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S1. Proof of the hardness result.

PROOF OF PROPOSITION 1. Fix € € (0,1), and let (P,),cre be a disintegration of P
into conditional probability measures on [0, 1]; see Section S8.1 and Lemma S34. Since A
has finite VC dimension, it follows from the Vapnik—Chervonenkis concentration inequality
(Lemma S36) that there exists a finite set T C R? for which

1
il Z Lgeay — M(A)‘ <e
teT

(S sup
AcA

Since T is finite and p has no atoms, we may choose a radius r > 0 sufficiently small that
1(Uper Br(t)) < e. Now define a function p : RY — [0,1] by p(z) := 1 A A\,ep{(2/7) -
|z — t||oc }» noting that p is Lipschitz. Further, define a family of probability distributions
(Ql?):r:ERd on [07 1] by

hy)dQ.(y)= |  h(p(x)-y) dP:(y),
[0,1] [0,1]

for all Borel functions & : [0, 1] — [0, 1], and define a probability distribution Q on R% x [0, 1]
by Q(A x B) = [, Qz(B)du(x). It follows that (Qu)zcre is a disintegration of Q into

conditional probability measures on [0, 1]. In addition, taking a random pair (X?,Y?) ~ Q
we see by (S40) that for y-almost every x € R,

no(e) =E(YQ| X0 =1z) = / ydQa(y) = plz) - /[0 | PAPA) = () ()

[0,1]

Hence, we may extend the definition of g to R? in such a way that ng(-) = p(-)np(-),
which is a product of Lipschitz functions, so is itself Lipschitz; thus, ) € Pr, (). Note also
that for every ¢t € T, we have ng(t) = p(t)np(t) =0 < 7, so T N X, (ng) = (). Moreover,

no(x) < np(x) for all x € RY, so X, (ng) C X, (np). Hence, since A controls the Type T
error at the level v over Prip(u), we have

Po{AC RI\T)NXr(np)} 2 Po{AC (R\T) N X:(ng)} =Po{A C X:(ng)}
(52) >1—a.
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Now Q. = P, for x ¢ | J,cr Br(t). Hence

H?(P,Q) <2TV(P,Q) < 2”<U Br(t)> < 2,

teT
SO
(83)
TVQ(P®”,Q®”) < H2(P®n’Q®n) _ 2{1 _ H(l _ HQ(?“Q)> } < 2(1 —(1- e)n).

i=1
Note that by (S1) if A € A satisfies ANT = 0, then u(A) < e. Hence, by (S2) and (S3), we
have
Pp({u(Ad) <e}n{AC X (n)}) >Pp(AC (RU\T) N X (np))
>1—a—/2(1—(1—¢€m).
Letting € \, 0 gives (3). Thus,
R,(A) = M, —Ep(u(A) | AC X, (n) = (1—a) - M.

Finally, note that for any £ > 0, we may take A¢ € A with pu(A¢) > M; — & and Ae C X7 (7).
Hence, we may define A € A that takes the value A¢ with probability o and () otherwise; it

A~

has regret R (A) < (1 — «) - M; + « - £. Letting £ \, 0 yields the final equality in (4). [

S2. Proof of the upper bound in Theorem 2. Recall that Theorem 2(i) will follow from
Lemma 3, together with Propositions 4 and 5.

PROOF OF LEMMA 3. We begin by showing that sup,c 5 7(x) <t := 7+ \-diams (B)P.
Indeed, suppose for a contradiction that there exists some xo € B with n(xo) > t. Since
B ¢ X-(n) there also exists x; € B with j(x1) < 7. Since 7 is continuous there exists z2 on
the line segment between ¢ and 1 with n(z2) = 7. Thus, since xg, x2 € X (1) we have,

(o) < nw2) + n(xo) — n(x2)] <7+ A+ [lwo — 22|15,
<T4+ N |lzo — 212 <7+ X - diame (B)? =t < n(x),

a contradiction which proves the claim sup,cp7n(z) < t. Now let m :=n - i,(B) =
Eie[n} Iix,epy- If m =0, then p,,(B) = 1, so we may assume without loss of generality
that m > 1. Let (i;) jem) denote a strictly increasing sequence such that X;, € B for all
J € [m]. For each j € [m] let Z; :=Y}, so that

E(Zj | Dx) :E(}/ij |Dx) :n(Xij) <t.

Moreover, (Z;) jc[m are conditionally independent given Dx. Writing Z :=m ™" 3", Z;
we have by construction of p,,(B) that

P(pn(B) < a | Dx) = ]P[exp{—n  fin(B) - Kl(iin(B), 1)} < o and i3, (B) > ¢ ‘ DX}

=P{kl(Z,t) > m~! - log(1/a) and Z >t } Dx}<a,

where the final inequality follows from a Chernoff bound, stated for convenience as
Lemma S38. O

The proof of Proposition 4 will rely on the following lemma.
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LEMMA S1. Fix B € (0,1], A>1 and P € Pua(B,\,7) with n € Fua1 (8, X, X-(n)).
Then, with (B(f))ée[i]’ o and m as in Algorithm | (and setting Uy, := 0 when L - pPn(By) >

«), we have
]P’< U B g X-(n) ' Dx> <a.
e[l ]

PROOF. Let N(Dx):={B € H(Dx): BZ X-(n)} and K := [N (Dx)|. Note that

LU sz =0c{ U soz x| =-0-

Leta] te(l)
On the other hand, when K > 1, we may write
l:= min{¢ € | (L] : By e N(Dx)},
so that when L - Pn(B(1)) < a, we have Uee[g ]B(g ¢ X,(n) if and only if ¢ < ¢,. When
K > 1, we have by the minimality of (that (<L +1—K,so

P(zeL[i] By € X- () DX>
— IP({ } )t (UL Bn(Bgy) < a}

DX>
g }ﬂ{L pn(B(l) <a} ‘ Dx)
(L+1=0)pu(Bg)) <a} n{L-pa(By)) < a} | Dx)

where we applied Lemma 3 for the final inequality.

PROOF OF PROPOSITION 4. By construction in Algorithm 1, we have AOSS(D)
Ureie.) Be)- Hence the result follows from Lemma S1.

N O

We now turn to the proof of Proposition 5. A key component of this result is the following
proposition, which states that if a set A € A may be covered with a finite collection of hyper-
cubes {Bi,...,Br} C H, each with sufficiently large diameter and p-measure, in such a
way that n is well above the level 7 on each By, then flosg will return a set of u-measure
comparable with ;(A).

PROPOSITION S2. Take o € (0,1), n €N, § € (0,1), (8,A) € (0,1] x (0,00), P €
Pusi(8,A) and A C B(RY) with dimyc(A) < oo and O € A. Given L € N, suppose that
there exist hyper-cubes {Bu,...,Br} € H such that minger) u(By) > 8log(4L/6)/n,
minge(r) diame (By) > 1/n and

(S4)

. 2log(22+4L - n(2 +logyn)/(a - 6))
min< sup n(x) — 2\ - diame (B B \/ } >T.
qE[L]{a:qun( ) (By) n - u(Byg)
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Let ST:=/J g€lL] By, and taking the universal constant Cyc > 0 from Lemma S36, let

Jns(ST =sup {pu(A): A€ AﬂPOW(ST)} —2Cye \/dim\;(}(«‘t) B \/21og(2/5)'

n

Then
P{1(Aoss(D)) < Jns(SH} <.
Proposition S2 will be proved through a series of lemmas below.
LEMMA S3. Let P be a distribution on R% x [0, 1] having marginal p on R, and let

6 €(0,1), n € Nand L € N. Suppose further that { By, ..., B} € H with minge() u(Bg) >
8log(4L/0)/n, and define the event

{0 2)-)

PROOF. By the multiplicative Chernoff bound (Lemma S39), for each g € [L],

P (i (B < 22 - P(i tixeny <5 n(B)) <o~ u(B) < -

The result therefore follows by a union bound. O

Then P(E7 5) < 6/4.

LEMMA S4. Let P be a distribution on R? x [0, 1] having regression function n : R% —
[0,1], and let 6 € (0,1), n € N and L € N. Suppose that {By,...,Br} C H and define the

event
) . log(4L/9)
Eap 1= £ n(z) — in(By) — 4| 29 ) <o b,
o= L ng o) () Van By <

where the empirical distribution [i, and empirical regression function 7, are defined in (7)
and (8) respectively. Then P(E5 5) < 6/4.

PROOF. By Hoeffding’s inequality (Lemma S38), for every g € [L], we have

. : log(4L/6) g
P B,) < inf —/——————|Dx | <—.
SEUp (nn( a) < xleann(:E) 2n - fin(By) X)=4L
The result now follows by the law of total expectation, combined with a union bound. O

LEMMA S5. Let (5,A) € (0,1] x [1,00), P € Pusi(B,A), 6 € (0,1), neN, LeN
and & € (0,1). Suppose that for some {Bu,...,Br} CH we have mingcr) u(By) >
8log(8L/d)/n and

210g(4L/(§ . (5))
0 (By) } =T

Then, recalling the definition of the p-values p,, from (9), we have

. )
P (s (B 26) <5

qc

(S5) min{ sup 7(z) — 2\ - diamy, (B,)® —
q€[L] \zeB,
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PROOF. By Lemmas S3 and S4, we have P(£7 s U &S 5) < /2. On & 5 N Ey 5, we have
for each ¢ € [L] that

log(4L /5
(B > of oto) =2
—A-di o [los(4L/d)
szélgqn@) A diamoo (By) n - pu(Bqg)
' q

where we used the fact that P € Pz (8, ), (S5) and the fact that \/2(a + b) > \/a+ v/b for
all a,b > 0. Thus, on & 5 N & 5, we have for every ¢ € [L] that

n- M(Bq)

ﬁn(Bq> Sexp(_ 9

. kl{ﬁn(Bq), T+ A diamoo(Bq)ﬁ}> <&,
as required, where the final bound uses Pinsker’s inequality. 0

We can now complete the proof of Proposition S2 before returning to complete the proof
of Proposition 5.

PROOF OF PROPOSITION S2. We begin by defining events

) Q
Epy = {qné?ﬁp”(Bq) < 2‘171(2-1-1022271)},
A i A log(2/6
AeA ! "

By Lemma S5, with £ = o/ (2%n(2 + logyn)) € (0,1), and Lemma S36, we have P(E5,, U
Vo) < 6. On Epy we have each p,(B,) < 1, which implies fi,(B,) > 0, and since
diama, (By) > 1/n we deduce that B, € H(Dx).
Now L = [H(Dx)| < 2%n(2 + log, n), so on the event Epy, for each ¢ € [L], we have
L -pn(B,) < o, and hence B, = By (q)) for some £(q) < {,. Thus, on the event Epy we have
ST C Uree.) Be)- Now take ¢ > 0 and choose A¥ € ANPow(ST) with 1(AZ) > sup {u(A):
A€ ANPow(ST)} — (. It follows that Af € ANPow (UZG[BQ] B(y)) and hence on the event
Epy N Eyc that

,U/(AOSS) > ﬂn(Aoss) — CVC\/diIn\;C(‘A) _ \/logéi/é)

> fn(A5) — Oy [ vA) _ flo2/0)

> p(Ag) — 2C'VC\/dim\;C(A) - \/210g(2/6) > Jas(ST) = ¢.

n

Letting ¢ \, 0, we conclude that ,u(flogs) > Jm(s(ST), on the event Epy N Eye, as required.
]
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PROOF OF PROPOSITION 5. We define p := k(28 + d) + (7,

0-—8>‘d/510 &
) B+ aAd )’

e = AY/BgRIP ¢ .= 9PY/P and A := 2%0P5/P. We initially assume that A < 1, so that
1/n < X489 <r, <274 Now choose a maximal subset {z1,...,21} C Xe(w) N
X1 a(n) with the property that |2, — 24||oo > 74 for distinct ¢,q" € [L]. Then X¢(w) N
Xrya(n) € Ugerr) Br.(zq) and B, j3(x4) N B, 3(z¢) = 0 for distinct ¢,¢" € [L]. Now,
since £ <1,

- ,U( T*/3(xq)) _ 1 Lo
P T ‘s-<r*/3>d'“(g37*/3<mq)>

(3\V/Byd - gdyd/B
< < <
= 9Byt+dr)/p — §  — 3.

For each ¢ € [L] we can find B, € H such that B, (z,) C B, and such that r, <

diames (By) < 9~ [ogs(5:)1+1 < 4r,, which is possible since 7, < 1/4. We then have that
for every ¢ € [L],

= 0 8
N(BQ) > /‘(Bm (xq)) >&- Til > W > Elog(ﬁlL/(S).

Hence

min{ sup n(zx) — 2\~ diamoo<Bq),B . \/210g(22+dL ‘n(2+logyn)/(a- 5)) }

a€[L) \zeB, n- u(Byg)
2log (23+434n2 log,(n) /(o - 5))
> mi —9l+28 § B _ 2
B ;161&1]{77(%) " n-&-rd

0
93 N B 7
>T+A=27 X7 f-T‘f-A‘UﬁET?

