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Throughout our proofs we will use the notation
hx and ky
=1 Vet '= —— 1, "
mVah ((s)? nVghgs(t)d

Ug,s

for x € X and s,t € (0,1). Moreover, since many of our error terms will depend on kx, ky,
f, g and ¢ (as well as ¢, in Theorem 5), we adopt the convention, without further comment,
that all of these error bounds hold uniformly over the relevant sets as claimed in the statements
of the results. In addition, when we write a < b, we mean that there exists C' > 0, depending
only on the parameters d, ¢ and £ of the problem, such that a < Cb. It will be convenient
throughout to assume that m,n > 3.

S1.1. Proof of Proposition 1.

PROOF OF PROPOSITION 1. First, we have that p,(f) <1 and ||f|loc < Cgap, and it
remains to bound the function My g(+) for each 8 > 0. Writing g(r) := Cyapr® (1 —
b—1 _ . :
7)° " <1y, so that f(z) = g(||z||) we may see by induction that

sup r_(a_t_1)|g(t) (r)| <oo and sup T_(b_t_1)|9(t) (r)] <oo

re(0,2/3) re(1/3,1)
for any ¢ € N. Moreover, for any ¢ € N and multi-index & = (g, . . ., aq) € N¢ with || =1¢,
we have that
sup Hx||t_1{6°‘||ac\|‘ <oo and sup |0%||z]|| < oo.
z€By(2/3) 2€Bo(1)\Bo(1/3)

Using these facts we have that

- /()
%@ S i = ey

for any t € N. Now, writing 3 := [3] — 1 and fixing o = (a1, ..., aq) € N& with |a| = 3,

if y,z € By(||z]|(1 — [|z||)/8) then we have for any some w on the line segment between
and y that

0% 1(2) = 0% )] < @2z — | PO w) |
Sz = ylllw]|* B — [P EHD

L I Lo | Y 1) ok T i
N el (1 — ()T~ TallP(x = T])?
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It follows that M g(z) < 1/{||z[|(1 — ||=)}. Therefore, for any A € (0,b/(b+d — 1)), we

have
z) A
IR
1

A
< z||* 11— ||z b_l{ } dz
o 1217720 0 o

1
_ dVd/ potd=2-Martd=1) (1 _pyb1=A+A1) g o o
0

as claimed. O

S1.2. Proof of Proposition 6 on asymptotic bias. The following general result on the bias
of the naive estimator 75, ,, yields Proposition 6 as an immediate consequence.

PROPOSITION S1. FixdeN, 9= (o, 3, 1,A2,C) € © and { = (K1, k2, 8%, L) € E. Let
kL X< < kU kL < kg be deterministic sequences of positive integers such that k%( /logm — oo,
ky/logn — 00, kY = O(m'~¢) and k) = O(n'=<) for some € > 0. Suppose that ¢ < 1.
Then for each i1,iz € [[d/2] — 1] and j1, jo € No with j1 + jo < [(8* — 1)/2], we can find
Aivisjije = Niviajigs (s [+ g, @), with the properties that Xo,0,00 =T(f,9),

sup sup |)"i1i2j1j2’ < o0,
(&) (f,9)€F a0
and that, for every ¢ > 0,

[d/2]-1 oo Nivisjuin (Kx\ 28 (hy\ 2
Epg(Ton) = D D Lijitjai(s—1)/2)) —5ot Kk <m) (7)

11,52=0 j1,j2=0

<{ (o)™ ) )

sup sup
d€P(§) (f,9)€Fa,0

m m m
ky %5* ky B/d ky Az(1-C)—e
GGG Afmi1fn g ),
as m,n — oo, uniformly for kx € {k%, .. ,ky(} and ky € {k{;, .. ,k:g}

PROOF. Define

k 3log!/? k 3log!/?
0ty :O\/X<1i0g m)/\l, afyzzovy<1iog n)/\l,

m k;(/Q

let Zy, x := la,, a;;’X], Iny = [aay,aiy], and set

f(x) >leogm g(z) >k:y10gn
M@ S m CMy@ic

X 1= {meX:

To begin our bias calculation, we recall the definitions of ka i and g,y ; from (13). Ob-
serve that, conditionally on X1, we have hx, ¢(||X; — X1|[) ~ U[0,1] for j € {2,...,n}, and
it follows that

X) = J X1,
(Pt Ge 1) | X1 = <deh}},f(B1)d nVahy! ,(B2)? '




EFFICIENT FUNCTIONAL ESTIMATION 3

where B ~ Beta(kx,m —kx) and By ~ Beta(ky,n+ 1 — ky ) are independent. Moreover,
we may write, for example,

Uy, s kx S kx S
S1 s =X X (1),
GV @) ms Vazf(rlc)h_1 (s)¢ (ms ) <Vau“"(fli)’f1 (s)¢ )
and use Lemma S4 to expand V f(x)h, )d/s in powers of s%/¢. Since the Beta(k,n — k)

distribution concentrates around its mean at rate k~'/2 in an approximately symmetric way,

we will also see later that for every a € R, we have an asymptotic expansion of the form
a [l k j . .
™) / (5 1Y Byua(s)ds = ek ek T2 4y O(1/m),
0 ns

provided that k& = k,, — oo and k/n — 0 as n — co. These facts mean that for remainder
terms Ry, ..., R4 to be bounded below and functions ¢;, 4,5, j, () to be specified later we may
write

B 1 1
ETm,n = / f(l') / / ¢(U175, UI,t)ka,m—k:x (S)Bky,n+1—ky (t) dsdt dx
X 0 Jo

_ / f() / / O (tims: V) Blow o ton (5) By m1 oy (£) ds dt da + Ry
Xm,n T, Imy

<1 « £y Lo
= {€1+£2<ﬁ -1} / / / <u1’ S ) ( Uit — 1) T I T £y
> i ey @ ) ) @)

Kl,ﬁg 0

(S2)
X &0, (f(2),9(2))Biy m—ky (8)Bhy nt1—ky (t) dsdt dz + Ry + Ry
[d/2]-1 oo by .
= > D> Ljpss f T)Ciringu o (T EX 1 (7 _ 1)
Tn nt
21,22=0 J1,52=0 Y
X Sft%ka,mka (8)Bhy mt1—ky (t) dsdtdz 4+ Ry + Ry + R3

(S3)

[d/2]-1 oo

>\’5112 1]2 k 2:11 k 2%
ZO Zoﬂ{hﬂzq *—1)/2]} kh]i]z (TT);) (%) + R1 + Ro + R3s + Ry.
11,02 ]1 3J2=

It now remains to bound each of the remainder terms.

