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S1. Proofs and auxiliary results.

PROOF OF THEOREM 2. We apply the idea of Alexandroff (one-point) compactification
(Alexandroff, 1924). Specifically, writingJ := {j ∈ [d] :Xj is not compact}, for each j ∈ J ,
we can construct a one-point enlarged space X ∗j := Xj ∪ {∞j} (where ∞j /∈ Xj), and take
as a topology on X ∗j all open subsets of Xj together with all sets of the form (Xj \K) ∪
{∞j}, where K is compact in Xj . With this topology, X ∗j is a compact, Hausdorff space
(Folland, 1999, Proposition 4.36). We also set X ∗j :=Xj for j ∈ [d] \ J . We can extend each
probability measure PS to a Borel probability measure P ∗S on X ∗S :=

∏
j∈S X ∗j (equipped

with the product topology) by setting P ∗S(B) := PS(B ∩XS) for all Borel subsets B of X ∗S .
It is convenient in the first part of this proof to emphasise the underlying spaces by writing,

e.g., G+
S (XS), RXS(PS, fS) and RXS(PS) in place of G+

S , R(PS, fS) and R(PS) respectively.
Suppose that fS ∈ G+

S (XS) satisfies fS ≤ |S| − 1 for all S ∈ S. We extend each fS to a
function f∗S on X ∗S by defining

f∗S(x∗S) :=

{
fS(x∗S) if x∗j ∈ Xj for all j ∈ S
|S| − 1 otherwise.

To see that f∗S is upper semi-continuous, first suppose that x∗S ∈ XS and y > f∗S(x∗S) =
fS(x∗S). Since fS is upper semi-continuous and all sets that are open in XS are open in
X ∗S , there exists a neighbourhood U ⊆ X ∗S of x∗S such that f∗S(xS) < y for all xS ∈ U . On
the other hand, if x∗S ∈ X ∗S \ XS and y > f∗S(x∗S) = |S| − 1, then we can take the neighbour-
hood U =X ∗S to see that f∗S(xS)< y for all xS ∈ U . This establishes that f∗S is indeed upper
semi-continuous. Writing X ∗ :=

∏
j∈[d]X ∗j , we also have that

inf
x∗∈X ∗

∑
S∈S

f∗S(x∗S)≥min

{
0, inf
x∈X

∑
S∈S

fS(xS)

}
= 0,

so f∗S ∈ G
+
S (X ∗S ). Moreover,

(S1) RXS(PS, fS) =RX ∗S (P ∗S , f
∗
S ).
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2 T. B. BERRETT AND R. J. SAMWORTH

In the other direction, given any f∗S ∈ G
+
S (X ∗S ), we can define fS = (fS : S ∈ S) on XS by

defining each fS to be the restriction of f∗S to XS . Then, for each t ∈R,

(fS)−1
(
[t,∞)

)
= (f∗S)−1

(
[t,∞)

)
∩XS ,

so (fS)−1
(
[t,∞)

)
is a closed subset of XS and fS is upper semi-continuous. Moreover,

inf
x∈X

∑
S∈S

fS(xS)≥ inf
x∗∈X ∗

∑
S∈S

f∗S(x∗S)≥ 0,

so fS ∈ G+
S (XS). Again, the equality (S1) holds. We deduce that

RXS(PS) = sup
{
RXS(PS, fS) : fS ∈ G+

S (XS)
}

= sup
{
RX ∗S (P ∗S , f

∗
S ) : f∗S ∈ G+

S (X ∗S )
}

=RX ∗S (P ∗S ).(S2)

Now let C+
S (X ∗S ) denote the subset of continuous functions in G+

S (X ∗S ). Since compact Haus-
dorff spaces are completely regular, by Kellerer (1984, Proposition 1.33 and an inspection of
the proof of Proposition 3.13), we have

RXS(PS) =RX ∗S (P ∗S ) = sup
{
RX ∗S (P ∗S , f

∗
S ) : f∗S ∈ C+

S (X ∗S )
}
.

Having established that RXS(PS) may be computed as a supremum over functions defined
on compact spaces, we now consider the implications for the dual representation of the one-
point compactification. Suppose that ε ∈ [0,1] is such that PS ∈ (1− ε)P0

S (XS) + εPS(XS).
Then PS = (1 − ε)QS + εTS, where QS ∈ P0

S (XS) and TS ∈ PS(XS). For each S ∈ S, we
define probability measuresQ∗S , T

∗
S on X ∗S byQ∗S(B) :=QS(B∩XS) and T ∗S(B) := TS(B∩

XS) for all Borel subsets B of X ∗S . Then Q∗S ∈ P0
S (X ∗S ), because RX ∗S (Q∗S) = RXS(QS) = 0

from (S2) and the fact that QS ∈ P0
S (XS). Hence P ∗S = (1− ε)Q∗S + εT ∗S ∈ (1− ε)P0

S (X ∗S ) +
εPS(X ∗S ).

Conversely, suppose initially that ε ∈ (0,1) is such that P ∗S ∈ (1− ε)P0
S (X ∗S ) + εPS(X ∗S ),

so that P ∗S = (1 − ε)Q∗S + εT ∗S , where Q∗S ∈ P0
S (X ∗S ) and T ∗S ∈ PS(X ∗S ). Observe that we

must have Q∗S(B) = Q∗S(B ∩ XS) and T ∗S(B) = T ∗S(B ∩ XS) for all S ∈ S and all Borel
subsets B ⊆X ∗S , because P ∗S does not put any mass outside XS . Then we can define families
of probability measures QS = (QS : S ∈ S) and TS = (TS : S ∈ S) by QS(B) := Q∗S(B)
and TS(B) := T ∗S(B) for each S ∈ S and each Borel subset B of XS, and have PS = (1−
ε)QS + εTS ∈ (1− ε)P0

S (XS) + εPS(XS). The boundary cases ε ∈ {0,1} can also be handled
similarly, and we deduce that

inf
{
ε ∈ [0,1] : PS ∈ (1− ε)P0

S (XS) + εPS(XS)
}

= inf
{
ε ∈ [0,1] : P ∗S ∈ (1− ε)P0

S (X ∗S ) + εPS(X ∗S )
}
.

The upshot of this argument is that we may assume without loss of generality that each Xj
is a compact Hausdorff space (not just locally compact), so that

R(PS) = sup
{
R(PS, fS) : fS ∈ C+

S
}
,

where we now have suppressed the dependence of these quantities on XS. We now seek to
apply Isii (1964, Theorem 2.3) to rewrite this expression for R(PS) in its dual form; this will
require some further definitions. Let

X := {gS = (gS : S ∈ S) : gS :XS→ [0,∞) is continuous for all S ∈ S},

let Z denote the set of real-valued, continuous functions on X endowed with the supremum
norm topology, let C ⊆ Z denote those elements of Z that are non-negative, let ψ : X → Z
be given by ψ(gS)(x) := (1/|S|)

∑
S∈S gS(xS), and let φ : X → R be given by φ(gS) :=
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−(1/|S|)
∑

S∈S
∫
gS dPS . Now C is a convex cone with non-empty interior. Moreover, for

any g ∈ Z we can take gS = ‖g‖∞ and g′ = ‖g‖∞ − g ∈ C to see that ψ(gS)− g′ = ‖g‖∞ −
g′ = g, and so ψ(X)−C = Z . This shows that Assumption A of Isii (1964) holds. Since X is
a convex cone and φ and ψ are linear we see that the conditions of Isii (1964, Theorem 2.3)
are satisfied. Now, X is compact by Tychanov’s theorem (e.g. Folland, 1999, Theorem 4.42)
(which is equivalent to the axiom of choice), so by a version of the Riesz representation
theorem (e.g. Folland, 1999, Theorem 7.2), the set of non-negative elements of the continuous
dual Z∗ of Z is the set of Radon measures on X , denotedM+(X ). Thus, writing µS for the
marginal measure on XS of µ ∈M+(X ), we have

R(PS) = 1 + sup{φ(gS) : gS ∈X,ψ(gS)− 1≥ 0}

= 1 + inf
{
z∗(−1) : z∗ ∈ Z∗, z∗ ≥ 0, z∗

(
ψ(gS)

)
+ φ(gS)≤ 0 for all gS ∈X

}
= 1 + inf

{
−µ(X ) :µ ∈M+(X ),

∫
X

(∑
S∈S

gS

)
dµ≤

∑
S∈S

∫
XS
gS dPS for all gS ∈X

}

= 1− sup

{
µ(X ) : µ ∈M+(X ),

∫
XS
gS dµ

S ≤
∫
XS
gS dPS for all S ∈ S, gS ∈X

}
.

(S3)

We finally claim that this last display is equal to the claimed form in the statement of the
result. Let ε ∈ [0,1] be such that PS ∈ (1 − ε)P0

S + εPS. Then there exists a probability
measure µ on X with marginals µS := (µS : S ∈ S) for which we can write PS = (1− ε)µS +
εQS, where QS ∈ PS. Since every open set in X is σ-compact, the probability measure µ is
necessarily Radon (Folland, 1999, Theorem 7.8). Now for all S ∈ S, and gS ∈X ,

(1− ε)
∫
XS
gS dµ

S =

∫
XS
gS d(PS − εQS)≤

∫
XS
gS dPS

so (1 − ε)µ is feasible and we deduce from (S3) that R(PS) ≤ ε. Hence R(PS) ≤ inf
{
ε ∈

[0,1] : PS ∈ (1−ε)P0
S +εPS

}
. For the bound in the other direction, first suppose thatR(PS) =

1. Then, from (S3), the only element µ ofM+(X ) satisfying
∫
XS gS dµ

S ≤
∫
XS gS dPS for

all S ∈ S, gS ∈X is the zero measure on X . If ε ∈ [0,1] is such that PS = (1− ε)QS + εTS
with QS ∈ P0

S and TS ∈ PS, then for any S ∈ S and gS ∈X ,∫
XS
gS d(1− ε)QS ≤

∫
XS
gS dPS .

It follows that (1 − ε)QS ∈ M+(X ) must be the zero measure, so ε = 1. Hence, when
R(PS) = 1, we also have inf

{
ε ∈ [0,1] : PS ∈ (1 − ε)P0

S + εPS
}

= 1. Now suppose that
R(PS)< 1, so by (S3), given δ ∈

(
0,1−R(PS)

)
, we can find µ ∈M+(X ) with marginals

(µS : S ∈ S) that satisfies
∫
XS gS dµ

S ≤
∫
XS gS dPS for all S ∈ S, gS ∈ X and µ(X ) =

1−R(PS)− δ. Writing ε := 1− µ(X ) = R(PS) + δ, let QS := (µS/(1− ε) : S ∈ S) ∈ P0
S ,

and let TS := ε−1
(
PS − (1− ε)QS

)
. Then TS(XS) = 1 for all S ∈ S, and for any S ∈ S and

gS ∈X , ∫
XS
gS dTS =

1

ε

∫
XS
gS d(PS − µS)≥ 0.

Thus TS is a probability measure on XS for all S ∈ S, so TS ∈ PS and PS ∈ (1− ε)P0
S + εPS.

Since δ ∈
(
0,1 − R(PS)

)
was arbitrary, we deduce that inf

{
ε ∈ [0,1] : PS ∈ (1 − ε)P0

S +

εPS
}
≤R(PS). This completes the proof.
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4 T. B. BERRETT AND R. J. SAMWORTH

PROOF OF PROPOSITION 3. If fS ∈ G+
S , then min(fS, |S| − 1) ∈ G+

S , because if this were
not the case, then there would exist x0 = (x0

S : S ∈ S) ∈ X and S0 ∈ S with fS0
(x0
S0

) >
|S| − 1 such that ∑

S∈S
min

{
fS(x0

S), |S| − 1
}
< 0.

But, since fS ≥−1, we would then have∑
S∈S

min
{
fS(x0

S), |S| − 1
}
> |S| − 1 +

∑
S∈S:S 6=S0

fS(x0
S)≥ 0,

a contradiction. SinceR
(
PS,min(fS, |S|−1)

)
≥R(PS, fS), it follows that, in seeking a max-

imiser of R(PS, ·), we may restrict our optimisation to
{
fS ∈ G+

S : fS ≤ |S| − 1
}

.
Writing G∗∗S for the set of real-valued, measurable functions on XS , we therefore have

|R(PS)−R(QS)| ≤ sup
fS∈G+

S :fS≤|S|−1

∣∣R(PS, fS)−R(QS, fS)
∣∣

=
1

|S|
sup

fS∈G+
S :fS≤|S|−1

∣∣∣∣∑
S∈S

∫
XS
fS d(PS −QS)

∣∣∣∣
≤ 1

|S|
∑
S∈S

sup
fS∈G∗∗S :−1≤fS≤|S|−1

∣∣∣∣∫
XS
fS d(PS −QS)

∣∣∣∣
=
∑
S∈S

sup
fS∈G∗∗S :−1/2≤fS≤1/2

∣∣∣∣∫
XS
fS d(PS −QS)

∣∣∣∣= dTV(PS,QS),

as required.