50 (S4) holds. Thus, taking ST := UqG[L] By D X¢(w)NXrya(n), when A < 1 we may apply
Proposition S2 to see that with probability at least 1 — §, we have

2log(2/9)

((Aoss) >sup {u(A) : A€ ANPow(ST)} — zcvc\/dim\;C(A) B \/

2log(2/96)

n

> sup {u(A) : A € AN Pow(Xe(w) N Xrpa ()} — 2Cve \/dimvnc(,zt) - \/

(S6)
> M, — Capp - (€54 A7) — QCVC\/dim\;lc(.A) _ \/2log(2/5)

n

= M, — Capp - (14 2%7) 9557/ QCVC\/OhmVC(A) _ \/21055(2/5)
n

n

(S7)
ZMT—C{(Ad/ﬂ'lo&(n/(a/\é)))mlﬁ%+ <10g+(1/5)>1/2}’

n n
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where C' > 1 depends only on d, k, v, Capp and dimyc(.A). Finally, if A > 1, then (S6)

holds because ,u,(fioss) >0, M, <1 and Capp > 1, so (S7) holds too. This completes the
proof of the first claim of the proposition.
For the second claim, observe by Proposition 4 that for o € (0,1/2],

M, — EM(AOSS) < M, — EM(AOSS)
P(Aoss € X-(n)) ~ 1—a

Sé{<)\d/ﬁ-log+(n/a)>m<2ﬂim+ 1 }

R, (Aoss) <

n n1/2

where the final bound follows by integrating the tail bound in the first part of the proposition.
O

S3. Proofs of claims in Examples 1, 2 and 3 and a related result. Example 1: The
marginal density of X is convex on (—oo, —v —2] and on [v+2, 00), so writing ¢ for the stan-
dard normal density, we have w(z) = ¢(x — v) + ¢(z + v) for |x| > v + 2. Hence there exists
& € (0, 1/@ depending only on v, such that for £ € (0,&] we have X¢(w) = [—z¢, z¢],

where z¢ € [V + \/2 log )1/25 U+ \/2 log( 21//225)} satisfies ¢(z¢ —v) + P(xe +v) =&.

In fact, when v > 2, we may take & = 2¢(v ) Moreover, 1(z) = e ‘f/()g:;’()ﬂy) = 1+61 —,
so Xr1a(n) = [Ty,r,A,00), where 2, - A = log( (T+A)) By reducing &y > 0, depend-

ing only on v and T, if necessary, we may assume that —x¢ <z, - A < x¢ for £ € (0,&o] and
A€ (0,(1—7)/2]. Writing ® for the standard normal distribution function, we deduce that
for § € (0750]’

sup{M(A) : A € Ay N Pow (Xg(w) N XT+A(77))} = ,u([x,,ﬂ-,A, xf])
1 1 1 1
= 5@(335 —v)— 5@(;10,,,T7A —v)+ §<I>(:B§ +v)— §<I>(acl,’T,A +v).
Using the Mills ratio and the mean value inequality, it follows that for £ € (0, &),

M —sup{p(A) : A € Aini N Pow (Xe(w) N Xrya(n))}

1 1 1 1
=1- 5‘1’(555 —v)— 5‘5(335 +v) - 5‘1’(%,7,0 —v)— 5‘5(%,7,0 +v)

1 1
+ 5@ ra =)+ 5@ + )

2
< dlag —v)  @dlre+v) A
T 2@ —v) 2 +v) 2rvr(1—7)
< 3 A .
D) 210g((27r)%/2£0) 2nvr(1 —7)

On the other hand, when & > &y, we have
M; —sup{p(A) : A € Ains NPow (Xe(w) N Xrpa(n))} <1< 5
0

We conclude that P € Papp(Aint, 7, 5,7, T, Capp) With £ =~ =1 when we take

CA;p_mm{ \/210g<(27r)1/2§0> V2rvr(1—1), go}
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Example 2: Given €y > 0, choose Ag € Appr N Pow (X-(n) N [0,1]4) such that p(Ag) >
M, — €y. Let 9Ag and r = (r1,...,74) € [0,1]¢ denote the boundary and vector of side-
lengths of Ag respectively. Observe that for A < ¢ - §/7,

X () 2 (€ Xe(n) N[0, 17 s distoc(2,57) > (A /)
D {x € Ay : distoo(z,0A0) > (A/e) }

Moreover, Xg(w) = [0,1]¢ for £ < 1. For s > 0, let Ag(s) := {a: € Ag : distoo (z,0A0) > s}
Note that for s < min;r;/2,

d d

1(Ag) — H — T —2s) <1-(1—29)" < 2ds.

j=1 j=1

On the other hand, if s > min ¢(q /2, then
d
1(Ao) — p(Ao(s)) < 1;[ [Crﬁ r; < 2s.

Then, for € € [0,1] and any A € (0, ¢ - 6/7],
M, — sup{,u(A) t A€ Appr N POW(Xg(w) N XT+A(7]))} <M, — M(AQ(A/QW)

< My — (o) +24(2)

A
<€+ 2d(7)’7.
€

On the other hand, if ¢ > 1 or A > ¢ §'/7, then for any x € (0,00) and Capp > 1/(€76), we
have

M, — sup{M(A) tA e Ay N POW(Xg(w) N XT+A(77))} <1< Chapp- (E"+AY).

Since €y > 0 was arbitrary, the conclusion follows.

Example 3: Writing wy := w,,, g for the lower-density of 1., we have for x € R? that

) . o La(Bo(@) N Bi(0))
wﬁ(w) > te[“iﬁiyoo) gﬁ(t) {Ed (Bl/\t(l') N Bt(o)) A re(O,lf/\t) rd }

> sup (1A td)g,.;(t)

te[l|zl oo 00)

gr(l|7lloo) A gi(1) if 5 € (0,2)
- 1 1 .
<mgﬁ(”m||oo)) /\gn<m> if k € [2,00)

Now, writing a4, := W “Tye>2) + Lgeoy and g := gi(aq,x), we have for § < &y
that Xg(wi) 2 {z €R?: || 2|00 < Re ay |, Where

deyyion_1Y\ 1/d
%) if K € (0,1)
Re = { log"/ d(ﬁ) =t

¢ /(kad -1\ 1/d ;
(1 {29¢/ (ka3 )} ) if & € (1,00).

k—1
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We now calculate that
(S8) My = My (Pyyy Anpr) = 1 ([0,00) x R¥71) =1/2.

Observe that X, (A (1) = {z = (21,...,24) € R : 21 > (A/A)?} for A € (0,1 — 7).
Hence, for A € (0,1 — 7] and { < &4, we have

sup { s (A) : A € Appy NPow (Xe(wi) N Xria(ny)) }
> sup { g (A) 1 A € Appr N Pow(Bp, , .(0) N ([(A/A)7,00) x RI71)) ]
= f1x(Bp. ... (0) N ([(A/N)7,00) x R71))

1 _ _
9 > St (B, (0) = 1o (0,(8/3)7) < B,
For z = (x1,...,24) " €R%, letx_1 := (x9,...,24)" € R%"L. Then
e (0. AAP) x R = [ ge([17]l) d
[0,(A/A)7]xRd=1
AN
(S10) S/ 9r([|z=1]|o0) dx = bg s - <)\> ;
[0,(A/A)7]xRd=1
where

bd,n = /]Ral1 gn(”£—1”oo> dr_1 = (d - 1) : 2d1/0 yd72gn(y) dy

(1-4) /9T (21 /d)T (=1

iy ifke(0,1)
={T(2-1/d)/2 ifr=1
(k=1)/4T(2—1/d)T(24+15) .
P pRe— if Kk € (1,00).
Moreover, for & <&y, < 1/29,
5 a [T a4 24¢ \"
(S11) 1~ i (Bre ... (0)) =d-2 vy gy dy = | -
Re¢ a,x Qg
But for A>1—17or{ > ¢y,, we have
1 A \7 £EN\"
Sup{uH(A):AEAhprﬁPOW(Xg(wﬁ)ﬂXT+A(777))}2025— —) g .
We deduce from (S8), (S9), (S10) and (S11) that P, , € Papp(Anpr, 75 £, 7, T, Capp), With

bcll/"f 1 o' 2d 1 K
Capp = | =E v Y vV— | .
App < A 1— 7'> <ag WK §d,,$>

Given a closed set S C R?, we define the projection I : R? — S by

[Ig(z) := sargmin ||z — z||2,
zeS

where sargmin denotes the smallest element of the argmin in the lexicographic ordering.

PROPOSITION S6. Let P be a distribution on R? x [0,1] with marginal ju on R% and
continuous regression function n. Suppose that A C B (Rd) has the properties that
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* there exists a bounded set Ay € AN Pow (X, (n)) such that p(Ag) = M;;

* writing 0 Ag for the topological boundary of Ao, there exist sq > 0 and C//xpp > 0 such that
for every s € (0, so], we can find Ao(s) € A with Ay(s) C {x € Ap : dista(x,0A40) > s},
satisfying

p(Ag) — p1(Ao(5)) < Clapp - 5-

Suppose that there exist c., k > 0 such that

w(x) > cy - si/k
for all x € Ag(s) and s € (0,50). Assume further that S, := {x € R% : n(x) = 7} is non-
empty, and that there exists 0o > 0 such that 1 is differentiable on S; 5, := S; + 069 B2,1(0).
Let Ao, := Ao + 00B21(0) and assume that e = infyea,, ns, 5, |Vn(z)ll2 > 0. Then
Aci=infreqns, 5, 1(®) =7 >0, and P € Papp(A, 7, 5,1, Capp) for

Chpp 1 1 }

max(ct, €9) soct’ min(egdy, Ax)

Capp > max{

PROOF. Since 7 is continuous on the intersection of the closure of Ay with the comple-
ment of S; 5., and since this intersection is compact but does not contain any point in S;, we
have that A, > 0. By Cannings, Berrett and Samworth (2020, Proposition 2), we have

tVn(z
(S12) Sy = {$o+n(0):m0€5},|t| <50}.
V7 (x0)]|2
Moreover, from the proof of that result, we see that for any x € S;5,, we can take xg =
IIs, (x) in the representation (S12). Now suppose that z € Ay N S, 5,, so that x = x¢ +
tV’I’](ZUo)/HV?](I‘o)”Q with zg = HST (ZL‘) € A0750 NS, and |t| = diStQ(SL',ST) < dp. Since the
line segment joining x and x is contained in Ag s, N Sy 5,, we have

s13) In(z) — | = '77<f'30+ W”“”) o) 2 Jtleo.

V(o) ll2

Now observe that int(Ag) N S; = () because if z¢ € int(Ag) NS, then for sufficiently small
t > 0, the point zg — tVn(x0)/||Vn(xo)|l2 would belong to Ay and X-(n)¢, a contradiction.
Hence, for x € Ay we have disty(z,S;) > dista(z,0Ap), so for A < min(epdo, Ay),

{xeAp:n(x)e[r,T+A)} S A NS, as, € {x € Ag:dista(x,040) < Afe}.

Then, for any £ € (0, c*s(l)/”) and A € (0, min(epdp, Ay)),

M; —sup{p(A): A€ ANPow(Xe(w) N Xrpa(n)} < p(do) — ,U,(AO(S’: A A))

* €0
& A ’
SC,App' <C’:/\60 SCApp'(g +A)

On the other hand, if £ > c*s(l)/ " or A > min(egdp, As), then provided we take Capp >
max{1/(socf),1/min(edo, As) }, we have

1 K A

< Capp - (" +A).
The result follows. O
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S4. Proofs from Section 3.

S4.1. Proofs from Section 3.1. In order to prove Theorem 6, we first establish Proposi-
tion S7 below, which will be useful in the sequel. Recall the definition of A, g » from (10).

PROPOSITION S7.  Given § € (0,1) and x¢, 1 € R%, we let

55,?1(:60,@) = ﬂ{ < In(zo) = n(@1)] = Anpalzo) V An,g,x(m)) < j\n,ﬁ,ﬁ < )\},

lwo — z1]1%

where the intersection is over all (3,\) € (0,1] x [1,00) for which P € Py (8, \,7) and
Minge 7, 2317(2) — Ap ()} > 7. Here we adopt the convention that an intersection

over an empty set is the entire probability space. Then Pp (55?1(1:0, ml)) >1-0.

The proof of Proposition S7 will make use of the event
_ Doremn)M(Xe) - Lix,eB,,  (x.)} log(4n2 /5
Evsi= ) {ﬁn(Bw(Xi)) _ e ‘9/(%/)}.
i) L{x.eB.,, (X))}

(i,k)€[n]>
PROOF OF PROPOSITION S7. Fix n € N, § € (0,1), and xg, 71 € R%. We will assume
without loss of generality that 7(x) > n(x1) and min{w(xo),w(x1)} > 0 since otherwise
the index set in the intersection in the definition of 571;131(1}0, x1) is empty. By Hoeffding’s

lemma and a union bound, we have P(EZ,HDX) < /2. For ¢ € [n] and = € {xp, 21} we let
se(x) := (nw(x)/(20)) ~? and define the event

[nw(x)/2]
Ena(wo,1) = () N {HXYiep) N By (@) 2 £}
x€{xwo,z1} l=[41og(4n/s)]
Observe that for « € {zg,z1} and ¢ € {[4log(4n/d)],...,|nw(x)/2|} we have s;(x) €
(0,1] and
(S14) (1(Bs,(2) (7)) > w(@) - sp(x)" = =

Hence, by the multiplicative Chernoff bound (Lemma S39) we have IP’(SM75(x0,x1)C) <
/2. Consequently, to complete the proof it suffices to show that &, 5 N &, 5(w0,71) C
S}igl(xo,ml). To this end, fix (3,\) € (0,1] x [1,00) for which P € Py (8, A\, 7) and
n(x) — Ap(z) > 7 for x € {xo,z1}. On the event &, 5, we have for any (i, k) € [n]? with
U p.6(i,k) > X that

YoM Xe) - Lix,cn (. ~ 2
tefn] B X o (B (X)) — log(4n?/0) 4 x- (2rin)®.
Zte[n} IL{X,feB,.i'k(Xl)} 2k

Hence, B, ,(X;) C X;(n), since n € Fua (B, A, X-(n)). Consequently, on the event &, ,
given any (i, j, k, ) € [n]* with min{¢,, 5.5(i,k), 5505, €)} > A, we have

— D © n2
in (Br..(Xi)) = 0 (Br, . (X;)) — \/W

_ 2t 1K) - Uix.eB,,  (x0y  2orem 1(Xe) - LxeB, ,(x,)1

n

Zte[n] I[{XteB”‘,C(Xi)} Zte[n} H{X,EBT]_,[(X])}
<) Al (X)) A <N (1K= XG0 4l ),
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and hence g%nﬂ’(;(i,j, k,¢) < X. Thus, on the event &, 5, we have 5\,175’5 <A

For the lower bound, assume without loss of generality that A,,(z) V A, (21) < 1 and let
io = sargmin;e ) || Xi — zolleo and iy 1= sargmin,cp, [| Xi — 21/|oo. For o € {zo, 21}, let
(@) = {An(2)/ (240} and ky () := |2 - w(x) - pu(x)?]. Since for each z € {zq, 1},
the fact that A, () <1 ensures that % - w(z) - pp(2)? > 4log(4n/8) + 2, we have ky(z) €
{[4log(4n/d)],...,n}. Hence, on the event &, 5(xo, z1) we have { X, }icpn) N By, (2)(2)| >
ky ()} for z € {zo,z1}.

