let θ ∈ Θ. Eqn. (3.5) implies that if x ∈ Vθ, then P (x, Vθ) = 1. To prove that

πθPθ = πθ, it is sufficient to check the detailed balance condition, which states that

∀A,B ⊂ X measurable,

∫
A

πθ(x)Pθ(x,B) dx =

∫
B

πθ(y)Pθ(y,A) dy .

We consider the two summands in the definition (3.5) separately. First, it holds that

πθ(x)αθ(x, y)qθ(x, y)1Vθ (y) = |P |
(
π(x)qθ(x, y) ∧ π(y)qθ(y, x)

)
1Vθ (x)1Vθ (y)

= πθ(y)αθ(y, x)qθ(y, x)1Vθ (x) ,

so ∫
A

πθ(x)

(∫
B∩Vθ

αθ(x, y)qθ(x, y) dy

)
dx =

∫
B

πθ(y)

(∫
A∩Vθ

αθ(y, x)qθ(y, x) dx

)
dy .
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Secondly, ∫
A

πθ(x)1B(x)

∫
Vθ

(1− αθ(x, z)) qθ(x, z) dz dx

=

∫
A∩B

πθ(x)

∫
Vθ

(1− αθ(x, z)) qθ(x, z) dz dx

=

∫
B

πθ(y)1A(y)

∫
Vθ

(1− αθ(y, z)) qθ(y, z) dz .

This concludes the proof of the detailed balance condition.

5.4. Regularity in θ of the Poisson solution

Lemma 5.4.

1. For any M > 0, there exists ρ ∈ (0, 1) such that for any x ∈ X and any θ ∈ WM ,
‖Pnθ (x, ·)− πθ‖TV ≤ 2(1− ρ)n.

2. Under Assumption 1, for any θ ∈ Θ, there exists a solution Ĥθ of the Poisson
equation, i.e., Ĥθ − PθĤθ = H(·, θ)− πθH(·, θ). Furthermore, for any M > 0,

sup
θ∈WM

sup
x∈X
|Ĥθ(x)| <∞ . (5.11)

Proof. (of Item 1) It is sufficient to prove that there exists ρ ∈ (0, 1) such that for any
x ∈ X and θ ∈ WM , Pθ(x, ·) ≥ ρπθ (see e.g. [19, Theorem 16.2.4]). By (3.5), for any x ∈ X
and A ∈ X , Pθ(x,A) ≥

∫
A∩Vθ αθ(x, y)qθ(x, y) dy. By Lemma 5.2, there exists a > 0 such

that for any (µ,Σ) ∈ WM , any m, z ∈ X, and any P ∈ P, we have N (Pz|m,Σ) ≥ a.
Thus, for any θ ∈ WM and y ∈ Vθ, it holds that

αθ(x, y)qθ(x, y)1Vθ (y) ≥ a|P|
(

1 ∧ π(y)

π(x)

)
1Vθ (y) ≥ a

‖π‖∞
πθ(y) . (5.12)

Thus, we have Pθ(x, ·) ≥ ρπθ for any x ∈ X and θ ∈ WM with ρ = a/‖π‖∞.
(Proof of Item 2) By Item 1,

Ĥθ(x) =
∑
n

Pnθ
(
H(x, θ)− πθ(H(·, θ))

)
exists and solves the Poisson equation. (5.11) trivially follows from Item 1.

Lemma 5.5. Let M > 0 and κ ∈ (0, 1/2). Under Assumption 1, there exists C > 0
such that for any θ ∈ WM and θ′ ∈ Θ, it holds that

Leb(Vθ \ Vθ′) ≤ C‖θ − θ′‖1−2κ , (5.13)

where Leb(A) denotes the Lebesgue measure of the set A.
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Proof. We prove that there exist C̄, h̄ > 0, such that for any θ ∈ WM and any θ′ ∈ Θ
such that ‖θ− θ′‖ ≤ h̄, Leb(Vθ \ Vθ′) ≤ C̄‖θ− θ′‖1−2κ. Note that since Vθ ⊂ X and since
X is bounded, there exists Č > 0 such that Leb(Vθ \ Vθ′) ≤ Č. Therefore, (5.13) holds
with C = C̄ ∨ Č/h̄1−2κ.

By Lemma 5.2, w is uniformly continuous on WM+1, and there exists h0 > 0 small
enough for which[

θ ∈ WM , θ
′ ∈ Θ, ‖θ − θ′‖ < h0

]
⇒ ∀u ∈ [0, 1], θ + u(θ′ − θ) ∈ WM+1 . (5.14)

Let h̄ ≤ h0. Let θ = (µ,Σ) ∈ WM and θ′ 6= θ such that ‖θ − θ′‖ ≤ h̄.
By definition of the set Vϑ, for any x ∈ Vθ \ Vθ′ , there exists P ∈ P∗ such that

Lθ′(x) − Lθ′(P
Tx) > 0 and Lθ(x) − Lθ(P

Tx) ≤ 0. Since ϑ 7→ Lϑ(x) − Lϑ(PTx) is
continuous on WM+1, there exists u ∈ [0, 1] depending on x, θ, θ′, and P such that
Lθ+u(θ′−θ)(x)− Lθ+u(θ′−θ)(PTx) = 0. Therefore

Vθ \ Vθ′ ⊂
⋃

P∈P∗
VP ,

where
VP =

⋃
u∈[0,1]

Z
(
Lθ+u(θ′−θ)(·)− Lθ+u(θ′−θ)(P

T ·)
)
∩ X ; (5.15)

and Z(f) denotes the zeros of the function f . The proof proceeds by showing that for
any P ∈ P∗, VP is included in a measurable set with measure O

(
‖θ − θ′‖1−2κ

)
.