PROOF OF PROPOSITION 4. Our strategy here is to apply results on the concentration
properties and the mean of the supremum R(P̂S) of the empirical process

(S4) R(P̂S, fS) =− 1

|S|
∑
S∈S

1

nS

nS∑
i=1

fS(XS,i)

over fS ∈ G+
S . As in the proof of Proposition 4, we may restrict our optimisation to

{
fS ∈

G+
S : fS ≤ |S| − 1

}
.

Writing V :=
∑

S∈S n
−1
S , by Boucheron, Lugosi and Massart (2013, Theorem 12.1) — a

consequence of the bounded differences (McDiarmid’s) inequality — for any collection PS
and λ ∈R, we have

logE exp
(
λ
{
R(P̂S)−ER(P̂S)

})
≤ V λ2

8
.

In particular, by the usual sub-Gaussian tail bound,

max
{
P
(
R(P̂S)−ER(P̂S)≤−t

)
,P
(
R(P̂S)−ER(P̂S)≥ t

)}
≤ exp

(
−2t2

V

)
= exp

(
− 2t2∑

S∈S n
−1
S

)
(S5)
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for all t≥ 0. Moreover, by Proposition 3 and two applications of Cauchy–Schwarz,∣∣ER(P̂S)−R(PS)
∣∣≤ E

∣∣R(P̂S)−R(PS)
∣∣

≤ 1

2

∑
S∈S

∑
xS∈XS

E
∣∣P̂S({xS})− PS({xS})

∣∣
≤ 1

2

∑
S∈S

1

n
1/2
S

∑
xS∈XS

[
PS({xS})

{
1− PS({xS})

}]1/2
≤ 1

2

∑
S∈S

( |XS | − 1

nS

)1/2
.(S6)

It follows from (S5) and (S6) that under H ′0, i.e. when R(PS) = 0, we have

P
(
R(P̂S)≥Cα

)
≤ P

(
R(P̂S)−ER(P̂S)≥

{
1

2
log(1/α)

∑
S∈S

1

nS

}1/2)
≤ α.

On the other hand, if R(PS)≥Cα +Cβ , then from (S5) and (S6) again,

P
(
R(P̂S)≥Cα

)
≥ P

(
R(P̂S)−R(PS)≥−1

2

∑
S∈S

( |XS |−1

nS

)1/2
−
{

1

2
log(1/β)

∑
S∈S

1

nS

}1/2)

≥ P
(
R(P̂S)−ER(P̂S)≥−

{
1

2
log(1/β)

∑
S∈S

1

nS

}1/2)
≥ 1− β,

as required.

PROOF OF PROPOSITION 6. By the same argument given at the start of the proof of
Proposition 4, in seeking a maximiser in (2), we may restrict our optimisation to

{
fS ∈

G+
S : fS ≤ |S| − 1

}
. But

[
−1, |S| − 1

]dS is a compact subset of RdS , and we may regard
fS 7→R(PS, fS) as a continuous function on this set, so the supremum in (2) is attained.

By specialising Theorem 2 to the discrete case we see that

R(PS) = sup
{
ε ∈ [0,1] : PS = εQS + (1− ε)TS,QS ∈ P0

S , TS ∈ PS
}
.

When R(PS) = 0 we can trivially attain the supremum by taking QS = PS ∈ P0
S , since we

already know that R(PS) = 0 if and only if PS ∈ P0
S . Supposing that R(PS) > 0, for each

m≥ 1/R(PS) we can find Q(m)
S ∈ P0

S , T (m)
S ∈ PS, and ε(m) ∈ [R(PS),R(PS)− 1/m] such

that PS = ε(m)Q
(m)
S + (1− ε(m))T

(m)
S . There exists a subsequence (mk)k∈N, QS ∈ P0

S , and
TS ∈ PS such that Q(mk)

S →QS and T (mk)
S → TS as k→∞. We see that we must have

PS =R(PS)QS + {1−R(PS)}TS,

so that the supremum in (2) is indeed attained.

We now turn to the second part of the result. From Theorem 2 we know that for any ε > 0
we have R(PS) ≤ ε if and only if PS ∈ (1 − ε)P0

S + εPS. Now suppose that PS ∈ Pcons
S

satisfies R(PS)≤ ε. Then there exist Q0
S ∈ P0

S and QS ∈ PS such that PS = (1− ε)Q0
S + εQS.

Since P0
S ⊆Pcons

S , it follows that if S1, S2 ∈ S have S1 ∩ S2 6= ∅, then

QS1∩S2

S1
=

1

ε

{
PS1∩S2

S1
− (1− ε)Q0,S1∩S2

S1

}
=

1

ε

{
PS1∩S2

S2
− (1− ε)Q0,S1∩S2

S2

}
=QS1∩S2

S2
;
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6 T. B. BERRETT AND R. J. SAMWORTH

in other words, QS ∈ Pcons
S . Thus, if PS ∈ Pcons

S , then R(PS) ≤ ε if and only if PS ∈ (1 −
ε)P0

S + εPcons
S , which holds if and only if

(S7) PS ∈ P0,∗
S + εPcons,∗∗

S = ε(P0,∗
S +Pcons,∗∗

S ) =:Pε,∗S .

Now P1,∗
S is a convex polyhedral set, so there exist B ∈RF×XS and b ∈RF such that

Pε,∗S =
{
pS ≡ PS ∈ Pcons,∗

S :BpS ≥−εb
}
,

where the equivalence here indicates that pS is the probability mass sequence correspond-
ing to PS. Since 0S ∈ Pε,∗S , we must have b ∈ [0,∞)F and, by rescaling the rows of B if

necessary, we may assume that b ∈ {0,1}F . We may therefore partition B =

(
B1

B2

)
, where

B1 ∈R(F−m)×XS and B2 ∈Rm×XS are such that

(S8) Pε,∗S =
{
pS ≡ PS ∈ Pcons,∗

S :B1pS ≥−ε,B2pS ≥ 0
}
.

In fact, however, we claim that m= 0, so that b= 1F . To see this, note first that (Pε,∗S )ε≥0 is
an increasing family, by (S8). Moreover, if λ≥ 0 and PS ∈ Pcons

S , then λ · PS ∈ λPcons,∗∗
S ⊆

λ(P0,∗
S +Pcons,∗∗

S ) =Pλ,∗S , and hence
⋃
ε≥0P

ε,∗
S =Pcons,∗

S . But⋃
ε≥0

Pε,∗S =
{
pS ≡ PS ∈ Pcons,∗

S :B2pS ≥ 0
}
,

and we conclude thatm= 0, as required. Therefore, by (S7), when pS ≡ PS ∈ Pcons
S , we have

(S9) R(PS) = inf{ε > 0 : PS ∈ Pε,∗S }= ‖BpS‖∞.

We now argue that f (1)
S , . . . , f

(F )
S can be taken to be scalar multiples of the rows of B. We

may regard Pcons,∗
S as a convex cone in [0,∞)XS ; this cone is not full-dimensional (due to

the consistency constraints), but if instead we regard it as a subset of its affine hull, then we
will be able to express it uniquely as an intersection of halfspaces. To see this, note that the
consistency constraints are linear, so there exist d0 ≤ |XS| and U ∈ RXS×d0 of full column
rank such that

Pcons,∗
S = {Uy : Uy ≥ 0, y ∈Rd0}.

Writing f (1)
S , . . . , f

(M)
S for the extreme points of {fS ∈ G+

S : fS ≤ |S| − 1}, we have

Y1,∗ := {y ∈Rd0 : Uy ∈ P1,∗
S }= {y ∈Rd0 : Uy ≥ 0,BUy ≥−1}

=
{
y ∈Rd0 : Uy ≥ 0, min

`∈[M ]
(f

(`)
S )TUy ≥−|S|

}
.

Since Y1,∗ is a full-dimensional, convex subset of Rd0 , the uniqueness of halfspace rep-
resentations means that by relabelling if necessary, we may assume that each row of BU
is (f

(`)
S )TU/|S| for some ` ∈ [F ]. Hence Y1,∗ =

{
y ∈ Rd0 : Uy ≥ 0,min`∈[F ](f

(`)
S )TUy ≥

−|S|
}

, and

P1,∗
S =

{
pS ∈ Pcons,∗

S : min
`∈[F ]

(f
(`)
S )T pS ≥−|S|

}
.

It therefore follows from (S9) that, when PS ∈ Pcons
S , we have

(S10) R(PS) = max
`∈[F ]

R(PS, f
(`)
S )+.
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Having characterised the incompatibility index for consistent distributions, we finally prove
the given bounds on this index in the general case. To see the lower bound, let S1, S2 ∈ S be
such that S1 ∩ S2 6= ∅, and let E ⊆XS1∩S2

. Define fS1,S2,E
S = (fS1,S2,E

S : S ∈ S) ∈ GS by

fS1,S2,E
S (xS) :=

1 if S = S1, xS1∩S2
∈E

−1 if S = S2, xS1∩S2
∈E

0 otherwise.

It is straightforward to check that fS1,S2,E
S ∈ G+

S : if x ∈ X is such that xS1∩S2
∈E then∑

S∈S
fS1,S2,E
S (xS) = fS1,S2,E

S1
(xS1

) + fS1,S2,E
S2

(xS2
) = 1− 1 = 0,

and if x is such that xS1∩S2
6∈E then fS1,S2,E

S (xS) = 0 for all S ∈ S. We also have that

R(PS, f
S1,S2,E
S ) =− 1

|S|

{ ∑
xS1∈XS1 :xS1∩S2∈E

PS1
({xS1

})−
∑

xS2∈XS2 :xS1∩S2∈E
PS2

({xS2
})
}

=
1

|S|
{
PS1∩S2

S2
(E)− PS1∩S2

S1
(E)
}
.

We conclude that

R(PS)≥max

{
max
`∈[F ]

R(PS, f
(`)
S )+, max

S1,S2∈S:S1∩S2 6=∅
max

E⊆XS1∩S2
R(PS, f

S1,S2,E
S )

}
= max

{
max
`∈[F ]

R(PS, f
(`)
S )+,

1

|S|
max

S1,S2∈S:S1∩S2 6=∅
dTV

(
PS1∩S2

S1
, PS1∩S2

S2

)}
.

This establishes the lower bound, and we now turn to the upper bound. Given sequences
of signed measures PS,QS ∈ {λ1PS − λ2PS : λ1, λ2 ≥ 0}, we define their total variation
distance by

dTV(PS,QS) :=
∑
S∈S

sup
AS∈AS

|PS(AS)−QS(AS)|.

Now, given any PS ∈ PS and P cons,∗
S ∈ Pcons,∗

S , we have by (S10) and the fact (quoted at the
start of the proof) that all extreme points of G+

S take values in [−1, |S| − 1]XS that

R(PS) =
1

|S|
sup
fS∈G+

S

{−fTS (pS − pcons,∗
S + pcons,∗

S )}

≤ 1

|S|

[
sup
fS∈G+

S

{−fTS (pS − pcons,∗
S )}+ sup

fS∈G+
S

(−fTS p
cons,∗
S )

]

=
1

|S|

[
sup
fS∈G+

S

{−fTS (pS − pcons,∗
S )}+ max

`∈[F ]
{−(f

(`)
S )T (pcons,∗

S − pS + pS)}
]

≤ 1

|S|

[
sup
fS∈G+

S

{−fTS (pS − pcons,∗
S )}+ sup

fS∈G+
S

{−fTS (pcons,∗
S − pS)}+ max

`∈[F ]
{−(f

(`)
S )T pS}

]

≤ 2dTV(PS, P
cons,∗
S ) +

1

|S|
max
`∈[F ]
{−(f

(`)
S )T pS}.