Now fix j € {0,1}, so that || X;, — 2j|lcc < pn(z;) and 7, 4 (2,) < 2 pn(z;). Then
n(x;) > 1+ Ap(x;) = 7+ 24XMpn(25)? and 1 € Fus (B, N, Xr (1)), so ij,kn@j)(Xij) -
Bs.p, () () € Xr(n). Since Ay, (25) < 1, we also have \/21og(4n?/6) [kn(25) < Ap(x5) /4.
Hence, on the event &, s N &, 5(xo,21), we have

B log(4n?/é
ﬁn (Brij,kn(zj)(Xij)) T Qg]in(x]/))

Zte[n] n(Xt) ) ]]-{XtEBTijykn(wj) (XIJ)} W

2]

m(xj)—A-{s-pn(xj)}ﬁ—T—,/W

38
24
= 15X pu(x)P > XN (275 4 w)’.

Pn\Tj ij,kn(x;)

> teln] L{xieBr, oy (X % kn ()

> Ap(j) — = Ap(zy) — % “Ap(zj) = g Ap(y)

Thus, on the event &, 5 N &, s(xo, 1), we have 1[1”75’5 (ij,kn(a:j)) > \. Hence, whenever
Ap(z0) V Ap(z1) <1, we have on the event &, 5 N €, 5(x0, 1) that

On5.5 (10,1, kn(20), kn(21))
0 (Brog ey (Xio)) = i (Br., oy (Xi))) — /2108 (402 /) [ {kn(20) A K (21)}

1, = Xiallo0 + o o o) 7o)

n(wo) = n(w1) = 2M{3(pn(w0) V pu(w1)) } = 21/210g(4n2/8) [{kn (w0) A b (w0)}
0 — 21[|% +3 {2+ (pn(w0) V pn (1)) }”

o (@) = n(@1) = 5 (An(xo) V An(a1))

o = 215 + & (An(ao) V An(ay))

o 1@o) =n(x1) = 3(An(z0) V An(x1)) — An(x0) V An(1) | n(x0) —n(a1)

>

o — 2112 X lzo — z1[|38
o (o) = (1) = An(zo) V An(21)
B lwo — z1]1%

Thus, whenever A,,(zo) V Ay (1) < 1, we have on the event £, s N &, 5(xo, x1) that

Ang,s > mind ey, 5.5 (io, kn(20)), Pn.5.5 (i1, kn (1)), On 5 (i0, i1, kn(20), kn (1)) }

> mind 1@0) =1(@1) = An(@0) V An(a1) B
B { o — 1|5 }
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{ n(zo) —n(x1) — Ap(wo) V An(x1) n(wo) —n(z1) }

2o — 2115 "o — 2115

> min

_ n(zo) — n(x1) — An(wo) V Ap (1)

2o — z115% ’

as required. O

PROOF OF THEOREM 6. Theorem 6 is an immediate consequence of Proposition S7 com-
bined with the continuity of probability from below. O

The following four lemmas are used in the proof of Corollary 7.

LEMMA S8. Let i be a Borel probability distribution on R® with lower density w. Then
p({z € R?: w(z) = 0}) = 0. Hence supp(u) = cl({z € R?: w(z) > 0}).

PROOF. Let Z := {z € R?: w(x) =0} and fix € € (0,1). By the monotone convergence
theorem we may choose R > 0 sufficiently large that ,u(Z \ BR(O)) < €/2 and let £ :=

¢/(2-{5(R+1)}). By Reeve, Cannings and Samworth (2021, Lemma S4),
u(Z N Br(0)) < u({x € Br(0):w(z) <&}) <{5(R+1)}7- &= %

Hence p(Z) =0, so pu({z € R?: w(z) > 0}) = 1, and consequently supp(u) C cl({z € R?:
w(z) > 0}). Moreover, if z € cl({z € R? : w(z) > 0}) then every neighbourhood of = has
positive p-measure, so z € supp(u). The second conclusion therefore follows. O

Recall the definitions of Az(P) and Preg(7) from Section 3.1.

LEMMA S9.  Given any distribution P € Preg(7), we have Ag(P) = Ag,(P) where

Agp(P) = Sup{w cxo # x1,m(x0) An(z1) > Tw(T0) Aw(z1) > 0} V1.
o — T1|loo

PROOF. First note that if 7(x) > 7 then = € X-(n) and if w(z) > 0 then x € supp(u), so
Agp(P) < Ag(P).

Since P € Preg(7), it has a continuous regression function 7 such that ! ([7,7 +¢)) C
supp(u) for some € > 0. Now take distinct points zg,x1 € supp(p) N X-(n), and suppose
initially that n(zo) An(x1) > 7. Given € > 0, it follows from Lemma S8 that we may choose
xh, 2} € R with n(z)) An(z)) > 7 and w(z}) Aw(a}) > 0 such that

max{|zo — |, 21 — #lloc, [1(20) = n(@p)|, In(z1) —n(=1)|} <€

Consequently, we have

(o) = n(a1)| < [n(xh) — n(a)] +2€ < Agy(P) - ||z — |15 +2¢

B

(S15) <Agp(P) - (lwo — 21|00 + 2€')" + 2€".

Since ¢ > 0 was arbitrary, we deduce that |[n(zo) — n(z1)| < Agy(P) - [lzo — lego for
all distinct zo, 21 € supp(p) N7~ ' ((7,1]). Now consider zo,z1 € X;(n) N supp(u) with
n(zo) =7 and n(x1) > 7. Given € € (0, min{e,n(x1) — 7}), by the intermediate value the-
orem we may choose x5 on the line segment between x and x1 with n(z2) =7 + €. It then
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follows that 25 € n~*([7,7 4 €)) C supp(u). By the consequence of (S15), we deduce that
[n(2) = n(21)] < Ag(P) - s — 1]|%, and hence

In(wo) —n(z1)| < (o) — n(w2)| + [n(22) — n(21)]
<€ +A5p(P) - lwo — 21 || < €+ Ngp(P) - [|wo — 21|

Again, since € € (0,min{e,n(z1) — 7}) can be taken arbitrarily small, we deduce that
In(zo) —n(z1)| < Agp(P) - [|zo — x1||50 for all xg,z1 € X;(n) Nsupp(p) with n(xy) > 7.
Finally, when 7(zo) = n(x1) = 7, the inequality |n(zo) — n(z1)| < Ag,(P) - ||zo — xlﬂgo
is immediate. Thus, we have |n(zo) — n(x1)| < Agp(P) - [|zo0 — :c1||fo for all xg,z; €
Xr-(n) Nsupp(p), s0 Ag(P) < Agj(P), as required. O

Our next lemma adapts ideas from McShane (1934).
LEMMA S10.  Given P € Preg(7) with Ag(P) < 00, we have P € Py (3,A5(P),T).

PROOF. Since P € PRreg(7), it has a continuous regression function 7y such that

Mo ! ([7’, T+ E)) C supp(u) for some € > 0. We construct a regression function 7y : R? —
[0,1] by

ey o {LAEL)  25(P) - [ =l 12 € supp(u) 0 e m) i € 2 )
e no(z) otherwise.

First note that X, (1) = X; (1 ). We claim that | () — n1(2/)| < Ag(P) - |z — 2/||3 for all
x, ¥’ € X (np). Indeed, if supp () N Xy (1) = 0, then ny (x) = m ('), and if 2z € supp(p) N
XT(T]()), then

n0(2) + Aa(P) - ||z = 2[5 < mo(2) + Ag(P) - ||z = 2|15 + Ag(P) - & — 2|5,
and taking an infimum over z € supp(u) N X (no) yields 71 () — m(2') < Ag(P) - ||z —
x’ Hgo By interchanging the roles of x and 2/, the claim follows. Our second claim is that
n(x) = no(x) for all = € supp(u) N X (no). To see this, first observe that 7, () < no(x) for

all z € supp(u) N X7(no) by definition of 77;. On the other hand, by definition of A(P), we
have for any z € supp(u) N X (1) that

mo(@) <1o(2) +A5(P) - |2 — 2l

so taking an infimum over z € supp(u) N X7 (o) yields no(z) < n;(x). In particular, it now
follows that 7jg(x) = 11 (2) for all 2 € supp(u). To show that n1 € Fusi (8, As(P), Xr(11)).
we must also verify that 7; is continuous. To this end, let 2 € R?. If 19 () > 7, then since 79
is continuous, we have for all sufficiently small ¢ > 0 and z € B, (z) that 1(z) > 7. Hence
Im(z) —m(2)] < Ag(P) - [l — 2||% by our first claim, so 7; is continuous on 75 ((7, 1]).
On the other hand, if ng(z) < 7 + ¢ then, again, since 7 is continuous, for all sufficiently
small € >0 and 2 € B () we also have have 19(z) < 7 + ¢, so x,z € supp(u) N X (1o).
We deduce from our second claim that n;(z) = no(x) and 71(z) = no(z), so again, n; is
continuous at x. We conclude that 1, € Fyg (B,Aﬁ(P),XT(m)). Moreover, since 79 is a
regression function for P, and ng(z) = 1 (z) for all x € supp(u), we have that 7 is also a
regression function for P, and hence P € Py (6 ,25(P), 7'). O

Recall the definition of the classes Pﬁﬁl(ﬁ , A, T, €) from Section 3.1.
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LEMMA S11. Fix € (0,1] and A > 1. Then

Pree(T) NPrat(B, A7) € | P8 A\ €).
€€(0,00)3

PROOF. Let P € Preg(7) N Pusi(B,A, 7). Then Ag(P) < A < oo. Moreover, since
P € Preg(7), we have by Lemma S9 that P € Pﬁrél(ﬁ , A, T, €) for sufficiently small € =
(€0, €1,€2) € (0,1]3. O

Finally, we are in a position to prove Corollary 7.

PROOF OF COROLLARY 7. First, since P € PHOI(B,)\,T,E) we may choose zg,r1 €
Xrieo(n) with ||zg — 21|00 > €1, as well as min{w(zg),w(z1)} > €2 and

3
(o) =n(z1)[ = 7 - Ag(P) - [lwo — w1l Tga, pys1y-
Writing A = A3(P), we have by Lemma S10 that P € Pyz1(3, A, 7). Define
log(2n/9) )5/ (2B+d)

n{w(xo) Aw(x1)}
>B/ 26+d)

A =192 \Y/ @A) (

< 192. \d/@8+d) . (108(2n/9)
B n- e

Observe that when n € N and 6 € (0,1) satisfy (11), we have A < min{eo,)\ef/ll}. By
Theorem 6 we have Pp(€) > 1 — §, where

_ { [n(zo) — n(z1)| — A

o — z115%

IN

/A\nﬁ’g < )\}.

Note that on the event £, we have 25\71’5,5 <2\, andif A=1, then A < 25\,1’5,5 is immediate.
On the other hand, if A > 1 then on the event £, we have

o) —ne)lZA L3, hd
lro—aifle T4 4o — il

)

A
2

as required. O

PROOF OF THEOREM 8. First, for " € [1,00), let Sy, denote the union Ufe[fan] By ap-
pearing in line 6 of Algorithm | when it is applied with oy, = (/2) A (1/n) in place of
a and ) in place of ), and let Ay denote the corresponding output set in 4. Observe that
if Ay < A] then Sy, C Sy, since the p-values in (9) satisfy p,, 5z () < P (-). Conse-
quently, fin(Ax;) < fin(Ay,) by line 6 in Algorithm 1.

(i) Let P € Preg(7) N Pﬁél(ﬂ, A, 7,€). By Lemma S10 we have P € Py (5,Aﬁ(P),7).
Hence, by Lemma S1 and Corollary 7 we have

Pp(Apss(D) € X:(n)) <Pp(Sy & Xr(n))
<Pp(Sy,p i - (n ) +Pp(Sos,, . LS p)
) +P

(S16) <Pp(Sy,p) L X-(n P (2N 8.0, <A5(P)) <20, < a.
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(ii) Now suppose that P € Preg(7) N Prrsy (8, A, 7, e) N Papp(A, £,7,7,Capp). On the
event {2\, 5., < 2A3(P)}, we have Nn(Aoss) “”(A%\n,ﬁ,an) > MH(AQAﬁ( y)- Hence, by
Lemma S36, we have

EP{N(AQAﬂ(P)) 1(Abgs) } =Ep{u( A2/\ P)) —/ln(fiaﬂ(P))
+ fin(Aoy, (p)) = fin(Abss) + fin(Abss) — 1(Apss) }

(S17) < 20ve dlm‘f(“‘t) _—_—

By Lemmas S10 and S1 we have IPP(AQAB(P) ¢ XT(n)) < ]P)P(SQAB(P) ¢ Xf(n)) < ay. It
follows by (S16) and (S17) that

Ep{ (M- — i(Abss)) - Lz cv. iy} S EP{M: — 1(Apgs) } +Pr(Abss(D) & Xr(n))
<Ep{Mr — (Ao (p) } + 6, +20n
<Ep{(M: - N(A2A3(P))) ' 11{,waua)ga(n)}} +Pp (Azgﬁ(P) Z X (1) + 6 + 20
<Ep(My — Aoy, (p)) | Aoa,p) € Xr()) + 30 + 6,°

= RT(AQAB(P)) + BOén + €n

SC’{(W-Iog+((a/2)7\(l/m>>m+ 11/2}+3an+e

where we have used Proposition 5 with C’ in place of C for the final inequality. The regret
bound on Aoss follows by once again using Pp (AOSS(D) CX(m)=1-a,>1/2. O

S4.2. Proofs from Section 3.2. Recall the definition of the event &, 5 from Section S4.1.