Let P ∈ P∗. Let B(0,∆π) = {y ∈ Rd : ‖y‖ ≤ ∆π}, where ∆π is defined by 5.1. For
any x ∈ B(0,∆π), define

lθ(x) = 2µTΣ−1(I − PT )x ,

qθ(x) = xT (Σ−1 − PΣ−1PT )x ,

Bθ,θ′ = {x ∈ B(0,∆π) : |lθ(x)| ≤ ‖θ − θ′‖κ} .

Denote by S the unit sphere {x ∈ Rd / ‖x‖ = 1}. Let u ∈ [0, 1] and tv ∈ Z
(
Lθ+u(θ′−θ)(·)−

Lθ+u(θ′−θ)(PT ·)
)
∩X where t ∈ [0,∆π] and v ∈ S. Upon noting that for any ϑ ∈ WM+1,

Lϑ(tv)− Lϑ(tPT v) = t
(
qϑ(v)t− lϑ(v)

)
, (5.16)

we consider several cases:

(i) tv ∈ Bθ,θ′ .
(ii) tv /∈ Bθ,θ′ and qθ+u(θ′−θ)(v) = 0. Then, by (5.16), lθ+u(θ′−θ)(tv) = 0 which implies

that tv ∈ Bθ,θ′ . This yields a contradiction.
(iii) tv /∈ Bθ,θ′ and qθ+u(θ′−θ)(v) 6= 0. Then t 6= 0 and, by (5.16),

t =
lθ+u(θ′−θ)(v)

qθ+u(θ′−θ)(v)
. (5.17)
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Since we assumed t ∈ [0,∆π], this ratio is positive. In order to characterize the
point tv, additional notations are required. First, note that by Lemma 5.2, there
exists C1 > 0 such that for any θ̃ = (µ̃, Σ̃) ∈ WM+1,

‖θ̃ − θ‖ ≤ h0 ⇒ ‖Σ̃−1 − Σ−1‖ ≤ C1‖Σ̃− Σ‖ .

Thus, there exists C2 > 0 such that for any θ̃ ∈ WM+1, ‖θ̃ − θ‖ ≤ h0, and for any
x ∈ B(0,∆π),

|lθ̃(x)− lθ(x)| = 2
∣∣∣µT [Σ̃−1 − Σ−1

]
(I − PT )x+ (µ̃− µ)T Σ̃−1(I − PT )x

∣∣∣
≤ C2‖θ̃ − θ‖ . (5.18)

Note that since x, µ ∈ B(0,∆π), C2 does not depend on x and θ. Similarly, there
exists C3 > 0 such that for x ∈ B(0,∆π) and θ̃ ∈ WM+1 satisfying ‖θ̃ − θ‖ ≤ h0,

|qθ̃(x)− qθ(x)| ≤ C3‖θ̃ − θ‖ . (5.19)

We can assume without loss of generality that h̄ is small enough so that

‖θ − θ′‖ ≤ h̄⇒ ‖θ − θ′‖κ − (C2 + 2C3∆π) ‖θ − θ′‖ ≥ 1

2
‖θ − θ′‖κ . (5.20)

We now distinguish three subcases.

a) v ∈ Bθ,θ′ .

b) v /∈ Bθ,θ′ and qθ(v) 6= 0. Since t ∈ [0,∆π], (5.17) implies that |qθ+u(θ′−θ)(v)| ≥
|lθ+u(θ′−θ)(v)|/∆π. Since v /∈ Bθ,θ′ , |lθ(v)| ≥ ‖θ − θ′‖κ and by using (5.18),

|lθ+u(θ′−θ)| ≥ |lθ(v)| −
∣∣lθ+u(θ′−θ) − lθ(v)

∣∣ ≥ ‖θ − θ′‖κ − C2‖θ − θ′‖ .

Hence, it holds that |qθ+u(θ′−θ)(v)| ≥ (‖θ−θ′‖κ−C2‖θ−θ′‖)/∆π, and, by (5.19),
we have |qθ(v)| ≥ |qθ+u(θ′−θ)(v)| − C3‖θ − θ′‖. These inequalities together with
(5.18) and (5.20) lead to∣∣∣∣t− lθ(v)

qθ(v)

∣∣∣∣ =

∣∣∣∣ lθ+u(θ′−θ)(v)

qθ+u(θ′−θ)(v)
− lθ(v)

qθ(v)

∣∣∣∣ ≤ C4‖θ − θ′‖1−2κ,

for some C4 > 0.

c) v /∈ Bθ,θ′ and qθ(v) = 0. Then by (5.18) and (5.19),

t ≥ ‖θ − θ
′‖κ − C2‖θ − θ′‖
C3‖θ − θ′‖

≥ 2∆π ,

which is in contradiction with the assumption that t ≤ ∆π.
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As a conclusion, we have just proved that VP is included in the union of three sets
defined by Bθ,θ′ (case i), by {tv : t ∈ [0,∆π], v ∈ S ∩ Bθ,θ′} (case iiia), and by{

tv : v ∈ S, v /∈ Bθ,θ′ , qθ(v) 6= 0, 0 ≤ t ≤ ∆π,

∣∣∣∣t− lθ(v)

qθ(v)

∣∣∣∣ ≤ C4‖θ − θ′‖1−2κ

}
(case iiic). This concludes the first step.

The second step consists in computing an upper bound for the Lebesgue measure of
each of these three sets. For simplifying the presentation, we detail the case d = 2 and
use polar coordinates (ρ, φ); the argument remains valid when d > 2 using generalized
spherical coordinates. Define tθ(φ) = lθ(e

iφ)/qθ(e
iφ). Rephrasing the conclusion of the

first step, we have VP ⊂
⋃3
`=1 V

(`)
P with

V(1)
P = Bθ,θ′ ,

V(2)
P = {(ρ, φ) / ρ ∈ [0,∆π], eiφ ∈ Bθ,θ′} ,
V(3)
P = {(ρ, φ) /eiφ /∈ Bθ,θ′ , qθ(e

iφ) 6= 0, 0 ≤ ρ ≤ ∆π, |ρ− tθ(φ)| ≤ C4‖θ − θ′‖1−2κ} .