(S11)
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8 T. B. BERRETT AND R. J. SAMWORTH

We proceed by constructing an element of Pcons,∗
S whose total variation distance to PS can

be controlled. For ω ∈ {0,1}S, write Tω := ∩S:ωS=1S and |ω| :=
∑

S∈SωS . Define p̃S ∈RXS

by

p̃S0
(xS0

) := pS0
(xS0

) +
∑

ω∈{0,1}S:ωS0=1,Tω 6=∅

λ|ω||XTω |
|XS0
|

∑
S:ωS=1

{pTωS (xTω)− pTωS0
(xTω)}

with λ|ω| :=
(−1)|ω|

|ω|(|ω|−1)1{|ω|≥2}. Although p̃S may take negative values, we will see that it
satisfies all the linear constraints of consistency. To see this, let S1, S2 ∈ S be such that S1 ∩
S2 6= ∅ and xS1∩S2

∈ XS1∩S2
, and write Ωa,b

S := {ω ∈ {0,1}S : Tω 6= ∅, ωS1
= a,ωS2

= b} for
a, b ∈ {0,1}. Observe that if A ⊆ B ⊆ [d], then |XB|/|XA| = |XB∩Ac |. Thus, in particular,
when ω ∈Ω1,0

S for instance, we have

|XTω ||XS1∩Sc2∩T cω ||XS1∩S2
|

|XTω∩S2
||XS1

|
=
|XTω∩Sc2 ||XS1∩Sc2∩T cω |

|XS1∩Sc2 |
=
|XTω∩Sc2 |
|XS1∩Sc2∩Tω |

= 1.

Hence

p̃S1∩S2

S1
(xS1∩S2

)− p̃S1∩S2

S2
(xS1∩S2

) =
∑

xS1∈XS1 :
(xS1 )S1∩S2=xS1∩S2

p̃S1
(xS1

)−
∑

xS2∈XS2 :
(xS2 )S1∩S2=xS1∩S2

p̃S2
(xS2

)

= pS1∩S2

S1
(xS1∩S2

)− pS1∩S2

S2
(xS1∩S2

)

+
∑
ω∈Ω1,1

S

λ|ω|
∑

S:ωS=1

[
|XTω |
|XS1
|
|XS1∩Sc2 |{p

Tω
S (xTω)− pTωS1

(xTω)}

− |XTω |
|XS2
|
|XSc1∩S2

|{pTωS (xTω)− pTωS2
(xTω)}

]
+
∑
ω∈Ω1,0

S

λ|ω|
∑

S:ωS=1

|XTω |
|XS1
|
|XS1∩Sc2∩T cω |{p

Tω∩S2

S (xTω∩S2
)− pTω∩S2

S1
(xTω∩S2

)}

−
∑
ω∈Ω0,1

S

λ|ω|
∑

S:ωS=1

|XTω |
|XS2
|
|XSc1∩S2∩T cω |{p

Tω∩S1

S (xTω∩S1
)− pTω∩S1

S2
(xTω∩S1

)}

= pS1∩S2

S1
(xS1∩S2

)− pS1∩S2

S2
(xS1∩S2

)−
∑
ω∈Ω1,1

S

|ω|λ|ω|
|XTω |
|XS1∩S2

|
{pTωS1

(xTω)− pTωS2
(xTω)}

+
∑

ω′∈Ω1,1
S

λ|ω′|−1
|XTω′ |
|XS1∩S2

|
∑

S:ω′S=1

(1− 1{S=S2}){p
Tω′
S (xTω′ )− p

Tω′
S1

(xTω′ )}

−
∑

ω′∈Ω1,1
S

λ|ω′|−1
|XTω′ |
|XS1∩S2

|
∑

S:ω′S=1

(1− 1{S=S1}){p
Tω′
S (xTω′ )− p

Tω′
S2

(xTω′ )}

= pS1∩S2

S1
(xS1∩S2

)− pS1∩S2

S2
(xS1∩S2

)−
∑
ω∈Ω1,1

S

|ω|λ|ω|
|XTω |
|XS1∩S2

|
{pTωS1

(xTω)− pTωS2
(xTω)}

−
∑
ω∈Ω1,1

S

λ|ω|−1(|ω| − 2)
|XTω |
|XS1∩S2

|
{pTωS1

(xTω)− pTωS2
(xTω)}= 0,
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OPTIMAL MCAR TESTING 9

where the final equality holds because (λr) satisfies λ2 = 1/2 and rλr =−(r − 2)λr−1 for
r ≥ 3. The total negative mass of p̃S satisfies∑
S0∈S

∑
xS0∈XS0

p̃S0
(xS0

)− ≤ dTV(PS, P̃S)

≤
∑
S0∈S

∑
ω:|ω|≥2,

ωS0=1,Tω 6=∅

|XTω |
|XS0
||ω|(|ω| − 1)

∑
S:ωS=1

∑
xS0∈XS0

[
(−1)|ω|{pTωS (xTω)− pTωS0

(xTω)}
]
−

≤
∑
S0∈S

∑
ω:|ω|≥2,

ωS0=1,Tω 6=∅

1

|ω| − 1
max
S:ωS=1

dTV(pTωS , pTωS0
)

≤
( ∑
ω:|ω|≥2,Tω 6=∅

|ω|
|ω| − 1

)
max

S,S0∈S:S∩S0 6=∅
dTV(pS∩S0

S , pS∩S0

S0
)

≤ 2|S|+1 max
S,S0∈S:S∩S0 6=∅

dTV(pS∩S0

S , pS∩S0

S0
).

(S12)

Now define P̌S ∈ {λ · PS : λ≥ 0} with mass function p̌S given by

p̌S := p̃S +A
(∑
x∈X

δx
∑
S∈S

p̃S(xS)−
|XSc |

)
where δy ∈ {0,1}X denotes a Dirac point mass on y ∈ X . We see that this is non-negative by
writing

p̌S(xS) = p̃S(xS) +
∑

y:yS=xS

∑
T∈S

p̃T (yT )−
|XT c |

≥ p̃S(xS) + p̃S(xS)− ≥ 0.

Since p̃S satisfies the consistency constraints and p̌S is formed by adding a compatible se-
quence of marginal measures to it, we have P̌S ∈ Pcons,∗

S . Moreover, p̌S ≥ p̃S and∑
S∈S

∑
xS∈XS

{
p̌S(xS)− p̃S(xS)

}
= 1TXSA

(∑
x∈X

δx
∑
S∈S

p̃S(xS)−
|XSc |

)

= |S|1TX
(∑
x∈X

δx
∑
S∈S

p̃S(xS)−
|XSc |

)

= |S|
∑
x∈X

∑
S∈S

p̃S(xS)−
|XSc |

= |S|
∑
S∈S

∑
xS∈XS

p̃S(xS)−

≤ |S|2|S|+1 max
S1,S2∈S:S1∩S2 6=∅

dTV(pS1∩S2

S1
, pS1∩S2

S2
).

From this and (S12), we conclude that

dTV(PS,Pcons,∗)≤ |S|2|S|+2 max
S1,S2∈S:S1∩S2 6=∅

dTV(pS1∩S2

S1
, pS1∩S2

S2
),

and the result follows.
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10 T. B. BERRETT AND R. J. SAMWORTH

PROOF OF THEOREM 7. We prove the result when F ′ ≥ 1, and note that if F ′ = 0 then
simpler arguments apply. By Proposition 6 and the discussion after (5), we have

P
(
R(P̂S)≥C ′α

)
≤ P

(
DR max

`∈[F ′]
R(P̂S, f

(`),′

S )≥ C ′α
2

)
+ P
(

max
S1,S2∈S

dTV(P̂S1∩S2

S1
, P̂S1∩S2

S2
)≥ C ′α
|S|2|S|+3

)
≤ F ′ max

`∈[F ′]
P
(
R(P̂S, f

(`),′

S )≥ C ′α
2DR

)

+
|S|(|S| − 1)

2
max
S1,S2∈S

P
(
dTV(P̂S1∩S2

S1
, P̂S1∩S2

S2
)≥ C ′α
|S|2|S|+3

)
.

(S13)

Observe that when PS ∈ P0
S , we have for any fS ∈ G+

S that ER(P̂S, fS) = R(PS, fS) ≤ 0.
By (S4) and Hoeffding’s inequality, whenever PS ∈ P0

S , we have for any ` ∈ [F ′] that

P
(
R(P̂S, f

(`),′

S )≥ C ′α
2DR

)
≤ P

(
R(P̂S, f

(`),′

S )−ER(P̂S, f
(`),′

S )≥ C ′α
2DR

)
≤ |S|max

S∈S
P
(
− 1

nS

nS∑
i=1

{
f

(`),′

S (XS,i)−Ef (`),′

S (XS,i)
}
≥ C ′α

2DR

)

≤ |S|max
S∈S

exp

(
−nS(C ′α/DR)2

2|S|2

)
≤ α

2F ′
.

For the second term in (S13), under H ′0, for any S1, S2 ∈ S with S1 6= S2 and S1 ∩ S2 6= ∅,
we have

P
(
dTV(P̂S1∩S2

S1
, P̂S1∩S2

S2
)≥ C ′α
|S|2|S|+3

)
= P

(
max

A⊆XS1∩S2

∣∣P̂S1∩S2

S1
(A)− PS1∩S2

S1
(A) + PS1∩S2

S2
(A)− P̂S1∩S2

S2
(A)
∣∣≥ C ′α
|S|2|S|+3

)
≤ 2|XS1∩S2 | max

A⊆XS1∩S2
max
k∈{1,2}

P
(∣∣P̂S1∩S2

Sk
(A)− PS1∩S2

Sk
(A)
∣∣≥ C ′α
|S|2|S|+4

)
≤ 2|XS1∩S2 |+1 exp

(
−(nS1

∧ nS2
)(C ′α)2

|S|222|S|+7

)
≤ α

|S|(|S| − 1)
,

where we have used the fact that
∣∣P̂S1∩S2

Sk
(A)−PS1∩S2

Sk
(A)
∣∣= ∣∣P̂S1∩S2

Sk
(Ac)−PS1∩S2

Sk
(Ac)

∣∣,
and where the penultimate bound follows from Hoeffding’s inequality. We have now estab-
lished that P

(
R(P̂S)≥C ′α

)
≤ α whenever PS ∈ P0

S .
We now turn to the final part of Proposition 7. Very similar arguments to those above based

on Hoeffding’s inequality show that

P
(

max
`∈[F ′]

R(P̂S, f
(`),′

S )<C ′α

)
≤ β

whenever

max
`∈[F ′]

R(PS, f
(`),′

S )≥C ′α + |S|
{

2 log(F ′|S|/β)

minS∈S nS

}1/2

.
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Likewise, for any S1, S2 ∈ S with S1 ∩ S2 6= ∅,

P
(
dTV(P̂S1∩S2

S1
, P̂S1∩S2

S2
)< |S|C ′α

)
≤ β

whenever

dTV(PS1∩S2

S1
, PS1∩S2

S2
)≥ |S|C ′α +

{
2

nS1
∧ nS2

log

(
2|XS1∩S2 |+1

β

)}1/2

.

Now, by Proposition 6, if R(PS)≥M(C ′α +C ′β) then we must either have

max
`∈[F ′]

R(PS, f
(`),′

S )≥ M

2DR
(C ′α +C ′β)

or

max
S1,S2∈S

dTV

(
PS1∩S2

S1
, PS1∩S2

S2

)
≥ M

2|S|+3|S|
(C ′α +C ′β).

Since

C ′β �|S| |S|DR

{
2 log(F ′|S|/β)

minS∈S nS

}1/2

+ max
S1,S2∈S:
S1∩S2 6=∅

{
2

nS1
∧ nS2

log

(
2|XS1∩S2 |+1

β

)}1/2

,

the result follows.

PROOF OF THEOREM 8. We establish the equality (7) by providing matching upper and
lower bounds, first providing the required lower bound onR(PS). GivenA⊆ [r] andB ⊆ [s],
we construct fS ∈ GS as follows. Writing, for example, fij• := f{1,2}(i, j), define

fij• :=


2 if (i, j) ∈A×B
−1 if (i, j) ∈A×Bc

−1 if (i, j) ∈Ac ×B
2 if (i, j) ∈Ac ×Bc

, (fi•1, fi•2) :=

{
(−1,2) if i ∈A
(2,−1) if i ∈Ac ,

and

(f•j1, f•j2) :=

{
(−1,2) if j ∈B
(2,−1) if j ∈Bc .

It is straightforward to check that fS ∈ G+
S because, for instance, if i ∈A and j ∈B, then

min(fij• + f•j1 + fi•1, fij• + f•j2 + fi•2) = min(2− 1− 1,2 + 2 + 2) = 0.

