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S1. Proofs and auxiliary results.

PROOF OF THEOREM 2. We apply the idea of Alexandroff (one-point) compactification
(Alexandroff, 1924). Specifically, writing 7 := {j € [d] : &} is not compact}, foreach j € 7,
we can construct a one-point enlarged space X := X; U {00} (where oo; ¢ X)), and take
as a topology on X" all open subsets of X together with all sets of the form (Y \K)uU
{o0;}, where K is compact in X;. With this topology, /’\f;‘ is a compact, Hausdorff space
(Folland, 1999, Proposition 4.36). We also set X := X for j € [d] \ J. We can extend each
probability measure Pg to a Borel probability measure P§ on X§ =[] jes X (equipped
with the product topology) by setting Pg(B) := Ps(B N Xs) for all Borel subsets B of X.

It is convenient in the first part of this proof to emphasise the underlying spaces by writing,
e.g., Qg()(g), Rax,(Ps, fs) and Ry, (Ps) in place of gg, R(Ps, fs) and R(Ps) respectively.
Suppose that fs € G5 (Xs) satisfies fg < |S| — 1 for all S € S. We extend each fg to a
function f¢ on X¢ by defining

fs(zg)if 2} € X forall j€ S
IS| — 1 otherwise.

fila) = {

To see that f§ is upper semi-continuous, first suppose that 2 € Xg and y > f&(z%) =
fs(z). Since fg is upper semi-continuous and all sets that are open in Xs are open in
X, there exists a neighbourhood U C X§ of x% such that f§(xg) <y for all zg € U. On
the other hand, if 25 € A%\ Xs and y > f&(2%) = S| — 1, then we can take the neighbour-
hood U = X¢ to see that f&(xg) <y forall zg € U. This establishes that f¢ is indeed upper
semi-continuous. Writing X* :=[] jeld X, we also have that

s0 f& € G4 (X). Moreover,

(S1) Rx,(Ps, fs) = Ra: (P, f3)-
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2 T. B. BERRETT AND R. J. SAMWORTH

In the other direction, given any f& € G (X), we can define fs = (fs: S €S) on A5 by
defining each fs to be the restriction of f§ to Xs. Then, for each t € R,

(fs)7H([t,00)) = (f5) 7} ([t 00)) N s,

30 (fs) "t ([t,00)) is a closed subset of Xg and fg is upper semi-continuous. Moreover,

l}giZfs(ws) > inf > f5as) >0,
Ses ses

s0 fs € Gd (Xs). Again, the equality (S1) holds. We deduce that
Ru,(Ps) =sup{ R, (Ps, fs) : fs € G (Xs) }
(2) =sup{ Ra; (F5, f3) : f§ € 9 (A8) } = Ro; (%)

Now let Cg (X3) denote the subset of continuous functions in G5 (Xs). Since compact Haus-
dorff spaces are completely regular, by Kellerer (1984, Proposition 1.33 and an inspection of
the proof of Proposition 3.13), we have

Ru,(Ps) = Ry (P) = sup{ Ra: (5, &) : f§ € CS (AL}

Having established that Ry, (Ps) may be computed as a supremum over functions defined
on compact spaces, we now consider the implications for the dual representation of the one-
point compactification. Suppose that € € [0, 1] is such that Ps € (1 — €)PI(Xs) + €Ps(Xs).
Then Ps = (1 — €)Qs + €15, where Qs € Pg(XS) and Ts € Ps(As). For each S € S, we
define probability measures Q%, T4 on X3 by Q%4(B) := Qs(BNAXs) and T§(B) :=Ts(BN
Xg) for all Borel subsets B of X¢. Then Qf € Pg(X3), because Ry (Q3) = Rx,(Qs) =0
from (S2) and the fact that Qs € P (Xs). Hence P = (1 — €)Q% + €1g € (1 — e)PL(AZ) +
€Ps(XS).

Conversely, suppose initially that € € (0, 1) is such that P € (1 — €)PJ(XZ) + ePs(XZ),
so that Pf = (1 — €)Q% + €T3, where Q% € P2(AXZ) and T € Ps(X). Observe that we
must have Q%(B) = Q§(B N Xs) and T§(B) =T&(B N Xs) for all S € S and all Borel
subsets B C &S, because Pg does not put any mass outside X5. Then we can define families
of probability measures Qs = (Qs : S €S) and Ts = (Ts : S € S) by Qs(B) := Q5(B)
and Ts(B) :=T&(B) for each S € S and each Borel subset B of A5, and have Ps = (1 —
€)Qs + €Ts € (1 — €)P2(Xs) + €Ps(Xs). The boundary cases € € {0, 1} can also be handled
similarly, and we deduce that

inf{e € [0,1]: Ps € (1 — €)PI(Xs) + €Ps(Xs) }
=inf{e€[0,1]: P& € (1 — e)P(XZ) + ePs(XS) }.

The upshot of this argument is that we may assume without loss of generality that each X;
is a compact Hausdorff space (not just locally compact), so that

R(Ps) =sup{R(Ps, fs) : fs €C§ },

where we now have suppressed the dependence of these quantities on X5. We now seek to
apply Isii (1964, Theorem 2.3) to rewrite this expression for R(Ps) in its dual form; this will
require some further definitions. Let

X:={g9gs=(g95:5S€S):gs:Xg— [0,00) is continuous for all S € S},

let Z denote the set of real-valued, continuous functions on X endowed with the supremum
norm topology, let C C Z denote those elements of Z that are non-negative, let ¢ : X — Z

be given by ¥(gs)(z) := (1/[S|) > ges 9s(xs), and let ¢ : X — R be given by ¢(gs) :=
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OPTIMAL MCAR TESTING 3

—(1/]S]) Y- ges | 9s dPs. Now C is a convex cone with non-empty interior. Moreover, for
any g € Z we can take gs = ||g]|cc and ¢’ = ||g|lcc — g € C to see that ¥ (gs) — ¢’ = ||]lcc —
g =g, and so ¥)(X) — C = Z. This shows that Assumption A of Isii (1964) holds. Since X is
a convex cone and ¢ and v are linear we see that the conditions of Isii (1964, Theorem 2.3)
are satisfied. Now, X’ is compact by Tychanov’s theorem (e.g. Folland, 1999, Theorem 4.42)
(which is equivalent to the axiom of choice), so by a version of the Riesz representation
theorem (e.g. Folland, 1999, Theorem 7.2), the set of non-negative elements of the continuous
dual Z* of Z is the set of Radon measures on X', denoted M | (X). Thus, writing 1 for the
marginal measure on Xg of u € M, (X'), we have

R(Ps) =1+ sup{¢(gs) : gs € X, ¥ (gs) — 1 2 0}
=1+inf{z"(-1):2* € Z*,2* > 0,2" (¥ (gs)) + ¢(gs) <0 forall gs € X }

:1+inf{—u(X):uEM+(X),/ <ng>dM§Z/ ngPSforallggeX}
X Xs

Ses Ses
(83)

zl—sup{,u(X):ueMJr(X),/ ggdusg/ ngngorallSES,ggeX}.
XS XS

We finally claim that this last display is equal to the claimed form in the statement of the
result. Let € € [0,1] be such that Ps € (1 — €)PY + ¢Ps. Then there exists a probability
measure 4 on X' with marginals pg := (p° : S € S) for which we can write Ps = (1 — ¢)ug +
eQs, where s € Ps. Since every open set in X is o-compact, the probability measure p is
necessarily Radon (Folland, 1999, Theorem 7.8). Now for all S € S, and gs € X,

(1- 6)/ gsdp® =/ 9sd(Ps — eQs) < / 9gsdPs
Xs Xs Xs
30 (1 — €)p is feasible and we deduce from (S3) that R(Ps) < e. Hence R(Ps) < inf{e €
[0,1] : Ps € (1—€)P2+€Ps }. For the bound in the other direction, first suppose that R(Ps) =
1. Then, from (S3), the only element y of M. (X) satisfying [, gs dp’ < [, 95 dPs for
all S €8S,gs € X is the zero measure on X. If € € [0,1] is such that Ps = (1 — €)Qs + €T
with Qs € Pg and Tg € Ps, then for any S € S and gs € X,

/ngsd(l—e)Qsé/ gs dPs.

Xs

It follows that (1 — €)Qs € M (X) must be the zero measure, so ¢ = 1. Hence, when
R(Ps) =1, we also have inf{e € [0,1] : Ps € (1 — €)P2 4+ ¢Ps} = 1. Now suppose that
R(Ps) <1, so by (S3), given ¢ € (0,1 — R(Ps)), we can find 4 € M (X)) with marginals
(u® : S €8) that satisfies S, 9s du® < Jx, 95dPs for all S €8,g5 € X and u(X) =
1 — R(Ps) — §. Writing ¢ := 1 — pu(X) = R(Ps) + 6, let Qs := (u¥/(1 —¢): S€S) € P,
and let Ts := ¢ ! (Ps — (1 — €)Qs). Then Ts(Xg) =1 for all S € S, and for any S € S and
gs € X,

1
/ gsdTs = / gsd(Ps — p®) > 0.
XS € XS
Thus T is a probability measure on Xg for all S € S, so Ts € Ps and Ps € (1 — E)PSO + €Ps.