These sets are Borel sets. By definition of WM , lθ is not identically zero and thus

Leb(V(1)
P ) = Leb(Bθ,θ′) ≤ 2∆π

‖θ − θ′‖1−2κ

‖2µtΣ−1(I − PT )‖ ≤ C5‖θ − θ′‖1−2κ

for some C5 > 0 as a consequence of Lemma 5.2. For V(2)
P , note that it is upper bounded

by the reunion of the two circular sectors in bold lines in Figure 10. This area is easily
bounded by the area of the outer rectangle, which is proportional to ‖θ−θ′‖1−2κ. Finally,

Leb(V(3)
P ) =

∫ 2π

0

[
ρ2

2

]∆π∧(tθ(φ)+C4‖θ−θ′‖1−2κ)

0∨(tθ(φ)−C4‖θ−θ′‖1−2κ)

1qθ(eiφ)6=0 dφ .

We can assume without loss of generality that h̄ is small enough so that 2C4h̄
1−2κ < ∆π.

Therefore, we can partition [0, 2π] = A ∪ B ∪ C, where

A = {φ ∈ [0, 2π] / tθ(φ)− C4‖θ − θ′‖1−2κ ≥ 0 and tθ(φ) + C4‖θ − θ′‖1−2κ ≤ ∆π} ,
B = {φ ∈ [0, 2π] / tθ(φ)− C4‖θ − θ′‖1−2κ ≥ 0 and tθ(φ) + C4‖θ − θ′‖1−2κ ≥ ∆π} ,
C = {φ ∈ [0, 2π] / tθ(φ)− C4‖θ − θ′‖1−2κ ≤ 0 and 0 ≤ tθ(φ) + C4‖θ − θ′‖1−2κ ≤ ∆π} .

This yields

Leb(V(3)
P ) ≤ 2C4

∫
A
tθ(φ)‖θ − θ′‖1−2κ dφ+

1

2

∫
B

(
∆2
π −

(
tθ(φ)− C4‖θ − θ′‖1−2κ

)2)
dφ

+
1

2

∫
C

(
tθ(φ) + C4‖θ − θ′‖1−2κ

)2
dφ (5.21)

≤ C6‖θ − θ′‖1−2κ , (5.22)
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∆π

1

2(I − P )Σ−1µ

O

Bθ,θ′

b

Figure 10. Bounding the measure of the set V(2)
P .

for some C6 > 0, since on A, 0 ≤ tθ(φ) ≤ ∆π, on B, (tθ(φ) − C4‖θ − θ′‖1−2κ)2 ≥
(∆π − 2C4‖θ − θ′‖1−2κ)2, and on C, |tθ(φ)| ≤ C4‖θ − θ′‖1−2κ.

This concludes the proof.

Lemma 5.6. (Regularity in θ of the invariant distribution πθ)
Let M > 0 and κ ∈ (0, 1/2). Under Assumption 1, there exists C > 0 such that for any
θ ∈ WM and θ′ ∈ Θ,

‖πθ − πθ′‖TV ≤ C‖θ − θ′‖1−2κ.

Proof. By definition of the total variation,

‖πθ − πθ′‖TV ≤ |P|
(
π(Vθ \ Vθ′) + π(Vθ′ \ Vθ)

)
.

Since
Vθ′ \ Vθ = Vθ \

(
Vθ ∩ Vθ′

)
, Vθ \ Vθ′ = Vθ \

(
Vθ ∩ Vθ′

)
,

it holds that

π(Vθ′ \ Vθ) =
1

|P| − π(Vθ ∩ Vθ′) = π(Vθ \ Vθ′) ,
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where we used Lemma 5.1. Then, by Assumption 1 and Lemma 5.5, there exists C > 0
such that for any θ ∈ WM and θ′ ∈ Θ,

‖πθ − πθ′‖TV ≤ 2‖π‖∞Leb(Vθ \ Vθ′) ≤ C‖θ − θ′‖1−2κ .

Lemma 5.7. (Regularity in θ of the kernels Pθ)
Let M > 0 and κ ∈ (0, 1/2). Under Assumption 1, there exists C > 0 such that for any
θ ∈ WM and θ′ ∈ WM+1,

‖Pθ(x, ·)− Pθ′(x, ·)‖TV ≤ C‖θ − θ′‖1−2κ.

Proof. From the definition of the transition kernel Pθ, we have

|Pθf(x)− Pθ′f(x)| ≤
∣∣∣∣∫ f(y)

(
αθ(x, y)qθ(x, y)1Vθ (y)− αθ′(x, y)qθ′(x, y)1Vθ′ (y)

)
dy

∣∣∣∣
+|f(x)|

∣∣∣∣∫ (αθ′(x, y)qθ′(x, y)1Vθ′ (y)− αθ(x, y)qθ(x, y)1Vθ (y)
)
dy

∣∣∣∣
≤ 2‖f‖∞

∫ ∣∣∣αθ(x, y)qθ(x, y)1Vθ (y)− αθ′(x, y)qθ′(x, y)1Vθ′ (y)
∣∣∣ dy

= 2‖f‖∞
4∑
i=1

∆i
θ,θ′(x) , (5.23)

where

∆1
θ,θ′(x) =

∫
Aθ(x)∩Aθ′ (x)

∣∣∣αθ(x, y)qθ(x, y)1Vθ (y)− αθ′(x, y)qθ′(x, y)1Vθ′ (y)
∣∣∣ dy ,

∆2
θ,θ′(x) =

∫
Rθ(x)∩Rθ′ (x)

∣∣∣αθ(x, y)qθ(x, y)1Vθ (y)− αθ′(x, y)qθ′(x, y)1Vθ′ (y)
∣∣∣ dy ,

∆3
θ,θ′(x) =

∫
Aθ(x)∩Rθ′ (x)

∣∣∣αθ(x, y)qθ(x, y)1Vθ (y)− αθ′(x, y)qθ′(x, y)1Vθ′ (y)
∣∣∣ dy ,

∆4
θ,θ′(x) =

∫
Rθ(x)∩Aθ′ (x)

∣∣∣αθ(x, y)qθ(x, y)1Vθ (y)− αθ′(x, y)qθ′(x, y)1Vθ′ (y)
∣∣∣ dy ,

and
Aθ(x) = {y : αθ(x, y) = 1} , Rθ(x) = {y : αθ(x, y) < 1} .
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We now upper bound each term.