LEMMA S12. Let P be a distribution with regression function 1 € Fyz (3, \,R9). On
the event &, 5, we have v > 8- u — log A for all (u,v) € f‘L 5

PROOF. If (u,v) € fL 5+ then we can find (4, j, k, £) € [n]* with @L 5547, k,€) < oosuch

)

where we have applied 1 € Fyys1(5, A, R?) in the final inequality. O

that u = élﬁjé(i,j, k,0) and v = @L’Bﬁ(i,j, k,¢). Thus, on the event &, 5, we have

vZ—log(

> —log (A([| X — Xjlloo + i +750)°) = B-u —log A,

2o n(Xe)  Lixen,  (x0y 2= 1K) - Lixen, (x,)
e YxeB,,  (x)) > e Yxen,,,(x,))

Now for z € R and s > 0 we define the event £,,(, s) := {fin(Bs(x)) > & - u(Bs(2)) }.

LEMMA S13. Let P be a distribution with regression function 1 € Fug (3, \, R?). Sup-
pose that xo, x1 € Ro(p,co) and s € (0,1] satisfy

log(4n2/4)

comsd +6As°.
0

[n(zo) —n(w1)] >4
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Then, on the event £, 5 N E,,(x0,s) N Eu(1, ), there exists (u,v) € f‘;rl’a with

u> —log(||zo — 21 |0c + 65)

log(4n?/5) 6)\55) '

< -1 - —4
o< 1o lnfeo) )]~ 4y E0S

PROOF. Suppose that the event &, s N E,(xo,s) N E, (21, s) holds. Then in particular,

(S18) min{jin (By(w0)) i (Bo(r1)) } 2 5 - o5 > 0.

As such, we may choose X; € By(x) and X; € Bs(z1). Moreover, letting k = ¢ = [2 -
co - 5], it follows from (S18) that max(r; k,7j¢) < 25. Now take u = éIL 5 50,7,k £) and
v = @L 5567,k €) so that (u,v) € f;rl s- The lower bound on u follows. The upper bound

on v then follows from our event combined with the facts that B, (X;) C Bss(zo) and
By, (X;) € Bss(z1). O

LEMMA S14. Let P € PITIBI(B,)\,)\O,CO,TO) with \g < Xand 0 <r <71’ <ry<1. Let
5(;[(1“, ') denote the event that there exist (u,v),(u,v") € fjus with v > —log(7r), v >
—log(7r"), v < —log((1/2)Aor?) and v' < —1log((1/2)Ao(r')?). Then provided that

d/B
n (16)\//\0) 210 8
S19 > )
(519) log(4n2/8) — co max )\(2).7a25+d’ rd [

we have P(&, 5N Eg(r, ) >1-06.

PROOF. Since P € 731261(5, A, Ao, €o,T0), there exist zo, x1, ), ) € Ro(p, co) with ||z —
21lloe <7 2 — & loe <77, [0(0) — (1] = Ao -+ and [n(zh) — n(&h)] = Ao - 5. Now
let s :={\o/(16A)}/# - € (0, 1] and introduce the event

Es(ryr’) =&y 6N ﬂ Eulz,s).

z€{xo,x1,2},2) }

When (S19) holds, we have

2 d/B 2
log(4n2/6) +6“86:4\/(1&/&)) log(4n2/5) 3 Aorﬁgékorﬁ‘

_|_ —_ .
cons? conrd 8

Hence, by Lemma S13, on the event 55(7“, r’) and when (S19) holds, there exist pairs
(u,v), (u',v") € f‘:ru; with u > —log(7r), u' > —log(7r'), v < —log((1/2)Aor?) and v’ <
—1log((1/2)Xo(r")?). Thus, when (S19) holds, we have

]P’(En’(; N 5;(7“, T‘/)) > ]P’(é:(;(r, 7"/)) >1—-4

by Hoeftding’s inequality (Lemma S38) and the multiplicative Chernoff bound (Lemma S39).
O

We are now in a position to prove Theorem 9.



18 H. W.J. REEVE, T. I. CANNINGS AND R. J. SAMWORTH

PROOF OF THEOREM 9. First, for n € N satisfying (13), let

L 210(16)\/)\0)‘1/5 log(4n2/5) 1/(28+d)
" o+ A2 n '

and r], := =1/ (7+2d) Tpe sample size condition (13) ensures that (S19) holds and that r,, <
71, <719, 0 we may apply Lemma S14 to obtain P(&, 5 N El(rn, n)) >1-6.

Next, we show that on the event &, 5 N &l 5 (rn,77,) we have Bn,é < . Indeed, suppose
that £, 5 N Eg(rn, 1) N {Bp,s > 0} holds and let (ug,vo) € f‘jui be such that vy < é(jg;. By
Lemma S12 we have vy > (3 - ug — log \. Since ST(rn, r7.) holds, there exists (u1,v1) € f‘im
with u; > —log(?rn) and v; < —10g((1/2))\0rn) < Buy + log(14/Xo). Moreover, by (13)
we have uq > > ! 3+d o > 2u0. Hence,

vi — vy —log f(n) _ 81 log(14A/Ao) — log f(n)

Bn,é <
Uyp — up Up — up

<5,

where we have again applied (13) to ensure that f(n) > 14X/ \o.

Finally, we show that on the event &, s N Sg(rn, r) we have Bn’(; >p— W.
Indeed, on Eg(rn,ril) N {Bns < B}, there exists (ug,vp) € fL,a with uy > —log(7r/,) and
v < —log((1/2)Ao(r},)?) < B - ug + log(14/Xo). Now fix any (u,vi) € fL(S satisfying
uy1 > 2ug. By Lemma S12 we have v; > 3 - u; — log A and consequently,

fgs im0 logf(n) o log(14M/ ) Hlog f(n) g AT +2d)log f(n)
i o Uy — U logn
as required. -

The following lemma is analogous to Corollary 7 but with an estimated Holder exponent.

LEMMA S15. Fix f € (0,1], de N, XA € [1,00), Ao € (0, ], cojro € (0,1] and € =
(€0,€1,€2) € (0,1]* and take P € Preg(T) N Ppiy (B, A, 7,€) N PHOl(ﬁ,)\ Ao, Co,T0). Let

log(9/7)

n € Nand 6 € (0,1) be such that 14\/ g < f(n) < n2G+2a1ee0/) the sample size condi-
tion (13) holds and

I 2(7+2d) | A 12 2+d}1/5
(520) og@/d) > o {f(n) (192 max{eo 5 }) .
Then
2(7+2d)log f A As(P) <
Pp<{5_ ( loésg ) <3, < B} { 2 < s S AP )}>21_25'

PROOF OF LEMMA S15. For brevity we write Az = Az(P). Since P € P (B, A, T, €),
we may choose g, x1 € Xy, (n) with ||zg—21]|co > €1, as well as min{w(zg),w(z1)} > €2
and

3
o) = n(w1)[ > 5 Ag - llv0 — 2|5 - Lyp, -

By Lemma S10, we have P € Py (8,5, 7). Hence, on the event {Bns < B} we have

P € Pygi(Bns5, Ag, 7). Letting 32 := max{ — 2(7 + 2d) log f(n)/log n, 0}, it follows from
Theorem 9, combined with the sample size condition (13) and the lower bound on f(n), that
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]P’(,Bb < BAW; < ﬁ) > 1— 4. In addition, define A,, := A B s (xg) VA B s (x1), so that
Pn,8:23 n, n,5,28
provided f3,, 5 > BZ we have
R Br.5/(2Bn.5+d
A, =192 \/@nstd) ( log(2n/9) >B 5/ @B s+d)
= n{w(xo) ANw(x1)}

b
log(2n/5)\ /) Ager
< . S =1 7 <
<192 Aﬁ ( . _mln{eo, D },

where we have applied the sample size condition (S20) in both inequalities. In particular, we
have minge(y, »,317(2) — Ap g a(7)} > 7 on the event {BEL < Bn,s} and under our sample

size conditions. Consequently, if we let 5'57 2,0 denote the event

n(20) — n(z1)] — A

Bn.s
oo

Es.a,0 =By < Bns<B}IN { =< S\n,gmﬁ < )\5},

|0 — 21|
then it follows from Proposition S7 that IP’(E,:@ Aﬁ“(g) > 1 — 24. Thus, to complete the proof it
suffices to show that on the event 55’ 2,0 We have A 5 < 25\n B 56" If A 5= 1, then the required

bound is immediate. On the other hand, if A 5> 1, then on the event 557 A0, We have

. - — A A
NP LR LV BT SO U L S SV
P8 Bn.s 4 12 2
[0 — 21|08
since ef P > 7/9 by the upper bound on f(n). The result follows. O

We conclude this section by applying Lemma S15 to prove Theorem 10.

PROOF OF THEOREM 10. We proceed similarly to the proof of Theorem 8. For 3’ €
(0,1], A" € [1,00) we let S5, ), denote the union Uree.. 1 By appearing in line 6 of Al-
gorithm | when it is applied with &, in place of a, ' in place of 5 and )\’ in place of .
Furthermore, we let A, , denote the corresponding output set in A. If 3, < 8] and A\, > ],

B’,A 0 1 0
then Athe p-values inA (9) satisty pn,g; x (1) < Pn,gyz (1), and so S5, y, © Sg, . Consequently,
fin (A% \) < fin(AF, y,) by line 6 in Algorithm 1.

(i) Suppose that P € Preg(7) N Piiu (8, A, 7, €) N Pl (B, A, Ao, co,70). Then by Lem-

mas S1, S10 and S15, we have

Pp(Abss(D) € X:(n)) < PP(SETL’&M%’B ¢ X:(n))
SPp(Sha, £Xm) +Pr(S3 o5 E5Ga,)
< ]P’P(SE;,AB ¢ X:(n)) +Pp (Bna > B) + ]P)P(25\n’5717&7l7dn <Ag)

<3an <«

as required.
(ii) Now suppose further that P € Preg(7) N Py (8. A, 7,€) N PEIGI(IB’ A, Ao, €0,70) N
Papp(A, k,7,7,Capp) so that by Theorem 9 we have Pp({fimdn < BZ} U {5\ A L >

n’ﬁn-,&n ;O

Aﬁ}) < 2&,, where ,BEL is defined as in the proof of Lemma S15. Moreover, on the event
{Bna, > B23N {j‘nf;, & < g}, we have

Qn

fin(Adss) = fin(AG ) 2 in(AGs oy )

Br.an ’2/\"~Bn,dn ,én
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Hence by Lemma S36,

A0 dlmvc(_A)
Ep{n(AG, 21,) = 1 A0ss)} < 2Cve — = evC.

By Lemma S1, we have Pp (AEZ,QA;, ¢ X (n)) <Pp (522,72&,3 ¢ X:(n)) < ép. Observe that

we may assume without loss of generality that (2&5)‘” # < n, because otherwise the regret
bound is vacuous. Thus, combining with the derivation in (i), we have

Ep{(M: — u(Adss)) - Liap co n)}} <Ep{M, — p(Abss) } +Pp(Abss(D) € X-(n))
<Ep (O~ ()} + 030,

<Ep{(M; - M(AE;@/&)) (Ae CXT(n)}} +Pp (A?amgﬁ ¢ X-(n)) + en” + 3a

<Ep(M: — u( A%z,zAB) | AZ’MAﬂ C Xr(n)) + 46 + €, ¢

B, 22

= R ( A,Cé;,zgﬁ) +4dn + ey ©

b
2,448 CT R 1
< c’ % . log+ (g) (285, +d)+8 N 4G, 6
n O, nl/2

2(8—8% kv 22 a/B 3 2 m(2ﬁiﬁdw>+ﬁw 1
< O’ p e+ 7( 2s) log, (—n ) + + 4oy, + e
n a nl/2

Bry
4y (7T42d) (2A )d/ﬁ 3n2 ®(2B+d)+B~ 1
<o (B e, (50)) T s

where in the third to last inequality we applied Proposition 5 with Q” in place of C by noting
that P € Pus(8,25,7) € Prsi (52, 2)g, 7). The regret bound on A{yq follows by using (i)
once again. O

S5. Proof of the upper bound in Theorem 11. Recall that the upper bound in Theo-
rem 11 will follow from Proposition 13. First we state the following consequence of Hoeffd-
ing’s inequality.

LEMMA S16. Fix (5,A) € (0,00) x [1,00) and let P € Pys1(5,A). Suppose that D =
(X5, Yi))ie[n] ~ P®"andlet Dx = (X;);e[n)- Givenz € RY, h € (0,1, and o € (0,1) define
. o es (Qf}h)_leg . ()\ . I”Lf6)|/\/'gc7h|1/2 + logg/a)) ifQﬁh is invertible,
| 1 otherwise.