Since § € (0,1 — R(Ps)) was arbitrary, we deduce that inf{e € [0,1] : Ps € (1 — ¢)P{ +
¢Ps} < R(Ps). This completes the proof. O
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4 T. B. BERRETT AND R. J. SAMWORTH

PROOF OF PROPOSITION 3. If f5 € G, then min(fs, |S| — 1) € G4, because if this were
not the case, then there would exist z° = (2% : S € S) € X and Sy € S with fg, (a:%o) >
IS| — 1 such that

Zmin{fs(:ng), IS| — 1} <0.
Ses
But, since fs > —1, we would then have

Y min{fs(zg),[S| 1} >IS| =1+ > fs(2§) =0,

Ses SeS:S#£S,

a contradiction. Since R (Ps, min(fs, [S| —1)) > R(Ps, fs), it follows that, in seeking a max-
imiser of R(Ps, ), we may restrict our optimisation to { fs € G& : fs <[S| — 1}.
Writing G¢* for the set of real-valued, measurable functions on X's, we therefore have

|R(Ps) - R(Qs)| < sup  |R(Ps, fs) — R(Qs, fs)]
fs€G : fs<IS|-1

1
=g sup Z/ fsd(Ps — Qs)
S| fs€G5 : fs<[S|-1lgeg / Xs
1
<5 sup fsd(Ps — Qs)
| | SES fsegg*:71§f3§|8|fl XS
=y sup fsd(Ps = Qs)| = drv(Ps,Qs),
Segfseggﬁ_l/Qstfl/Q Xs
as required. O

PROOF OF PROPOSITION 4. Our strategy here is to apply results on the concentration
properties and the mean of the supremum R(Ps) of the empirical process

~ 1 1 &
(S4) R(Ps, fs) = —15) > e 2 Fs(Xsa)
Ses =1

over fs € gg . As in the proof of Proposition 4, we may restrict our optimisation to { fse
G fs <[IS|—1}.

Writing V := ) Ses n;l, by Boucheron, Lugosi and Massart (2013, Theorem 12.1) — a
consequence of the bounded differences (McDiarmid’s) inequality — for any collection Ps
and A € R, we have

~ ~ V)\Z
logEexp(AMR(Fs) ~ER(Py)}) < 2.
In particular, by the usual sub-Gaussian tail bound,
P P 5 5 2
max{P(R(Ps) ~ER(P) < ~t), P(R(P) ~ER(P) 2 1)} < exp(— =)
2t
(53) = exp —1>
2 ses s
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OPTIMAL MCAR TESTING 5

for all ¢ > 0. Moreover, by Proposition 3 and two applications of Cauchy—Schwarz,

IER(Ps) — R(Ps)| <E|R(Ps) — R(Ps)|

<33 3 E|Ps({ash) - Ps({as))

SeSxseXs

—QZ 1/2 > [Ps{wsh{1 = Ps({zs })}]

SesMs  zseXs

(S6) S2Z<\XS|—1>1/2

ns
Ses
It follows from (S5) and (S6) that under Hy, i.e. when R(Ps) = 0, we have

. N . 1/2
P(R(P) > Ca) < P(R(P@ ~ER(P) > {;mg(l/a) 3 nls} ) <a.

SeS
On the other hand, if R(Ps) > C,, + Cjg, then from (S5) and (S6) again,

P(R(Ps) > Cy)

- p(mB) - > LS (B (L 3 L }1/2>

Ses Ses

> P(R(ﬁs) —ER(Ps) > —{élog(l/ﬂ) > nls}l/g> >1-4,

Ses
as required. O

PROOF OF PROPOSITION 6. By the same argument given at the start of the proof of
Proposition 4, in seeking a maximiser in (2), we may restrict our optimisation to { fs e

G : fs <|S| —1}. But [—1,[S| — 1]0lS is a compact subset of R%, and we may regard
fs+— R(Ps, fs) as a continuous function on this set, so the supremum in (2) is attained.
By specialising Theorem 2 to the discrete case we see that

R(PS) = sup{e S [0, 1] Ps=eQs + (1 — E)Tg, Qs € 'Pg,TS S PS}.
When R(Ps) = 0 we can trivially attain the supremum by taking Qs = Ps € P2, since we
already know that R(Ps) = 0 if and only if Ps € P2. Supposing that R(Ps) > 0, for each
m > 1/R(Ps) we can find Q™ € PY, T\™ € Ps, and e™ € [R(Ps), R(Ps) — 1/m] such
that Py = (™) Q(m +(1- e(m))TS(m). There exists a subsequence (my)ken, Qs € PY, and
Ts € Ps such that Q(m" — Qs and TS(m'“) — Ts as k — co. We see that we must have

Ps= R(Pg)QS + {1 — R(Pg)}Tg,
so that the supremum in (2) is indeed attained.
We now turn to the second part of the result. From Theorem 2 we know that for any € > 0
we have R(Ps) < e if and only if Ps € (1 — ¢)P? + ¢Ps. Now suppose that Ps € PS5

satisfies R(PS) < e. Then there exist Qg € Pg and Qs € Ps such that Ps = (1 — e)Qg + eQs.
Since 77 C PSems, it follows that if S, .52 € S have S NSy # 0, then

QSlmSQ _ 7{P§'11ﬂ32 o (1 0, 31052} — {PslﬂSQ o (1 0, 51052} QSlmS2
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6 T. B. BERRETT AND R. J. SAMWORTH

in other words, Qs € Ps°". Thus, if Ps € Ps°™, then R(Ps) < e if and only if Ps € (1 —
€)PY + €P£°1s, which holds if and only if

(S7) PS e ,Pé),* + e,Pgons,** _ E(Pg’* + ,Pé:ons,**) —. ,Pg,*
Now Psl ™ is a convex polyhedral set, so there exist B € R"** and b € RF such that
Pg’* = {pS =Pc Pgons’* : Bps > —eb},

where the equivalence here indicates that pg is the probability mass sequence correspond-
ing to Ps. Since Os € P, we must have b € [0,00)% and, by rescaling the rows of B if

necessary, we may assume that b € {0, 1}*". We may therefore partition B = (gl) , where
2

By € RE=m)XX and By € R™*¥s are such that

(S8) P ={ps=Ps € Ps""™" : Bips > —¢, Baps > 0}.

In fact, however, we claim that m = 0, so that b = 1. To see this, note first that (Pg™)e>0 is
an increasing family, by (S8). Moreover, if A > 0 and Ps € P$°™, then A - Ps € )\Pé:ons,** c

A(PY™ 4 PE"**) = P2, and hence Ueso PS™ = PE"*. But
U Pg’* = {pS =Fe€ ,Pé:ons,* : Baps > O},
0
and we conclude that m = 0, as required. Therefore, by (S7), when ps = Ps € P$°"®, we have

(S9) R(Ps) =inf{e >0: Ps € Pg"} = || Bps||oo-

We now argue that fg(l), e fS(F) can be taken to be scalar multiples of the rows of B. We
may regard Ps”">" as a convex cone in [0,00)"%; this cone is not full-dimensional (due to
the consistency constraints), but if instead we regard it as a subset of its affine hull, then we
will be able to express it uniquely as an intersection of halfspaces. To see this, note that the
consistency constraints are linear, so there exist dy < |Xs| and U € R¥%*% of full column
rank such that

P = {Uy: Uy >0,y e R%}.
Writing fs(l), ... ,fS(M) for the extreme points of { fs € G : fs <[S| — 1}, we have
Yo ={yeR%:Uye 7381’*} ={yeR® :Uy>0,BUy>—-1}
— do . > : (f) T > _ .
{yer Uy 0, min ({7)"Uy > sl}

Since Y* is a full-dimensional, convex subset of R%, the uniqueness of halfspace rep-
resentations means that by relabelling if necessary, we may assume that each row of BU

is (fS(E))TU/|S| for some ¢ € [F]. Hence Y'* = {y e R™ : Uy > O,minge[p}(fs(e))TUy >
—|S|}, and
7781’* = {pg € P : min (fS(Z))TpS > —]S[}.
Le[F] B

It therefore follows from (S9) that, when Ps € Ps"®, we have

0
(S10) R(Ps) = ;Q%R(Ps,fé )+
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OPTIMAL MCAR TESTING 7

Having characterised the incompatibility index for consistent distributions, we finally prove
the given bounds on this index in the general case. To see the lower bound, let 57,52 € S be

such that S N Sy # 0, and let E C Xs,s,. Define f55% = (f57°>F . 5 € S) € Gs by

1 ifszslal'51ms2 GE
fglvs%E(xS) = —1 lfS2327 TSNS, GE
0 otherwise.

51752

It is straightforward to check that fg € Qg :if z € X is such that zg,ng, € E then

S1,82,E S$1,82,F S1,52,E
Zfs ($S):f51 ($S1)+f32 ($Sz):1_1:07

Ses

and if x is such that zg,ng, ¢ F then fsl’SQ’E(mg) =0 for all S €S. We also have that

R(Py, f550 >=—,;,{ > Pallesh- X Palles)

Ts5,€EXs,:Ts ns, €L T5,€Xs5y:T5, N5, €L
{PSIHSQ ) _ PglﬂSQ (E)}
| 1

We conclude that

R(Ps) > R(Ps, £ Ps, 55"
( s)_max{zrel[aﬁ (Poofg g g X dieX R(Ps, J57)
1
= R P7 (3) Y Q| d PSlmS27PSIQS2 :
max{?el% (Po, fs )+ S| sl,szerél:%f(msﬂéw TV( 51 53 )

This establishes the lower bound, and we now turn to the upper bound. Given sequences
of signed measures Ps, Qs € {\1Ps — A\2Ps : A1, A2 > 0}, we define their total variation
distance by

drv(Ps,Qs) =) sup |Ps(As) — Qs(As)|:
Ses As€As

Now, given any Ps € Ps and P5™"" € P”"™", we have by (S10) and the fact (quoted at the
start of the proof) that all extreme points of G& take values in [—1, S| — 1]* that

R(PS) = @ sup { fS (pS _ cons * 4 éons *)}
fs€Gd
1 _ cons,*x cons, *
< @ sup {—fsT(ps— )} + sup (— fgpg )]
1s€GE fs€Gs
1 _ cons,*x cons.*
= 17| S A= s = ) ma{—(£87)T (™ —ps+pg>}]
‘ ‘ foegg le [F]
1 _ cons,*x COHS*
< sl sup {_fS (ps — pg )} + sup {— fs (ps ps)} _|_max{_(fS(Z))TpS}]
‘ ‘ Lfs€Gd oGy =
(S11)
< QdTV(PS,PCOHS *) ’S’ ?61[2%{ ( ) ps}.
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8 T. B. BERRETT AND R. J. SAMWORTH