∆1
θ,θ′(x) =

∫
Aθ(x)∩Aθ′ (x)

∣∣∣ ∑
Q∈P

(
1Vθ (y)N (Qy|x,Σ)− 1Vθ′ (y)N (Qy|x,Σ′)

)∣∣∣ dy
≤

∫ ∣∣1Vθ (y)− 1Vθ′ (y)
∣∣ ∑
Q∈P
N (Qy|x,Σ) +

1Vθ′ (y)
∑
Q∈P

∣∣N (Qy|x,Σ)−N (Qy|x,Σ′)
∣∣ dy . (5.24)

By Lemma 5.2, there exist a, b > 0 such that for any θ ∈ WM+1, m, z ∈ X, and Q ∈ P,
we have

a ≤ N (Qz|m, cΣ) ≤ b , (5.25)

so that the first term in the RHS of (5.24) is bounded by∫ ∣∣1Vθ (y)− 1Vθ′ (y)
∣∣ ∑
Q∈P
N (Qy|x,Σ) dy ≤ |P|b

∫ ∣∣1Vθ (y)− 1Vθ′ (y)
∣∣ dy

= |P|b
∫ (

1Vθ\Vθ′ (y) + 1Vθ′\Vθ (y)
)
dy

≤ C‖θ − θ′‖1−2κ ,

where we used Lemma 5.5. Let us now consider the second term of the right-hand side
of (5.24). Using the uniform continuity of w on WM+1 (see Lemma 5.2), there exists h̄
small enough such that

θ ∈ WM , ‖h‖ < h̄⇒ θ + h ∈ WM+1. (5.26)

For any θ ∈ WM , θ′ ∈ WM+1 such that ‖θ − θ′‖ ≥ h̄, there exists C1 such that∑
Q∈P

∣∣N (Qy|x,Σ)−N (Qy|x,Σ′)
∣∣ dy ≤ C1‖θ − θ′‖1−2κ .

Assume now that θ ∈ WM , θ′ ∈ WM+1 and ‖θ − θ′‖ < h̄. Denote by

Σt = (1− t)Σ + tΣ′ . (5.27)

By (5.26) and (5.3b), Σ−1
t exists and supt≤1,θ∈WM ,θ′∈WM+1

‖Σ−1
t ‖ < ∞. We can then

write ∣∣N (Qy|x,Σ)−N (Qy|x,Σ′)
∣∣ =

∫ 1

0

N (Qy|x,Σt)
∣∣∣∣ ddt logN (Qy|x,Σt)

∣∣∣∣ dt
≤ b

∫ 1

0

∣∣∣∣ ddt logN (Qy|x,Σt)
∣∣∣∣ dt . (5.28)
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In addition, by Assumption 1, there exists C2 such that∣∣∣∣ ddt logN (Qy|x,Σt)
∣∣∣∣ =

∣∣∣(x−Qy)TΣ−1
t (Σ′ − Σ)Σ−1

t (x−Qy)
∣∣∣ ≤ C2‖θ − θ′‖ . (5.29)

We thus have proved that[
θ ∈ WM , θ′ ∈ WM+1 , ‖θ − θ′‖ < h̄

]
=⇒

∣∣N (Qy|x,Σ)−N (Qy|x,Σ′)
∣∣ ≤ C‖θ − θ′‖ .

Therefore, it is established that ‖∆1
θ,θ′‖∞ ≤ C‖θ − θ′‖1−2κ.

Let us consider the second term ∆2
θ,θ′(x) in the RHS of (5.23). Note first that if x ∈ X

and y ∈ Rθ(x) ∩Rθ′(x), then by (5.25), π(y)/π(x) ≤ b/a, so

∆2
θ,θ′(x) =

∫
Rθ(x)∩Rθ′ (x)

π(y)

π(x)

∣∣∣∣∣∣
∑
Q∈P

(
1Vθ (y)N (Qx|y,Σ)− 1Vθ′ (y)N (Qx|y,Σ′)

)∣∣∣∣∣∣ dy
≤ b

a

∫
Rθ(x)∩Rθ′ (x)

∣∣∣∣∣∣
∑
Q∈P

(
1Vθ (y)N (Qx|y,Σ)− 1Vθ′ (y)N (Qx|y,Σ′)

)∣∣∣∣∣∣ dy .
Therefore, repeating the above discussion for the bound of ∆1

θ,θ′(x), it is established that

‖∆2
θ,θ′‖∞ ≤ C‖θ − θ′‖1−2κ.

To deal with ∆3
θ,θ′(x), first observe that there exists C > 0 such that for any θ ∈ WM ,

θ′ ∈ WM+1, and x, y ∈ X, we have∣∣∣∣qθ(y, x)

qθ(x, y)
− qθ′(y, x)

qθ′(x, y)

∣∣∣∣ ≤ C‖θ − θ′‖ , (5.30)

because of (3.7), (5.25), and the above discussion for the upper bound of ∆1
θ,θ′(x). Now

let y ∈ Aθ(x) ∩Rθ′(x), then we have

π(y)qθ′(y, x)

π(x)qθ′(x, y)
≤ 1 ≤ π(y)qθ(y, x)

π(x)qθ(x, y)
,

which, combined with (5.30), yields

1− C π(y)

π(x)
‖θ − θ′‖ ≤ π(y)qθ′(y, x)

π(x)qθ′(x, y)
≤ 1 .