Hence

3R(PS)≥ 3R(PS, fS)

=−
r∑
i=1

s∑
j=1

pij•fij• −
r∑
i=1

(pi•1fi•1 + pi•2fi•2)−
s∑
j=1

(p•j1f•j1 + p•j2f•j2)

=−2(pAB• + pAcBc•) + (pAcB• + pABc•)− 2(pAc•1 + pA•2)

+ (pA•1 + pAc•2)− 2(p•Bc1 + p•B2) + (p•B1 + p•Bc2)

=−2(2pAB• + p••• − pA•• − p•B•) + (p•B• + pA•• − 2pAB•)

− 2(p••1 + pA•• − 2pA•1) + (2pA•1 + p••• − pA•• − p••1)

− 2(p••1 + p•B• − 2p•B1) + (2p•B1 + p••• − p•B• − p••1)

=−6(pAB• + p••1 − pA•1 − p•B1).(S14)
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12 T. B. BERRETT AND R. J. SAMWORTH

Since A ⊆ [r],B ⊆ [s] were arbitrary, and since fS ≡ 0 ∈ G+
S , the desired lower bound fol-

lows.
We now give the matching upper bound on R(PS). When PS ∈ P0

S we automatically
have R(PS) = 0. On the other hand, when PS /∈ P0

S , we relate R(PS) to the maximum
two-commodity flow through the network shown in Figure 1. Recalling the matrix A =
(A(S,yS),x)(S,yS)∈XS,x∈X ∈ {0,1}XS×X from (12), for any PS = (PS : S ∈ S) with corre-
sponding probability mass sequence pS = (p(S,yS)) ∈ [0,1]XS , we may write

R(PS) =− 1

|S|
min

{
pTS fS : fS ≥−1,AT fS ≥ 0

}
= 1− 1

|S|
min

{
pTS y : y ∈ [0,∞)XS ,AT y ≥ |S| · 1X

}
= 1−min

{
pTS z : z ∈ [0,∞)XS ,AT z ≥ 1X

}
= 1−max

{
1TX p : p ∈ [0,∞)X ,Ap≤ pS

}
.(S15)

Here, the final equality follows from the strong duality theorem for linear programming (e.g.
Matousek and Gärtner, 2007, p. 83), where we note that both the primal and dual problems
have feasible solutions. It follows from this that

1−R(PS) = max
{

1TX p : p ∈ [0,∞)X ,Ap≤ pS
}
,

= max

{ r∑
i=1

s∑
j=1

(qij1 + qij2) : min
i,j,k

qijk ≥ 0, max
i,j

(qij1 + qij2 − pij•)≤ 0,

max
i,k

( s∑
j=1

qijk − pi•k
)
≤ 0,max

j,k

( r∑
i=1

qijk − p•jk
)
≤ 0

}
.(S16)

Figure 1 represents a flow network where, for k ∈ {1,2}, commodity k is transferred from
source sk to sink tk. We think of qijk as the flow of commodity k from node xik to node
y

(1)
ij , and

∑r
i=1

∑s
j=1 qijk as being the total flow of commodity k from source sk to sink

tk. Of this flow, at most pi•k may go through xik, for each i ∈ [r], corresponding to the
constraint

∑s
j=1 qijk ≤ pi•k. For each i ∈ [r], j ∈ [s], the combined flow of both commodities

from xi1 and xi2 through to y(2)
ij is bounded above by pij•, corresponding to the constraint

qij1 + qij2 ≤ pij•. For each j ∈ [s] and k ∈ {1,2}, the subsequent flow of commodity k
through node zjk to tk is bounded by p•jk, corresponding to the constraint

∑r
i=1 qijk ≤ p•jk.

Having established the link between R(PS) and this network flow problem, we proceed to
find a total flow that matches the upper bound implied by (S14) and (S16), i.e.

1 + 2 min
A⊆[r],B⊆[s]

(pAB• + p••1 − pA•1 − p•B1)

= min
A⊆[r],B⊆[s]

(pAc•1 + pA•2 + p•Bc1 + p•B2 + pAB• + pAcBc•).(S17)

The fact that the left-hand side of (S17) is equal to the right-hand side relies on the consis-
tency of pS. Let A⊆ [r] and B ⊆ [s] be minimising sets in the above display, observing that
the same choices minimise both left- and right-hand sides. Then, for i ∈A, we have

pAB• − pA•1 ≤ pA\{i}B• − pA\{i}•1 = pAB• − piB• − pA•1 + pi•1,

so that piB• ≤ pi•1. It is therefore possible to send a flow of commodity 1 of pij• from s1

through xi1 to y(2)
ij , for each (i, j) ∈A×B. Similarly, by considering i ∈Ac and repeating the
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Fig 1: Illustration of the flow network described in the proof of Theorem 8. The capacity constraints
are c(sk, xik) = pi•k , c(xik, y

(1)
ij ) =∞, c(y(1)

ij , y
(2)
ij ) = pij•, c(y

(2)
ij , zjk) =∞ and c(zjk, t2) = p•jk

for i ∈ [r], j ∈ [s] and k ∈ [2].

calculation above with A∪ {i} in place of A \ {i}, we see that piBc• ≤ pi•2. Hence a flow of
commodity 2 of pij• can be sent from s2 through xi2 to y(2)

ij for each (i, j) ∈Ac×Bc. So far,
then, we have shown how to send a flow of commodity 1 of pAB• from s1 to {zj1 : j ∈B},
and a flow of commodity 2 of pAcBc• from s2 to {zj2 : j ∈Bc}.

We now claim that, for each i ∈Ac, we may send a flow of commodity 1 of pi•1 from s1

through xi1 and y(2)
iB := {y(2)

ij : j ∈ B} to zB1 := {zj1 : j ∈ B}, and that this flow together
with the previous flow of commodity 1 can pass through zB1 to t1. To do this we use a gen-
eralisation of Hall’s marriage theorem to one-commodity flows due to Gale (1957). Each zj1
for j ∈B already has an incoming flow of pAj•, so has a remaining capacity of p•j1 − pAj•.
By Gale’s theorem, the desired flow is therefore feasible if and only if, for every A′ ⊆Ac and
B′ ⊆B, we have ∑

i∈A′
pi•1 −

∑
j∈B\B′

(p•j1 − pAj•)≤
∑
i∈A′

∑
j∈B′

pij•.

This condition is equivalent to the condition that, for all A′ ⊆Ac and B′ ⊆B we have

p(A∪A′)B′• − p(A∪A′)•1 − p•B′1 ≥ pAB• − pA•1 − p•B1,

but we know that this is true because (A,B) are minimisers of the left-hand side of (S17).
Thus, the desired flow of commodity 1 is feasible. Similarly, for each i ∈ A, we may send
a flow of pi•1 of commodity 2 from s2 through xi1 and y(2)

iBc := {y(2)
ij : j ∈ Bc} to zBc1 :=

{zj1 : j ∈ Bc}, and this flow can pass through to t2. We have therefore now shown that we
can send a combined flow of pAB• + pAcBc• + pAc•1 + pA•2 from the sources to the sinks.

Until this point, no flow has been routed through zB2 or zBc1. To conclude our proof, then,
we now claim that it is possible to introduce an additional flow of p•B2 of commodity 2, as
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14 T. B. BERRETT AND R. J. SAMWORTH

well as p•Bc1 of commodity 1 into the network, to put all edges from zB2 to t2 and from zBc1
to t1 at full capacity. Consider any maximal flow in the network; we wish to determine the
maximal amount of commodity 2 that can be sent from s2 through xAc2 and y(2)

AcB to zB2 and
thus to t2, in addition to the existing flow. To this end, suppose that there exists j ∈ B with
the edge from zj2 to t2 at less than full capacity. Then, since the flow is maximal, it must
be the case that for each i ∈Ac, the flow of commodity 2 from s1 to xi2 is full (i.e. equal to
pi•2), or the flow from y

(1)
ij to y(2)

ij is full. However, if the flow from s1 to xi2 is equal to pi•2,
then the total flow from {xi1, xi2} must be equal to pi•1 + pi•2 = pi•• =

∑s
j′=1 pij′•. In this

case, the edge from y
(1)
ij to y(2)

ij must be full. So, if the edge from zj2 to t2 is not full, then

the edge from y
(1)
ij to y(2)

ij is full for each i ∈ Ac (and each i ∈ A from the earlier flow). It

follows that, in this case, there is a flow of
∑r

i=1 pij• = p•j• = p•j1 + p•j2 from y
(1)
[r]j to y(2)

[r]j .
But such a flow would put both edges zj1 to t1 and zj2 to t2 at full capacity, contradicting
our original hypothesis. Hence, at any maximal flow, all edges from zB2 to t2 are full, and
similarly, all edges from zBc1 to t1 are full. Thus, we can indeed send the desired additional
flow through the network, and we deduce that the total capacity of the network is at least the
expression on the right-hand side of (S17). We conclude from (S16) and (S17) that

R(PS)≤ 2 max
{

0, max
A⊆[r],B⊆[s]

(−pAB• + pA•1 + p•B1 − p••1)
}
,

and this completes the proof of the first part of the theorem.
We now turn to the second part of our result. We first show that p∗S ∈ P

0,∗
S + Pcons,∗∗

S if
and only if p∗S ∈ P

cons,∗
S and

max
{

1TX p : p ∈ [0,∞)X ,Ap≤ p∗S
}
≥ (p∗••• − 1)+.

If p∗••• ≤ 1, then p∗S ∈ P
cons,∗∗
S and there is nothing to prove, so we assume that p∗••• > 1. If

p∗S ∈ P
0,∗
S + Pcons,∗∗

S , then we may write p∗S = Ap+ rS with p ∈ [0,∞)X and rS ∈ Pcons,∗∗
S .

Then

max
{

1TX p
′ : p′ ∈ [0,∞)X ,Ap′ ≤ p∗S

}
≥ 1TX p=

1

|S|

(∑
S∈S

1S

)T
Ap= p∗••• − r••• ≥ p∗••• − 1.

On the other hand, suppose that p∗S ∈ P
cons,∗
S and that there exists p ∈ [0,∞)X with Ap≤ p∗S

and 1TX p≥ p∗•••− 1. Then we certainly have rS = p∗S−Ap ∈ Pcons,∗
S . But since we also have

r••• = p∗•••− 1TX p≤ 1, it follows that rS ∈ Pcons,∗∗
S , and we have proved our claim. Now, the

proof of the first part of the result shows that

max
{

1TX p : p ∈ [0,∞)X ,Ap≤ p∗S
}

= min
A⊆[r],B⊆[s]

(p∗Ac•1 + p∗A•2 + p∗•Bc1 + p∗•B2 + p∗AB• + p∗AcBc•)

= p∗••• + 2 min
A⊆[r],B⊆[s]

(p∗AB• + p∗••1 − p∗A•1 − p∗•B1).

When p∗••• ≥ 1, we therefore have p∗S ∈ P
0,∗
S +Pcons,∗∗

S if and only if p∗S ∈ P
cons,∗
S and

1 + 2 min
A⊆[r],B⊆[s]

(p∗AB• + p∗••1 − p∗A•1 − p∗•B1)≥ 0,

as claimed. On the other hand, when p∗••• < 1 and p∗S ∈ P
cons,∗
S , we always have p∗S ∈

Pcons,∗∗
S ⊆P0,∗

S +Pcons,∗∗
S , and moreover

1 + 2 min
A⊆[r],B⊆[s]

(p∗AB• + p∗••1 − p∗A•1 − p∗•B1)
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OPTIMAL MCAR TESTING 15

> p∗••• + 2 min
A⊆[r],B⊆[s]

(p∗AB• + p∗••1 − p∗A•1 − p∗•B1)

= max
{

1TX p : p ∈ [0,∞)X ,Ap≤ p∗S
}
≥ 0.

Combining both cases, we have now shown that

P0,∗
S +Pcons,∗∗

S =
{
p∗S ∈ P

cons,∗
S : 1 + 2 min

A⊆[r],B⊆[s]
(p∗AB• + p∗••1 − p∗A•1 − p∗•B1)≥ 0

}
,

as required.

The proof of our lower bound in Theorem 9 relies on the following lemma, which is
an extension of both Wu and Yang (2016, Lemma 3) and Jiao, Han and Weissman (2018,
Lemma 32).