To bound R;: Since we are assuming that ( < 1, we may apply Lemma S9 to see that

1 1
/ f() / / (1 - Tgez, oy Liez, vy)(ttos vis)
X 0 0

(S4) X By m—kx (5)Bhy nt1—ky (1) dsdtdz = o(m™* +n™?).

When s € Z,, x and kX > 36logm, we have by Lemma S8 that u,, < mCakx <
2C', and, similarly, when t € In,y and kY > 36logn, we have v, < 2C. Thus, when
s € ImX,t € I,y and min(k%/logm,ki/logn) > 36, we may use the fact that
|1/1 vx 2100, 05 (U5, V)| < L(2C’)2L+"‘1|+|’“‘u"1 vy for all £1, 05 € Np such that £1 + £5 <

B 1.



n,g°
{z: f(x)Mg(z)~% > kxlogm/m} and X, , = {x: g(x)Mg(x) ~4 > ky logn/n}. Using
Lemma S7 and Lemma S8 we have that

/ f() / (1t V) Bl () By 1y (£) ds it d
Xe, Tomx J Ty

In the following we consider the decomposition X7, = X7 U X7 . where Xy, ¢ :=

S Fa)'7r gla) ™% M(a) ) (1 4[|+ de

~
X s

k1 a Ma () atrr +r2) o
< iuf (BB [y ) (14 [0+ de

a>0 m 2

f(@)ath g(z)r
A (1-¢)—¢
I Ce
m

for every € > 0. With a similar bound over X; ; we conclude that

/ / / Qb Uy s,Uxt)BkX m— k:x( )Bky,n—H ky( )detd:E
X’n mX nY

Ar(1=¢)—e Az(1-C)—e
s (=) () )
m n

for every € > (. From (S4) and (S6), we deduce that
Ar(1=¢)—e Az(1-C)—e 1 1
(S7) Ry =0 max] (5 (B R
m n m4’ nt

To bound Rs: We first observe that, by (S1) and Lemma S4, we have that

(S8) €mn = SuUp  sup =o(1)

TEX § SEIm‘x

sup
TEX, gt€L, v

(

Now, for ¢ € [0, 1] we have that h(¢ ) =t —log(1+1t) >t2/4. Thus, letting B ~ Beta(k,n —

1/2 /2 1/2 1/2 1/2 .
k), whenever H# <land® H‘a s n < 91/2 _ | we may integrate the Beta

tail bound in Lemma S6 to see that

/ Bk,n,k(s) ds = a/ yafl]P’(‘B — —’ > —y) dy
0 n n

12y, -
+ exp (—nh(m» } du

3al/2log'/?n ) An® 9a1
S4ak°‘/2/ u* e /gdu—l—lj—ae P<— oz;)gn)
0

23@=1D/241(a/2)
ko/2 e
Next, by Lemma S7, we have for any 7 > 0 that

T _ _ )T
(=) [ ' g(w)%{j‘%f V e

(59)

A
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T—a )4y 74K —a )4 Ky
<33>1% /f Mﬂ(x) ) {Aiﬁ((x))} dz

o0 ofm{(5)(2)))

for all e > 0. Analogously,

i, s (Y o (£

m n

for any 7 > 0 and € > 0. Now, since ¢ € ® and by (S1), (S8), (S9), (S10), (S11) and Lem-
mas S3(ii) and S4 we have, when m, n are sufficiently large that €, , < 1/2,
Ug,s

|R2|§L/Xm‘n Fla) 1+ g(z)re /Zm,x /Z”{ e ’B* ;&3_1‘5*}

X Brym—ky (8)Bry nt1-#y (t) dsdt dz

k
<[ t@rg@r [ B 0B i 0|2 1]
Xn I, x Y Iny

278

+‘ky 1‘5*+{‘W}T5*+{W}dﬁ*} dsdtdx

_l’_

nt f(z) g(x)
(S12)
o ()7 ()T )T )

To bound Rs: By (S1) and Lemma S4, when ¢; > 0 we have expansions of the form

(0~ 2y

= = ~ LU f(x)

with |b; ;(z)| < {Mg(x)?/f(x)}?/¢ and by = 0. A similar expansion can also be writ-
ten for (vy¢/g(z) — 1)%. Using these two expansions it can be seen that c;,;,j,;, can be

chosen in (S2) with [ci,s,,j, ()| S f () g(w){ Mg (x)?/ f (x) }*/ 4L Mg ()" /g(x)} 2=/,
with ¢9,0,0,0(z) = ¢(f(z),g(x)), and, using (S10) and (S11), with

)
:O<m{<¢ffﬂ,<’:>W"i< o }>

To bound R4: Whenever a € R is fixed, we have an asymptotic series of the form

I'(m+a) /1 I'(kx +a) 9
— | $"Biymky(8)ds=—=———>=1+c1/kx +co/kx +....
) Jo * oot (V8= =1 /bt /i

(S13)
On the other hand, arguing similarly to (S9), for fixed 7 € N we have the bound

o [l

— 1)JBkX,m,kX(s) ds

ms



2 mT(kx +a — §)T'(m) ‘k:X +a—j kl‘J
)

k4T (kx)I(m+a—j m+a—j
kx+a—7j
/‘ e— ‘ k:x+aj,mkx(8)d8}

(S14) = 0(kd").
Moreover, by Lemma S6, letting B ~ Beta(kx + a — j,m — kx ) we have that

“ k
<ﬁ> / IS 1’ Biym_ky (8)ds
kx/ Jooang.  Ims :
ms

</[01]\I kx 1‘ Biox+a—jm—kx (5) ds

1/2
st <p(7 1= ) () Py =) =e,

Ky kx ky

With the similar expression in terms of ky and n, we now conclude from (S13), (S14)
and (S15) that we have an asymptotic expansion of the form

71 72 ky J2
d d ——1) <7—1> B m— B ] ) ds dt
/I X/I v ms nt ke m—kox (8)Bhy st 1-ky (8) ds

(S16) _(];{f) : (k::) { i ek 4+ O(1/m) }{ Z dyky —|—O(1/n)}

r=[51/2] =[j2/2]
Now for fixed i1, 2 € [[d/2] — 1] with ”;Hil/d + ”;J;ZiQ/d > 1, we have by Lemma S7 that
( )2@‘1 +2i5
/Xm i F(@)lCiriajisa( / fz )1 201 /dg ()R +2ia/d du
<min{1nf / f Mg(x } —a{Mﬁ(x)d}n;'FQ;Q da
B f(z) g(x) ’