We proceed by constructing an element of Ps”"™* whose total variation distance to Ps can

be controlled. For w € {0, 1}%, write T, := Ng.,.=1.5 and |w| := Y sesws. Define ps € R
by

_ Alwf X7, |
psi(os)=pso(es)+ 3D SR 3 (R (en) — b (on)
we{0,1}8:ws,=1,T.,#0 0 Sws=1
with A = %HHMPQ} Although ps may take negative values, we will see that it

satisfies all the linear constraints of consistency. To see this, let S1,.52 € S be such that S; N
Sy # 0 and xg,ng, € Xs,ns,, and write Qg’b ={we{0,1}°: T, # 0,ws, = a,ws, = b} for
a,b € {0,1}. Observe that if A C B C [d], then |Xg|/|X4| = |XBna<|. Thus, in particular,
when w € Qé’o for instance, we have

| X, || Xs, nssnre || Xs ns, | 1 Xr,nsg || Xs,nssne | X7, s _1
| X108, | Xs, | | Xs,ns5 [ Xsinssnr |
Hence
P8 (ws,ns,) — g (ws,ns,) = > ps, (zs,) — > s, (%s,)
Ts, €Xsy: Ts,€Xsy:
(Isl)slm52:$smsz (zsz)SmSz:xSmSz

_pgim&(fﬂsmsz) pﬁ;”52(xsms2)

| X, |
Y o Y [ Xsyrsg| (P (wr) — pl (7))

weNg! Sws=1 ‘XSI|
|z, | T T
— | Xsens, [\pg” (Tr,) — Py (T,
s 6 (o) — (07}
X,
+ Y Al YL X “|Xslms sore {os "> (e ns,) — pg " (v1ns.)}
weNd? Siws=1 1
— Z A Z ]X “|Xs ensunt: [{pe” "5 (2r,n8,) — st;msl( 7.n8,)}
weng!
S1NSs S 52 | T, ’
_pSlﬁ (xslﬂsz) Pg, x51052 Z ’w‘)‘|w|| |{p51( ) pS2 (xT )}
wte !
) | X, | -1 T, T
+ ) A Y (L= L= ){pg” (er,) —pg” (21}
1,1 |X51m52| T
w' €Ny Swy=1
A ‘XT /‘ 1 1 T, T,
= > A Y (U= Lses D {pe (a1,) — g (1,)}
1.1 ‘XSImSZ‘ ,_
w'eNg’ Swg=1
Sl SQ Sl Sz ’ ’ Tw
:pslm (xslms2) _pS2m (xslﬂsz) - Z ’w‘)‘|w| |X |{p51 ( ) _p5'2 (xTw)}
wGQl !
B N | X1 | 0
Z |w]— 1 ’w‘ )|X |{p51( ) pS2 (.’L’T )} )
wGQ} !
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OPTIMAL MCAR TESTING 9

where the final equality holds because (\,) satisfies Ao = 1/2 and r\, = —(r — 2)\,_; for
r > 3. The total negative mass of pg satisfies

Y Y psi(zs,)- < drv(Ps, By)

SQGS (Eso EXSO

X w w
<Y Y ity X, S 0 ) ).

So€S  wiw|>2, Siws=1z5,EXs,
wso=1,T,#0

E 2 : 1 S
< y ’
- ‘w’_lsrzg?}z(ldTV(pS ’pSO)

So€S  wiw|>2,

5011,Tw7é®
|w] SNSy ,.SNS,
< max d o 0
_<w'|w|§T Lo 191 = 1) s:se8:50520 vips s, )
(S12)
< 2‘S|+1 max dTV(pgﬂSO,pg(?So)

S,S0€S:SNSo#D
Now define Ps € {A-Ps: A >0} with mass function pg given by
S Ps(zs)—
s ::pS+A<Z 5. ”)
zeX  Ses [ Xse|
where 6, € {0, 1} denotes a Dirac point mass on iy € X'. We see that this is non-negative by

writing

§ . pryr)- _ - -
ps(xs) =ps(xs)+ > vaTj)Zps(ﬂﬁsHps(ffs)ZO-
Yyys=rs TES T

Since pg satisfies the consistency constraints and pgs is formed by adding a compatible se-
quence of marginal measures to it, we have Ps € PCOHS *. Moreover, ps > ps and

> D> Aps(as) —ps(as)} (Z(g pi;éi >

SeSxseXs reX Ses
pS Z'S
SlT( O )
- erX ses | ¥se
pS wS
=812 T
xeX SeS
=I81> > pslas)-
SeSzseXs
<[SRE max drv(pg™™pg ™).

5173268151032;&@
From this and (S12), we conclude that

drv (Ps peons*) < S2|S|+2 max drv ps;[nSQ pslr‘ng
( ’ )—| | 517526&510527&@ ( S1 N )a

and the result follows. O
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10 T. B. BERRETT AND R. J. SAMWORTH

PROOF OF THEOREM 7. We prove the result when F’ > 1, and note that if F” = 0 then
simpler arguments apply. By Proposition 6 and the discussion after (5), we have

P(R(Ps) > C.)

5 40/ < Ch 55,08s 5SNSs Ca
< > > o
< IP’(DR ZI?[E}?)'(} R(Ps,fs" ) > 5 > + P(STS?ES drv(Pg! ™2, Pyl ™?) > |25+

~ / !

< / (07 > o]

—FJQ%}%P@(PS’ IREETIR
(§13)

S|(|S] - 1) 56108, BSiNS C
s —=1) 1MO2 LR "
P s Pl I P 2 e

Observe that when Ps € PJ, we have for any fs € G& that ER(ISS, fs) = R(Ps, fs) <O0.
By (S4) and Hoeffding’s inequality, whenever FPs € Pg , we have for any ¢ € [F’] that

~ / Cl ~ / fay ! C/
p(mps, 1) > 25;) sp(R(PS, &) ~ER(Ps, £57) 2 >

— 2Dp

n

1 ns (f) , (f) ’ C&
< _ ’ L) ) . >
<ol (0 DA (o) ~BA (K50} 2 o

ns(Ch/Dr)* o

< _ =< —,
<18 ?2?“13( RE = 2F
For the second term in (S13), under H, for any S;, S2 € S with S; # Sz and S; NSy # 0,
we have

. . c'
51052 Sm5'2 o
P(dTV(Psl Pe ) = |S|2|S+3)

R ~ C!
518 SiNS2( A) 4 pSiNSa( gy _ PSiNSa( g a
_ 1 2 _ 1 2 1 2 1 2 > =

~ C/
< 2|Xslr152| P P51ﬁ52 A) — PslﬁSQ A > a
<ol e s PIPECS) - P )] 2 ggt

Ans,)(Ch)? @
< 9l¥sins, [+1 _ (ns, 5,)(Cy <
>~ exXp ’S’222|SH—7 — ’S’(‘S‘ — 1)7

where we have used the fact that ‘135;052 (A) — Pg}:052 (4)|= ‘ﬁgsm& (A°) — Pg;msg (A%)],
and where the penultimate bound follows from Hoeffding’s inequality. We have now estab-
lished that ]P)(R(ﬁg) > C!,) < o whenever Ps € PY.

We now turn to the final part of Proposition 7. Very similar arguments to those above based
on Hoeffding’s inequality show that

P R(Ps, 11 <C/><
<égl[%>§] (Ps, fg 7 ) <Cq | <P

whenever

' 2log(F' 1/2
max R(Ps, i) 2 Cl, + |S|{M} |
et minges ng
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OPTIMAL MCAR TESTING 11
Likewise, for any S7, So € S with S1 N Sy # 0,
P(dTv(ﬁgll”SQ,ﬁimS?) < \S\C&) <8

whenever

S$1NSs pSiNS. , 2 9l Xs;ns, | +1 1/2
drv(Pg) ™, Pg; 2)Z’S’Ca+{ns e log< 5 >} .

Now, by Proposition 6, if R(FPs) > M (Cy, + Cj) then we must either have
/ M
P (0, > Cr/ O/
o R(Ps, f5 ) 2 55 (Ca + C5)
or

max dTV (P‘szll NS, ’ Pg; ﬂSz) >

——(C! +C%).
S1,5:€8 _2|S|+3|S|( o+ 05)

Since

/ 1/2 [Xsynsyl+1 1/2
Clﬁ X|S| ’S’DR{Qlog(F’S’/ﬂ)} + max { 2 log(2 )} s

minges ng 515 ij ns, Ang, B
1 2

the result follows. O

PROOF OF THEOREM 8. We establish the equality (7) by providing matching upper and
lower bounds, first providing the required lower bound on R(Ps). Given A C [r] and B C [s],
we construct fs € Gg as follows. Writing, for example, fije := f{1,2}(7,7), define

2 if(i,j)€e Ax B
fiiei= -1 if (i,5) € Ax B¢ (Fiot, fioz) = (-1,2) ifie A
9T —1 if (i,j) € Acx B 0 ML 2T (9 ) ifie A
2 if (i,5) € A° x B¢
and

_J(-1,2) ifjeB
(foj1, foj2) == { (2,—1) ifje B~

It is straightforward to check that fs € gg because, for instance, if i € A and j € B, then
min(fije + feoj1 + fiels fije + fojo 4 fie2) =min(2 —1—-1,2+2+2) =0.
Hence
3R(Ps) > 3R(P, fs)

T S

=—- Z Zpijofijo — Z(piolfiol + Die2 fie2) — Z(pojlfojl +p.j2f.j2)

=1 j=1 =1 =1
= —2(pABe + DPAcBes) T (PAcBe + PABce) — 2(PAcel + PAs2)
+ (Pae1 + Pace2) — 2(PeBe1 + DeB2) + (PeB1 + DeBe2)
= —2(2pABe + Pess — DAes — PoBe) + (DeBe + DAes — 2D ABe)
—2(Dee1 + DAee — 2D A01) + (2D A01 + Pose — DAee — Deol)
— 2(Dee1 + DeBe — 2DeB1) + (2PeB1 + Pese — DeBe — Deel)
(S14) = —6(PABe + Deel — DAel — DeB1)-
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12 T. B. BERRETT AND R. J. SAMWORTH

Since A C [r], B C [s] were arbitrary, and since fs =0 € G, the desired lower bound fol-
lows.