LEMMA S1. Let V,V ′ be random variables supported on [λ/2−M,λ/2 +M ] for some
M ≤ λ/2, and suppose that E(V `) = E

(
(V ′)`

)
for ` ∈ [L]. Let Q denote the distribution on

Z2 of (W1,W2)T , where, conditional on V = v, we have that W1 and W2 are independent,
withW1|V = v ∼ Poi(v) andW2|V = v ∼ Poi(λ−v). DefineQ′ in terms of V ′ analogously.
Then

dTV(Q,Q′)≤ 21/2

π1/4

( 2eM2

λ(L+ 1)

)(L+1)/2

whenever L+ 2≥ 8M2/λ.

PROOF OF LEMMA S1. LetU := (V −λ/2)/M andU ′ := (V ′−λ/2)/M , and form ∈N
and x ∈ R, let (x)m := x(x − 1) . . . (x −m + 1) for the falling factorial (with (x)0 := 1).
Letting Y,Z ∼ Poi(λ/2) be independent, we have

dTV(Q,Q′) =
1

2
e−λ

∞∑
i,j=0

1

i!j!

∣∣∣E{V i(λ− V )j − (V ′)i(λ− V ′)j
}∣∣∣

=
e−λ

2

∞∑
i,j=0

(λ/2)i+j

i!j!

∣∣∣∣E{(1 +
2MU

λ

)i(
1− 2MU

λ

)j
−
(

1 +
2MU ′

λ

)i(
1− 2MU ′

λ

)j}∣∣∣∣
=

1

2
e−λ

∞∑
i,j=0

(λ/2)i+j

i!j!

∣∣∣∣E i+j∑
k=0

(2M

λ

)k
{Uk − (U ′)k}

k∑
m=0

(
i

m

)(
j

k−m

)
(−1)k−m

∣∣∣∣
≤ e−λ

∞∑
i,j=0

(λ/2)i+j

i!j!

i+j∑
k=0

(2M

λ

)k
1{k≥L+1}

∣∣∣∣ k∑
m=0

(
i

m

)(
j

k−m

)
(−1)k−m

∣∣∣∣
=

∞∑
k=L+1

1

k!

(2M

λ

)k
E
∣∣∣∣ k∑
m=0

(−1)m
(
k

m

)
(Y )m(Z)k−m

∣∣∣∣

≤
∞∑

k=L+1

1

k!

(2M

λ

)k
E1/2

[{ k∑
m=0

(−1)m
(
k

m

)
(Y )m(Z)k−m

}2]
.

(S18)
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16 T. B. BERRETT AND R. J. SAMWORTH

We now bound this second moment using the facts that (x)m(x)n=
∑m

`=0

(
m
`

)(
n
`

)
`!(x)m+n−`

and E(Y )m = (λ/2)m for all m,n ∈N0 to write

E
[{ k∑

m=0

(−1)m
(
k

m

)
(Y )m(Z)k−m

}2]

=

k∑
m,n=0

(−1)m+n

(
k

m

)(
k

n

)
E{(Y )m(Y )n}E{(Z)k−m(Z)k−n}

=

k∑
m,n=0

(−1)m+n

(
k

m

)(
k

n

) ∞∑
`,r=0

(
m

`

)(
n

`

)(
k−m
r

)(
k− n
r

)
`!r!(λ/2)2k−`−r

=

∞∑
`,r=0

`!r!(λ/2)2k−`−r
{ k∑
m=0

(−1)m
(
k

m

)(
m

`

)(
k−m
r

)}2

.(S19)

Now, terms with ` + r > k are zero, because either ` > m or r > k −m. We can think of(
m
`

)(
k−m
r

)
as a polynomial of degree `+ r in m, and use the fact that

∑k
m=0(−1)m

(
k
m

)
ms =

0 for non-negative integers s < k to conclude that the only non-zero terms are those with
`+ r = k. We now use the fact that

∑k
m=0(−1)m

(
k
m

)
mk = (−1)kk! to see that

k∑
m=0

(−1)m
(
k

m

)(
m

`

)(
k−m
r

)
=
1{`+r=k}

`!r!

k∑
m=0

(−1)m
(
k

m

)
(m)`(k−m)r

=
1{`+r=k}

`!r!
(−1)r+kk!.(S20)

From (S18), (S19) and (S20) together with Stirling’s inequality (e.g. Dümbgen, Samworth
and Wellner, 2021, p. 847), we deduce that when L+ 2≥ 8M2/λ, we have

dTV(Q,Q′)≤
∞∑

k=L+1

1

k!

(2M

λ

)k{ ∞∑
`,r=0

`!r!(λ/2)2k−`−r 1{`+r=k}

(`!)2(r!)2
(k!)2

}1/2

=

∞∑
k=L+1

1

k!

(2M

λ

)k{
k!(λ/2)k

k∑
`=0

(
k

`

)}1/2

=

∞∑
k=L+1

1

(k!)1/2

(2M2

λ

)k/2
≤ 2

{(L+ 1)!}1/2
(2M2

λ

)(L+1)/2
≤ 2

{2π(L+ 1)}1/4
( 2eM2

λ(L+ 1)

)(L+1)/2

≤ 21/2

π1/4

( 2eM2

λ(L+ 1)

)(L+1)/2
,

as required.

PROOF OF THEOREM 9. Assume without loss of generality that n{1,2} ≤ n{1,3}. We will
start by showing that we may work in a Poisson sampling model without changing the sep-
aration rates. Extending our previous setting, let (XS,i)S∈S,i∈N denote independent random
variables, with XS,i ∼ PS , and let NS := (NS : S ∈ S) be an independent sequence of Pois-
son random variables, independent of (XS,i)S∈S,i∈N, with ENS = nS for all S ∈ S. Let Ψ′S
denote the set of sequences of tests of the form (ψ′n′S

∈Ψn′S
: n′S ∈NS

0), and write

RPoi(nS, ρ) := inf
ψ′S∈Ψ′S

{
sup
PS∈P0

S

EPS(ψ
′
NS) + sup

PS∈PS(ρ)
EPS(1−ψ′NS)

}
.
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OPTIMAL MCAR TESTING 17

Here, the expectations are taken over the randomness both in the data and in the sample sizes.
Since R(n′S, ρ)≤R(n′′S, δ) whenever n′S ≥ n′′S for all S ∈ S, we have that

RPoi(nS, ρ)

= inf
ψ′S∈Ψ′S

{
sup
PS∈P0

S

∑
n′S∈NS

0

P(NS=n′S)EPS(ψ
′
n′S

) + sup
PS∈PS(ρ)

∑
n′S∈NS

0

P(NS=n′S)EPS(1−ψ′n′S)
}

≤ inf
ψ′S∈Ψ′S

∑
n′S∈NS

0

P(NS = n′S)

{
sup
PS∈P0

S

EPS(ψ
′
n′S

) + sup
PS∈PS(ρ)

EPS(1−ψ′n′S)
}

=
∑
n′S∈NS

0

P(NS = n′S)R(n′S, ρ)

≤R(dnS/2e, ρ)
∏
S∈S

P(NS ≥ dnS/2e) +
∑
S∈S

P(NS < dnS/2e)

≤R(dnS/2e, ρ) +
∑
S∈S

e−nS/12.

Here, in the final inequality, we have used the fact that when W ∼ Poi(λ), we have

P(W − λ≤−x)≤ e−
x2

2(λ+x)

for all x≥ 0.
We will construct priors for consistent PS over the null and alternative hypotheses that

satisfy p•1• = p••1 = 1/2, p•21 ≥ 1/4, and pi•• = 1/r and pi•1 = 1/(2r) for each i ∈ [r].
By (8), for such PS we have

R(PS) = 2 max
j∈[2]

{
p•j1 −

r∑
i=1

min
(
pij•,

1

2r

)}
+

= max
j∈[2]

{
2p•j1 −

r∑
i=1

(
pij• +

1

2r
−
∣∣∣∣pij• − 1

2r

∣∣∣∣)}
+

=

{ r∑
i=1

∣∣∣∣pi1• − 1

2r

∣∣∣∣− 1

2
+ max(2p•11 − p•1•,2p•21 − p•2•)

}
+

=

{ r∑
i=1

∣∣∣∣pi1• − 1

2r

∣∣∣∣− 1

2
+ max(1/2− 2p•21,2p•21 − 1/2)

}
+

=

( r∑
i=1

∣∣∣∣pi1• − 1

2r

∣∣∣∣+ 2p•21 − 1

)
+

.

We now construct our priors using results from Jiao, Han and Weissman (2018); see also Cai
and Low (2011) and Wu and Yang (2016). Set L := d2e log re and let ν0, ν1 be probability
distributions on [−1,1] satisfying:

• ν0 and ν1 are symmetric about 0;
•
∫ 1
−1 t

` dν0(t) =
∫ 1
−1 t

` dν1(t) for `= 0,1, . . . ,L;
•
∫ 1
−1 |t|dν1(t)−

∫ 1
−1 |t|dν0(t) = 2EL,
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18 T. B. BERRETT AND R. J. SAMWORTH

where EL ≡ EL
[
| · |; [−1,1]

]
is the error in uniform norm of the best degree-L polyno-

mial approximation to the function x 7→ |x| on [−1,1]. The existence of such distribu-
tions ν0 and ν1 follows from Jiao, Han and Weissman (2018, Lemma 29). We recall that
EL = β∗L

−1{1 + o(1)} as L→∞, where β∗ ≈ 0.2802 is the Bernstein constant (Bernstein,
1914). Define g : [−1,1]→R by

g(x) :=
1

r
+ δx, where δ :=

1

r
∧
(

log r

n{1,2}r

)1/2

.

Further, writing a := 1/r− δ ≥ 0 and b := 1/r+ δ ≤ 2/r, define distributions µ0 and µ1 on
[a, b] by µj := νj ◦ g−1 for j = 0,1. These distributions satisfy

•
∫ b
a t dµ0(t) =

∫ b
a t dµ1(t) = 1/r;

•
∫ b
a t

` dµ0(t) =
∫ b
a t

` dµ1(t) for `= 2,3, . . . ,L;
•
∫ b
a |t− 1/r|dµ1(t)−

∫ b
a |t− 1/r|dµ0(t) = 2δEL.

Since ρ∗(nS) is increasing in r, we may assume without loss of generality that r is even.
We will write σ0 and σ1 for our priors under the null and alternative hypotheses respectively.
For σj with j ∈ {0,1} and for odd i ∈ [r], generate 2pi1• independently from µj . For even
i ∈ [r], set pi1• := 1/r − pi−1,1• so that p•1• = 1/2 with probability one. Given (pi1•)

r
i=1,

take pi2• := 1/r− pi1• and pi•1 = pi•2 = 1/(2r), so that pi•• = 1/r and p••1 = 1/2. Write

χ := Eσ1

r∑
i=1

∣∣∣pi1• − 1

2r

∣∣∣−Eσ0

r∑
i=1

∣∣∣pi1• − 1

2r

∣∣∣= rδEL

and set

ζ :=
1

2
Eσ1

r∑
i=1

∣∣∣pi1• − 1

2r

∣∣∣+ 1

2
Eσ0

r∑
i=1

∣∣∣pi1• − 1

2r

∣∣∣≤ 1/2.

Our prior distributions are fully specified upon choosing p•21 := 1/2− (ζ − χ/4)/2≥ 1/4.
For j ∈ {0,1}, let

Ω0,j :=

{
(−1)j

( r∑
i=1

∣∣∣pi1• − 1

2r

∣∣∣−Eσj
r∑
i=1

∣∣∣pi1• − 1

2r

∣∣∣)≤ χ

4

}
.