Then
max{P(ii(z) = n(z) > Ay (@) | Dx), P(n(x) = i(z) > Ay n(a) | Dx) } <

PROOF. Fix arealisation of Dx = (X;);cy- It suffices to restrict our attention to the case
where Qf , is invertible. Writing u; := <eo, (Qﬂ )_1<I>6 (Xl)> for i € [n], we have

STow @l 0l () =eg (@17 Y @l wl )Tl (X)) =equl,
'LAENQ:JL ZENwh

=n().
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Hence,
<€o,ﬂ75,h> = eg(Qf, ) Vzﬁh = Z Yi-eg ( Q ) o ﬁh(Xi)
zGNT h
= Z u; - <{Yi—77(Xz’)}+{77(Xz‘)— Xi)} A+ (w xh’q)ﬂh(Xi»)
iENI,h
(S21) = > w- ({Yz —n(Xi)} + {n(X:) = T[] (Xz')}) + ().
€N B

Note also that
1

220 " wi= > e (Q1,) el (X0l (x)T(Q,) Ten=e] (QF,) eo.

ZENT h ZENT h
In addition, since P € Pyz1(6, ), for each i € NV, j,, we have
(523) n(X:) = T2 (X)| <A+ [1X — 2|5 <A B,

and so by (523), the Cauchy—Schwarz inequality and (S22), we have

D wi {n(X) = TPMIXD) Y <A Y il

'LENxh ieNm,lr

-1
(524) <X\l - ed (@2,) e
We conclude, by the definition of 7j(x), (S21), (S22), (S24) and Hoeffding’s inequality, that

P (i)~ ) 2 Arafe) —P( > we (i = |0 5 u) <a

iENI,h iENx,h

The other inequality follows similarly. O

LEMMA S17. Fix (5,)) € (0,00) x [1,00) and let P € Pys1 (5, A). Suppose that D =
((Xi, Yi))ie[n] ~ P®" and let Dx = (Xi)ie[n)- Then for any closed hyper-cube B C R? with
diamyo(B) <1 and inf, cpn(z’) <7, and any o € (0,1), we have

P(p;(B)<a|Dx)<a.
PROOF. Recall that z € R? and r € [0,1/2] denote the centre and {,-radius of B, and

1
that h = (2r)'"7 € [0, 1]. Again, it restrict our attention to the case where Qf ,, is invertible.

Since infepn(z’) <7 and P € Py (B, \), we have n(x) < 74 X -5, and hence the
lemma follows from Lemma S16. O

PROOF OF PROPOSITION 12. This follows from Lemma S17 in the same way as Propo-
sition 4 followed from Lemma 3. O

We now turn to the proof of Proposition S2, which will rely on several lemmas. For a > 0,
let /C(a) denote the set of measurable sets K C B (0) with L4(K) > a.

LEMMA S18. Givend €N, g € (0,00) and a € (0,1), we have

Cmin(d, B,a) :=1A inf {Amm< /K <I>g71(z)¢’371(z)Td£d(z)>}>0.

KeK(a)
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PROOF. Suppose, for a contradiction, that cyin(d, 3,a) = 0. Then we can find a sequence
(K®),en in K(a), along with a sequence (w®) ey with w® € RV ||w®||; =1 and

lim <w(e), @g 1(z)>2 dLy(z) = Elim (w(z))T </ @gl(z)(bg ()7 dﬁd(z)>w(z)
k) %m K 2 k)

L—o0 J (o)

(525) =0.

(0

By moving to a subsequence if necessary, we may assume that lim,_,. w'® = w* for
some w* € RY(A) with Hw*Hg = 1. Now since z — (w*,CDg,l(z)) is a non-zero polyno-
mial, the zero-set Z,- := {z € By(0) : (w*, @gl( =0} satisfies L£4(Z,+) =0 (e.g.
Okamoto, 1973, Lemma 1) In addition, by the continuity of z — (w* q)g 1(2)), the set Z,,-

is closed. By countable add1t1v1ty of the finite measure Ly|p, (0)» there exists €, > 0 such
that £4(Z5) < a/2 where Z. = UZGZJ; B(z) = Z4+ + B.,(z). By continuity again,

(w*, @gl(z)ﬂ > 0. Now choose ¢ € N sufficiently large that

O :=inf, e, (0)\2n

da
sup ||w® — w*]], < ———,
= 2y V(B
so that, by Cauchy—Schwarz,
* 660
’<w(£)7(1)€,1(z)>} ’ w’ (I)gl ‘ - | - w a‘I’g,l(ZM > 0a — 9 /7\17(5)\ ’ H(I)g,l(z)Hz
da
> -
-2
for all £ > g and z € B1(0) \ Z¢. Hence, for all £ > £,
9 a- (52
| wO0af@ acae > [ (w00, ) = S o
K® KO\ 2
which contradicts (S25), and completes the proof of the lemma. O

LEMMA S19.  Suppose that v € (0,1), £ € (0,00), 8 € (0,00), z € R and r € (0,1/2]
satisfy By(x) N Roy(p) N Xe(fu) # 0. Given any h € [2r,1], we have p(Bp(x)) > v - & -
(h/2)4. In addition, if either (3 € (0,1] or 3r < vh, then

(S26) Amin (/B ( )(pf,h(z)@f,h(z)T du(z)> > 9 (d+1) ) O 1(Bp(z)),

where . = cin(d, 8,27 ) € (0,1] is taken from Lemma S18.

PROOF. First choose o € B,(x) N Ry (1) N Xe(f,,), noting that By, (o) € Bh—p(0) C
By,(z). Hence, since g € Ry, (1) N Xe(f,1), we deduce
_ _ _ h\?
p(Bn(2)) = p(Br—r(w0)) = t(Bpy2(z0)) > v - <2> €.
For 3 € (0,1], we have @fh(-) = 1, so (S26) is immediate. Suppose now that 3r < vh,
80 that B(14y)(h—r)(T0) 2 Bhir(z0) 2 Bp(x). Thus, since zo € Ry (1), we infer that with
MI,h = Supﬂf/eéh(w) f#(x/)’

(S27)

p(Bh(x)) > p(Bn—r(w0)) = v(h —r)*- sup  fula
' €B(14v)(h—r) (o)

v

e
A/~
| =
~
a

S

>
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Moreover, if we take J, j, := {a:’ € By(x): fulz') > 2= (2d+1) o, . Mw’h}, then
1(Br(2)) < La(Jop) My g+ La(Br(z) \ Jop) - 27 v M,
v R\ ¢
< Lag(Jpp) Mg+ 5 <2> - My p,

50 by (S27) we have L(J,. ) > 27D .o b, Taking K, j, := h™'- (J,., —2) C B1(0), we
have £4(K, ) > 27(@+) . ¢, Given any w € RV with ||w||z = 1, it follows from Lemma
S18 that

/_ <w, ®§7h(z)>2 du(z) > 9= (2d+1) ;. Mgy, - / <w, ¢§7h(z)>2 dLy(2)

By (z) Jan
>0 Ca) g / (w, 85, (+))2dLy(+')
Ka: h
> 2_(3d+1) ‘U cmm M(Bh( ))
The result follows. O

LEMMA S20.  Suppose that v € (0,1), £ € (0,00), 8 € (0,00), z € R%, r € (0,1/2] and
h € [2r,1] satisfy By (x) N Ry(p) N Xe(fu) # 0, and choose 6 € (0,1). Suppose also that

2141 . [y ()| 2V(8)\ | V“

and that either 3 € (0,1] or 3r < vh. Then

P({INeal <20 p(Bl@)) } 0 Danin (Q2) 2 27BHD o v (Bu() })

PROOF. By Lemma S19 and (S28), we have 11(By(z)) > v-&-(h/2)% > (8/3)log(2/6)/n.
Hence, by the multiplicative Chernoff bound (Lemma S39),

(529) P{|Nyn| > 2n - pu(Bp(z )}<7

In addition, if either 5 € (0, 1] or 3r < vh, then by Lemma S19 again,

Amin </B ( )@ﬁih(z)@g,h(z)T du(z)) >0 BdHl) Ly O (Bn(z))

Z27(4d+1)'v mln 5 hd
O 1y (VG

n

Note also that A\jax (@f h(Xl)tbf LX) T “Lex,eB(a) ) |V(B)|. Hence, by a matrix mul-
tiplicative Chernoff bound (Lemma S40) applied w1th m=mn, Z; = @5 h(Xi)@g L(X)T
1(x,eB,(x)} and ¢ = [V(B)], we have

P (@) <27 o v pu(Bi(w)) }

(530) <Pln(@) <5 duin [ 22,0020 ) | <
| L

The result now follows by combining (S29) and (S30) with a union bound. ]

N
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LEMMA S21.  Suppose that o € (0,1), >0, A>1, k,7>0, v € (0,1), Capp > 1, take
P € Pus(B,A) N Ppr(.A, T,k,7%,0,7,Capp) and let Cpy := 92d+5 (v a/ P )_1. Sup-

min
pose further that £, A € (0,00), € R% and r € (0,1/2] satisfy B, (x) N Ry (1) N Xe(fu) N
X, a(n) # 0, where i is the marginal distribution of P on R%, and 1 : R% — [0, 1] is the

regression function. Given any § € (0, 1) with

Co, - [V(B)] AV(B)\ | @ log(2/(a A 6)
T‘Z{pgln log( 5 >} 5 AEva )\’I“B/\l‘i‘ W s

and either B € (0,1] orr < {2(v/3)f3}ﬁ, we have P{p;} (B,(z)) <a}>1-4.

PROOF. First recall that in the construction of our p-values p;f () in (19) we take h =
1
(2r)*"% . To prove the lemma we define events

={ite)> )~ e (@) e (312 N2 4B L

d
_ 5 ~(3d h\® [Nanl
55 T {Amin (Qx,h) >2 (8d+2) . C?nin ’ U2 ’ max{§ “ne (2> " Tou .

Note that since P € Py (5, A) and B, (z) N Xy a (1) # 0, we have n(z) > 7+ A — X -7,
Hence, on the event £ N £} we have

i) = 7= A(1+2/e] (@) eo+ [Nzl )P

£

>3

>n(z) — 1 — )\(1 + 4\/eg (@7,) "eo- W@,,h\)rm _ \/; ced (QF,)"eo - log(2/9)

- 1 _
>A— 2/\<1 + 2\/eg (Qf,h) leg- \NM\)TBM _ \/2 el (nyh) Leg - log(2/4)

23d+5 24d+1 .1 2/8
ZA—2>\<1+ 5 >rﬂ“—\/ 08(2/0)
&

Cmin ?nin v 5 ~n - rdBAD/B

24d+1 . 10g(2/ ) U . 5\
Z\/CO .1}2.5.71.rcl(/6’/\1)/ﬁZ 5'60 (Q:c,h) e - log(1/a).

min
Hence, on the event & N &Y we have p;} (B,(z)) < . Now by Lemma S16 we have
P((£])°N EY) < /2. Moreover, by Lemma S19 we have y1(Bj,(z)) > v-&- (h/2)%. Hence,

by Lemma S20 we have P((Ef)¢) < §/2. Thus P((£])¢ U (E%)¢) <4, and the conclusion
follows. H

Given any v € (0,1), £, A € (0,00), r € (0,1/2], we let
Hyy(&,A,7) :=={BeH" :diame(B) =2r and BN Ry (p) N Xe(fu) N Xrpaln) #0}.

LEMMA S22. We have |H.(&,A,7)| < (2/r)¢ - (v - &)~ for every v € (0,1), §, A €
(0,00) and r € (0,1/2].

PROOF. Given B =2r[[;¢(qla;, a;+1] € Hy (€, A, r), for some (a;) jea) € 72, we write
¢(B) := (a; mod 2)je(q € {0,1}¢ and 9(B) := 7 [[;c4[2a; — 1,2a; + 3]. Note that if
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¢(Bo) = ¢(By) for distinct By, By € H,,(§,A,r) then (v (Bo) N(By)) =0, since i is
absolutely continuous with respect to Lebesgue measure on R%. Moreover, by Lemma S19
we have pu(¢(B)) >v-&-rd, so

Ho(& A vt < ST p(wB) = > )2,

BeH:, (§,A,r) z€{0,1}¢ BeH; (§,A,7)No~{z}
as required. O

PROOF OF PROPOSITION 13. Let

= k(26 +d) + B,

/B Sn%W(ﬁ)Hogzn
9‘—nlog+< ans )

£ 0PV/e, oy, e o L (5 l0m(1/0)+om N} |

and, recalling the definition of C, := 22445 . (v . c?nin) ~! from Lemma S21, define

Cf2ven V) 2 (3T i1
20V Cp [V(B)['/2 if B <1.

Then for 6% < A, “ we have

2
<va.|v(5)| . d/ﬁ> TR el
§ 2
and r, < {2(v/3)%}77 if B> 1. Now let

log(2/(a A 6))
o BA1
A.—va</\7’* + —E ABAD/B

sothat A < 3- C’pve ’ when@ <A, 5 . By Lemma S22, we have |H! (£, A, )| < (2/r4)¢ -
(v-€)~ < (\o~ )ﬂM < n#7 when 6 <A, o . Hence we may apply a union bound and
Lemma S21 with 6/(2n BM) in place of ¢ and «/(nlogyn) in place of « to deduce that
whenever 6 < Ag ﬁ, we have

(ol VO mm) <, B i ) <

W(EAT) BeM,(§,A,r.)