Thus,

∆3
θ,θ′(x) =

∫
Aθ(x)∩Rθ′ (x)

∣∣∣∣qθ(x, y)1Vθ (y)− π(y)qθ′(y, x)

π(x)qθ′(x, y)
qθ′(x, y)1Vθ′ (y)

∣∣∣∣ dy
≤

∫ ( ∣∣qθ(x, y)1Vθ (y)− qθ′(x, y)1Vθ′ (y)
∣∣ ∨ · · ·∣∣∣qθ(x, y)1Vθ (y)− qθ′(x, y)1Vθ′ (y) + C
π(y)

π(x)
‖θ − θ′‖qθ′(x, y)1Vθ′ (y)

∣∣∣) dy .
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Therefore, it is established that ‖∆3
θ,θ′‖∞ ≤ C‖θ − θ′‖1−2κ.

The upper bound of ∆4
θ,θ′(x) is similar and thus its proof is omitted.

Lemma 5.8. (Regularity in θ of the solution of the Poisson equation)
Let M > 0 and κ ∈ (0, 1/2). Under Assumption 1, there exists C > 0 such that for any
θ ∈ WM and θ′ ∈ WM+1,

‖PθĤθ − Pθ′Ĥθ′‖∞ ≤ C‖θ − θ′‖1−2κ.

Proof. We recall the following result, proved in [12, Lemma 5.5, page 24]: there exists
C > 0 such that for any θ ∈ WM , θ′ ∈ WM+1, and x ∈ X,

‖PθĤθ − Pθ′Ĥθ′‖∞ ≤ C‖H(·, θ)−H(·, θ′)‖∞ + C sup
θ∈WM

‖H(·, θ)‖∞
{
‖πθ − πθ′‖TV

+ sup
x∈X
‖Pθ(x, ·)− Pθ′(x, ·)‖TV

}
. (5.31)

Here supθ∈WM
‖H(·, θ)‖∞ is finite by Lemma 5.2. Now, by Lemma 5.2 again, there exists

C > 0 such that for any θ ∈ WM and θ′ ∈ WM+1,

‖H(·, θ)−H(·, θ′)‖∞ ≤ C‖θ − θ′‖.

The upper bounds for the two last terms in the RHS of (5.31) result from Lemmas 5.6
and 5.7, respectively.

5.5. Proof of Theorem 3.2

We start by proving two lemmas.

Lemma 5.9. Let (γt)t>0 be a sequence such that
∑
t γ

2
t <∞,

∑
t |γt+1− γt| <∞, and∑

t γ
2(1−κ)
t <∞ for some κ ∈ (0, 1/2). Denote by ψt the value of the projection counter

at the end of iteration t, in Algorithm 1. Let (θt, Xt)t≥0 be the sequence generated by
Algorithm 1. Under Assumptions 1 and 2, for any M > 0,

lim
L→+∞

sup
`≥1

∥∥∥∥∥
(
L+∏̀
k=L

1θk∈WM
1ψk+1=ψk

)
L+∑̀
k=L

γk+1

(
H(Xk+1, θk)− h(θk)

)∥∥∥∥∥ = 0 w.p.1 ,

(5.32)
where H, h, w, and WM are given by (3.9), (3.12), (3.13), and (5.2), respectively.

Proof. Let M > 0. By uniform continuity of w on WM+1, let L(M) be large enough so
that

L ≥ L(M), θ ∈ WM =⇒ ∀x ∈ X , θ + γL+1H(x, θ) ∈ WM+1 . (5.33)
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Let L ≥ L(M) and let

IL,` =

L+∏̀
k=L

1θk∈WM
1ψk+1=ψk .

For any θ ∈ WM , Lemma 5.4 implies that there exists a function Ĥθ such that

Ĥθ − PθĤθ = H(·, θ)− πθ(H(·, θ)) and sup
x∈X,θ∈WM

‖Ĥθ(x)‖ <∞ .

Therefore, for `+ L ≥ i ≥ L ≥ 0, we have

IL,`
(
H(Xi+1, θi)− h(θi)

)
= IL,`

(
Mi+1 +R

(1)
i+1 +R

(2)
i+1

)
,

where

Mi+1 =
(
Ĥθi(Xi+1)− PθiĤθi(Xi)

)
, (5.34)

R
(1)
i+1 = PθiĤθi(Xi)− Pθi+1

Ĥθi+1
(Xi+1) , (5.35)

R
(2)
i+1 = Pθi+1Ĥθi+1(Xi+1)− PθiĤθi(Xi+1) . (5.36)

First note that

IL,`
L+∑̀
i=L

γi+1Mi+1 = IL,`

(
L+∑̀
i=0

γi+1Ii,0Mi+1 −
L−1∑
i=0

γi+1Ii,0Mi+1

)
. (5.37)

By Lemma 5.4, {Ii,0Mi+1}i is a martingale-increment. Therefore, by [?], a sufficient
condition for

∑
i≥0 γi+1Ii,0Mi+1 to converge to zero is∑

i≥0

γ2
i+1E

(
‖Ĥθi(Xi+1)− PθiĤθi(Xi)‖2 Ii,0

)
<∞ . (5.38)

By the parallelogram identity and Hölder’s inequality,

‖Ĥθi(Xi+1)− PθiĤθi(Xi)‖2 Ii,0 ≤ 4 sup
x∈X,θ∈WM

‖Ĥθ(x)‖2 .