Then, noting that the even terms in the sum are equal to the odd terms, by Hoeffding’s in-
equality,

Pσj (Ωc
0,j)≤ exp

(
− χ2

16rδ2

)
= e−rE

2
L/16.

Moreover, on Ω0,0,
r∑
i=1

∣∣∣∣pi1• − 1

2r

∣∣∣∣+ 2p•21 − 1

≤ Eσ0

( r∑
i=1

∣∣∣∣pi1• − 1

2r

∣∣∣∣+ 2p•21 − 1

)
+ χ/4 = ζ − χ/2− (ζ − χ/4) + χ/4 = 0,

so that σ0

(
(P0

S )c
)

= Pσ0

{
R(PS)> 0

}
≤ e−rE2

L/16. On the other hand, on Ω0,1,
r∑
i=1

∣∣∣∣pi1• − 1

2r

∣∣∣∣+ 2p•21 − 1

≥ Eµ1

( r∑
i=1

∣∣∣∣pi1• − 1

2r

∣∣∣∣+ 2p•21 − 1

)
− χ/4 = ζ + χ/2− (ζ − χ/4)− χ/4 = χ/2,
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so that σ1

(
PS(χ/2)c

)
= Pσ1

{
R(PS)<χ/2

}
≤ e−rE2

L/16.
We finally bound the total variation distance between the marginal distributions of the data,

using similar arguments to those in Wu and Yang (2016). We have

RPoi(nS, χ/2)≥ inf
ψ′S∈Ψ′S

[
Eσ0

{
1{PS∈P0

S }EPS(ψ
′
NS)
}

+Eσ1

{
1{PS∈PS(χ/2)}EPS(1−ψ′NS)

}]
≥ inf
ψ′S∈Ψ′S

[
Eσ0

{
EPS(ψ

′
NS)
}

+Eσ1

{
EPS(1−ψ′NS)

}]
− σ0

(
(P0

S )c
)
− σ1

(
PS(χ/2)c

)
≥ 1− dTV

(
Eσ0

PnS
S ,Eσ1

PnS
S
)
− 2e−rE

2
L/16,

where, for j = 0,1, we write EσjP
nS
S for the marginal distribution of (XS,i)S∈S,i∈N in our

Poisson model when the prior distribution for PS is σj . The distributions P{2,3} and P{1,3}
are deterministic and do not change between the two priors, so

(S21) dTV

(
Eσ0

PnS
S ,Eσ1

PnS
S
)

= dTV

(
Eσ0

P
n{1,2}
{1,2} ,Eσ1

P
n{1,2}
{1,2}

)
,

where, for j = 0,1, EσjP
n{1,2}
{1,2} denotes the marginal distribution of (X{1,2},i)i∈N in our Pois-

son model when the prior distribution for (pi`•)i∈[r],`∈[2] is taken from the construction of
σj . Under our Poisson sampling scheme, since (pi1•)iodd is an independent sequence, it
suffices to bound the total variation distance between the distributions of random vectors
(Y1, Y2, Y3, Y4) and (Z1,Z2,Z3,Z4), where V ∼ n{1,2}µ0/2, V ′ ∼ n{1,2}µ1/2, and with
λ := n{1,2}/r, we have

(Y1, Y2, Y3, Y4)|V = v ∼ Poi(v)⊗Poi(λ− v)⊗Poi(λ− v)⊗Poi(v)

for all v, and (Z1,Z2,Z3,Z4)|V ′ = v
d
= (Y1, Y2, Y3, Y4)|V = v for all v. We now have that

(S22) dTV

(
Eσ0

P
n{1,2}
{1,2} ,Eσ1

P
n{1,2}
{1,2}

)
≤ r

2
dTV

(
L(Y1, Y2, Y3, Y4),L(Z1,Z2,Z3,Z4)

)
.

Recalling that V and V ′ have identical `th moments for ` ∈ [L], we have by Lemma S1 above
that

dTV

(
L(Y1, Y2, Y3, Y4),L(Z1,Z2,Z3,Z4)

)
=

1

2

∞∑
w,x,y,z=0

e−2λ

w!x!y!z!

∣∣E{V w+z(λ− V )x+y
}
−E

{
(V ′)w+z(λ− V ′)x+y

}∣∣
=

1

2

∞∑
i,j=0

e−2λ 1

i!j!

∣∣E{(2V )i(2λ− 2V )j
}
−E

{
(2V ′)i(2λ− 2V ′)j

}∣∣
≤ 21/2

π1/4

(
e log r

L+ 1

)(L+1)/2

(S23)

since L+ 2≥ 4 log r. We deduce that with ρ= χ/2 = rδEL/2,

R(dnS/2e, ρ)≥RPoi(nS, ρ)−
∑
S∈S

e−nS/12

≥ 1− r

2
· 21/2

π1/4

(
e log r

L+ 1

)(L+1)/2

− 2e−rE
2
L/16 −

∑
S∈S

e−nS/12

≥ 1− r1−e log 2

2
· 21/2

π1/4
− 2e−rE

2
L/16 −

∑
S∈S

e−nS/12.
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It follows that there exists a universal constant r0 > 0 such that when min
(
r,minS∈S nS

)
≥

r0 we have R(dnS/2e, ρ)≥ 1/2, so

ρ∗(dnS/2e)≥ c′
{

1

log r
∧
( r

(n{1,2} ∧ n{1,3}) log r

)1/2
}

for some universal constant c′ > 0. By reducing c′ > 0 if necessary, we may therefore con-
clude that the same lower bound holds for ρ∗(nS).

We now prove that we always have a parametric lower bound, so that the result still holds
when 2≤ r < r0. Since ρ∗ is increasing in r we assume without loss of generality that r = 2
and that n{1,2} = minS∈S nS . Here we use a two-point argument. For any PS ∈ Pcons

S with
p1•• = p•1• = p••1 = 1/2, we have from (8) that

R(PS) = 2max

{
0,

1

2
− p11• − p•11 − p1•1, p11• − p•11 + p1•1 −

1

2
,

p11• + p•11 − p1•1 − 1/2,−p11• + p•11 + p1•1 −
1

2

}
.

In fact, when p11• + p•11 + p1•1 ≤ 1/2 we have

R(PS) = 1− 2(p11• + p•11 + p1•1).

Take p•11 = p1•1 = 1/8 so that R(PS) = 1/2− 2p11•. We can therefore take P (0)
S ∈ P0

S to
have p11• = 1/4 and P (1)

S ∈ PS
(
(32n{1,2})

−1/2
)

to have p11• = 1/4− (32n{1,2})
−1/2. We

now use Pinsker’s inequality to calculate that

d2
TV

(
(P

(0)
S )nS ,(P

(1)
S )nS

)
= d2

TV

(
(P (0)

n{1,2})
n{1,2} , (P (1)

n{1,2})
n{1,2}

)
≤
n{1,2}

2
KL
(
P (0)
n{1,2} , P

(1)
n{1,2}

)
=
n{1,2}

4

{
log

(
1/4

1/4− (32n{1,2})−1/2

)
+ log

(
1/4

1/4 + (32n{1,2})−1/2

)}
=
n{1,2}

4
log

(
1

1− 1/(2n{1,2})

)
≤ 1

4
.

and it follows that ρ∗(nS) ≥ (32 minS∈S nS)−1/2. By considering the different possible or-
derings of r, minS∈S nS and r0, we see that the claimed lower bound holds.

PROPOSITION S2. Let S =
{
{1,2,3},{1,3,4},{1,2,4}

}
with X = [r]× [s]× [2]× [2]

for some r, s≥ 2. There exist universal constants C0, c > 0 such that whenever s≥C0 log3 r
we have

ρ∗(nS)≥ cmax

{
1

log(rs)
∧
(

rs

(n{1,2,3} ∧ n{1,2,4}) log(rs)

)1/2

,
1

(minS∈S nS)1/2

}
.

PROOF OF PROPOSITION S2. As in the proof of Theorem 9, we may work in a Poisson
sampling model. We will construct priors σ0 and σ1 for PS ∈ Pcons

S under the null and alterna-
tive hypotheses respectively, that satisfy pi••• = 1/r, pi•1• = pi••1 = 1/(2r), pi•21 ≥ 1/(4r)
for each i ∈ [r], and pij•• = 1/(rs) and pij•1 = 1/(2rs) for each i ∈ [r] and j ∈ [s]. By
Proposition 11, for such PS, we have

R(PS) = 2

r∑
i=1

max
A⊆[s]

max
k=1,2

(−piAk• + piA•1 + pi•k1 − pi••1)+
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= 2

r∑
i=1

max
k=1,2

{ s∑
j=1

(pij•1 − pijk•)+ + pi•k1 − pi••1
}

+

=

r∑
i=1

max
k=1,2

( s∑
j=1

|pij1• − 1/(2rs)|+ 2pi•k1 − 1/r

)
+

=

r∑
i=1

( s∑
j=1

|pij1• − 1/(2rs)|+ 2pi•21 − 1/r

)
+

.

With L := d2e log(rs)e let ν0, ν1 be the distributions on [−1,1] defined in the proof of The-
orem 9. Now, defining g : [−1,1]→R by

g(x) :=
1

s
+ δx, where δ :=

1

s
∧
(
r log(rs)

n{1,2,3}s

)1/2

,

set µ` := ν` ◦ g−1 for `= 0,1. We will assume without loss of generality that s is even and,
for each i ∈ [r], each odd j ∈ [s] and each `= 0,1, under σ` generate 2rpij1• independently
from µ`. For i ∈ [r] and even j ∈ [s] set pij1• = 1/(rs)− pi,j−1,1•. For all i ∈ [r] and j ∈ [s]
take pij2• = 1/(rs)−pij1• and pij•1 = pij•2 = 1/(2rs). Similarly to the proof of Theorem 9,
write

χ := Eσ1

r∑
i=1

s∑
j=1

|pij1• − 1/(2rs)| −Eσ0

r∑
i=1

s∑
j=1

|pij1• − 1/(2rs)|= sδEL

and

ζ :=
1

2
Eσ1

r∑
i=1

s∑
j=1

|pij1• − 1/(2rs)|+ 1

2
Eσ0

r∑
i=1

s∑
j=1

|pij1• − 1/(2rs)|,

and choose pi•21 = (1/r){1/2− (ζ−χ/4)/2} ≥ 1/(4r) for each i ∈ [r]. Now, using a union
bound and the same argument as in the proof of Theorem 9, we have

Pσ0
(PS /∈ P0

S )≤ r exp
(
−
sE2

L

16

)
and Pσ0

(R(PS)<χ/2)≤ r exp
(
−
sE2

L

16

)
.

These right-hand sides can be made arbitrarily small by choosingC0 sufficiently large enough
in our assumption that s≥ c0 log3 r. Now, as in (S21), (S22) and (S23) in the proof of Theo-
rem 9 we use the fact that L+ 2≥ 4 log(rs) to see that

dTV

(
Eσ0

PnS
S ,Eσ1

PnS
S
)
≤ rs

2
· 21/2

π1/4

(
e log(rs)

L+ 1

)(L+1)/2

≤ (rs)1−e log 2

21/2π1/4
.

The remainder of the proof is directly analogous to the proof of Theorem 9.

PROOF OF PROPOSITION 10. Suppose that P−JS ∈ Pcons
S−J and let S1, S2 ∈ S have S1 ∩

S2 6= ∅. If neither or both of S1 and S2 are equal to S0, then we have immediately
that PS1∩S2

S1
= PS1∩S2

S2
. On the other hand, if S1 = S0 but S2 6= S0, say, then PS1∩S2

S1
=

PS1∩Jc∩S2

S1∩Jc = PS1∩Jc∩S2

S2∩Jc = PS1∩S2

S2
. This proves the first part of the proposition.

For the second part, if fS−J = (fS : S ∈ S−J) ∈ G+
S−J , then we can define f ′S = (f ′S : S ∈ S)

by f ′S := fS for S ∈ S \ {S0} and f ′S0
(xJ , xS0∩Jc) := fS0∩Jc(xS0∩Jc). Then f ′S ∈ G

+
S , and

R(PS, f
′
S) =− 1

|S|
∑
S∈S

∫
XS
f ′S(xS)dPS(xS)
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=− 1

|S−J |
∑

S∈S\{S0}

∫
XS
fS(xS)dPS(xS)− 1

|S−J |

∫
XS0

fS0∩Jc(xS0∩Jc)dPS0
(xS0

)

=− 1

|S−J |
∑

S∈S\{S0}

∫
XS
fS(xS)dPS(xS)− 1

|S−J |

∫
XS0∩Jc

fS0∩Jc(xS0∩Jc)dPS0∩Jc(xS0∩Jc)

=R(P−JS , fS−J ).

It follows that R(PS)≥R(P−JS ). Conversely, suppose that fS ∈ G+
S is such that R(PS, fS) =

R(PS). Now define f̃S = (f̃S : S ∈ S−J) by f̃S := fS for S ∈ S\{S0} and f̃S0∩Jc(xS0∩Jc) :=
infx′J∈XJ fS0

(x′J , xS0∩Jc). Then f̃S ≥−1. Moreover, each f̃S is upper semi-continuous: this
follows when S ∈ S \ {S0} because fS is then upper semi-continuous; on the other hand, for
any x′J ∈ XJ ,

lim sup
xn,S0∩Jc→xS0∩Jc

f̃S0∩Jc(xn,S0∩Jc)≤ lim sup
xn,S0∩Jc→xS0∩Jc

fS0
(x′J , xn,S0∩Jc)≤ fS0

(x′J , xS0∩Jc).