4+ )%y ks +22—a
52% ky / Ut Mﬁ((x))} d {Aiﬁ((x;} ’ dx}

so{m{ (i) I ()
(817) _o<(%>_(’€7j) fmax{<lj;(>xl(1—c)—e, (kz)xz(l—c)—e})

for all € > 0, where the final inequality can be established by considering the cases (%‘)Al >
(l’%)A2 and (%‘)i1 < (%Y)A2 fepgrately. For such i1,i2 we set A, 4,55, = 0 for all ji, jo.
When, instead, =t +>\21“/ d + fz 43\2;2/ d < 1, we again consider these two cases separately,
use the decomposition Xy, , = (X7, , N AL ) U (X7, N Xy ) U (X N Ay ) and apply
Lemma S7 to write

Mg(:c)%*%
f(w)fcilizjljz(w)’dxg//w ey f(x)f(x)nl_+2i1/d (x)n2_+2i2/d
kx
+ O((m>

HOR(C RIS

dr dx

c
Xm,n
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I

eminfiag(S5) [ YT Y

(1) (Y ey )
_i_O((kx)Zdl f{ kf,x L(1-0)— e\/(ky))\zug)e})
(S18) :o<(’jn> <knY> {(kx> 1(1=¢)—e (kz)kz(l—o—e}>

for all € > 0. It follows from (S16), (S17) and (S18) that

{21 [ 121 (hx YO hy\ M0 1 1
RFO(max{ka D/ e -npo (k) () , })

m n

and this concludes the proof. O
S1.3. Proof of Proposition S on improved bias bounds.

PROOF OF PROPOSITION 8. From (S2) in the proof of Proposition S1, we may write

ETmn

0 1{f1+52<6 *—1} / / / < Ug,s >£1 < Vgt )22 ' '
= — ) _ 1 1 2
Z EI'EQ m n 771 X 'n Y g(x) f(:l:) g(x)

0y =
X gﬁgng (f(:r), g(x))BkX’m_kX (S)Bky,n—i-l—ky (t) dsdtdr + Ry + Ro

where R; and Ry satisfy the bounds (S7) and (S12) respectively. We may expand
(uz s/ f(z) —1)4 usmg (Sl) and also expand and (vx t/g( ) — 1)% analogously. Any term
including s/{Vy f(x)h f( 5)9} —1and t/{Vyg(x)h; 2 (t) } — 1 to a combined power greater
than one can be bounded by

O(max{ (l:;()%/z{ (lji;)xl(l—o—e’ (l%;)w/d’ (]Z))\z(l—g)—g}>

by Lemma S4, so can absorbed into the error term in (15). The key difference with the proof
of Proposition S1 is that for s € Z,,, x we now write

/ f ) é10(f ()){s — Vaf(z s)d}dx
(S19)
a /X /X f(x)%w(f(:”)’g(m))1{\\w—y||§h;,1f(s)}{f(y) — f(z)}dydx + Ry(s),

where

: R kx\M(1=0)—e
/Im,,x ;ka,m—kx (s)|R1(s)|ds = O<(m> >

Moreover, by Fubini’s theorem,

/X /X F(@)?610(£(@), 9@)) Ljoyyn-t 0y {F W) = F(2)} dy do



1
-3 /X /X [f<x>2¢m(f<x>,g<w>)ﬂ{”x_mhx;@)}{f(y) ~ )}

+ £ W)*010(f (1), 9W) L (jamy<n-t (s 1F (@) = f(y)}] dy dx

1
:g/Xm /Xm, { Hle—sl<nz s @) = F@H @) 00 (f(2), 9())

— fW)?o10(f),9(v))}
(S20)

+{f(y) — F@)}H ) 010 (f®), 90)) Loy ()} — l{w—yllﬁh;ff(s)})] dy da.

Using Lemmas S3(i), S5 and S4, and arguing as around (S77), for s € Z,,, x, x,y € Xy
with ||z —y|| < h_1 1(s) and m, n sufficiently large, we have

‘/ / Loyl <n; f(s}{f (@) H f(z)p10(f(2),9(z))
— fW)?¢10(f (), 9(v)) } dy da

<[ o @ s =@ |45 -1 \+\9§jc_1)}dydx

{L’

S/X /X La—yizhs o (@) g(@) (I, y (5) M (@)} dy do

S F)? g (@)™ h  (s)M () Mp(x) Y7 de

Xm,n

$s /Xnm fx)tHrmg(x)e { Sﬂﬁg)d }%’/d dx.

Now, similarly, by Lemma S4 we have
Vaf(z)h-L(s)e dN B/d
max{ af (@)h, 4 (s) . }g{sMﬁ(x) } .
f(x)

s
It follows that there exist C, C’ > 0, depending only on 1, such that

5o {25
f(z)

Vaf (y)hy H(s)"

S

)

A8l
> Vaf(x)h, (s) = 2C's {W}BM7

where the final bound is from Lemma S5. Hence,

\ | 0= 96) (e~ e-sisns o) dode
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< /X /X F@) (@)1 0) — @)Lty ylnt (o) o

/Mf )R g () Mg(x )thf( 5)? f;x){sMﬁ(w)d}ﬁ/ddx

(S22)

<3/ f YR g () {S]\;[?i)) }QB/ddx.

It now follows from (S19), (S20), (S21) and (S22) that

Brow ot (5B st (1) /X F(@)210(f (2), 9())

Tox Ty
Vif(z)hL(s)d
{df( e s (5)° }dmdtds
S
sMg(z)?) 28/
§/ / By m—kx (8)Bhy nt1—ky (¢ / f(x)t g (z)r {B()} dz dt ds
Im,X Iﬂ Y Tn n f(x)

ofa{ ()" (5) )

The other terms in the expansion can be dealt with in the same way, and we conclude that

Efm,n :/ / Bk:xﬂn—kx (S)Bkymri-l—ky (t)
T X Tn Y

B*—1p*—1— El 144, 25 4 Ly
< > s g /@)l (1) (B -1) dwaras
X 0 =0 1:£2- ms n
kX A(1=C)—e k:y A2 (1=¢)—e kX 26/d 2p/d By/2 B5/2
+O<max{(m> ’(?) 7(m) ’(n) L
The result therefore follows from (S16). [

S1.4. Proof of Proposition 11 on asymptotic variance.