— P
Hence, whenever § < A, ”*, we have

Ro(w) N Xe(f)NXiam<  |J  B<C | By
BeM (€A r.)  lelL]

with probability at least 1 — §/2. Thus, with probability at least 1 — §/2,

M, — sup{u(A) $A eAmPOW( U B(f)> }

el,]
<M, — sup{,u(A) : Ae ANPow (Ry(p) N Xe(fu) N XT+A(77))}

< (& + AN e 1 e
R T

(S31) < Capp - {1+ (3Cpy)7 + A} - 0577/7.
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Finally, since AJ(SSS is chosen from AN Pow (U telt.] B g)) with maximal empirical measure,
it follows from Lemma S36 as in the proof of Proposition S2 that with probability at least
1-4,

M — p(Afsg) < Capp{1 + (38Cpy)7 + A7} - 071/
i 210g(2
+20VC\/d1m\;LC(A) +\/ og( /5).

n

The second part of Proposition 13 follows integrating the tail bound and applying Proposi-
tion 12, as at the end of the proof of Theorem 5. O

S6. Proofs of the lower bounds in Theorems 2 and 11. Recall the construction of
the probability distributions {Pf : ¢ € [L]} on R? x {0,1} from Section 5, with cor-
responding regression functions {ngrws g 1 £ € [L]} and common marginal distribution

Tw,s,0

ML ON R<. Recall also the definition of R, (+) from (15). Our initial goal is to prove that
{P[ .00 ¢ €[L]} is asubset of Py (3, A) (see Lemma S28) and Papp (A, #,7, 7, Capp) N
PXPP(A, T,K,7,0,T,Capp) (see Lemma S30) for suitable L, r, w, s and 0. The first of these
lemmas will rely on several auxiliary results,

Given two multi-indices v = (v1,...,vq) |,/ = (V},...,v;) " € Nd, we write v < v/ if
either ||v||; < HI/H1 or both HVH1 = ||¢/||1 and there exists j € {0,1,...,d — 1} such that
v =14,...,vj=v;and vji1 <V ,. Now, given m € N and j € [m], we write

Qj(yam)

/

—{(kl,_..,kj,el,...,ej)eNJ' x (N3Y: 0<01<.. <€],qum2k€ql/}

q=1 q=1

In addition, for multi-indices v = (v1,...,v4) " € N¢, we let 1! := Hﬂﬂll v;!. The following
lemma is a version of the Faa di Bruno formula.

LEMMA S23 (Corollary 2.10 of Constantine and Savits (1996)). Let x € R? and v =
(v1,...,vq) " € N&. Suppose that all partial derivative of order ||v||; of f: R? — R exist
and are continuous in a neighbourhood of x, and that g : R — R is ||v||1-times continuously
differentiable in a neighbourhood of f(x). Then

i} vl ; )
v oL (f)
¥ (gof)=0v!- Z g Z Z H M
J=1 (k1,eikj by, l) @=1 q (Eq ) a
GQj(l/,m)
LEMMA S24. Givenv = (v1,...,vq) € N4, we have SUP|pfa1 [02(] - 12)] < oc.

PROOF. For t € [d], write e, = (0,...,0,1,0,...,
tor in R%. By Lemma S23 with f(z) = ||z||2 and g(z)
RY that

9z (- 12)

0)" € R? for the t'" standard basis vec-
= /z,wehaveforz = (z1,...,24) €

2meH2m ' (ﬁq!)

J 1 k17 7kJ7£17 78 )q 1
€Q;(v,m)
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It follows that for all z € R? with ||z||2 > 1 we have

||V||1 [l

v( m—3)! Izl
|a |<'ZH HleZ Z Hk'$2 kq

J= 1 kla 7k_/ 7617 7é
€9Q;(v,m)

[l [l

<V'22m3”2 > ka gt

‘7 1 (klv 7k17é17---7£
€9, (v,m)

as required. O

LEMMA S25. For each m,d € N, there exists C,, 4 > 0, depending only on m and d,
such that for any infinitely differentiable function g : [0,00) — [0, 00) with ¢'(z) = 0 for all
2 €[0,1], and any v = (v1,...,v4) " € N& with ||v||; = m, we have

|0%(g0 - [12)| < Cma- max sup |g®)(z)]
kelm] z¢[0,00)

for all x € R

PROOF. The lemma follows from combining Lemmas S23 and S24, and by considering
the cases ||z||2 < 1 and ||z||2 > 1 separately. O

LEMMA S26. Let L,d€ N, r € (0,00), s € (0,1 A (r/2)], we (0,(2r) "¢ A1) and 6 €
(0,€0/2]. Thenfor £ € [L], v=(v1,...,vq)" € Ndwith ||v||; =m and x € R%, we have

0
(832) ‘8;(7727‘,11;,3,9)‘ S 2Amcm7d ’ Sim’

where A, is taken from (21) and C,, 4 is taken from Lemma S25. Hence, given any £ € [0, 1]
and x, ' € R?, we have

0
(S33) }ag(ng,r,w,sﬁ) - 8;’ (Uﬁ,r,w,s,aﬂ < 2Am+1(2cm,d \% dcm-i-l,d) ’ Smi_;,_g ) ||.1‘ - x/Hgo

PROOF. To prove (S32), we construct an open cover of R? by {Uy,...,Ur1} where
Up := By, () (2e) for £/ € [L] and Up 4y :=R%\ Uperr) Baai/zr (2¢). First suppose that £’ €
[L]\{¢} and consider the function gy : [0, 00) — [0, 00) defined by

T—0 ift<1
T+6—20-h(t—1) if1<t<2

go(t): =< 7+0 if2<t<dl;2
70420 h(Sh 1) if 40 << 24
T—0 otherwise.

By Lemma S25, together with s < /2 < d'/?r, we have

sup!@ (gool |2 )‘<Cmd max sup ’90 (2)] £24,,Cpy 40.
x€R? ke[m] ze[0,00)

Moreover, forall z € Uy we havent . ,(z) = go(||s™ - (z—z¢)

2). Hence, for all z € Uy
we have }8;’(7737,%879)‘ <2A,,Cp, 405~ since ||v||; = m. Next, consider the open set Uy
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and define a function g¢; : [0, 00) — [0, 00) by

T+6 ift<1
gi(t):=q7—0+20-h(t—1) ifl<t<2
T—0 otherwise.

By applying Lemma S25 again, we have ‘8;’(91 o - ”2)‘ < 2A4,,Cy 40 for all x € RY.
Moreover, for 2 € U, we have 07 . (x) = g1(||(d"/?r)~" - (x — 2)||2). Hence, for all
x € Uy, we have }8;’(7)% s 9)‘ < 2AmC’m7d9(d1/2r)_m <2A,,Cy, 405~ Finally we note
that 7727,7%579’%“ =7 — 0,50 sup,cy, ., |8;’(772r,w,879)‘ =0<2A4,,C, 4057 . The claim
(S32) follows.

To prove (S33), we first consider the case where ||z — 2'||« < s, in which case, we may
apply the mean value theorem combined with (S32) and Holder’s inequality to obtain

0
‘85(7711,7"71117579) - ag’ (nL,r,w,s,G)‘ < dAm+1Cm+1,d : gmt1 : ||-7J - -T,Hoo

<dAm+1Cm+i1,a- |z — 2|5,

smHe
Moreover, when ||z — 2'||c > s, (S33) follows immediately from (S32) and the triangle

inequality. O

LEMMA S27. Take >0, Cy > 0 and let f : R? — R be a [J]-times differentiable
function such that for all v = (v, ...,v4)" € NS with |[v|1 = [8] — 1 =:m, and z, v’ € R¢,
we have

|8;,(f) - 8Z(f)} <Cj- ||’ - 2|8

Then for all z,x' € R we have

) = T2 <0 (") e el

PROOF. By Taylor’s theorem, there exists ¢ € (0, 1) such that

[TC T S it 7 WD S il P NG

v! V!
veENg:||lv]li<m veNg:||lv|li=m
Hence,
x' —x)” v v
pe e = Y T e () - a)
veNd:||v|i=m

< . . —
<o (M) e -l

as required. 0

LEMMA $28. Let3>0,A>1,L,d€N,r € (0,00), s € (0,1A(r/2)], w € (0,(2r)~%A
1) and 0 € (0,€0/2]. There exists cbﬁ 4> 0, depending only on (3 and d, such that whenever
6 < C%,d -\ 55, we have that for each ¢ € [L), the function né,r,w,s,@ is (B, \)-Holder on RY;
ie. Pf,r,w,s,@ € Pusi(B, N).
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PROOF. By taking

-1
cl’ﬁd:: min 24,11(2C, 4V dCyi1.4) - qrd—1 )
’ q€Ny:q<[B] -1 & C d—1
the result follows from Lemmas S26 and S27. O

Lemma S30 also requires one auxiliary lemma.

LEMMA S29. Given L,d €N, r >0 and w € (0,(2r)"4 A1), we have wy,, ., ()
W for all x € UZG[L} K?(¢). Moreover, Uze K(0) C R, (1Lrw) for every v

(4d1/2)_d

>
<

PROOF. Let/ € [L],letz € K(¢) = By(z) and let 7 € ( 1).If 7 € (0,2r], then B;(x)N
K?(¢) contains a hyper-cube of radius /2, so i, ;.. (Br(z)) > w - L~ - 7. Consequently,
when 7 € (0, 8d1/27"] , we have
w ~d

ML .rw (Bf(l')) > HL,rw (Bf/(4d1/2)(l‘)) > m -r

Note also that since 2 € K2(£) C Bogi/2,(2¢) there exists o, € {—1,1}% and & = 2, + 0, -
2d"/%r € RY with ||Z — 2| < 2d"/?r. Hence, if 7 € (4d'/?r,ry(w)], then Bjj4(z0 + 04 -
(2dY2r +7/4)) C Br(z) N KX(¢). Thus, we have i .., (B7(x)) > (w/L) - (7/2)? for 7 €
(4d"/?r,r4(w)], and consequently, (i, ;. (Bi(z)) = (w/L)- (7/4)? for 7 € (821, 2ry(w)].
Finally, if 7 € (2r4(w), 1), then K2(¢) U K} (£) C B,,(4)(2¢) € Bi(x) 50 pup v (Bi(x)) >
1/L > (w/L) - #?. The first conclusion of the lemma therefore follows. The second part then
follows from the fact that the Lebesgue density of s, ., is at most w/L on R, 0

LEMMA S30. Let3>0,A>1,L,d€N, re (0,00),s€ (0,1A(r/2)], w e (0,(2r)~?

1) and 6 € (0,€0/2], £ € [L], v < (4d"/?)~¢ and let n = nngsﬁ, p=prrw and P =
mewysﬁ‘ Suppose also that Anp € A C Acony. Given any A € AN POW(XT(n)) and
0" € [L] with ANKO(¢") # 0 and 2y ¢ A for some ' € [L], we have u(A) < (w/L) - (2r)%/2.
In particular, (A) < (w/L) - (2r)?/2 whenever A N K2(¢') # O for some A € AN
Pow (X;(n)) and ¢’ € [L]\ {¢}. Moreover, M, (P, A) = u(K2(¢)) = (w/L) - (2r)% Finally,
if (w/L) - (2r)? < Capp -min { (w/{(4d"/?)?- L})*, 07}, then P € Papp(A, £,7, 7, Capp) N
PXPP(A, T,6,7,0,T, Capp)-

PROOF. First take A € AN Pow (X-(n)) and ¢’ € [L] with AN KX (¢') # 0 and zp ¢ A.
Since n)(z) = 7—0 forall z € K} (¢'), we must have AN (K} (¢')U{z¢}) = 0. Moreover, A s
convex with AN KO(¢') # (), and it follows that A C {z € R? : ||z — 2¢||oc < 2d"/?r}. Thus
Ansupp(p) = AN{z €R? : ||z — 20 || oo < 2dY?r} Nsupp(p) = ANKO(¢) is the intersec-
tion of two axis-aligned hyper-rectangles, so is itself an axis-aligned hyper-rectangle. Since
Ansupp(p) € K2(0)\ {20} = Br(2¢) \ {2z}, we deduce that p(A) < (w/L) - (2r)?/2.
In particular, if ¢ € [L] \ {¢}, then n(zp¢) =7 — 6, so zp ¢ X,;(n) and the conclusion
p(A) < (w/L) - (2r)%/2 holds.

For the next part, note that K (¢) = B,(2¢) € Anpy N Pow(X;(n)) C AN POW(XT(U))
since 7(x) = 7 + 0 for all x € K2(¢). Hence M (P, A) > p(KL(0)) = (w/L) - (2r)®. On
the other hand, given A € ANPow (X;(n)), we have either A N supp(p ) C KO ) in which
case pu(A) < p(K2(0)) = (w/L) - (2r)¢, or AN supp(u) N K2(¢') # () for some ¢' € [L] \
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{¢}, since supp(1) N X7 (1) € Ueyy K?(¢), in which case u(A) < (w/L) - (2r)?/2. Hence
My (P, A) = (w/L) - (2r)".

For the final part, assume that (w/L) - (2r)¢ < Capp-min {{w/(4dd1/2 -L)}*,67}, and fix
(€,A) € (0,00)2. We consider two cases: first suppose that ¢ < w/{L - (4d'/?)} and A < 6.
By Lemma S29, we have K?(¢) C X¢(w, q). Moreover, it follows from the construction
of n that K (¢) C X;19(n) C Xra(n). Thus, with Ag o = K?(¢) € AN Pow (Xe(wp,q) N
X;1a(n)), we have

M<A£’A) - % . (2T)d = % ' (QT)d o CAPP ’ (gn + A’y) =M, — CApp : (fﬁ + A’y).

On the other hand, if ¢ > w/{L - (4d"/?)?} or A > 6, then with Aga =0 € AN
Pow (Xe(wy,a) N Xrya(n)), we have

w . w K .
u(Ag,A) =0> T (2r)d — Capp - mln{ <(4dl/2)dL> 79“/} > M, — Capp - (£7+ A7).