Eqn. (5.38) then holds since
∑
t γ

2
t <∞. By (5.37), we obtain that

lim
L→∞

sup
`≥1

∣∣∣∣∣IL,`
L+∑̀
k=L

γk+1Mk+1

∣∣∣∣∣ = 0 w.p. 1 .

Let us now consider the term R
(1)
i+1 defined in (5.35). Summing by parts, we get

IL,`
L+∑̀
i=L

γi+1R
(1)
i+1 = IL,` γL+1PθLĤθL(XL) + IL,`

L+∑̀
i=L+1

(γi+1 − γi)PθiĤθi(Xi)

−IL,`γL+`+1PθL+`+1
ĤθL+`+1

(XL+`+1) .
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Since supx∈X,θ∈WM
‖Ĥθ(x)‖ <∞, there exists a constant C such that the RHS is upper

bounded by C
(
|γL+1|+

∑
i≥`+1 |γi+1 − γi|+ |γL+`+1|

)
. Under the stated assumptions,

this upper bound yields

lim
L→∞

sup
`≥1

∣∣∣∣∣IL,`
L+∑̀
i=L

γi+1R
(1)
i+1

∣∣∣∣∣ = 0 ,

with probability 1.

Finally, let us consider the term R
(2)
i+1 defined in (5.36). By (5.33), Lemma 5.8, and

since on the event {ψk+1 = ψk}, we have θk+1 = θk + γk+1H(Xk+1, θk), we obtain

IL,`

∣∣∣∣∣
L+∑̀
i=L

γi+1R
(2)
i+1

∣∣∣∣∣ ≤ IL,`
L+∑̀
i=L

γi+1

∥∥Pθi+1
Ĥθi+1

− PθiĤθi

∥∥
∞

≤ C IL,`
L+∑̀
i=L

γi+1‖θi+1 − θi‖1−2κ ≤ C ′
L+∑̀
i=L

γ
2(1−κ)
i+1 .

This concludes the proof.

Lemma 5.10. Let M ∈ (0,M?) and set

ΓMM?
= {θ ∈ Θ : M? ≤ w(θ) ≤M} , ι = inf

θ∈ΓMM?

|〈∇w(θ), h(θ)〉| .

Under Assumptions 1 and 2, there exist δ ∈ (0, ι) and λ, β > 0 such that

(A) u ∈ WM? , 0 ≤ γ ≤ λ, ‖ξ‖ ≤ β ⇒ w(u+ γh(u) + γξ) ≤M , and
(B) u ∈ ΓMM?

, 0 ≤ γ ≤ λ, ‖ξ‖ ≤ β ⇒ w(u+ γh(u) + γξ) < w(u)− γδ.

Proof. Define u′ = u+ γh(u) + γξ.
(A) Let u ∈ WM . Since w is continuous on Θ and the level set WM is a compact

subset of Θ (see Lemma 5.2), there exists η > 0 such that for any u ∈ WM and any u′

satisfying ‖u′ − u‖ ≤ η, u′ ∈ WM+1. Therefore, since

‖u− u′‖ ≤ λ(max
WM

‖h‖+ β), (5.39)

there exists λ1, β1 > 0 such that for any 0 ≤ γ ≤ λ1 and any ‖ξ‖ ≤ β1, u′ ∈ WM+1 (note
that maxWM

‖h‖ <∞ by Lemma 5.2).
Since w is continuous on the compact set WM+1 (see Lemma 5.2), it is uniformly

continuous (u.c.) on WM+1. Then we can choose λ2, β2 > 0 (smaller than λ1, β1) such
that

∀u ∈ WM? ,∀γ ≤ λ2, ‖ξ‖ ≤ β2 ,
∣∣w(u)− w(u+ γh(u) + γξ)

∣∣ ≤M −M? . (5.40)

This concludes the proof of (A).
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(B) Let u ∈ ΓMM?
. Following the same lines as in the proof of (5.40), there exist

λ1, β1 > 0 such that for any 0 ≤ γ ≤ λ1 and ‖ξ‖ ≤ β1, [u, u′] ⊂ WM+1. By Lemma 5.2,
this implies that w is continuously differentiable on (u, u′). We write∣∣〈∇w(u), h(u)〉 − 〈∇w(u′), h(u) + ξ〉

∣∣ =
∣∣〈∇w(u), h(u)〉 − 〈∇w(u′), h(u′)〉
+〈∇w(u′), h(u′)− h(u)− ξ〉

∣∣ .
By Lemma 5.2, ϕ : u 7→ 〈∇w(u), h(u)〉 is continuous and negative on the compact set
ΓMM?

, so there exists ε ∈ (0, ι) such that 〈∇w(u), h(u)〉 ≤ −ε on ΓMM?
. Furthermore, ϕ is

u.c. on WM+1, and, for any ε′ > 0, we can thus take β2 and λ2 small enough so that for
any 0 ≤ γ ≤ λ2 and ‖ξ‖ ≤ β2, |ϕ(u)− ϕ(u′)| ≤ ε′/2. Therefore∣∣〈∇w(u), h(u)〉 − 〈∇w(u′), h(u) + ξ〉

∣∣ ≤ ε′/2 +
(
‖h(u)− h(u′)‖+ β2

)
max
WM+1

‖∇w‖ .

Since x 7→ ‖∇w(x)‖ is continuous on the compact set WM+1, maxWM+1
‖∇w‖ is finite.

As h is u.c. on WM+1, one can pick λ2, β2 small enough so that

∀u ∈ ΓMM?
,∀γ ≤ λ2, ‖ξ‖ ≤ β2 , and

∣∣〈∇w(u), h(u)〉 − 〈∇w(u′), h(u) + ξ〉
∣∣ ≤ ε′ .