PROOF OF PROPOSITION | 1. We initially consider the unweighted estimator Tmm, de-

ferring the extension to the weighted estimator ffnuf;’wy to the end of the proof. We start by
writing

- 1 ~
Var(Ty, ) = EVar O(Flkr) 1 Gy 1)

1 -~ ~ -~ ~
(823) + (1 - E)COV(‘Z)(f(kX),lag(ky),l)a(z)(f(kx),Q?g(ky),Q))‘

Taking Xy, 1, i, x and Z,, y as defined in the proof of Proposition S1, and letting S1, Sz and
S3 be error terms, we now write

E{¢( (kx),1» g(kY) )2}
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DUz 55 V2 1) Brym—tox (8)Bhy it 1—ky (t) dsdt dz + Sy

ms = nt

1
S
\H
&
o— g

kx f(z) kyg(z)\2
o )
X ka,m—kx (S)Bky,n+l—ky (t) dsdtdx + 51 + SQ
3
=E{(¢x,)°} +D_5;.
=1
We show in Section S1.9 that

S -o(m] () () T 5) T )

for every € > (. Using Proposition S1 we can now see that
()
=o|l — ).
m

~ Var(¢x,)
We now turn to the second term in (S23). Let Fj pn 2y ¢ [0,1]* — [0, 1] denote the condi-

1 ~
S24 — V. 7,
(S24) ’m ar ¢(f(kx),179(ky),1) o
tional distribution function of

(P, (Pl ),1,% )5 Py, 1 (Pl ),2,% )5 Prasg (Piey 1,3 ) Py (Pey ) 2,v) ) | X1 = 2, X = .
Moreover, for s1, s9,t1,t2 € [0, 1] such that s; + so < 1 and ¢; 4 t2 < 1 define

S1 So
GV (s1,59) 32/ / By koxe m—2kx —1 (U1, u2) duy dug
o Jo

t1 to
GO (ty,ts) 22/ / By ky n—2ky +1(v1,v2) dvi dvo
o Jo

Gmn(s1,82,t1,t2) := G W (s1,52)G P (t1, 1),

so that we have F), , 5 (51, 52,t1,t2) = Gumn(s1,52,t1,t2) for s1,s2,t1,t2,2 and y such
that ||z —yl| > max(h;}(sl) —i—hy_}(sQ) hy 4 (t1) +hy, 5 (t2)). We will also use the shorthand

' TL,g
h(s1,82,t1,t2) = ¢(Uzs,, Va1, )P(Uy,s,, Uy t,) and

H{(s1,52) i_G%)(sl,Sz)—/ / Blix m—kx (U1)Bry m—ky (u2) duq dug
o Jo

t1 to
HP (t1,t2) =GP (t1,ta) — / / By nt1—ky (V1)Bry a1y (v2) dv1 dvz
0 0

Hopon(51,82,t1,t2) .= H (51, 52) G (11, ta) + GV (51, 52) HP (1, )
— HT(,})(SLSQ)HT(LQ)(tl,tQ).

With this newly-defined notation, we now have

Cov (¢(J?(kx),1f9\(ky),1) 7 ¢(J?(kx),2, ?(ky),2)>

Z/ f(l’)f(y)/ h(s1,82,t1,t2){ dFmmnay(s1,52,t1,t2)
XXX 0,14

m n n

—d(H) = GY)(s1,s2)d(HD — GP)(t1,12) } dxdy
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:/ f €T f Yy / / 817821t17t2 {d m,n,xr,y Gmn)(817827t17t2>
XxX I2 I2
(S25) + dHp, (51,52, t1,t2 } dx dy + o(mf +n- ),

where the bound on the final term follows from the fact that { < 1/2, Lemma S9 and Cauchy—
Schwarz. We first study the second term in this expansion. The intuition behind the following
expansion is that, when X; and X5 do not share nearest neighbours, the dependence between

(j.\(kx) ;J(ky),1) and (J?( .2 (ky),2) 18 relatively weak, and we may expand the functions

o, h, f, x; as in the proof of Proposition S1 and approximate integrals. We therefore make

use of the shorthand

hD (51,80, t1,t2) := {¢(f($)7vx,t1) + <k7X - 1>f(36)¢10(f(3?)7%,t1)}

msq
kx

oUW vy) + (= 1) F )00 (FW).vy)}

K (s1,59,t1,t9) 1= {¢(Uz,s1,9(9«°)) + (:tyl - 1)9(95)%1 (ux,sl>g($))}

ky
< {0y 90) + (5~ 1)9@)o0n (w12, 9(0)) }
for linearised versions of h. We also write, for example,
(h dHT(r}) ng))(sl, 59, tl, tg) = h(sl, 59, tl, tg) dHT(r})(Sl, 82) ng) (tl, tg).

Writing 77, T and T3 for error terms, we therefore have
f(x)f(y)/ / (hdHpmn) (81,52, t1,t2) dedy
A2 12 12,
:/ f(x / / (hdH D dG ) (s1, 59,11, t2) dxdy + T}
X2 I x VI% v
[ @) [ / (hd(G) — HD) dHD) (51, 2,11, t2) da dy
Xz, 12 T2

:/ / / dH(l)dG( ))(sl,SQ,tl,tQ)dxdy+T1 +T5
IQ 1—2

[ @) / / (h2d(GY — HOYAHD) (51, 52,11, t2) derdy
X2 72 72

—— | 1@ [ {2r@on (@) ven)o(0), 0
Xo s Iy
+ f(@)d10(f(2),v20,) (W) b10(f (), vy12) }ng) (t1,t2) dz dy
o @) [ @) (99 )m (e, 90)
X’r%,q I‘r2n,X

x d(GY) — HDY(sy, s9) dady + Ty 4+ To + T3

= _%E{(f¢10)X1 JE(dx,) — %{E(f¢10)xl b - %{E(Qqﬁm)xl 3
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(526)
+ T+ T+ T34+ 0o(l/m+1/n),

where the bound on the final term follows from (S8), Lemma S3(i), Lemma S6 and tail
bounds similar to (S5). We show in Section S1.9 that

2A8 2A8
Ly2es 14208

) 2AB 0 2AB )
m n mit = plt e

2(2

ky \ 12502 1 1
() Y ota /it 1/m).