We now give the matching upper bound on R(Ps). When Ps € P2 we automatically
have R(Ps) = 0. On the other hand, when Ps ¢ Pg, we relate R(Ps) to the maximum
two-commodity flow through the network shown in Figure 1. Recalling the matrix A =
(A(s.ys)2) (Sys)etswex € {0,1}5*Y from (12), for any Ps = (Ps : S € S) with corre-
sponding probability mass sequence ps = (p(s,y)) € [0, 1]%, we may write

.
R(Ps) = —@mln{pgfg fs>—1,AT fs >0}

1.
—1- @mm{pgy ty €[0,00)%, ATy > IS 1x}

=1-min{pz:2€[0,00)% ATz > 11}
(S15) zl—max{lg\;p:pe[O,OO)X,ApgpS}.

Here, the final equality follows from the strong duality theorem for linear programming (e.g.
Matousek and Gértner, 2007, p. 83), where we note that both the primal and dual problems
have feasible solutions. It follows from this that

1—R(Ps) = max{ 1Ep:ipe [0, o0)Y, Ap < pg},

T S
=max< Y Y (gij1 + Gijz)  mingije > 0, max(qi1 + gij2 — Pije) <0,
=1 j=1 bk I

S T
S16 ik — Die < 07 ik — Dei <0,.
(S16) rg’%X<; Qijk — Di k> < H;%X<; Qijk — P ]k> }

Figure 1 represents a flow network where, for k£ € {1,2}, commodity & is transferred from
source sy, to sink t;. We think of ¢;;;, as the flow of commodity k& from node x;;, to node
yg), and 0, ij:l qijk as being the total flow of commodity k from source sj to sink
ti. Of this flow, at most p;er may go through z;, for each i € [r|, corresponding to the
constraint ) J7_; giji < Pjek- For each i € [r], j € [s], the combined flow of both commodities

from z;; and x;o through to yg) is bounded above by p;je, corresponding to the constraint

gij1 + gij2 < Pije. For each j € [s] and k € {1,2}, the subsequent flow of commodity k
through node zjy, to ¢, is bounded by p, i, corresponding to the constraint Z:Zl Qijk < Dejk-

Having established the link between R(Ps) and this network flow problem, we proceed to
find a total flow that matches the upper bound implied by (S14) and (S16), i.e.

1+2 min o T Deel — ol — Pe
Ag[r],Bg[s](pAB Deel — PAel — PeB1)

(817) = min (pACol + PDAe2 T PeBc1 + PeB2 T PABe +pACBCo)~
AC[r],BCs]

The fact that the left-hand side of (S17) is equal to the right-hand side relies on the consis-

tency of ps. Let A C [r] and B C [s] be minimising sets in the above display, observing that

the same choices minimise both left- and right-hand sides. Then, for i € A, we have

PABe — DAel = PA\{i}Be — PA\{i}e1 = PABe — PiBe — DAel T Diel,

so that p;ge < pje1. It is therefore possible to send a flow of commodity 1 of p;;e from s;
(2)

through ;1 to y,”, for each (i, j) € A x B. Similarly, by considering i € A® and repeating the
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s1@

520

31 2

Fig 1: Illustration of the flow network described in the proof of Theorem 8. The capacity constraints

1 ) (2 2
are (8, Tik) = Diek> C(l‘imyfj)) = 00, C(yl(j)7 y§j)) = Dijes C(ygj), zjk) = 00 and c(zjk, t2) = Dejk

forie[r], j €[s] and k € [2].

calculation above with AU {i} in place of A\ {i}, we see that p;pce < p;e2. Hence a flow of
commodity 2 of p;je can be sent from s, through x;2 to yg) for each (i,7) € A° x B€. So far,
then, we have shown how to send a flow of commodity 1 of pspe from s; to {21 : j € B},
and a flow of commodity 2 of p 4cpce from s to {zj2: j € B},

We now claim that, for each ¢ € A°, we may send a flow of commodity 1 of p;e1 from s1
through z;; and yf? = {yz(f) :j € B} to zp1 :={%j1 : j € B}, and that this flow together
with the previous flow of commodity 1 can pass through zp; to ¢1. To do this we use a gen-
eralisation of Hall’s marriage theorem to one-commodity flows due to Gale (1957). Each zj;
for j € B already has an incoming flow of p 4;e, 80 has a remaining capacity of pe;1 — PAje-
By Gale’s theorem, the desired flow is therefore feasible if and only if, for every A’ C A° and

B’ C B, we have
me - Z (Pej1 — PAjo) < Z Z Dije-

i€A jEB\B’ i€A’ jeB’
This condition is equivalent to the condition that, for all A’ C A¢ and B’ C B we have

D(AUA")B'e — P(AUA’)el — PeB’1 = PABe — DAel — DeB1;

but we know that this is true because (A, B) are minimisers of the left-hand side of (S17).
Thus, the desired flow of commodity 1 is feasible. Similarly, for each i € A, we may send
a flow of p;e1 of commodity 2 from so through z;; and y%)c = {yff) :J € B} t0 zpey 1=
{zjl : j € B¢}, and this flow can pass through to ¢5. We have therefore now shown that we
can send a combined flow of psBe + PA-Bce + PAcel + PAe2 from the sources to the sinks.
Until this point, no flow has been routed through 25 or zp.1. To conclude our proof, then,
we now claim that it is possible to introduce an additional flow of pepo of commodity 2, as
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14 T. B. BERRETT AND R. J. SAMWORTH

well as pep-1 of commodity 1 into the network, to put all edges from zps to t5 and from zpc;
to t; at full capacity. Consider any maximal flow in the network; we wish to determine the

maximal amount of commodity 2 that can be sent from sy through x 4.9 and yffc) p 10 zp2 and
thus to t9, in addition to the existing flow. To this end, suppose that there exists 7 € B with
the edge from zjo to to at less than full capacity. Then, since the flow is maximal, it must
be the case that for each 7 € A°, the flow of commodity 2 from s; to z;2 is full (i.e. equal to
@ to y(Z)
ij ij

then the total flow from {z;1, z;2} must be equal to pje1 + Die2 = Pies = Z§/:1 Dijre. In this

case, the edge from yl(jl) to 311(32)

Z(]l ) Z(f) is full for each i € A° (and each i € A from the earlier flow). It
follows that, in this case, there is a flow of Y ;| Dije = Deje = Daj1 + Pej2 from y[(T]) to y[(f])j
But such a flow would put both edges z;1 to ¢1 and z;3 to t2 at full capacity, contradicting
our original hypothesis. Hence, at any maximal flow, all edges from zps to to are full, and
similarly, all edges from zp.; to ¢; are full. Thus, we can indeed send the desired additional
flow through the network, and we deduce that the total capacity of the network is at least the
expression on the right-hand side of (S17). We conclude from (S16) and (S17) that

Die2), or the flow from y; is full. However, if the flow from s; to x;9 is equal to p;e2,

must be full. So, if the edge from zj5 to t5 is not full, then

the edge from y..” to y

R P < 2 {0, - ° ° ° — Vee }7
(Ps) < 2max Agg]l,aé{g[s}( PABe + PAel + PeB1 — Des1)
and this completes the proof of the first part of the theorem.

We now turn to the second part of our result. We first show that pg € 77
and only if p§ € Pg”"" and

PCOHS kk o

max{lXp pe [O,OO)X’Ap Spg} > (pfoo - 1)+

If pyee <1, then pg € Pgons’** and there is nothing to prove, so we assume that p},, > 1. If

pg c :Pé) ,Pcons Hk then we may write pg = Ap +rs with pE [0’ OO) and rg € Pcons *ok
Then
max{ljggp’ :p/ €[0,00)%, Ap < pst > 1Ep= <Z 15> AP =DEee — Teos > Plraa — 1.

Ses

On the other hand, suppose that p% € Ps°">" and that there exists p € [0,00)”" with Ap < p
and 14p > p“. 1. Then we certainly have rs = p& — Ap € Pg”"". But since we also have
Tess = Pies — 15:p < 1, it follows that s € Ps°">*", and we have proved our claim. Now, the

proof of the first part of the result shows that
max{lXp p€[0,00)%, Ap <ps}

_ * * * * * *
AC[H}HJQC[ ](pA%l + Dres + Pepe1 + Pep2 + PaBe + PiAcBes)

= ioo+2 min ) o+ fo - *o - i .
p Ag[r],Bg[s](pAB Deel — DPAe1 — PaB1)

When pg,, > 1, we therefore have pg € 73 + P"*** if and only if p € Ps""™" and

1+2 i p o+ ool *o_ f >07
Agﬁ%lg[s}(pAB Deel — Dol — Pap1) =

as claimed. On the other hand, when p},, < 1 and p§ € P""™", we always have p§ €
P C PS + P, and moreover

142 min o DE = Phel — D
Agr],Bgs}(pAB Pae1 — Pire1 ~ Pap1)
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OPTIMAL MCAR TESTING 15

> too+2 min ) o+ io - *o - i
p AC[r],Bg[s](pAB Peel — Dol — PaB1)

- ma'X{lXp pe [O,OO)X,A]) Spg} Z 0.