We deduce that lim supxn,S0∩Jc→xS0∩Jc f̃S0∩Jc(xn,S0∩Jc)≤ f̃S0∩Jc(xS0∩Jc), as required. Fi-
nally, writing X−J :=

∏
j∈[d]\J Xj , we have

inf
x−J∈X−J

∑
S∈S−J

f̃S(xS) = inf
x−J∈X−J

{ ∑
S∈S\{S0}

f̃S(xS) + f̃S0∩Jc(xS0∩Jc)

}

= inf
x−J∈X−J

{ ∑
S∈S\{S0}

fS(xS) + inf
xJ∈XJ

fS0
(xJ , xS0∩Jc)

}
= inf
x∈X

∑
S∈S

fS(xS)≥ 0.

Thus f̃S ∈ G+
S−J , and R(P−JS )≥R(P−JS , f̃S)≥R(PS, fS) =R(PS).

PROOF OF PROPOSITION 11. Any fS ∈ G+
S can be decomposed as (fS|xJ : xJ ∈ XJ , S ∈

S), where fS|xJ ∈ GS∩Jc is defined by fS|xJ (xS∩Jc) := fS(xJ , xS∩Jc). We write fS|xJ :=
(fS|xJ : S ∈ S). Moreover, for each xJ ∈ XJ ,

inf
xS∩Jc∈XS∩Jc

∑
S∈S

fS|xJ (xS∩Jc) = inf
xS∩Jc∈XS∩Jc

∑
S∈S

fS(xJ , xS∩Jc)

≥ inf
x′J∈XJ ,xS∩Jc∈XS∩Jc

∑
S∈S

fS(x′J , xS∩Jc)≥ 0,

so fS|xJ ∈ G
+
S−J for each xJ ∈ XJ . It follows that if ε > 0, and if fS ∈ G+

S is such that
R(PS, fS)≥R(PS)− ε, then

R(PS)≤R(PS, fS) + ε=− 1

|S|
∑
S∈S

∫
XS
fS(xS)dPS(xS) + ε

=− 1

|S|
∑
S∈S

∫
XJ

∫
XS∩Jc

fS|xJ (xS∩Jc)dPS|xJ (xS∩Jc)dP
J(xJ) + ε

=

∫
XJ
R(PS|xJ , fS|xJ )dP J(xJ) + ε.

Since ε > 0 was arbitrary, the desired inequality (10) follows.
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Now consider the discrete case where Xj = [mj ] for some m1, . . . ,md ∈N∪ {∞}. Given
any (fS|xJ : xJ ∈ XJ) with fS|xJ ∈ G

+
S−J for each xJ ∈ XJ , we can define fS = (fS : S ∈ S)

by fS(xS) := fS|xJ (xS∩Jc). Then fS ≥−1 for all S ∈ S, each fS is upper semi-continuous,
and

min
x∈X

∑
S∈S

fS(xS) = min
xJ∈XJ

min
xS∩Jc∈XS∩Jc

∑
S∈S

fS|xJ (xS∩Jc)≥ 0.

Hence fS ∈ G+
S . Moreover, in this discrete case, maximising R(PS|xJ , ·) over G+

S−J may be
regarded as maximising a continuous function over a closed subset of [−1, |S| − 1]XS−J

equipped with product topology, and this is a compact set by Tychanov’s theorem (e.g. Fol-
land, 1999, Theorem 4.42). We may therefore assume that there exists fS|xJ ∈ G

+
S−J such that

R(PS|xJ , fS|xJ ) =R(PS|xJ ). Then

R(PS)≥R(PS, fS) =− 1

|S|
∑
S∈S

∑
xJ∈XJ

∑
xS∩Jc∈XS∩Jc

fS(xJ , xS∩Jc)pS(xJ , xS∩Jc)

=
∑
xJ∈XJ

{
− 1

|S|
∑
S∈S

∑
xS∩Jc∈XS∩Jc

fS|xJ (xS∩Jc)pS|xJ (xS∩Jc)

}
pJ(xJ)

=
∑
xJ∈XJ

R(PS|xJ , fS|xJ )pJ(xJ) =
∑
xJ∈XJ

R(PS|xJ )pJ(xJ),

and the desired conclusion follows.

PROOF OF PROPOSITION 12. We first establish the lower bound on R(PS). Suppose that
ε ∈ [0,1] is such that PS ∈ (1− ε)P0

S + εPS. Then we can find Q0
S ∈ P0

S and QS ∈ PS such
that PS = (1− ε)Q0

S + εQS. But then PS1
:= (PS : S ∈ S1) satisfies PS1

= (1− ε)Q0
S1

+ εQS1
,

so PS1
∈ (1 − ε)P0

S1
+ εPS1

. Hence, by Theorem 2 we have R(PS) ≥ R(PS1
). The same

argument applies to show that R(PS)≥R(PS2
), and the lower bound therefore follows.

We now turn to the upper bound. For k ∈ {1,2}, let Ik := ∪S∈SkS. From (S15), for each
k ∈ {1,2}we can find qk ∈ [0,∞)XIk that maximises 1TXIk

q over all q ∈ [0,∞)XIk that satisfy
Akq ≤ pSk , where Ak := (Ak(S,yS),x)(S,yS)∈XSk ,x∈XIk ∈ {0,1}

XSk×XIk is given by

Ak(S,yS),x := 1{xS=yS}.

Define a measure Q on X with mass function q given by

q(x) :=

{
min

{
qJ1 (xJ), qJ2 (xJ)

}
· q1(xI1 )
qJ1 (xJ)

· q2(xI2 )
qJ2 (xJ)

if min
{
qJ1 (xJ), qJ2 (xJ)

}
> 0

0 otherwise.

Then whenever min{qJ1 (xJ), qJ2 (xJ)}> 0, we have

qJ(xJ) =
∑

xJc∩I1∈XJc∩I1

∑
xJc∩I2∈XJc∩I2

min{qJ1 (xJ), qJ2 (xJ)}q1(xI1)

qJ1 (xJ)
· q2(xI2)

qJ2 (xJ)

= min{qJ1 (xJ), qJ2 (xJ)}
∑

xJc∩I1∈XJc∩I1

q1(xI1)

qJ1 (xJ)
·

∑
xJc∩I2∈XJc∩I2

q2(xI2)

qJ2 (xJ)

= min{qJ1 (xJ), qJ2 (xJ)}= min
{

(A1q1)(J,xJ), (A2q2)(J,xJ)

}
≤ (pS)(J,xJ) = pJ(xJ).
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On the other hand, if min{qJ1 (xJ), qJ2 (xJ)}= 0, then qJ(xJ) = 0≤ pS(xS). Further, when-
ever qJk (xJ)> 0, we have for k ∈ {1,2} and any S ∈ Sk \ {J} that

qS(xS) =
∑

xJ∩Sc∈XJ∩Sc

∑
xJc∩Ik∈XJc∩Ik

min{qJ1 (xJ), qJ2 (xJ)}qk(xIk)
qJk (xJ)

≤
∑

xJ∩Sc∈XJ∩Sc

∑
xJc∩Ik∈XJc∩Ik

qk(xIk)

= qSk (xS) = (Akqk)(S,xS) ≤ (pS)(S,xS) = pS(xS).

Finally, if qJk (xJ) = 0, then qS(xS) = 0 ≤ pS(xS). It follows that Aq ≤ pS, where A :=
(A(S,yS),x)(S,yS)∈XS,x∈X ∈ {0,1}XS×X is given by (12). Thus, from (S15),

R(PS)≤ 1−
∑
x∈X

q(x) = 1−
∑
xJ∈XJ

min
{
qJ1 (xJ), qJ2 (xJ)

}
=
∑
xJ∈XJ

max
{
pJ(xJ)− qJ1 (xJ), pJ(xJ)− qJ2 (xJ)

}
≤
∑
xJ∈XJ

{
pJ(xJ)− qJ1 (xJ) + pJ(xJ)− qJ2 (xJ)

}
= 1−

∑
xI1∈XI1

q1(xI1) + 1−
∑

xI2∈XI2

q2(xI2) =R(PS1
) +R(PS2

),

as required.

PROOF OF PROPOSITION 5. Suppose that there exist fS ∈ RXS and c ∈ R such that
fTS pS = c for all pS ∈ P0

S . We will show that we must also have fTS pS = c for all pS ∈ Pcons
S .

In fact, by replacing fS by fS − (c/|S|)1XS , we may assume without loss of generality that
c= 0.

In this proof we emphasise the dependence of A on S by writing AS. Since (ATS fS)T p= 0
for all p ∈ [0,1]X with 1TX p= 1, we must have that ATS fS = 0. We will use induction on |S|
to deduce that fTS pS = 0 for all pS ∈ Pcons

S . When |S| = 1, we have that if ATS fS = 0, then
fS = 0, so fTS pS = 0 for all pS ∈ Pcons

S . As our induction hypothesis, suppose that whenever
|S| ≤m and fS ∈RXS satisfies ATS fS = 0, we must have fTS pS = 0 for all pS ∈ Pcons

S .
Let S be given with |S|=m+ 1, suppose that fS ∈ RXS satisfies ATS fS = 0, and let pS ∈

Pcons
S be arbitrary. Without loss of generality, we may assume that Xj = [mj ] for j ∈ [d] for

some m1, . . . ,md ∈N. Fixing S0 ∈ S, we have

fS0
(xS0

) =−
∑

S∈S\{S0}

fS(xS0∩S ,1Sc0∩S)

for all xS0
∈ XS0

, since (ATS fS)(xS0 ,1[d]\S0 ) = 0. Using the notational convention that∑
xS1∩S2∈XS1∩S2

pS1∩S2

S1
(xS1∩S2

) = 1 whenever S1 ∩ S2 = ∅, we may therefore write

fTS pS =
∑

xS0∈XS0

fS0
(xS0

)pS0
(xS0

) +
∑

S∈S\{S0}

∑
xS∈XS

fS(xS)pS(xS)

=
∑

S∈S\{S0}

{ ∑
xS∈XS

fS(xS)pS(xS)−
∑

xS0∩S∈XS0∩S

fS(xS0∩S ,1Sc0∩S)pS0∩S
S0

(xS0∩S)

}
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=
∑

S∈S\{S0}

{ ∑
xS∈XS

fS(xS)pS(xS)−
∑

xS0∩S∈XS0∩S

fS(xS0∩S ,1Sc0∩S)pS0∩S
S (xS0∩S)

}
=

∑
S∈S\{S0}

∑
xS∈XS

pS(xS)
{
fS(xS)− fS(xS0∩S ,1Sc0∩S)

}
= (f̄S\{S0})

T pS\{S0},(S24)

where we define f̄S\{S0} ∈ RXS\{S0} by f̄S(xS) := fS(xS) − fS(xS0∩S ,1Sc0∩S) for S ∈ S \
{S0} and xS ∈ XS , and where pS\{S0} := (pS : S ∈ S \ {S0}). For any x ∈ X , we have

(ATS\{S0}f̄S\{S0})x =
∑

S∈S\{S0}

f̄S(xS) =
∑

S∈S\{S0}

fS(xS)−
∑

S∈S\{S0}

fS(xS0∩S ,1Sc0∩S)

= (ATS fS)x − fS0
(xS0

)−
{

(ATS fS)(xS0 ,1[d]\{S0})
− fS0

(xS0
)
}

= fS0
(xS0

)− fS0
(xS0

) = 0.

Since pS\{S0} satisfies the consistency constraints associated with S, we see by (S24) and our
induction hypothesis that

fTS pS = (f̄S\{S0})
T pS\{S0} = 0,

as required.

PROPOSITION S3. Suppose that S =
{
{1,2},{2,3},{3,4},{1,4}

}
, X1 = [r] for some

r ∈N, and X2 =X3 =X4 = [2]. Then

(S25) R(PS) = 2 max
k,`∈[2]

{
p••k` − p•2k• −

r∑
i=1

min(pi1••, pi••`)

}
+

.