Finally, applying Taylor’s formula, we get

w(u′)− w(u) =

∫ 1

0

〈
∇w(u+ tγ(h(u) + ξ)), γ(h(u) + ξ)

〉
dt

= γϕ(u) + γ

∫ 1

0

(〈
∇w(u+ tγ(h(u) + ξ)), h(u) + ξ

〉
−
〈
∇w(u), h(u)

〉)
dt

≤ −γε+ γε′.

Since ε′ is arbitrary, this yields (B).

Proof of Item 1 in Theorem 3.2. Let M > M?, let q (depending on M) be such that
(see Remark 5.3)

WM ⊂ WM+2 ⊆ Kδq , (5.41)

and let θ0 ∈ WM . Let λ, β be given by Lemma 5.10. By Lemma 5.2, w and h are uniformly
continuous on WM+1, and there exists η > 0 such that

x ∈ WM , ‖x− y‖ < η =⇒ |w(x)− w(y)| < 1 and ‖h(x)− h(y)‖ < β . (5.42)

By Lemma 5.9, there exists an almost surely finite r.v. N such that w.p.1.,

n ≥ N ⇒ γn

(
1 + sup

x∈X,θ∈WM

‖H(x, θ)‖
)
< λ ∧ η, and (5.43)

sup
`≥1

(
N+`∏
i=N

1θi∈WM+1
1ψi+1=ψi

)∥∥∥∥∥
N+∑̀
i=N

γi+1 (H(Xi+1, θi)− h(θi))

∥∥∥∥∥ < η . (5.44)
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The proof is by contradiction. Denote by ψt the number of projections at the end
of iteration t. We assume that P(limt ψt = +∞) > 0. We can assume without loss of
generality that

w(θN ) ≤M , ψN ≥ q
on the set {limt ψt = +∞}. Define the sequence (θ′N+k)k≥0 as

θ′N = θN and θ′N+k+1 = θ′N+k + γN+k+1h(θN+k) .

We prove by induction on k that for any k ≥ 0, on the set {limt ψt = +∞},

θ′N+k ∈ WM , θN+k ∈ WM+1 , ‖θ′N+k − θN+k‖ < η , ψN+k+1 = ψN+k .

The case k = 0 is trivial since θ′N = θN ∈ WM and by using (5.42), (5.43), and (5.41) on
the set {limt ψt = +∞}. Assume this property holds for k ∈ {0, 1, ..., `}. Then we have

θ′N+`+1 = θ′N+` + γN+`+1h(θ′N+`) + γN+`+1

(
h(θN+`)− h(θ′N+`)

)
.

Since ‖θ′N+` − θN+`‖ < η and θ′N+` is in WM , we have ‖h(θ′N+`)− h(θN+`)‖ < β. Since
γN+`+1 < λ by (5.43), we can apply Lemma 5.10 to obtain θ′N+`+1 ∈ WM . In addition,

θ′N+`+1 − θN+`+1 =

N+∑̀
i=N

γi+1

(
H(Xi+1, θi)− h(θi)

)
1ψi+1=ψi +

N+∑̀
i=N

(
γi+1h(θi) + θi − θ0

)
1ψi+1 6=ψi

=

(
N+`∏
i=N

1θi∈WM+1

)
N+∑̀
i=N

γi+1

(
H(Xi+1, θi)− h(θi)

)
1ψi+1=ψi ,

where we used the induction assumption in the last equality. From (5.42) and (5.44), this
yields ‖θ′N+`+1 − θN+`+1‖ < η and w(θN+`+1) ≤ M + 1. Finally by (5.42), Eqs. (5.43)
and (5.41) imply that on the set {limt ψt = +∞}

θN+` + γN+`+1H(XN+`+1, θN+`) ∈ WM+2 ⊂ KψN+`
,

that is, ψN+`+1 = ψN+`. This concludes the induction.
As a consequence of this induction, we have ψN+` = ψN for any ` ≥ 0 on the set

{limt ψt = +∞} which is a contradiction.
Proof of Item 2 in Theorem 3.2. The proof is along the same lines as the proof of

Theorem 2.3 of [1, page 5], and is thus omitted.

5.6. Proof of Theorem 3.3

The proof consists in checking the conditions of [12, Corollary 2.8]. Let f be a measurable
bounded function.

By Lemma 5.4, (i) there exists a measurable function f̂θ such that f̂θ−Pθf̂θ = f−πθf ;
and (ii) for any compact set WM , there exists L (depending upon M) such that

∀θ ∈ WM , x ∈ X, |f̂θ(x)| ≤ L .
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By Theorem 3.2, P(ΩM ) ↑ 1 when M tends to infinity where

ΩM =
⋂
t≥0

{θt ∈ WM} . (5.45)

Therefore, in order to apply [12, Corollary 2.8], we only have to prove that almost surely,∑
k

k−1 sup
x∈X
‖Pθk(x, ·)− Pθk−1

(x, ·)‖TV1ΩM <∞ , (5.46)

lim
t
πθt(f)1ΩM = πθ?(f)1ΩM . (5.47)

By Lemma 5.7, there exists C and κ ∈ (0, 1/2) such that

sup
x∈X
‖Pθk(x, ·)− Pθk−1

(x, ·)‖TV1ΩM ≤ C ‖θk − θk−1‖1−2κ .

In addition, by Theorem 3.2, there exists a random variable K, almost surely finite, such
that for any k ≥ K,

‖θk − θk−1‖1ΩM ≤ γk sup
θ∈WM ,x∈X

|H(x, θ)| .

This yields ∑
k≥K

k−1 sup
x∈X
‖Pθk(x, ·)− Pθk−1

(x, ·)‖TV1ΩM ≤ C
∑
k≥K

k−1γ1−2κ
k ,

for some constant C > 0. This concludes the proof of (5.46). The limit (5.47) is a
consequence of Lemma 5.6.