We conclude that P € Papp (A, K,7,T,Capp). To prove P € Ppr(A, T,6,%,0, T, Capp),
we proceed similarly using the facts that K2(¢) C R, (1) by Lemma S29 and that y has

Lebesgue density at least w/L on K2(¢). O
Lemma S31 below bounds the x?-divergence between pairs of distributions in our class
{P[é/,’r,w,s,e e [L]}

LEMMA S31. Suppose that €y € (0,1/2), 7 € [e0,1 — €], L,d €N, r € (0,00), s €
(0,1A(r/2)], we (0,(2r) 4 A1) and 6 € (0,€0/2]. Then

95+2d . p2 . &d

2(Py Py <
X ( L,rw,s,0» L,r,w,s,@) = o L

forall 0,0 € [L].

PROOF. Let Qp rw := (L rw X Mct Where mey denotes the counting measure on {0, 1}.
Note that Pf w50 1S absolutely continuous with respect to Q1 ., for all £ € [L]. Given

¢ € [L], define py : R? x {0,1} — R by

/
dPLrw59

W(”’”” =(1—y)- (1=n,0(x) +y- 11 ,0(x).

Ta_ke I E_[L] with £ # ¢ and observe that_némw,sﬁ (_x) = 77% rawsp(®) forall z € Jp o\
(Bas(2¢) UBas(z¢)). Note also that i, .. (Bas(2¢) U Bas (zz/)) (2w/L) (45)%; moreover,
nt ro(@) €T —0,7+0] Cleo/2,1— /2] forall x € Jp, ., and £ € [L]. Hence,

pe(z,y) : =

0

14
X2(PL,r,w,s,97 PL T w,sﬂ)

dpé 2 )
:/ ( L,raw,s,0 1) dpf’r’g
Rdx{ovl} dPL?”G

- W_) o
AWX{OJ}(PZ/(JC,y) L) pe(x,y) dQrrw(@,y)

_ / {pe(.’E, y) — D (xvy)}z dQLm,w(:E»y)
Rix{0,1} pe(z,y)
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2

{né,r,w,sﬂ (I) B ngﬁw7579($)} {nﬁ,r,w,s,a (x) _ nﬁ/,r,w,s,e (35)}2
= El E/ dML?T?w($)
R4 1-— T]me’s’G (l') T]L,r,w,sﬁ (.73)
4 ¢ Vi 2
< — B _ {nL,T,w,s,G(‘T) - anw#ﬂ(l‘)} duL’T’w(l‘)
€0 J By, (20)UBas (1)
4 B - 95+2d ). 92 . &d
< —- (29)2 *HLrw (B2S(Z€) U BQS(ZE/)) = ’
€0 €o- L
as required. =

We are now in a position to state the crucial proposition for the proof of Proposition 14.

PROPOSITION S32.  Assume that Appr € A C Acony. Fix (8,7, K, X, Capp) € (0, 0)? x
[1,00)% with By(k — 1) < dk, €g € (0,1/2), T € [e0,1 — €], v < (4d"/?)~% and ¢ > 0. There
exist Cy > 1, co,c1 > 0, depending only on d, 3, 7, k, Capp and €o, such that for any

By (kAT)
n > Cor¥Blog(1 + C) there exists a family of L > {co(n/{\¥/Plog(1 + ¢)}) =er+o+m } v 4
distributions

{Pla .. '7PL} - PT(AaTvﬁvl{vlyvvu)‘)CApp)
with regression functions 1, . . .,ny, and common marginal distribution 1 on R%, such that
(@) x*(PP",PJ") < forallt, U' € [L];
(b) if Ae ANPow (XT(W) N XT(W/)) for some 0,0 € [L] with £ # V', then

AY/B - log(1 + Q) AT

n

(S34) My (P A) — i(A) > ¢ - (

PROOF. We first define some quantities for our construction. Let p := k(25 + d) + (7,

€0 (Ba)Y? /B . 1og(1+C)

= . ¢kBlp . ~1/d 1/2y—1 pal=b
EnCA = 5 iad ga " 0= 8 = BT
1/8
L:= (84707 (2r)=¢ A1} ], w:=(4dV*)? L 67" and s::< be > ,
c/&d)\

Finally, let Co :=C{) - (C} v C3 Vv C3 v C§ v Cf), where

- (cha)? B < 1641/2 )W o2 1
(c

Cg . — -
,d)l/ﬁ ’ CA/pp

= gt g 0= " G

3._ (2N AL pp 5._ 1/2y %
03 .= (60) L Ch = (22d_5d(d1)/2> and O35 .= (32d/%)7.
Observe that when n > Cj- A%/ - log(1+ (), we have &, ¢, < 1/(CAVCEZVC3VCiv CY).
Hence, the choice of C’é ensures that s < r/2, the choice of Cg guarantees that s < 1, the
choice of C§ ensures that 6 < ¢/2, and C and CJ are chosen to guarantee that

Byk By

v | (e o) (o wava) ]
CCq - X8 -log(1+ () COCE - X8 -log(1+ ()

Bry(nAl)

> n w(2B+d)+By V4
=4 Co- /\d/Blog(1_|_€) )
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where ¢ := 2min{(C§C’6‘) (C’OC’O } Note also that w < ${(2r)"? A1}. We may
therefore apply the construction following (22) to define distributions Py := mew’ 50 for
¢ € [L] when n > Cy - \¥# . log(1 4 ¢). We write yt = pur, .,y and 1y = 7767“@7579 in this
construction.

Our choice of s ensures that § = cbﬁ, PR sP, so we may apply Lemma S28 to de-
duce that Py € Py (6, ) for all £ € [L]. Moreover, our choice of w and r guarantee that
(w/L)-(2r)? < Capp-min { (w/{(4d"/2)?- L})*, 67}, so we may apply Lemma S30 to con-
clude that Py € Papp(A, 5,7, 7, Capp) ﬂPApp(A T,K,7,0,T,Capp) forall £ € [L]. Next, by
Lemma S31, for each ¢, ¢’ € [L],

25724y 62 - 57 log(14()

2
X (P, Pr) < — - ;

by our choice of w, 6 and s, so

(PP, PY™) < {1+ x* (P, Pr)}" — 1< (1 + I%(l?fo) -1<¢.

This proves (a). To prove (b), we take (,¢' € [L] with £ # ¢’ and A € AN Pow (XT(W) N
X;(ne)). By Lemma S30, we have M, (P, A) = p(K2(0)) = (w/L) - (2 7)<. On the other
hand, if y(A) > 0, then since supp(u) = U jyen }x{o1}K (") and Uprerr K7 (") €

R4\ X, (), we must have A N K9(¢) # () for some ¢ € [L]. Since at least one of £ # £ or
¢ ¢ must hold, it follows from Lemma S30 that 11(A) < (w/L) - (2r)?/2. Hence

Bk
Lgd—1_d _ Capp 07— Capp <C’8 . \d/B . log(1 + C)) (2B +d)+ By

MT(va-A) _:U’(A) >

h\E

2 2 n

Bry

50 (S34) holds with ¢; := 4 . (C9) O

PROOF OF PROPOSITION 14. Part (i): We initially assume that n > CoA%/#? log(1/(4a)).
By Proposition S32, with ( = 1/(4a) — 1 > 0, there exists a pair of distributions P,
Py, € PT(A,T,B,K,7,0, A, Capp) With common marginal distribution y on R? and corre-
sponding regression functions 71,72 such that x* (P, PP") + 1 < 1/(4c) and if A €
ANPow (X-(n1) N X-(n2)), then

/B 10g(1/(4a)) ) ~EATTE
- )

s A -z

We now define a test ¢ : (R? x [0,1])™ — {1,2} by
1 if A(D)C X,
o(D) i { (D) € Xr(m)

2 otherwise.

Since A controls the Type I error at level a over PHA, T, B, K,7,0, ), Capp), We have

PP"({D e (R x [0,1])" : p(D) = 2}) =Pp, (A(D) £ X:(m)) <

Hence, by an immediate consequence of Brown and Low (1996, Theorem 1), which we
restate as Lemma S41 for convenience, with e = /a we have

Pp, (A(D) C X:(m)) = P ({D € (R? x [0,1])" : (D) = 1})

2 1
> {1 —e\/XQ(P2®n,P1®n) + 1} > 1
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Thus, by (S35) we have
Ep, [{M;(P,A) — M(A)} : H{Agxf(nz)}]

A - /B 1o o ettt
ZIP’PQ({A(D)QXT(Ul)}ﬂ{A(D)gXT(m)})_Cl<x\ 1g£1/(4 )))

2/B log(1/(4a)) ) R TR

n

> {Pp, (A(D) C Xr(m)) —Pp, (A(D) £ Xr(m2)) } - Cl(

4 8 n

> <1 _ a> o1 <10g(1/(4a)) > »5(2[111754—[37 > ﬂ (Ad/ﬁ . log(l/(406)) > n(2[€iwd*;+ﬁ—y’
n

as required. Moreover, if 1 <n < Cp- \%/8. log( /(4 )), then by (S36) with n= [Cg S X\A/B .
log(1/(4a))]|, we have

Bk

Ep, [{M: (P, A) = (A} 1iic, ] 2 % e

again. This completes the proof of Part (i).

Part (ii): Fix p := k(26 + d) + By and let Cy > 1 and ¢, ¢c; > 0 be as in Proposition S32. Let
C1=Ci(d,B,7,k,Capp, €0) > e — 1 be large enough that for all n/)\d/ﬁ > (4, we have

Ba(rAl}

both n/A¥/8 > Cylog (14 (n/AYP) 2" ) and
Br(rn1)

(n/A%5) S 95 (/N8
ERIE A1> (n/AY7)
)

2
COEO(
log (1 + (n/AY/5)

Bw(f»/\l)

Next, for n > C, we apply Proposition S32 with ¢ = (n/A%/#? ) ST to obtam a family of

~Y(rAL By(rAl) ~
L > co{( n/)\d/ﬂ)/log(l—k(n/)\d/ﬁ)[ ( ))} r> 25(n/)\d/5)[ & /60 distributions
{Ph PL} - PHOI(Bv ) N 73App('/4 Ry, T, C’App) N Ppr(Aa TRy, U, T, CApp) with
common marginal distribution 1 on R? and corresponding regression functions 71, ..., 7z,

such that

(a) X*(PE™, PS™) < (n/W>
(b) if A€ ANPow (X,

/'v(

< (eg/4)?- (L —1) forall 4, /' € [L];
(me) N X7 (774/)) for some ¢,¢' € [L] with £ # ¢, then
}) Byk/p

ﬁ’v(*’v/\l)

ABlog{1 + (n/X¥/B) =

n

$37)  Mo(PnA) - p(A)z - (
Now define a test function ¢ : (R? x [0,1])™ — [L] by

min{/ € [L]: A(D) C X-(ne)}  if A(D) C X, (1) for some £ € [L]
p(D)=1 :
otherwise.
By Lemma S42, we have
?1?>]<P®”({D (R x [0,1])": (D) # £})
€L

S PE({D e (RYx [0,1)": (D) # 1))
=2
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1 1 & 1 1
>1- - 2(p2En, pEmy - 1—
=TI L—1;;X( ) L—1< L—1>
€0\2 € €0
>1_<7> _05y_ 9
(538) = 4 4=

Now choose £ € [L] with P>" ({D € (R? x [0,1])": (D) # £o}) > 1 — €9 /2, and observe

that if (D) # £ and A(D) C X, (n,) then we must also have A(D) C X, (ng,) for some
0y € [€y — 1]. It follows from this and (S38) that

lo—1
Pp, ({Aw) c X)) 0 | {A(D) € xTwl)})

l1=1
>Pp, ({A(D) C Xr(ng,) } N {@(D) # Lo })
> PP ({D e (Rx[0,1])": p(D) # by}) —a > 120

Thus, by (S37), we have for all n > Cy - \/8 > ¢ % — 1 that
Ep,, [{Mr (P, A) = (D)} - Lsc, (g, )]

lo—1
>Pp, ({Aw) c Xt | {AD) &(mg})
=1

<Ad/ﬂ log{1 + (n/AY8) 75 })Bw/p
. Cl .
n

S C160 By(kA1)-AYB. log+(n/)\d/5) Bs/p
- 2 2pn '

We extend the bound to n < C; - A# by monotonicity as at the end of the proof of Proposi-
tion 14(i), with

o0 (wn A1) log, [C1] )Wp
-2 2p[C1] ,

which completes the proof. O

Finally, we prove the parametric lower bounds in Theorems 2 and 11. Some care is re-
quired here to show that our constructed distributions belong to the relevant distributional
classes.

PROOF OF PROPOSITION 15. Observe that there exists cg = cp(8) € (0,1] such that
when 6 < cg - A - 55, we have that 7 is (3, \)-Hélder, so {Pf}ge{_u} C Pusi(B, A). In addi-
tion, supp(ué) NX,(n)=A_1UA; for £ € {—1,1}. Since A C Acony and Ag C R\ X, (1),
it follows that for £ € {—1,1},

d
M,(PL, A) = YA = ——
( 7-’4) jer{njil)fl}uC( ]) (2t)d+28d

Observe also that for any £ € {—1,1}, x € Ay and r € (0,4s], we have

(o) (g 1) LalBoa@1 40 2 (g + ) (;)d.

+C.
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Moreover, for any £ € {—1,1}, x € Ay and r € (4s, 1], we have

Lq(B(x) N Ap) - rd=1. (r — 25)
(2t)d + 25— (2t)% 4 254

pi (Bp(x)) >

> r > + 5. r
—2{(2t)+ 257} T\ (2) 4258 s4) 37

Hence, w#éd(x) > {(8t) +2(4s)?} ! for all x € Ay, and moreover A, C R, (,ué). Thus, for

any (£,A) € (0,{(8t)? +2(4s)?} ] x (0,6], we have
sup{p¢(A) 1 A€ AN Pow(Xe(wue g) N Xrya(n) } = p(Ar) = Mo (P, A),
and similarly,
sup{pt(A) : A € AN Pow (R (1) N Xe(fue) N X a(m) } = p(Ag) = Mo (PL, A).