PROOF OF PROPOSITION S3. We first prove thatR(PS) is bounded below by the quantity
on the right-hand side of (S25), before proving the corresponding upper bound. First, we
always have R(PS)≥ 0. Now, define fS ∈ GS by setting, for i ∈ [r],

(fi1••, fi2••, fi••1, fi••2) :=

{
(3,−1,−1,3) if pi1•• ≤ pi••1
(−1,3,3,−1) otherwise ,

f••12 = f••21 = f•12• = f•21• = 3 and f••11 = f••22 = f•11• = f•22• =−1. It is straightfor-
ward to check that fS ∈ G+

S . Now

R(PS, fS)

=−1

4

r∑
i=1

( 2∑
j=1

pij••fij•• +

2∑
`=1

pi••`fi••`

)
− 1

4

2∑
j,k=1

p•jk•f•jk• −
1

4

2∑
k,`=1

p••k`f••k`

=−1

4

r∑
i=1

{
3 min(pi1••, pi••1)−max(pi2••, pi••2)−max(pi1••, pi••1)+3 min(pi2••, pi••2)}

− 1

4
{3(p•12• + p•21•)− (p•11• + p•22•)} −

1

4
{3(p••12 + p••21)− (p••11 + p••22)}

=−1

4

r∑
i=1

{
4 min(pi1••, pi••1)− 4 max(pi1••, pi••1) + 2pi•••

}
− 1

4

{
3(2p•21• − p•2•• − p••1• + p••••)− (p••1• − 2p•21• + p•2••)

}
− 1

4

{
3(p••1• − 2p••11 + p•••1)− (2p••11 − p••1• − p•••1 + p••••)

}
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=−1

4

r∑
i=1

{8 min(pi1••, pi••1)− 4pi1•• − 4pi••1 + 2pi•••}

− 1

4

(
8p•21• − 4p•2•• − 4p••1• + 3p••••

)
− 1

4

(
−8p••11 + 4p••1• + 4p•••1 − p••••

)
= 2

{
p••11 − p•21• −

r∑
i=1

min(pi1••, pi••1)

}
.

SinceR(PS)≥R(PS, fS), this completes the lower bound in the case that (k, `) = (1,1) is the
maximiser in (S25). The other three cases follow by almost identical arguments by choosing
different fS ∈ G+

S appropriately. We now turn to the upper bound, which we will prove by
using the dual formulation

1−R(PS) = max

{ r∑
i=1

2∑
j,k,`=1

qijk` : q ∈ [0,∞)X ,Aq ≤ pS
}
.

Write A := {i ∈ [r] : pi1•• ≤ pi••1} and suppose that

(S26) p••11 − p•21• − pA1•• − pAc••1 ≥ 0,

where we note that an alternative expression for the left-hand side of (S26) is given by p••11−
p•21• −

∑r
i=1 min(pi1••, pi••1). For i ∈ [r], consider the choices

qi111 = min(pi1••, pi••1), qi112 =
(pi1•• − pi••1)+

pAc1•• − pAc••1
p••12,

qi121 = 0, qi122 =
(pi1•• − pi••1)+

pAc1•• − pAc••1
p•12•,

qi222 = min(pi••2, pi2••), qi211 =
(pi••1 − pi1••)+

pA••1 − pA1••
p•21•,

qi212 = 0, qi221 =
(pi••1 − pi1••)+

pA••1 − pA1••
p••21,

where we interpret qi211 = q1221 = 0 if pA••1 = pA1••. It is clear that q ∈ [0,∞)X , and we
now check that Aq ≤ pS. First,

2∑
k,`=1

qi1k` = min(pi1••, pi••1) +
(pi1•• − pi••1)+

pAc1•• − pAc••1
(p••12 + p•12•)

= min(pi1••, pi••1) +
(pi1•• − pi••1)+

pAc1•• − pAc••1
(p•21• − p••11 + p•1••)

≤min(pi1••, pi••1) + (pi1•• − pi••1)+ = pi1••,

for each i ∈ [r], where the inequality follows from (S26). It is very similar to check that∑2
k,`=1 qi2k` ≤ pi2••, that

∑2
j,k=1 qijk1 ≤ pi••1, and that

∑2
j,k=1 qijk2 ≤ pi••2 for each i ∈

[r]. Now

r∑
i=1

2∑
`=1

qi11` =

r∑
i=1

{
min(pi1••, pi••1) +

(pi1•• − pi••1)+

pAc1•• − pAc••1
p••12

}
= pA1•• + pAc••1 + p••12 ≤ p••11 − p•21• + p••12 = p•11•,
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where the inequality again follows from (S26). It is similar to check that
∑r

i=1

∑2
`=1 qi22` ≤

p•22•, that
∑r

i=1

∑2
j=1 qij11 ≤ p••11, and that

∑r
i=1

∑2
j=1 qij22 ≤ p••22. Finally, using sim-

ilar arguments we see that
∑r

i=1

∑2
`=1 qi12` = p•12•, that

∑r
i=1

∑2
`=1 qi21` = p•21•, that∑r

i=1

∑2
j=1 qij21 = p••21, and that

∑r
i=1

∑2
j=1 qij12 = p••12. Now that we have seen that

q satisfies the necessary constraints, we calculate that

R(PS)≤ 1−
r∑
i=1

2∑
j,k,`=1

qijk`

= 1− (pA1•• + pAc••1 + p••12 + p•12• + p•21• + p••21 + pAc2•• + pA••2)

= 2

{
p••11 − p•21• −

r∑
i=1

min(pi1••, pi••1)

}
.

This deals with the case where (k, `) = (1,1) gives the maximiser in (S25) and where the
right-hand side of (S25) is positive, as in this case (S26) must hold. The other cases follow
by very similar arguments, and this completes the proof.

PROOF OF THEOREM 15. Given S ∈ S and k = (k1, . . . , kd) ∈ Kh, we can define a dis-
cretised version QS of PS with mass function

qS(kS) := PS

( ∏
j∈S∈[d0]

Ihj ,kj ×
∏

j∈S∩([d]\[d0])

{kj}
)
.

Then Rh(P̂S)
d
= R(Q̂S), where (YS,i : S ∈ S, i ∈ [nS ]) are independent with YS,i ∼ QS for

i ∈ [nS ], and Q̂S denotes their empirical distribution. Moreover, if R(PS) = 0, then PS ∈ P0
S

so there exists a distribution P on X whose marginal distribution on XS is PS , for each
S ∈ S. The discretised version Q of P with mass function

(S27) q(k) := P

( d0∏
j=1

Ihj ,kj ×
d∏

j=d0+1

{kj}
)

on Kh then satisfies the condition that its marginal on (Kh)S is qS , for each S ∈ S. It follows
that Q is compatible, i.e. R(QS) = 0. The Type I error probability control follows from this
and the first parts of Theorems 4 and 7.

For the second claim, given ε > 0, find fS ∈ G+
S with R(PS, fS) ≥ R(PS)− ε. As in the

proof of Proposition 6, we may assume without loss of generality that fS ≤ |S| − 1 for all
S ∈ S. Now define fS,h = (fS,h : S ∈ S) by

fS,h(xS∩[d0], xS∩([d]\[d0])) :=

∫∏
j∈S∩[d0] Ihj,kj

fS(x′S∩[d0], xS∩([d]\[d0]))dx
′
S∩[d0]∫∏

j∈S∩[d0] Ihj,kj
dx′S∩[d0]

for (xS∩[d0], xS∩([d]\[d0])) ∈ XS with xS∩[d0] ∈
∏
j∈S∩[d0] Ihj ,kj . Each fS,h is then clearly

piecewise constants on the appropriate sets, and is bounded below by −1. To check the other
constraints of G+

S,h, let x ∈ X be given and let U be uniformly distributed on the part of the
partition of [0,1)S∩[d0] that contains x[d0]. We have that∑
S∈S

fS,h(xS) =
∑
S∈S

E
{
fS(US∩[d0], xS∩([d]\[d0]))

}
= E

{∑
S∈S

fS(US∩[d0], xS∩([d]\[d0]))

}
≥ 0,
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and thus indeed fS,h ∈ G+
S,h. Now,

R(PS, fS,h) =− 1

|S|
∑
S∈S

∑
k∈(Kh)S

∫∏
j∈S∩[d0] Ihj,kj

fS(x′S∩[d0], kS∩([d]\[d0]))dx
′
S∩[d0]∫∏

j∈S∩[d0] Ihj,kj
dx′S∩[d0]

× PS
( ∏
j∈S∩[d0]

Ihj ,kj ×
∏

j∈S∩([d]\[d0])

{kj}
)

≥− 1

|S|
∑
S∈S

∑
k∈(Kh)S

∫
∏
j∈S∩[d0] Ihj,kj

fS(x′S∩[d0], kS∩([d]\[d0]))dPS(x′S∩[d0], kS∩([d]\[d0]))

− L(|S| − 1)

|S|

( d0∑
j=1

h
rj
j

)∑
S∈S

∑
k∈(Kh)S

p
S∩([d]\[d0])
S (kS∩([d]\[d0]))

∫
∏
j∈S∩[d0] Ihj,kj

dx′S∩[d0]

=R(PS, fS)−L(|S| − 1)

d0∑
j=1

h
rj
j ≥R(PS)− ε−L(|S| − 1)

d0∑
j=1

h
rj
j .

Since ε > 0 was arbitrary, we deduce that

(S28) Rh(PS)≥R(PS)−L(|S| − 1)

d0∑
j=1

h
rj
j .

The completion of the argument is now very similar to the first part of the theorem: we
define the discretised version QS of PS via (S27). Note again that Rh(P̂S)

d
=R(Q̂S), where

(YS,i : S ∈ S, i ∈ [nS ]) are independent with YS,i ∼ QS for i ∈ [nS ], and Q̂S denotes their
empirical distribution. Since R(QS) = Rh(PS), the result follows from (S28) together with
the second parts of Theorems 4 and 7.

PROOF OF PROPOSITION 16. To prove the first claim, let PS ∈ (P0
S )−Cα , so that

PPS

(
1 +

B∑
b=1

1{R(Q̂
(b)

S )≥R(P̂S)} ≤ α(B + 1)

)
≤ PPS(R(P̂S)> 0) = PPS(P̂S 6∈ P0

S )

≤ PPS

(∑
S∈S

dTV(P̂S , PS)>Cα

)
≤ α,

where the final inequality follows by very similar arguments to those used to prove Proposi-
tion 4.

For the second bound, for any PS ∈ PS we may use Markov’s inequality and our lower
bound on B to see that

PPS

(
1 +

B∑
b=1

1{R(Q̂
(b)

S )≥R(P̂S)} >α(B + 1)

)
≤
BPPS

(
R(Q̂

(1)
S )≥R(P̂S)

)
α(B + 1)− 1

≤ 2

α
PPS

(
R(Q̂

(1)
S )≥R(P̂S)

)
.

Now, if R(PS)≥ ε= 2Cδ for some δ ∈ (0,1), then

PPS

(
R(Q̂

(1)
S )≥R(P̂S)

)
≤ PPS

(
R(Q̂

(1)
S )≥ ε/2) + PPS

(
R(P̂S)< ε/2

)
≤ PPS

(
R(Q̂

(1)
S )−R(Q̂S)≥ ε/2) + PPS

(
R(P̂S)−R(PS)<−ε/2

)
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≤ sup
P ′S∈PS

PP ′S
(
R(P̂ ′S)−R(P ′S)≥ ε/2

)
+ sup
P ′S∈PS

PP ′S
(
R(P̂ ′S)−R(P ′S)≤−ε/2

)
≤ 2δ,

where P̂ ′S denotes the family of empirical distributions of independent samples of sizes nS
from P ′S, and where the final inequality again follows from almost identical arguments to
those used in the proof of Proposition 4. We choose δ = αβ/4 and complete the proof on
noting that

2Cαβ/4 =
∑
S∈S

( |XS | − 1

nS

)1/2
+

{
2 log

( 4

αβ

)∑
S∈S

1

nS

}1/2

≤ 2
√

2(Cα +Cβ),

as required.

S2. Glossary of topological definitions. A topological space X is said to be completely
regular if for every closed set B ⊆ X and and every x0 ∈ X \ B, there exists a bounded
continuous function f : X → R such that f(x0) = 1 and f(x) = 0 for all x ∈ B. We say X
is Hausdorff if, given any distinct x, y ∈ X , there exist open sets U ⊆ X containing x and
V ⊆ X such that U ∩ V = ∅. We say a subset of X is σ-compact if it is countable union of
compact sets. Given a Borel subset E of X , we say a Borel measure µ on X is outer regular
on E if

µ(E) = inf{µ(U) : U ⊇E,U open}
and inner regular on E if

µ(E) = sup{µ(K) :K ⊆E,K compact}.
We say µ is a Radon measure if it is outer regular on all Borel sets, inner regular on all open
sets, and finite on all compact sets.

If T is a topology on X , a neighbourhood base for T at x ∈ X is a family N ⊆ T such
that x ∈ V for all V ∈ N and, whenever U ∈ T and x ∈ U , there exists V ∈ N such that
V ⊆ U . A base for T is a family B ⊆ T that contains a neighbourhood base for T at each
x ∈ X . We say X is second countable if it has a countable base.
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