Combining both cases, we have now shown that

PO*—FPCOHS**_{ 6,Pcons>i< 142 min * ot f. _ *. - : >0}’
s S ps € Ps AQ[TLBQ[S](pAB Peel — Pide1 — Pap1) =

as required. O

The proof of our lower bound in Theorem 9 relies on the following lemma, which is
an extension of both Wu and Yang (2016, Lemma 3) and Jiao, Han and Weissman (2018,
Lemma 32).

LEMMA S1. Let V, V' be random variables supported on [\/2 — M, \/2+ M| for some
M < \/2, and suppose that E(V*) = E((V')") for € € [L]. Let Q denote the distribution on
72 of (W1, WQ)T, where, conditional on V = v, we have that W1 and W5 are independent,
with W1|V = v ~ Poi(v) and W|V = v ~ Poi(A —v). Define Q' in terms of V' analogously.
Then

21/2 1 9eM? N (L+1)/2
drv(Q. Q) < 1/4()\(L+1)>

whenever L + 2 > 8M? /).

PROOF OF LEMMA S1. LetU :=(V—=\/2)/M and U’ := (V' —=\/2) /M, and form € N
and x € R, let (z), :=z(x — 1)...(z — m + 1) for the falling factorial (with (z)g := 1).
Letting Y, Z ~ Poi(A/2) be independent, we have

v (Q,Q') = *AZ@,,]E{V@A V) = (VA= VY

,j=0

P i (O (B SRR SIS

=
z O - 3 () (4 ) o
<t 3 PR S s[5 (1) ()

_ f; s mz (B0

< 2 (O[S (memnen)]
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16 T. B. BERRETT AND R. J. SAMWORTH

We now bound this second moment using the facts that (), (@) =>_y (}) (}) €1(@) mtn—e
and E(Y),,, = (A\/2)™ for all m,n € Ny to write

E[{i(—nm () <Y>m<Z>kmﬂ

m=0

S Comen () (BB n(@)en)

m,n=0 m
2 OB e
=S {Zer ()0 ()

Now, terms with ¢ + r > k are zero, because either £ > m or r > k — - We can think of
'7) (k ~™) as a polynomial of degree £+ in m, and use the fact that 3% _(—=1)™ (*)m® =
0 for non-negative integers s < k to conclude that the only non-zero terms are those with

¢+ r = k. We now use the fact that Zﬁr (=)™ (Z)mk = (—1)*E! to see that

ni)(_l)m@ (D)= ”Z () et = m),

1 _
_ HAttr=k} _1\r+Ek
(S20) == (LR

From (S18), (S19) and (S20) together with Stirling’s inequality (e.g. Diimbgen, Samworth
and Wellner, 2021, p. 847), we deduce that when L + 2 > 8 M 2 /A, we have

> 0 1/2
drv(Q,Q) < Y k,(2i4) {Ze!r!(xp)?k-“rm(k!)?}

k=L+1 £,r=0
o0 k 1/2 00 2
1 /2M\Fk k 1 2M? N\ k/2
= —_ (== | k —
I ICORCCEONBINED T HES
k=L+1 £=0 k=L+1
2 2M?2 (L+1)/2 2 2eM? \(L+1)/2
< () < Gan)
{(L+1)1}1/2 {27(L + 1)}/4A\N(L +1)
212 1 2eM? N (L+1)/2
7T1/4()\(L+1)> '
as required. O

PROOF OF THEOREM 9. Assume without loss of generality that ng; 93 < nyy 3). We will
start by showing that we may work in a Poisson sampling model without changing the sep-
aration rates. Extending our previous setting, let (Xg;)ses, ien denote independent random
variables, with Xg; ~ Pg, and let N5 := (Ng : S € S) be an independent sequence of Pois-
son random variables, independent of (Xg;)ses ien, With ENg =ng for all S € S. Let U§
denote the set of sequences of tests of the form (w;Lé €Wy ing € N3), and write

R¥ )= inf { sup En(0) + sup Bn(1- v,
PsePy PsePs(p)
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OPTIMAL MCAR TESTING 17

Here, the expectations are taken over the randomness both in the data and in the sample sizes.
Since R(ng, p) < R(ng,d) whenever n'y > n's for all S € S, we have that

RPOi(”S) p)
= mfp{ sup P(Ns=ng)Ep,(¢r,) + sup P(Ns=ng)Ep, (1 - QMLS)}
PgeWg PseP? nLEeNS Ps€Ps(p) nLENg
< inf P(Ngzn’g){ sup Ep (¢r,) + sup EPs(l—%)}
PLeEW, gt PsePy PsePs(p)
S 0
= 3 B(Ns = )R, )
néENﬁ
< R(ns/2],p) [[ P(Ns > [ng/2]) + > P(Ns < [ng/2])
Ses Ses
<R([ng/2],p) + Ze_”sm
Ses

Here, in the final inequality, we have used the fact that when W ~ Poi(\), we have

P(W - A< —z)<e 2040

for all z > 0.

We will construct priors for consistent FPs over the null and alternative hypotheses that
satisfy De1e = Peel = 1/2, Pe21 > 1/4, and pjee = 1/7 and pie1 = 1/(2r) for each i € [r].
By (8), for such Ps we have

R(Ps) = 2max{p.]1 — me(p”., —) }
— maX{Qp.Jl — Z <pijo + % _

JE2] =1

+

Dije —

o)},

d 1 1
= E Dite — =— | — = + MaX(2De11 — Deles 2Pe21 — Pe2e)
‘ 2r 2
=1 +
d 1 1
= g Pite — | — 7 + max(1/2 — 2pe21,2pe21 — 1/2)
4 2r 2
=1 +
4 1
= ZPH.—* + 2pe21 — 1
< 2r
=1 +

We now construct our priors using results from Jiao, Han and Weissman (2018); see also Cai
and Low (2011) and Wu and Yang (2016). Set L := [2elogr] and let vy, be probability
distributions on [—1, 1] satisfying:

* yp and v are symmetric about 0;
o [N ttdue(t)= [t din(t) for £=0,1,...
o SL It dn () = [1 It dvo(t) = 2EL,

L
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18 T. B. BERRETT AND R. J. SAMWORTH

where £ = Er, [| |31, 1]] is the error in uniform norm of the best degree-L polyno-
mial approximation to the function x — |z| on [—1,1]. The existence of such distribu-
tions vy and vq follows from Jiao, Han and Weissman (2018, Lemma 29). We recall that
Er =B.L Y1 +0(1)} as L — oo, where 3, ~ 0.2802 is the Bernstein constant (Bernstein,
1914). Define g : [-1,1] — R by

r

logr )1/2
npgyr)

Further, writing a:=1/r — 6 >0and b:=1/r + § < 2/r, define distributions p and ;1 on
[a,b] by pj :=vjog~! for j =0, 1. These distributions satisfy

b b

o [Jtduo(t) = [ tdu(t)=1/r;

. f{tfduo(t) :fjtﬁdmb(t) for0=2,3,...,L;

o =1/l dun () — [2 16— 1/r| dpo(t) = 2By
Since p*(ng) is increasing in r, we may assume without loss of generality that r is even.
We will write g and o; for our priors under the null and alternative hypotheses respectively.
For o; with j € {0,1} and for odd ¢ € [r], generate 2p;1, independently from /. For even
i € [r], set pi1e :=1/7 — pi_1,14 SO that ps1e = 1/2 with probability one. Given (pjie);_;,
take pioe := 1/7 — Di1e and pie1 = Pie2 = 1/(21), S0 that piee = 1/ and pee1 = 1/2. Write

1 1
g(z):= - +dx, whered:=— A <

1 d 1
X :=Eq, Dile — *‘ —Eq, Dile — *) =riky,
‘ 2r ‘ 2r
i=1 =1
and set
c=tg, S 1’+1E f: 4 1’<1/2
= 9 o1 ‘ Dile o 9 oo : Dile ol = .

1= =1

Our prior distributions are fully specified upon choosing pe2; :=1/2 — ({ — x/4)/2 > 1/4.

For j € {0,1}, let
T 1 X
e — — | ) < XL
[P 27")4}

Q(],j = {(—1)j (Z Dile — %‘ - EUJ’ Z
—1 i

1=

Then, noting that the even terms in the sum are equal to the odd terms, by Hoeffding’s in-
equality,

2
c X _ —rTE?/16
Po, (€25,5) Sexp(— 16r(52> = TEL/16,

Moreover, on € o,

T

1
Zpil.— o + 2pe21 — 1
, r
=1
T
1
<EGO<Z Pile — 27,‘ +2p.21—1> +x/4=¢=x/2=(C=x/4) +x/4=0,

i=1
so that o ((P2)¢) =Py, { R(Ps) > 0} < e~"F/16, On the other hand, on Qg 1,

r

D

=1

1
Dile — ‘ + 2pe21 — 1
2r

T

> Ky, <Z

=1

Dile —

%’+2p.21—1> —x/4=C+x/2 = ((—=x/4) —x/4=X/2,
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OPTIMAL MCAR TESTING 19

so that o1 (Ps(x/2)¢) =Po, { R(Ps) < x/2} < e~ TE7 /16
We finally bound the total variation distance between the marginal distributions of the data,
using similar arguments to those in Wu and Yang (2016). We have

R (ng, x/2) > ¢}Ielfp/ [EUO{:H'{PSE'PO}]EPS (Vne) } + Eoy { Lpeeps (/2 B (1 1/’1\@)}}

> it [ (B (W)} + B {Bn(1 = 50)}] - o0 ((PE)%) = o (Pel/2))

> 1 — dry (Eg, P, By, P2°) — 2e7"EL/16,

where, for j = 0,1, we write E,, P for the marginal distribution of (Xg;)ses,ien in our
Poisson model when the prior distribution for Fs is 0. The distributions P53y and Py 3)
are deterministic and do not change between the two priors, so