2(28)
i

kx\ 1+
)

(S27) (

We now consider the contribution of the first term in (S25). In Section S1.9, we show that

U= [, T0I0 [ [ s

m,X
X d(Fm,n,x,y - Gm,n)(sh 52, t17 t2) dx dy

(S28) =0 (max{ (Zf)%(l_o_e, (ﬁf)%(l_o_ep ,

so that we may restrict attention to x € X, 5, in which case F, , .y — G, 1s only non-
zero when z and y are close and we may approximate f(y) ~ f(x) and g(y) =~ g(x). Let

1 ._ @ ._
P’ = fBz(h;’lf(Sl))lﬁlBy(h;’lf(SQ)) f(w) d'U) and P’ = fBz(h;_lg(t]))ﬂBy(h;,Z(tz)) g(w) dw, and
let
(529)
(Nl(l),Ng(l), Nél),Nf)) ~Multi(m—2;s1 — pVss0 —p0,p 1= 51 — sy +p))

(NP NP NP NP oMt (nsty — p st — p&p 1=ty — ta + ).
Now set

1 1
F(l)x7y(51,52) = ]P)(Nl( ) + Né ) 2 ]{;X — ]]'{”I*yHSh;lf(Sl)}’

1 1
N3+ N5 = kx = Loy <t (o))

8300 EX® (t1,1) =P(N? + NP > ky NP + NP > ky),

n7x7y
so that Fi, 5, 2 4(51, 52,t1,t2) = F,%lz,;,y(sl, 52)F7§,2327y(t1, t2). We use the decomposition

Fongy — Gmpn=FD FO  — LGP

n?‘z?y

(S31) - (F(l) _G(l))(F(Q) —G£L2)) + (F(l) —G%))Gﬁf) + G%)(p@) —G(Q)),

m,x,Yy m n,xr,y m,x,y n,xr,y n
so that each term is of product form and involves at least one of the marginal errors. We will
see that the first term is asymptotically negligible, while the second and third terms can be
studied through the normal approximation given in Lemma S11. For a general distribution
function F, for a_ < a and for a smooth h : [a_,a]?> — R with first partial derivatives hyq,
h1o and mixed second partial derivative h1;, we will use the formula

/[a_,a+]z(hdF)(u’”)_/:+ /ac_”(hHF(u?U))dUdv

:/M[(hloF)(u, a—) — (h1oF)(u,a4)]du+ (hF)(a—,a—) — (hF)(as,a_)
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(S32) + /M[(hmF)(a—yU) — (ho1F)(a+,v)|dv + (hF)(ay,a4) — (hF)(a—,a4).

We now deal with each of the three terms on the right-hand side of (S31) in turn, starting
with FF = FOFQ@) = (Fy, jols ) G(l))(FTQ y Gg)). For remainder terms Uy, Uz and Us to
be bounded later, we erte

/Xxxmf(l’)f(y)/p /I (hdF)(s1,s2,t1,t2) dx dy

_/ f L f Yy / / h0011 dF( ))F(2))(81,82,t1,t2)dtldt2d$dy+U1
XXX, 2 x VT2

m,n

= / f(l‘)f(y)/ F® (thtz){/ (h1111 FM) (51, 89,1, 2) dsy dsa
X 2, I

XX n

n, m, X

—/ (h1011F(1))<317a:17x7t17t2)dSl
Lo, x

— / (hgluF( ))< mX,SQ,tl,tg) dSQ} dtl dtg d:ndy + U1 + U2
L, x

(S33)
3
=2_U;.
j=1
We show in Section S1.9 that
1 1 log2 m log®n
S34 U;j=0 — — .

(534 Z (max{ m2’ n?’ mkx = nky

7j=1

We next consider F = FOFQ2) = (FTQ)I y — G%))Gg), and recall from Lemma S11 that

o, = p1q(Bo(1) N B.(1)) /Vy, that -

(1
> (0. 7)

and the definitions of the normal distribution functions ®7, and ®y. Then, for remainder

terms Uy, Us, Ug to be bounded below, we use the change of variables y = x + (m‘Z’}(m) )1/ dy

and the approximation %gﬁ(um, vzt) = f(x)b10(f(x),g(x))/s to write

/XXX,,L,,L f(x)f(y) /Ifnx /];iy(hdF)(ShS%tl’b)dxdy

_/Xmem @) f(y) /Ii‘y{/IZ X(hlloo F(l))(81,82,t1,t2)dsl dso

m,

—/ <h1000F(1))(317a;7x7t17t2)d31
Lo, x

—/ (hotoo F' V) (a;, X782,t1,t2)d82}dG( )(t1,t2) dzdy + Uy

de/ f / { Jo): / (Px — @p,)(u1, u2) duy dus
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- 2(f¢10)x¢m]1{z||<1}} dzdx+ Uy + Us
(S35)
— LEB{(f10)%,} + ~E{(fér0)x,6 }+26:U-
= 10) X, m 10) X, P X, 2 iz

We show in Section S1.9 that

1AB

6 5 1

1 logzm logzn . o (kx\7a [kx\M(1-20-¢
E Ui=0| — — 75 | ( ) ; (*) )
— J (m max{ k}(/Z k;/Q % M\ m

() () )

for every e > 0. The final term in (S31) can be approximated by writing F' = F()F(2) =
G,(}L) (F,(L%%y - Gg)), using the changes of variables y = x + (nvljg(x))l/dz,ti = (ky +

kywv;)/n for i = 1,2 and using the approximation %gb(ux,s,vz,t) ~ g(z)po1(f(x),g(x))/t
to write

/XXme(:c)f(y)/Q / (hdF)(s1,s2,t1,t2) dzdy

—/ f :ZZ f y/ / h0011 dG( )F(Z))(Sl,SQ,tl,tQ) dtl dtgdl’dy+U7
XXX, 72 22

m, X

1
nVy

1
(S37) = / g(x)(fbo1)2 dx + Uz + Us.
n Xonom

g(m)(fgém)i /Rd /Rz(@g —(1)12)(1)1,7)2)612}1 dvydzdx + U7 + Ug

Let €9 = €g(A1, A2, K1, k2, C) € (0, A\1 A A2) be sufficiently small that

2+2/€1—6/(>\1/\)\2) 2Kk9 — 1
>2+42k1—1/C and
1_60/()\1/\)\2) ! / 1—60/()\1/\)\2)

Then, by Holder’s inequality, we have that

o f soratorent [N (RS o

(f.9)EFa,0

>2/€2—1—1/C.