On the other hand, if either ¢ > {(8t)¢ + 2(4s)?}~% or A > 6, then provided that
W < Capp - [{(8t)% +2(45)?} = A 67], we have
sup{p¢(A) : A € ANPow (R () N Xe(fur) N Xrya(n) }
A sup{,ué(A) tAe AN Pow(Xg(wug7d) NX-1a(n))}
> 0> M (P;, A) = Capp - (€F + A7),

It follows that {Pf}ge{,m} C PI(A,T,8,K,7,v, A\, Capp) Whenever W < Chapp -
[{(St)d +2(45)%} 7% A 07] .
In addition, recalling that m. denotes the counting measure, we have

KL(Pgl,Pg) < XQ(Pgl,Pg)

fur( V{1~ n(a)}

:/]Rdx{o 1} { fil(n) AWaxme(ey)
s4)2 52 d i 9gd

IV 0 - O e

1 C
(2t)3+2s9 — 87 (2t)742s4 +

We deduce by Pinsker’s inequality that

_ (2t)4 4 25
TV (P, (PH) \/KL o, (PE1)Em) /2 S 4G -\ |~
=2a- C-\/ﬁ7
where a = aq4:=2- (27?;;:2801. Thus,

1=(PH*"({D e (R x {0,1})": Ay N A(D) = 0})
+(PHE"({D € (R? x {0,1})": A N A(D) #0})
<(PHPM({D: A1 A(D) =0}) + (P7H)*"({D: AL nA(D) #0}) +2a- ¢v/n.
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Hence, since at most one of A_; and A; can have non-empty intersection with A whenever
A C X;(n), we have

e (PO ({D: Aen A(D) =0} N {D: A(D) € X-()}) >

We conclude that

i 0
P M (PG A) = (D - Licr ) 2 20 —a-¢v/n).
Taking ¢ := {(2”(3d+1) V (e - A)?)/Capp } T 1,s:=t % and 0 := e - 8P
ensures that the conditions W < Capp - [{(81)% +2(45)4} 7% A (e - A+ s7)"] and
0 < cp - A - s” hold. Hence, taking ¢ := ¢y/(2a+/n) yields the required lower bound. O

PROOF OF THEOREMS 2(ii) AND 11(ii). In light of the remarks following Proposi-
tion 14, these results follow from Propositions 14 and 15. O

S7. Parameter constraints. The following lemma reveals natural constraints satisfied
by the parameters /3, x and +.

LEMMA S33.  Take 7 € (0,1), (B,7,%,v, A, Capp) € (0,1] x (0,00)% x (0,1) x [1,00)2.
Let P € Pugi(B,A) N Papp(Anpr, T 5,7, 7, Capp) be a distribution on R x [0,1] with re-
gression function n: R — [0, 1] and with a Lebesgue absolutely continuous marginal y on
R? with continuous density f,. Suppose that X;(n) C Ry (w), that p(n~((,1])) > 0 and
that n=t({7}) # 0. Then By(x — 1) < dx.

PROOF. Note that since y¢(n~*((7,1])) > 0 and 7 is continuous, we must have M, > 0.
Take A € (0, {M:/(2Capp)}/7), and write w := w), 4 for the lower density of p. Since
P € Papp(Anpr, Ty K, 7, T, Capp), We may take Ap € Appy N Pow(z’\fm/ﬂ(w) N XT+A(17))
with 1(Ap) > M; — 2Capp - A7 > 0. Now A is a non-empty, compact subset of R? and
n~1({r}) is a non-empty closed subset of R%, so we may choose 2o € 7' ({7}) and 2y € Ax
such that

To — 2 = inf inf ||z — 2||eo.
Iz —s0llc=__inf  inf o=zl

Let A’iA ={z €R: ||z — 2|l < ||z0 — 20|00 for some z € Ax}, and note that AﬁA €
Appr N Pow (X, (1)), so u(A%) < M, and p(A4 \ Ax) < 2Cap, - A7. In addition, since
P € Pysi(3,)\), we have ||zg — 20|00 > (A/X)/8 =: 3rs. Hence, if we take

(v Xo — %
wo::ZO+<1+>'TA'O o,
2 [zo = 20|00

we have B,., (wy) € X, (n) N (AﬁA \ Aa) and 29 € B(144).s (wo). Thus, as f,(z0) > 277
w(z0) > 274 A% and wg € X, (1) C Ry (1) and ra € (0,1), we have

20npp - A7 > (AN Ap) > p(Brg(wo)) >v-rd - sup  fu(2)

&' €B(14v)r (Wo)

v A\ VB
ZU'TZ'fM(ZO)ZGd'<> Wi

Letting A ™\, 0 we deduce that 5y(k — 1) < dk. O
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S8. Auxiliary results.

S8.1. Disintegration and measure-theoretic preliminaries. Suppose we have a pair of
measurable spaces (X, Gx) and (), Gy ) along with a probability distribution P on the prod-
uct space (X x V,Gx ® Gy). Let u denote the marginal distribution of P on (X,Gx). We
say that (P,).cx is a disintegration of P into conditional distributions on ) if

(a) P, is a probability measure on (), Gy ), for each x € X’;
(b) x — P,(B) is a Gx-measurable function, for every B € Gy;
(¢c) P(Ax B)= [, Px(B)du(x) forall Ae Gx and B € Gy

We will make use of the following existence result: recall that a topological space (X, Tx) is
said to be Polish if there exists a metric dx on X that induces the topology 7x and for which
(X,dx) is a complete, separable metric space.

LEMMA S34. Suppose that (X,Gx) and (),Gy) are Polish spaces with their corre-
sponding Borel o-algebras. Let P be a probability distribution on (X x Y,Gx ® Gy ), with
u denoting the marginal distribution of P on (X,Gx). Then there exists a disintegration
(Py)zex of P into conditional distributions on ) with the property that

(539) [ senirey = [ ( / o) P2 (1)) (o),

for every P-integrable function g : X x ) — R. Moreover, the disintegration (Py)zcx of P is
unique in the sense that if there exists another disintegration (Py)qcx of P into conditional
distributions on ), then P, = P, for p-almost every x € X.

PROOF. This follows by combining Theorems 10.2.1 and 10.2.2 of Dudley (2018). U

A disintegration has the following useful interpretation. Suppose we have a pair of ran-
dom variables (X,Y") taking values in X' x ) with joint distribution P on Gx x Gy, where
(X,Gx) and (Y, Gy) are Polish spaces with their corresponding Borel o-algebras. Let 1 be
the marginal on X and (FP,),cx be a disintegration of P into conditional distributions. Then
for all P-integrable functions g : X x J — R we have

(540) E(g(X,Y) | X =) = /y oz, y) dPa(y).

for 1 almost every xz € X. Indeed, by Lemma S34 we see that = — fyg(:r,y) dP,(y) is a
p-integrable function, and hence Gx-measurable. Moreover, given any A € Gx, we have

A(/yg(x,y)dPx(y)) d“(x):/x(/y]lfl(x)‘g(xvy)dpx(y)) du(x)

~ [ 1@ g ndPey) = [ gwydP)
AxY AXY
where the second equality follows from (S39) with 1 4(z) - g(,y) in place of g(z,y).
Recall that for Borel subsets By, B; C R% and a Borel measure 14 on R4, we write By C B;
if ,LL(BO \ Bl) =0and By Z B if ,u(Bo \ Bl) > 0.

LEMMA S35.  Suppose that ng and 1, : R? — [0, 1] are regression functions for a Borel
probability distribution P on RY x [0, 1] with marginal probability distribution p. Then,
p({x € RY:no(x) # m(z)}) = 0. Hence, given A € B(R?), we have A C X, (o) if and
only if A C Xy ().
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PROOF. Given ¢ >0, let B, := {x € R?: no(x) > n1(z) + €}. Then,
€ p(Be) < / {no(z) —m(x)} dp =/ ydP(z,y) —/ ydP(z,y) =0,
B, B.x[0,1] B.x[0,1]

so p(Be) = 0. By taking a countable union we see that z({z € R?: no(z) > m1(z)}) =0,
so by symmetry we have p({x € R?:ng(x) # n1(x)}) = 0. Thus, given A € B(R?) we have
(AN Xr(no)) = p(A\ Xr(m)), so A C X-(no) if and only if A C X (11). O

S8.2. Concentration results. We will require the following classic result that gives a
uniform concentration inequality over classes of finite Vapnik—Chervonenkis dimension; we
state it for distributions on R¢ for simplicity.

LEMMA S36 (Vapnik—Chervonenkis concentration). Let p be a probability distribution

iid . . . TP
on RY and let X1,..., X, ~ u, with corresponding empirical distribution [i,. There ex-
ists a universal constant Cyc > 0 such that for any collection of sets S C B(R?) with
1 < dimy¢(S) < oo, we have

N di S
E<Suplun(5)—ﬂ(s)‘> <Cvc LC()
SeS n

Moreover, for all § € (0,1) we have

P(;gg |in(S) = p(S)| > Cve \/ dimjf(s) + \/ logél/ ) ) <5,

n

PROOF. For the expectation bound, see Vershynin (2018, Theorem 8.3.23). The high-
probability bound follows by McDiarmid’s inequality (Vershynin, 2018, Theorem 2.9.1). [

The following lemma is used in the proof of Lemma S38.

LEMMA S37 (Garivier and Cappé (2011)).  Let (Zj) jc|m) be independent random vari-
ables taking values in [0,1] with max;c, E[Z;] <t for some t € (0,1). Writing Z :=
m~! > jeim) Zj» we have for k € (t,1) that

IP(Z > /i) < e—m~kl(n,t).
PROOF. By Jensen’s inequality, for 6 > 0 and j € [m)],
E(e"7) <1-E(Z)) + €’ - E(Z)) <1+1(” - 1).
Hence, by Markov’s inequality,

P(Z > k) < e”™m0" ﬁE(e"'Zf) <[e {1+t —1)}]™
7=1

The lemma follows on taking 6 = 10g( %) > 0. O

—K

LEMMA S38.  Let (Z;) jc[m) be independent random variables taking values in [0, 1] with
max ey B(Z;) <t for some t € (0,1). Let Z :=m™! > jepm) Zj- Then for every a € (0,1),
we have

P<22t+ log2(1/a)> gP({kl(Z,t) > log(nll/a)}ﬂ{zn}) <.

m
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PROOF. The first inequality follows from the fact that
2(Z —t)? =2TV? (Bern(Z),Bern(t)) <kl(Z,t),

by Pinsker’s inequality. To prove the second inequality we begin by noting that w — kl(w, t)
is continuous and strictly increasing on the interval [t,1], and consider two cases. If a €
(0,e=m* (D) and Z > ¢, then

log(1/a)

m

kI(Z,t) <kl(1,t) <

On the other hand, if o € [e‘m'kl(l’t), 1) , then by the intermediate value theorem we can find
€ [t, 1] such that kl(k,,t) = m~! -log(1/a). Then by Lemma S37,

- log(1
P({kl(Z,t) Og /a }ﬂ{Z>t}> ( /‘ia) ge—m.kl(m,t) =a,
as required. O
In addition we shall make use of the following Chernoff bounds.

LEMMA S39 (Multiplicative Chernoff — Theorem 2.3(b,c) of McDiarmid (1998)). Let
(Z;) jeim) be a sequence of independent random variables taking values in [0,1]. Then given
any 0 >0,

(ZZ<1— iE ><exp<— ZE )

j=1
P(ézz(ue gﬂz ><exp< 1+9/3 g;E )

LEMMA S40 (Multiplicative matrix Chernoff — Theorem 1.1 of Tropp (2012)). Let
(Z;) je[m) be independent, non-negative definite q x q matrices with Amax(Z;) < amax al-
most surely, for every j € [m)]. Then, writing amin :=m ™' - Ain (Zje[m] Ezj), we have for
every 0 € [0, 1] that

6_9 MAmin/Amax 02ma. .
{ mm(Zz)<m 1—9)amin}§q-<(1_9)19> Sqre e

S8.3. Useful lemmas for the lower bounds. We shall make use of the following result
from Brown and Low (1996).

LEMMA S41 (Brown-Low constrained risk inequality). Ler Q1, Qo be probability mea-
sures on a measurable space (S, F) such that Qq is absolutely continuous with respect to
Q1, and assume that

I:= X2<Q2,Q1) + 1 < 0.
Let e € (0, I_1/2) and let Z : Q0 — {1,2} be a F-measurable random variable with Q,(Z =
2) <€ Then Qa(Z=1)> (1 - e\/f)2.

The following version of Fano’s lemma is a minor variant of Gerchinovitz, Ménard and
Stoltz (2020, Lemma 4.3).
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LEMMA S42 (Fano’s lemma for x? divergences). Let Pq,...,Py,Q1,...,Qns denote
probability measures on (2, F), and let Ay,..., Ay € A. Write p:= M1 Z;‘il P;(A)

and q:= M~* Z;‘il Q;(A;). If g€ (0,1), then

M
ﬁ Z Pja@j (1-@)-

In particular, if M > 2 and A4, ..., Ay form a partition of S, then

1 Y 1 1 Y 1 1
— P.(A:) < — inf — 2(P. — 1= =
szzl A<t &QMJZZIX(”@) M( M)’

where Q denotes the set of all probability distributions on 2.

PROOF. By the joint convexity of x? divergence, together with the data processing in-
equality (e.g. Gerchinovitz, Ménard and Stoltz, 2020, Lemma 2.1), we have

M

S =\2
p—4 1
!— ?(Bern(p), Bern(g <*ZX i), Q;(A ))<7ZX2(Pj’Qj)'
q(1—q) M j=1
The first result follows on rearranging this inequality, and the second follows by taking Q1 =
- = Qu = Q and then taking an infimum over Q € Q. O]
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