(S21) drv (Bo, P2, By, PI°) = dry (Bg, PR Bo, PLY),

where, for j =0, 1, E, P{nl“z? denotes the marginal distribution of (X1 2} ;)ien in our Pois-

son model when the prior distribution for (pjse )|y c[2) 18 taken from the construction of
0. Under our Poisson sampling scheme, since (piie)iodd is an independent sequence, it
suffices to bound the total variation distance between the distributions of random vectors
(Y1,Y2,Y3,Yy) and (Z1, Za, Z3, Zs), where V ~ ngy gy pio/2, V' ~ nyy gyp1/2, and with
A= ny 91/, we have

(Y1,Ya,V3,Y2)|V = v ~ Poi(v) ® Poi(A — v) ® Poi(\ — v) ® Poi(v)
for all v, and (Z1, Z3, Z3, Z4)|V' =0 4 (Y1,Y3,Y3,Yy)|V = v for all v. We now have that
{1,2 1,2 r
(822)  drv (B Py5) B, PG ) < Sdvv (£(V1,Ya, s, Ya), L(Z1, 2, Z3, Z4))

Recalling that V and V' have identical /th moments for ¢ € [L], we have by Lemma S1 above
that

drv (L(Y1,Y2,Y3,Y4), L(Z1, Zo, Z3, Z4))
1 = 2 Wtz xT w-rz xT
=3 > Oiw‘:):' 'Z‘|IE{V A=V —E{(V)* (A = V)T
w,a;,y,z

[e.9]

1 oy 1
:2;::06 zAi!j,}E{ 2V)'(2A—2V) } —E{(2V")"(2A — 2V") }|

21/2 elogr (L+1)/2
<
- 77‘1/4 (L +1 )

since L + 2 > 4logr. We deduce that with p = x /2 =rdEL /2,

R([ns/2],p) 2 R™ (ng, p) = Y e /"

(S23)

Ses

r 212 elogr (L+1)/2 )
>1-—-.2 _2efrEL/16_Z€fns/12
- 2 wgl/A\ L+1

SeS

1—clog?2 21/2

r ) o -TE2/16 _ —ng/12
>l =2 D e/t

Ses
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20 T. B. BERRETT AND R. J. SAMWORTH

It follows that there exists a universal constant g > 0 such that when min (r, minges ng) >
ro we have R([ns/2],p) > 1/2, s0

1 r 1/2
* 2 > /
P ([ns/2]) Z e {logr 4 ((n{m} /\TL{Lg})lOgT> }

for some universal constant ¢’ > 0. By reducing ¢’ > 0 if necessary, we may therefore con-
clude that the same lower bound holds for p*(nsg).

We now prove that we always have a parametric lower bound, so that the result still holds
when 2 < r < rg. Since p* is increasing in r we assume without loss of generality that r = 2
and that n(; 9y = minges ng. Here we use a two-point argument. For any Ps € P with
Dlee = Pele = Peel = 1/2, we have from (8) that

1 1
R(Ps) = QmaX{0,2 — Plle — Dell — Plel;Plle — Pell + Plel — 3’

1
Plle + Dell — Plel — 1/2,—Dile + Pel1 + Piel — 2}-
In fact, when p11e + Pe11 + P1e1 < 1/2 we have
R(Ps)=1—2(pi1e + Pe11 + Pie1)-

Take pe11 = p1e1 = 1/8 so that R(Ps) = 1/2 — 2p11.. We can therefore take PS(O) € Pg to
have pi1e = 1/4 and PS(I) € Ps((32n1.9))"1/?) to have p11a = 1/4 — (32n; 9y) /% We
now use Pinsker’s inequality to calculate that

dQTV((PS(O))”S,(PS(I))”S) = d%v((P(O) e (p(l) )n{l,z}) < %KL(P(O) p) )

n{1,2} n{1,2} n{1,2)7 7 N12)

N1 2} 1/4 1/4
_ Ly 1
1 {Og<1/4—(32n{172})_1/2 tog 14+ (32n(1.2y) /2

N1y 1 <!
! bg(l - 1/<2n{1,2}>> e

—-1/2

and it follows that p*(ns) > (32mingesng) . By considering the different possible or-
derings of r, minges ng and rg, we see that the claimed lower bound holds. ]

PROPOSITION S2. Ler S = {{1,2,3},{1,3,4},{1,2,4} } with X =[r] x [s] x [2] x [2]
for some r,s > 2. There exist universal constants Cy, ¢ > 0 such that whenever s > Colog®r
we have

rs

1 1/2 1
A ,— .
log(rs) ((n{1,2,3} A n{1,2,4}) 10%(“’)) (mingeg nS)1/2 }

PROOF OF PROPOSITION S2. As in the proof of Theorem 9, we may work in a Poisson
sampling model. We will construct priors o and o1 for Ps € Ps°" under the null and alterna-
tive hypotheses respectively, that satisfy pieee = 1/7, Die1e = Dies1 = 1/(27), Die21 > 1/(4r)
for each i € [r], and p;jee = 1/(r's) and p;je1 = 1/(2rs) for each i € [r] and j € [s]. By
Proposition 11, for such Ps, we have

p*(ns) > cmax{

T

R(Ps) =2 i dre 4 Didel - Diekt — Dies
(Ps) i_lﬁiﬁgg( Didke + Didel + Diekl — Diesl )+
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T S
=2 HiaX{Z(Pijol — Dijke)+ + Diekl — piul}
=1 7 =1 +

— max (Z |Dij1e — 1/(275)| + 2piek1 — 1/r>

< k=12 n

T S

_ Z (Z Dij1e — 1/(278)| + 2piea1 — 1/7">

=1 +

With L := [2elog(rs)] let vy, 11 be the distributions on [—1, 1] defined in the proof of The-
orem 9. Now, defining ¢ : [-1,1] — R by

1/2
g(x) = 1 + 0w, whered:= 1 A <HOg(TS)> ,
S S n{17273}8

set jup := vy 0 g~ ! for £ =0, 1. We will assume without loss of generality that s is even and,
for each i € [r], each odd j € [s] and each ¢ = 0, 1, under o, generate 2rp;;i. independently
from f. For i € [r] and even j € [s] set pjj1e = 1/(7S) — pi j—1,10. Forall i € [r] and j € [s]
take pijoe = 1/(7S) — Dijie and pjje1 = Dije2 = 1/(2rs). Similarly to the proof of Theorem 9,
write

r s
X =Eg, Z Z |pijlo - 1 2T5 Eo, Z Z |pz]10 - 2T5)| =s0bL
=1 j5=1 =1 j=1
and
]Edl z Z ’pljlo - 27‘3 | + EO’U Zz |plj10 - 2T8)|7
=1 j=1 =1 j=1

and choose pie21 = (1/7){1/2 —({ — x/4)/2} > 1/(4r) for each i € [r]. Now, using a union
bound and the same argument as in the proof of Theorem 9, we have

E} sE7
0y <« _SEL < _skp
Po, (P ¢ PE) <rexp(—TTE) and By, (R(P5) < x/2) S vexp(—1E).

These right-hand sides can be made arbitrarily small by choosing Cj sufficiently large enough
in our assumption that s > ¢ log3 r. Now, as in (S21), (S22) and (S23) in the proof of Theo-
rem 9 we use the fact that L + 2 > 4log(rs) to see that

rs 21/2 (elog(rs)>(L+1)/2 < (rs)l—elos?

n ns
drv (Bo B B F¥) < 5 5\ Tp g S Qi

The remainder of the proof is directly analogous to the proof of Theorem 9. U

PROOF OF PROPOSITION 10. Suppose that PS*J € Ps2%® and let 51,52 € S have S1 N
Sy # (). If neither or both of S; and Sy are equal to Sy, then we have immediately
that Psms2 PSmS? On the other hand, if S7 = Sy but Sy # Sy, say, then Pglmsg =
Pg ﬂ]‘] NS, Pg 1QJJ NS Pg? 1152 Thig proves the first part of the proposition.

For the second part, if fs_; = (fs: S €S™/) € GI ,, then we can define f{ = (f;: S €S)

by f5:= fs for S €S\ {Sp} and fg (27, 28,n7¢) := fsynse(xs,nse). Then f& € gg, and

R(Ps, f§) = e Z/ fs(xs)dPs(xs)

Ses
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22 T. B. BERRETT AND R. J. SAMWORTH

’ Z fs zs5)dPs(zs) — 5 J‘/ fsonge(ws,nge) dPs,(2s,)

SES\{S }

1
= J’ > fs zs)dPs(zs) — =] fsonre(zsone) dPsynge (T5,n0¢)
SES\{So}

Xsgne

_R( 7fS ")

It follows that R(Ps) > R(P; ). Conversely, suppose that fs € GJ is such that R(Ps, fs) =

R(Ps). Now define fs = (fs:S ENS*J) by fs:= fsfor S € S\ {So} and fs,nse(T5,n7c) :=

infy ex, fs, (:Uf,, xg,nJe). Then fg > —1. Moreover, each fg is upper semi-continuous: this

follows when S € S\ {Sp} because fg is then upper semi-continuous; on the other hand, for
/

any r; € Xy,

lim sup fSoch (xn,SoﬂJ“> < limsup Iso (mijﬂfn,Soch) < fs, (:cf],xgoch).