242r1 —eg /X 2rg—1 1—€o/A
(S38) <2 sup maxCo/N [/ flx) o g(x)T=<o/ de‘] < o0.
(f,9)EFas =12 X

It follows that

/ 9(@)(fon)2dx < f(z)2T2m g(g) 1202 gy

X(‘

/ ()22 g ()2 [{ kx loi?@ﬂégﬁ(x)d}ﬁo N {ky loi;(]\ggﬁ(x)d}m] i

(839) = 0<max{<kXizgm>607 (k‘yfgn)eo}>
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We show in Section S1.9 that

1 log®/? (1AB)/d €o/2
Ur +Us = O a1 gt (B0) 7 (B) 7
n ky/ n n
log'?m kx\@AB/d [kx€o/2
(540) TR o) G )

It now follows from (S23), (S24), (S25), (S26), (S27), (S28), (S33), (S34), (S35), (S36),
(S37), (S39) and (S40) that

Var(Timn) = % [Var(¢X1) —2E{(f¢10)x, }E(¢x,) — {E(f10)x, }2 +E{(f¢10)%, }

+ 2E{(f¢10¢)X1}] + % [E{(f(bOl)%/l} - {E(gqﬁm)xl}z} +o(1/m+1/n)
=2+ 2t o(1/m+ 1/n).

For the general, weighted case, we rely on the decomposition

Var = E E WX jx WX 05 WY, jy WY, 0y
,]X:ZX—l ]Y,ZY—l

X {;Cov(qb(f(]x) LY ) (b(f(éx Oy) ))

(S41) (1 - *)COV(Gf)(ﬁjX),h:q\(jy)J)a ¢(J?(£X),2a§(zy),2)}-
Now, for example, when £x > jx, we have

(ha,f (P(x)1,%)s P, p (P(ex),1,% )5 L=ha £ (Pex)1,x)) | X1 = @ ~ Dir(jx, {x — jx,m — lx),
and it may therefore be deduced similarly to the arguments leading to (S24) that
(S42)

il X o’COV(‘b(J?(jX),la?(jy),l)v¢(f(fx),17/9\(4v)71)) — Var(¢x,)| =
jY,eY:wY:;i(:wY,:Z;(#O

o(1).

The second term on the right-hand side of (S41) is handled using relatively small modifica-
tions of the arguments used to study the covariance term in (S23). These modifications are
required to account for the fact that the kx that appears twice in the covariance term in (S23)
is now replaced with jx and £x (with similar changes to ky ). Thus, for instance, the joint
conditional distribution function of

(ha,f (P(0)1,% )5 Py, 1 (P(0x),2.5 ) g (PG ) 1,7 ) Pryg (P ) 2.7 ) ) 1 X1 = 2, X =

is now given by
Fm,n,x,y(517527t17t2)
1 1) . 1 1
= BN}V 2 = Ly ooy Vo N8 200 =L yi<nt (o)

« P(N? 4+ N >y NP + NP > 0y).
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Following the arguments through reveals that

f f ° vi — Var(ox,) w2
ijfXZ’w)?}if(wx‘eX#O‘COV( (FGx)1:0G)1)s 0 (Frex)2: 9oy ),2)) — —
Jyv Ly Wy jy Wy, ey 70

Finally, then, we can deduce from (S41), (S42) and (S43), and using our hypotheses on
waHl and Hwy 1, that

-~ v v 1 1 1 1
Var(Tn) = 2 = 2 —o( (& + 1) JuxRluv ) =o( - + 1)
m n m

n

as required. O

S1.5. Proofs of Theorems 3 and 5 on asymptotic normality and confidence intervals.
Since the proof of Theorem 3 depends on Proposition 4, we prove Proposition 4 first.

PROOF OF PROPOSITION 4. Where it does not cause confusion, we will supress suffices
to write k instead of kx or ky. For any ¢ > max(k + 1,7) we use the shorthand
~ k
Jwyie =g
Vablyyie

and we write ¢%(-) := ¢ (-, g()). We will first study the difference 7 — i by bounding
its first and second conditional moments given /. On the event that [m /M —1| <1/L, when
m > (14+1/L)(1+ k)log(em), we have that

B(T) - "))

—E7{) - TR M) + %E{dy (Fwyaar) = 0%, (ﬁfﬁm,w) \ M}
(5 =1) [ 1@Hr+ (fou)}do
= (BT ~7) = THETP ) ~Th+ (1 -1) | F@)fon0d
+2 /X /(@) / {qsg(%u) — 6 (tz) [ Brar—x(s) ds da
—ETY — BT M) + —1>/Xf (fé10)a dm—l—o(m_l/Q—i-‘]\nf—lD
+ g / {0 (§ues) — o8 B ato) dda
=ET{) —E(T{}|M) + (f,f ~1) /X F(@)(fér0)s do + (m/ LS 1\>
(1) o @ [ ol o) B a(o) dsce

=ETY — E(T.)|M) +o<m_1/2 + (% - 1()
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It now follows from the one-sample (n = co) version of Proposition S1 and the fact that, for

a >0, we have (k/m)*— (k/M)® = o(|M/m — 1]), that on the event that |m /M — 1| < 1/L
we have

BT - Tty =o(m 24 [ 21 1] ).

We now bound the conditional variance of T35’ — T}\""" on the event A,,, := {{IM/m—-1]| <
1/log(em)}. We first see that, when m > (k + 1) log(em)/{1 — 1/log(em)}, we have

1 U M~ 1 & M -
Var{m Z@f?‘()](i (mf(k),i,M) - de)](l (mf(k),i,M) ' M}

=t (g na) | )
Fina

|M m|(|M —m|—1) Cov{d) 1(

2

et (o)
Cov(¢x,,dx,) + O M m2 > < )2>

(2
o) o 22%)

To bound the conditional variance of 7, ,51) - T 7511 ) P it now suffices to bound Var(D,,|M),

where
1 & k k
o () o)
m; ' mvdp?k),i,m ' dept(ik),z‘,M

To proceed, we will now use the Efron—Stein inequality; see, for example, Boucheron, Lugosi
and Massart (2013, Theorem 3.1). Given M, the random variable D,, = D,,(X1,..., Xu)

m

_ (M- m)

is a function of the independent random variables X1, ..., Xj; letting X1,..., X, de-
note an independent copy of these random variables, for j = 1,..., M, write DT(%) =

D (X1, .+, Xj—1, X}, Xj41,..., Xn) for the random variable calculated by replacing X
in Dy, by X;. ©. Similarly define pgj )) . The Efron—Stein inequality gives that

Var(D,,|M) < ZIE{ — DY M)
For now, we will work on the event {M > m}. Observe that fori=1,...,m and j =m +

., M we have pgi))z M = P(k),i,m unless either X; is one of the k nearest neighbours of
X, in the sample X1,..., X or X j’ is one of the k nearest neighbours of X; in the sample
X1y, Xjo1, X5, X1, .., X For j =m +1,..., M we have, by arguments similar to
those in the proof of Proposition 11, using the fact that P(||X; — X1l < pgy 1,/ M) =
k/(M — 1) and splitting up into the cases X; € X;, r and X; € &}, 7, that