Remark. Note that in the proof above we use that the number of random truncations
is finite almost surely (when claiming that limM P(ΩM ) ↑ 1) but only use the convergence
of the sequence (θt)t≥0 in order to establish (5.47). When f is such that πθ(f) = π(f) for
any θ ∈ Θ (for example when f is symmetric with respect to permutations), then (5.47)
holds even if (θt)t≥0 does not converge.

5.7. Proof of Theorem 3.4

Let f be a measurable function such that ‖f‖∞ ≤ 1 and set

It(f) =
∣∣E[f(Xt)1B ]− πθ?(f)P(B)

∣∣ =
∣∣E[
(
f(Xt)− πθ?(f)

)
1B ]
∣∣ ,

where B = {limq θq = θ?}. Let ε > 0. We prove that there exists Tε such that for all
t ≥ Tε, sup{f :‖f‖∞≤1} It(f) ≤ 4ε. Choose κ ∈ (0, 1/2) and δ > 0 such that

CM?+1δ
1−2κ ≤ ε , (5.48)
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where M? and CM?
are defined in Assumption 2 and in Lemma 5.6, respectively. Choose

rε such that
2(1− ρM?+1)rε ≤ ε , (5.49)

where ρM?+1 is defined in Lemma 5.4. By uniform continuity of w on WM?+2, assume
finally δ is small enough that

θ ∈ WM?+1, θ
′ ∈ Θ, ‖θ − θ′‖ ≤ δ ⇒ |w(θ)− w(θ′)| ≤ 1

rε + 1
. (5.50)

There exists T 1
ε such that for any t ≥ T 1

ε ,

P
(
‖θt−rε − θ?‖ ≤ δ, lim

q
θq = θ?

)
≤ ε/2 .

Hence, for any t ≥ T 1
ε , It(f) ≤∑3

i=1 I
i
t(f) + ε, where

I1
t (f) =

∣∣E[
(
f(Xt)− P rεθt−rε f(Xt−rε)

)
1‖θt−rε−θ?‖≤δ]

∣∣ (5.51)

I2
t (f) =

∣∣E[
(
P rεθt−rε

f(Xt−rε)− πθt−rε (f)
)
1‖θt−rε−θ?‖≤δ]

∣∣ (5.52)

I3
t (f) =

∣∣E[
(
πθt−rε (f)− πθ?(f)

)
1‖θt−rε−θ?‖≤δ]

∣∣ . (5.53)

We first upper bound I1
t (f). For θ, θ′ ∈ Θ, let

D(θ, θ′) = sup
x∈X
‖Pθ(x, ·)− Pθ′(x, ·)‖TV .

Applying [4, Proposition 1.3.1], it comes for any t ≥ T 1
ε ,

I1
t ≤ E

2 ∧
rε−1∑
j=1

D(θt−rε+j , θt−rε)1‖θt−rε−θ?‖≤δ


≤ E

2 ∧
rε−1∑
j=1

(rε − j)D(θt−rε+j , θt−rε+j−1)1‖θt−rε−θ?‖≤δ

 ,

where we used that for any q, ` > 0 D(θq+`, θq) ≤
∑`
j=1D(θq+j , θq+j−1). By Proposi-

tion 1, the random iteration number τψ where the last projection occurs in Algorithm 1
is finite with probability one. Let then Mε be such that 2P(τψ ≥Mε) ≤ ε/2, so that

I1
t (f) ≤ E

2 ∧
rε−1∑
j=1

(rε − j)D(θt−rε+j , θt−rε+j−1)1‖θt−rε−θ?‖≤δ1τψ≤Mε

+
ε

2
.

Let now T 2
ε ≥ T 1

ε ∨ (Mε + rε) be such that

t ≥ T 2
ε ⇒ γt sup

x∈X,θ∈WM?+2

‖H(x, θ)‖ ≤ δ .
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Then, by recurrence and using (5.50), we obtain that on {‖θt−rε − θ?‖ ≤ δ}, θt−rε+j ∈
WM?+1 for all 0 ≤ j ≤ rε. By Lemma 5.7 this yields for any t ≥ T 2

ε

I1
t (f) ≤ CM?+1[ sup

x∈X,θ∈WM?+2

‖H(x, θ)‖]1−2κ
rε−1∑
j=1

(rε − j)γ1−2κ
t−rε+j +

ε

2
,

and there exists T 3
ε ≥ T 2

ε such that t ≥ T 3
ε ⇒ sup{f :‖f‖∞≤1} I

1
t (f) ≤ ε.

We now consider I2
t (f); it holds

I2
t ≤ E

[∥∥P rεθt−rε(Xt−rε , ·)− πθt−rε
∥∥

TV
1‖θt−rε−θ?‖≤δ

]
.

By (5.50), ‖θt−rε − θ?‖ ≤ δ ⇒ θt−rε ∈ WM?+1 and thus, applying Lemma 5.4 and (5.49)

sup
{f :‖f‖∞≤1}

I2
t (f) ≤ 2(1− ρM?+1)rε ≤ ε .

The derivation of the upper bound of I3
t is similar to that of I2

t , with Lemma 5.4 replaced
by Lemma 5.6 and uses (5.48). Details are omitted.

Remark. The proof above can be easily adapted (details are omitted) to address the
case when (i) (θt)t≥0 is stable but does not necessarily converges, and (ii) the function f is
bounded and satisfies πθ(f) = π(f) for any θ ∈ Θ. The main ingredients for this extension
are to replace 1B with the constant function 1, and to replace the set {‖θt−rε − θ?‖ ≤ δ}
with {θt−rε ∈ WM?}. Since the sequence is stable, limM P(ΩM ) ↑ 1 where ΩM is given
by (5.45). M? is chosen so that E

[
|f(Xt)− π(f)|1ΩM?

]
≤ ε. We then obtain, for such a

function f ,
lim
t→∞

E [f(Xt)] = π(f) .
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