Tn,SgnJc—>TsgNJC Tn,SgnJc—?TsgNJC

We deduce that lim SUD,, o je—sagynie fsonge(@n, sonae) < fsone(2syn.e), as required. Fi-
nally, writing X_; := Hje[d}\J X;, we have

inf Z fs(xs): inf { Z fs($5)+fsnmc($somc)}

r_j EX_g T, EX_,
Ses—7 SesS\{So}
:x—}gg) { Z fS iUS)-l-xlnf fSO(xJ7$SoﬂJ”)}
SeS\{So}
= Inf Zfs rg5)>0.
SGS
Thus fs € G, and R(P; /) > R(P; 7, fs) > R(Ps, fs) = R(Ps). O

PROOF OF PROPOSITION 11. Any fs € Qg’ can be decomposed as (fs|,, : v7 € X, 5 €
S), where fg|,, € Gsnye is defined by fsp,, (zsnse) = fs(ws,25n7:). We write fg,, 1=
(fs|z, : S €S). Moreover, for each z; € X},

inf > fop,(@snse) = inf Y fs(zg,ws000)

Tsnie€EXsnye S Tsnye€Xgnae S

. /
> inf > " fs(2ly, wsnse) 20,
z,€X x50 7¢ €EXsn e Ses

SO fsz, € gg,,] for each x; € X;. It follows that if € > 0, and if fs € Qér is such that
R(Ps, fs) > R(Ps) — ¢, then

R(Ps) < R(Ps, fs) +e= Z fs r5)dPs(xs) + €
|5
Z/ / 1w, (x507e) APy, (x5 ye) AP (z7) +
SES Xy J Xsne

- / R(Pyo, fia,) AP (1) + ¢
Xy
Since € > 0 was arbitrary, the desired inequality (10) follows.
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Now consider the discrete case where X; = [m;] for some my,...,mg € NU{oo}. Given
any (fs|z, 1wy € Xy) with fg),,, € géﬁ, for each x ;7 € X'y, we can define fs = (fs: S5 €S)
by fs(ws) := fsjx, (Tsne). Then fg > —1forall S €, each fg is upper semi-continuous,
and

min x min min (xsnge) > 0.
wEXZfS( S) T E€EXy Tsnyc EXsne ZfS|a:; SQJ o

Hence fs € Qgr . Moreover, in this discrete case, maximising R(Fy,,,) over g;,‘, may be
regarded as maximising a continuous function over a closed subset of [—1,[S| — 1]%~~
equipped with product topology, and this is a compact set by Tychanov’s theorem (e.g. Fol-

land, 1999, Theorem 4.42). We may therefore assume that there exists fg| z, € gg, ; such that
R(PS|IEJ 9 fS|l‘J) = R(PS|:EJ) Then

R(P5) > R(Ps, fs) = ‘S‘Z S > fs(asasnsps(@, wsnse)

SeSx;eEX; Tsnicexgn je

= Z{ Z > fS|mJ($SﬂJc)pSxJ(:ESﬂJC)}pJ(.fUJ)

T EX; SES TsnJceXgn je
= R(Pyiy,, fju, )0’ (25) = R(Pyy,)p” (1)
S|z JS|x s D \TJ Slx s p \ry),
TEX, r;EX,
and the desired conclusion follows. O

PROOF OF PROPOSITION 12. We first establish the lower bound on R(Fs). Suppose that
€ € [0,1] is such that Ps € (1 — €)Pg + €Ps. Then we can find Q2 € P and Qs € Ps such
that Ps = (1 — G)Q(S] + €Q)s. But then Ps, = (PS :Se Sl) satisfies Ps, = (1 — G)Q(S]l + Ele,
0 Ps, € (1 — €)PY + ¢Ps,. Hence, by Theorem 2 we have R(Ps) > R(Ps,). The same
argument applies to show that R(Ps) > R(Ps, ), and the lower bound therefore follows.

We now turn to the upper bound. For k € {1,2}, let I, := Uges, S. From (S15), for each
k € {1,2} we can find gz € [0,00)*+ that maximises 1% qoverall g € [0, 00)¥ that satisfy

AFq < ps,.. where AF = (Akg | )igu e sex, € {0,135 is given by

A(Sys% = Lgg=ys}-

Define a measure () on X with mass function ¢ given by

q(zx): {(zs)  a(

)= min{q{(@;) g (z g } 4 (@) | q"}(ilj)) if min{ql‘](xJ),qg(xj)} >0
0 otherwise.

Then whenever min{q{ (x),qJ (z;)} > 0, we have

Ced= YN minfel e B

@ (xs) af(zy

Tyenr, €Xgenty Toenr, €Xgent,

=min{q{(z;),q (z;)} Z qb(xll) _ Z q?](xb)

Tyenr, €EXgenry

Tyenr, €Xgenr,

=min{q{ (z,), ¢4 (x;)} =min{(A'q1) 12,y (A%02) () } < P8) sy = P (T1)-
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24 T. B. BERRETT AND R. J. SAMWORTH

On the other hand, if min{q{ (), ¢ (zs)} =0, then ¢’ () = 0 < ps(xs). Further, when-
ever g{ (z.7) > 0, we have for k € {1,2} and any S € Sy, \ {J} that

o= Y% (el de) S

q

Tynsc€Xinse Tyenr, €EXgenty,

> > alan)

ZTynsc€EXynse Tyenr, €EXenry,

IN

=i (x5) = (A ) (5.05) < (P8) (5,05) =P (T5)-

Finally, if ¢/ (z;) = 0, then ¢°(z5) = 0 < pg(zg). It follows that Aq < ps, where A :=
(A(sys).2)(Sys)ets wex € {0,11% Y is given by (12). Thus, from (S15),

R(P5)<1-> q@)=1- > min{q{(zs),¢(xs)}

zEX T EX,
= > max{ps(es) —qi (@s),ps(xs) — a3 (x)}
T €EX,
< Y Al —af (@) +psles) — ¢ (x)}
T E€EX;
=1— Y alzn)+1— Y ) =R(Ps,)+ R(Ps,),
xr, €EXry T1,EXT,
as required. O

PROOF OF PROPOSITION 5. Suppose that there exist fs € R and ¢ € R such that
fd'ps = c for all ps € PY. We will show that we must also have fd ps = ¢ for all ps € P,
In fact, by replacing fs by fs — (¢/|S|)1x;, we may assume without loss of generality that
c=0.

In this proof we emphasise the dependence of A on S by writing As. Since (Al fs)Tp=0
for all p € [0,1]* with 15p = 1, we must have that AZ fs = 0. We will use induction on [S|
to deduce that fZ'ps = 0 for all ps € PS". When S| = 1, we have that if AL fs = 0, then
fs=0,s0 fST ps = 0 for all ps € PS°"®. As our induction hypothesis, suppose that whenever
IS| < m and fg € R satisfies Agfg =0, we must have fSTpS =0 for all ps € PS".

Let S be given with [S| = m + 1, suppose that fs € R satisfies Al fs = 0, and let ps €
PSO™S be arbitrary. Without loss of generality, we may assume that X; = [m;] for j € [d] for

some myq, ..., mq € N. Fixing Sy € S, we have
fols,) == > fs(zsns: Lssns)
SeS\{So}

for all zg, € Xs,, since (Ag fs) = 0. Using the notational convention that

(xsovl[d]\so)

SlﬂSQ _ — 1
Zzslnszéxslmsg P 7 (zs,ns,) = 1 whenever Sy N Sy = (), we may therefore write

fos= Y fa(@s)ps(@s)+ > Y. fs(xs)ps(zs)

Ts,€Xs, SeS\{So} zsE€EXs
= > { > fswsps(s) = > fS(HCSm&1S§ms)pggms($&ms)}
SeS\{So} “xs€EXs ZTsonsE€EXsgns
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9D fslwsps(zs) = > fslsns, 1ngs)p§°ns($soms)}

SeS\{So} “xs€EXs ZTsonsEXsgns
S24) = Y ps(@s){fs(xs) — fs(@suns: Lssns) } = (Forso}) Psviso
SeS\{So} rs€Xs

where we define fq\ (5,3 € R¥\0) by fg(xs) := fs(xs) — fs(xs,ns, Lsgns) for S €S\
{So0} and 5 € Xs, and where pg\ 5,1 := (ps : S €S\ {So}). For any x € X, we have

Al sy fovsep)e = Y. Fslws)= D fs@s)— Y. [fs(wsns, Lssns)

Ses\{So} SeS\{So} SeS\{So}
= (AZ fo)e — fs0(w5,) = {(AZ f6) (way i gsgy) — £50(X50) } = fs, (w5,) = Fsy(s,) = 0

Since pg\ {s,} satisfies the consistency constraints associated with S, we see by (S24) and our
induction hypothesis that

£ ps = (foris0)) " Ps\ (50} =0,

as required. O

PROPOSITION S3 Suppose that S = {{1,2},{2,3},{3,4},{1,4}}, X1 = [r] for some
r €N, and Xy = X3 =Xy = [2]. Then

(825) R(PS) =2 max {pook( De2ke — Zmln pzl-.,pzooé)} .
ke(2] =1 +

PROOF OF PROPOSITION S3. We first prove that R(Ps) is bounded below by the quantity
on the right-hand side of (S25), before proving the corresponding upper bound. First, we
always have R(Ps) > 0. Now, define fs € Gs by setting, for i € [r],

. . . . i (37_17_173) ifpiloo < Dieel
iton: fizee, fnot; fion2) = { (—1,3,3,—1) otherwise ’

Joo12 = foe21 = fe12¢ = fe216 = 3 and fee11 = fee22 = fo116 = fe220 = —1. It is straightfor-
ward to check that fs € gg . Now

R(Ps, fs)
A 2 ;2 12
=1 Z (Zpijufiju + ZPianz’nZ) 1 Z Dejkefojke — ) Z Deokt fookt
=1 \j=1 =1 k=1 k=1
L
=1 2{3 Min(Piles; Pies1) —MAX(Pi2es; Dies2) —MAX(Dilee; Piesl) +3MiN(Di2es, Dise2) }
=1

- %{3(p0120 +p0210) - (10.11- +p0220)} - 2{3(]7.-12 +p-.21) - (pooll +poo22)}

1 ,
= _Z Z{4m1n(pilooapiool) - 4max(pi1.,,pi"1) + 2pi...}
i=1

1
- 1{3(2170210 — De2ee — Peele +pooo.) - (poolo - 2]9.21. +po2oo>}

1
- 1{3(1)0010 - 2])..11 +poool) - (2p0011 — Peele — Deeel +poooo)}
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26 T. B. BERRETT AND R. J. SAMWORTH