E{(Dy, — DY)?|M}
]

1 & k 2
<AE S = Lgix. X <pr s ar ¢g_<>—¢xi)}
[{ m ; {IX;=X:ll<pwy,i,m} ( X, mvdp((ik),i,M
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deP(k 1,M
k
o))
{ dep?k)727M
4 k 2
+ EE H{”X X1||<P(k) 1 M} ¢X1 dep((jk,) o - ¢X1 M
2(278)
E(k 1 (M —m)? logm [kMg(z)?) <
< —| — - 1+2k, 2Ko
So(mtm) [ gty ma| (LR TR, [ETRE s
k kN2M(A=0—e 1 /k\M(1-0)—e _9
+m{(m) +a () }+0<m )
M —m)? 1 142C28) 21 (1—C)—e
:O<kmax{k( 3m) ’ ogm,(k:> ,(£> }>
m m m m m
(M —-m)? 1
= o max SR ()
Now for j =1,...,m we have
E{(Dm — DY))?|M} = E{(Dyn — Diy))?|M}
1 & k k
<=\ (4% G -4 Grpr )
m ; Xi dep?k)ﬁi’m X de(p(l) )d
k k 2
- i) 4 st e
mVap(ey i, ' de(pEllc%J,M)d

Write pl(.fl) for the kth nearest neighbour distance of X; in the sample X5, X3,..., Xs. The

ith term in the above sum is equal to zero unless {X,,+1,...,Xn} N By, (pZ ) # () and

either X1 € By, (pg_l)) or X| € By, (pg_l)). Thus, by similar arguments to those used in the
proof of Proposition 11, splitting up into the cases Xo € &, y and X2 ¢ &, ¢, we have

E{(Dy — DY))?| M}
SB[ S, Foam) — %, (o R
~ {IX2 = X1 [|<p5 ™V |1 Xs— Xy [|<p§ ) PX U (K),2m X, \ (B).2.M
—~ M ~
X {qbg(s(f(k),?um) - ¢g(3 (mf(k),B,M>} } M} ‘
1 ~ M ~ 2
+mE[ n}{w )~ () |
2
g’M—m‘{ ) } flx )1+2/{1 (z )252
X f
2(2/8)

(M —m)? logm [kMg(z)®\ @
xmax{ A ,< mf(x)) dx

M] +o(m™?)
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(5 {4 A o

E(M —m)? logm [ k\1+*%2 /k 21 (1—C)—e 9
Gl G +o(m™)

k2
S ]M—m\(—) max{ 3 ,
m m m

1 |M—m]?
= 0| max W,W .

It now follows by the Efron—Stein inequality that, on the event A,,,, we have

3
Var{T{)) — 7P| M} = 0<max{|]w_m| 1})

m

mb/2 'm

We now bound the contribution from the event A¢,. We will use the fact that for z > 0 we

have
M 2
]P’(‘— — 1‘ > x) < 2exp(—&).
It follows from this that
m
(45 < 2exp(— 7).
(An) < 2exp 4log2(em)

Moreover, we have for any a > 1 that

B[(5) 1] < [ (|5 1] 2w s et -1 ) o

o0
< 29P(AL) + 2a/2 Yo teT™/8 qy

< 2"P(AS,) + 2a(a — 1) log(16/a) / o~ m=1/2u/8 g,
2

) 2a(a —1)log(16/a) _2m-
e s .

41og?(em) m—1/2

It now follows using Lemma S8 that, when log(em) > 2dk; /o, we have

E{(T}) — T5P) a5, }

<29 exp (—

< 3P(AS)E{(T'D)?} + 3E<]Z - 1’1Agn> ‘/X f(@){¢z + (fd10)} d

M k 2
3R g0 (— 5 ) 1, e
+ {m X1<mvdpz(ik)’1’M> A, n{M>(k+1)log( )}}
M ) 1 k 2k
<E|Z1,. iz P Uy (s)dsd
SE| Loy [ F@o@ [ {mvdh;; i) B dds

m 3

M — M\ 2k M
< . 2Ko 2dk; c .
NE[m IlAm/Xf(a:)g(x) max{l—i— ||| , <—m> }dx] +P(AS) +E<m ]1Am>

(S44)
142k
e +B{ () L | =ol1/m)

m
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Hence,

E{(T) - T2} =E[Var(T) — T{DP1a,, | M)1a,
+{B(TD = 7O | M)} 14, ] + BT - TP )

3
:o<EmaX{W,;}> =o(1/m),

We now turn our attention to TT(LZ) — T7§2)’p, for which similar arguments apply. We
write ¢4(+) := o(f(z),-). We have, on the event |n/N — 1| < 1/L and when n > (1 +
1/L)klog(en), that

ELT@) _7@p | N — Ept <k> —IE{ f <k> ‘N}
{ " n ol } 7x, ”Vdpilk),m 7% ”Vdp(k 1,N
N
+ (5 =1) [ f@aon). da
k k
)4 Gt )
{(le NVaply 1 n x, nVaply 1 v
N N
+ (; —1) /Xf(x)(gqﬁm)mdx+0<n_1/2+ \; — 1))

:0<n_1/2 + ‘% — 1‘>

To bound the conditional variance of 7.\ — T\*" on the event that |IN/n—1] <1/log(en),
we again appeal to the Efron—Stein inequality. Similar to before, for £ > k and x € X, we
define

as required.

kB
EVdpElkM(CB)'

D= [ 106l @uynlo) - of (F 090

Similarly to above, letting Y{,Y5, ... be independent copies of Y7,Ys, ..., for j € [N] write

Ik)e(x) =

We redefine

D,(lj) for the value of D,, when it is computed on Y7,...,Y;_1, Yj’, Y11,..., Yy instead of
Yi,...,Yn. On the event {N > n}, for j =n+1,..., N, splitting up into the cases X; €
X, gand X1 € &), 4, we have

x|

B{(D, - DN} < k| { /{ e 2ot (X)) dx}2

N .
=4[ []l{Yj—Xl ||§p(k),N(X1)}¢§(1 <ng(k),N(X1))

N
X L1y, Xa<poo x (X)X, (néJ(k),N(X?)) ‘ N}

ka2 . _— foy 14220 (1-0)— iy
E) /Xn,g f(z) g(x) dx + (—) —o(n )

n
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On the other hand, for j € [n] and on the same event { N > n}, we have

E{(D, - DY))*|N}

=4 H/{xwm:mswk)w(m)} f@) <¢£ (Gn(@) = 2 (JXE(’“)’N(QT)» dm}Q

< (N —n) <i>3/)( F@) P2 g(2) 2= da + (N —n) (§>2+2/\2(1—C)—e

n
_ (IN —n|
- 0 W .
On the event { N < n}, the same final bound holds, and it follows by the Efron—Stein in-

equality that, on the event that |[N/n — 1| < 1/log(en), we have

Var (T — TP | N) = o<|]\;;2”| > :

v

Now, similarly to (S44), redefining A,, := {|N/n — 1| <1/log(en)} we have

142k
E{(T) — TP 14 } SP(AS) + E{ (%) 11,4%} =o(1/n),

and the result follows. O

Our second preparatory result provides a convenient partition of (minor modifications of)
X, and &), 4 so that, under the Poisson sampling scheme, the k-nearest neighbour distances
of points in distant pieces are roughly independent.