1 « ,
= _Z 2{8 mln(p’ilooapiool) - 4]%’1.. - 4pio.1 + 2]%...}
=1

1 1
- Z (8p0210 - 42?.2.. - 4p0010 + 3]9....) - Z (—8]7..11 + 42?..1. + 4p0001 - poooo)

T
= 2{]70011 — De21e — Zmin(pilonpiool)}-
i=1
Since R(Ps) > R(Ps, fs), this completes the lower bound in the case that (k,¢) = (1, 1) is the
maximiser in (S25). The other three cases follow by almost identical arguments by choosing
different fs € gg appropriately. We now turn to the upper bound, which we will prove by
using the dual formulation

T 2
1—R(PS):max{Z Z qijngQG[O,OC))X,AquS}.

i=1 jkl=1
Write A := {i € [r] : Diles < Pies1} and suppose that
(S26) Deell — Pe21e — PAles — PAceel = 0,

where we note that an alternative expression for the left-hand side of (S26) is given by pee11 —
Pe21e — Y i1 MiIN(Di1ee, Pies1 ). For i € [r], consider the choices

. . o (piloo _piool)+
q;111 = mln(piluapinl)a qi112 =~ Peel2;
DPAclee — PAcesl

) _ ) o (piloo _piool)+
gi121 =0, Gi122 = ————————De12e,
PAclee — PAcesl

. _ (piool _piloo)+
¢i222 = MiN(Djee2; Di2es); i211 = ————————De2le,
PAeel — PAlee

ool — Dil
gi212 =0, Gi221 = M?-ah
DPAeel — PAlee

X

where we interpret gi211 = ¢1221 = 0 if DAee1 = PA1lee. It is clear that g € [0,00)", and we

now check that Ag < ps. First,

2
. Dilee — Pieel
Z dilke = mln(pilooapiool) + M(poolQ +p.12.)
ki1 PAclee — PAceel

(Piles — Diee1)+ (

Pe21e — Peell + poln)
DPAclee — PAcesl

= Min(Piles; Pies1) +

< min(pilooapiool) + (piloo - pi..l)-{— = Dilee,

for each i € [r], where the inequality follows from (S26). It is very similar to check that
2 2 2 .

D kp=1Gi2kt < Pizews that D27, 1 Giji1 < pieet, and that D5, gijko < Piee2 for each i €

[r]. Now

r 2 r
. ilee — [ieel
Z Z qi11¢ = Z{mHI(piloupiool) + WPOOIQ}

i=1 (=1 i=1 PAcles = PAceel

=PAlese T DAcesl T Peel2 < Deell — Pe21le + Deel2 = Pelle;

imsart-aos ver. 2020/08/06 file: MCARtestFinal_Supp.tex date: October 23,

2023



OPTIMAL MCAR TESTING 27

where the inequality again follows from (S26). It is similar to check that 22:1 22:1 Qioor <
Pe22e, that >, Z?:l ¢ij11 < Dee11, and that 7, 23:1 ¢ij22 < Pee22. Finally, using sim-
ilar arguments we see that > ., Z?Zl ¢i12¢ = Pe12e, that >, Z?Zl Gi21r = De21e, that

2 2
D i1 2oj=1ij21 = Pee21, and that >0, 377 Giji2 = Pee12. Now that we have seen that
q satisfies the necessary constraints, we calculate that

T 2
R(Ps)<1-— Z Z Qijke

i=1 j,k,t=1

=1- (pAloo T+ DAcesl T Dee12 T Pe12¢ T Pe21e + Dee21 + PAc20e +pA..2)

T
= 2{19..11 —DPe2te — Y min(pn..,pi.q)}.

i=1
This deals with the case where (k,¢) = (1,1) gives the maximiser in (S25) and where the

right-hand side of (S25) is positive, as in this case (S26) must hold. The other cases follow
by very similar arguments, and this completes the proof. 0

PROOF OF THEOREM 15. Given S € S and k = (ky,...,kq) € Kj, we can define a dis-
cretised version Qg of Pg with mass function

qs(ks) ¢=Ps< I nex ]I {k?j}>-

jeSe(do] jesn([d]\[do])

Then Ry,(Ps) 4 R(Qs), where (Ys;:S €8S,i € [ng]) are independent with Yg; ~ Qg for
i € [ng], and Qs denotes their empirical distribution. Moreover, if R(Ps) =0, then P € P
so there exists a distribution P on X whose marginal distribution on Xg is Pg, for each
S € S. The discretised version () of P with mass function

10 1)

do
(S27) q(k):=P (H In, k, X
j=1

on Ky, then satisfies the condition that its marginal on (Kp,)g is ¢g, for each S € S. It follows
that @) is compatible, i.e. R(Qs) = 0. The Type I error probability control follows from this
and the first parts of Theorems 4 and 7.

For the second claim, given € > 0, find fs € GJ with R(Ps, fs) > R(Ps) — €. As in the
proof of Proposition 6, we may assume without loss of generality that fs < |S| — 1 for all
S €S. Now define fs, = (fsn: S €S) by

fS(xISm[do} » LS0([d)\[do])) dl’%m[do}
Fs,n(Tsn(do]> Tsn((d)\[do])) =

jesntdgl Thjk;

dz’,
fnjesm[do] Inj oy SN[do]

for (xgn(dy]s Tsn(jd)\[do])) € Xs With zgqq,) € HjeSm[dO] Ip, k,- Bach fgj is then clearly
piecewise constants on the appropriate sets, and is bounded below by —1. To check the other
constraints of gg n» let x € X be given and let U be uniformly distributed on the part of the

partition of [0, 1)% Mldo] that contains x[q,]- We have that

Z fsn(xs) = ZE{fs(USm[do},wsm[d]\[do]))} = E{Z fS(USm[dO]vxSﬂ([d]\[do]))} >0,

Ses Ses Ses
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and thus indeed fs j, € Q; 5 Now,

i, 75 (@oria) Bsoanan)) 50 a,)

R(Ps, fsn) = Z Z scsnteg f

/
SESkG Kn )s HJ'GS”[%J Ih,]-‘kj dmsﬂ[do]
XPS( I nex 1] {k‘j})
JE€SN[do] J€SN([d]\[do])
1
= ,*Z > /n . Fs(@5riag)> sn((anido))) A5 (@spa, ) Ksean do]))
SeSke(Ky) j€sSnldg] “hjkj

L{S[-1) vy ([d]\[do])
S| Zh > Z M s iaia) / A5

Ses ke(K jeSﬂ[do]I’”a‘v’“y
d() d()
=R(Ps, fs) = L(IS| = 1)) " > R(Ps) —e— L(IS| = 1) Y _h7.
J=1 Jj=1

Since € > 0 was arbitrary, we deduce that
(S28) Ry(Ps) > R(Ps) — L(|S| — 1 Zh”

The completion of the argument is now very similar to the first part of the theorem: we

define the discretised version Qg of Pgs via (S27). Note again that Rh(ﬁg) 4 R(@g), where
(Ys;: S €8S,i € [ng]) are independent with Ys; ~ Qg for i € [ng], and @g denotes their
empirical distribution. Since R(Qs) = Ry, (Ps), the result follows from (S28) together with
the second parts of Theorems 4 and 7. O

PROOF OF PROPOSITION 16. To prove the first claim, let Ps € (P{)~%=, so that

B

Pp, (1 + D L@ ripy < B+ 1)) <Pp,(R(Ps) > 0) =Pp,(Ps ¢ PY)
b=1

<Pp, (Z drv(Ps, Ps) > Ca) <a
Ses
where the final inequality follows by very similar arguments to those used to prove Proposi-
tion 4.
For the second bound, for any Ps € Ps we may use Markov’s inequality and our lower
bound on B to see that

5 "
BP Ps( (Qs )>R(PS>)
PPS(”,)ZH{R@S)»R(E)} > olB+ D) a(B+1)—1
=1

< 2Pn(RQY) > R(PY)).
Now, if R(Ps) > e = 2C;5 for some 6 € (0, 1), then
Pp (R(QY) > R(P5)) <Pp (R(QY) > ¢/2) + Pp, (R(Ps) < ¢/2)
<Pp (RQY)) — R(Qs) > ¢/2) + Pp, (R(Ps) — R(Ps) < —¢/2)
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< sup Pp; (R(P) — R(P%) > €/2) + sup Pp;(R(PS) — R(P}) < —€/2) <2,
PiePs PiePs

where 13S’ denotes the family of empirical distributions of independent samples of sizes ng
from Pg, and where the final inequality again follows from almost identical arguments to
those used in the proof of Proposition 4. We choose § = 3/4 and complete the proof on
noting that

_ 1/2
2Cap/a= Z(’XS';) "y {210g((jﬁ) > 1} < 2v2(Cy + Cp),

n
Ses s
as required. 0

S2. Glossary of topological definitions. A topological space X is said to be completely
regular if for every closed set B C X and and every zp € X' \ B, there exists a bounded
continuous function f : X — R such that f(x¢) =1 and f(z) =0 for all x € B. We say X
is Hausdorff if, given any distinct =,y € X, there exist open sets U C X containing x and
V' C X such that U NV = (). We say a subset of X" is o-compact if it is countable union of
compact sets. Given a Borel subset F of X', we say a Borel measure 1 on X is outer regular
on F if

w(E) =inf{u(U):U 2 E,U open}
and inner regular on E if
w(E) =sup{u(K): K C E, K compact}.

We say p is a Radon measure if it is outer regular on all Borel sets, inner regular on all open
sets, and finite on all compact sets.

If T is a topology on X, a neighbourhood base for T at x € X is a family A’ C T such
that z € V for all V € N and, whenever U € T and x € U, there exists V' € N such that
V CU. A base for T is a family B C 7T that contains a neighbourhood base for 7 at each
x € X. We say X is second countable if it has a countable base.
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