PROPOSITION S2. Let f € F4 be B := ([B] — 1)-times differentiable. Then there exists
no = no(d, B) such that, for all n > no and k € [3,n/logn), we can find a partition {C; :
Je€L ..., Vutof X i={x: f(x)/M;s(x)? > (k/n)log? n} and points {x;: j=1,...,V,}
in X, = {x: f(@)/M;g(z)® > (k/n) log™/*n} satisfying the following properties for each
J=1,..., Vi

(i) we have C; C By, <3( klogn )1/d> ;

nVaf(z;)
(i) we have |{ 7/ =1,...,V, :dist(C;, Ci) < 4(~t YV < 9244d 10,
J ’ ) J'~] anf(x.) g
PROOF OF PROPOSITION S2. Let {z;:j=1,...,V,} be a Poisson process on éifvn with

intensity function nf(-)/k, and let P denote the corresponding Poisson random measure.
Writing sargmin(,S) for the smallest element of an ordered set argmin(S), we may par-
tition &), into the associated (random) Voronoi cells {C; : j = 1,...,V,}, where C} :=
{x € X isargming,_y v ||z — x5 = j}. We proceed by showing that, for n and & suf-
ficiently large, there is an event of positive probability on which {C;:j =1,...,V,} and
{zj:5=1,...,V,} satisfy (i) and (ii), and we therefore deduce the existence of such a par-
tition. First, let z1,..., 2y € A}, be such that

ll2i — 2] > h;}f(k;/n) + hz_jf(k/n) =:7(2i,25)

for all i # j, and such that sup,cy minj—; ||z — z;||/r(z, 2;) < 1. (We can construct
this set inductively: first, choose z1 € A}, arbitrarily. If the second condition is not satisfied
once z1, ..., 2y have been defined, then there exists x € X, such that ||z — z;|| > r(x, z;) for
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allj=1,..., N and we can set zj 4 := x.) For all 7 # j, the intersection B,, (hz_lf(k/n)) N
B., (hz_j1 (k/n)) has Lebesgue measure zero and thus

1> thwf( fk/m)) = NTI“

In particular, N <n/k.

We now show that if x € &), is such that ||z — z|| < r(x, z) forsome z € {z1,...,28} C &),
then f(z) ~ f(z). Suppose initially that 79 := {M 5(2)%logn} V¢ < ||z — 2|| < r(x,2).
Then, writing r; := ||z — z|| — r2/2, writing z for the point on the line segment between x
and z such that ||z — z|| = 7 and writing I(s) := [ B(a41)/2,1/2(t) dt, we have by Lemma S5
that, for n > ng(d, 3) sufficiently large,

f(2)
f(w)dw > flw)dw > T,ud(Bx(rl) N B.(r))
Bw(Tl) Bi(rl)ﬁB (T‘z)
z Vi
> 18 (Batra/2) 0 B(r) = VL (2 1 15)16) + rgr15/60))
Va klogn _ k
> sy (15/16)—= 2= > .

It follows, by Lemma S4 and the fact that z € X,, that there exists n; = n1(d, 3) > ng, such
that for n > nq,

T2

_ k 1/d 9
—zl < L < < =z —z|| = =
o =2l < vt Bl /m) <4 2(ops ) Sk =l el =

nVyf(z 4
which is a contradiction. Thus, for n > n; we have that || — z|| < 9. In particular, by
Lemma S5, for x, z € &), with ||z — z|| < r(z, z), and for n > n;, we have that

GO 1’ «_ 2

(545) = log W/,

To establish (i), first we define the event

Q= ﬁ{P{sz (h;{f(klogn/n))} > 1}.

7j=1
By Lemmas S4 and S5 and very similar arguments to those leading up to (S78), there exists
ng = na(d, B) > ny such that B, (h;jlf(klogn/n)) CX,forallm>nsand j=1,...,V,.
Then, for n > ny we have that

n

Let j € {1,... 7Vn} be given, and suppose that x e C;. Let z be in our covering set such
that ||z — z|| < r(z, z) and, on the event Qo, let j' € {1,...,V,} be such that ||z; — z|| <
h; f(klog n/n). By (S45), Lemma S4 and Lemma S5, there ex1sts ns =nz(d, ) > ngy such

that, for n > n3, we have that h_ (k logn/n) (n’;l;]%(z) )}/ and hence that

lzj — 2l < llej = 2l + ||z — |l < h_(klogn/n) +h % (k/n) + b, (k/n)

klogn \1/d
<2 ————— .
B (TlVdf(xj’))
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If j/ = j then we are done, so suppose instead that ||z — z;|| < |z — z;||. Then

klogn \1/d
<A ——FF——
- (anf(l“j'))

so we can use Lemma S5 to argue that f(x;) ~ f(x;/). In particular, there exists ny =
n4(d, 8) > n3 such that, for n > n4 we have that

klogn )1/d < 3( klogn )1/d
nVyf(xj) nVyf(x;)
So, for n > ny4, we have that (i) holds on €.

Now, by Lemma S5, there exists ns = ns(d, 5) > ny such that, for n > ns we have that
%hzj,f(lfi(#g(z))l/d) < 214 ]ogn for all j € {1,..., N}, and hence, by Bennett’s in-
equality, that the event

|zj — x| <2[|z — xj

o = a1l < llo = 2y < 2(

N

klogn \1/d 944d
= . <
v (o ({2 ) ) <
j=1 J
satisfies

. (22+4d logn _ 21+4d logn)2 n 1 1
P(Qf) < Nexp<— 2t idlogn < T exp(—2 logn) < T

Now, on €y, if dist(C}, Cj) < 4(7nw’}’f($_) ) 174 then we must have
k 1/d klogn \1/d klogn \1/d
(S46) v — 34(7> +3 7) +3(7) .

H J J anf(JTj) (anf(g;J) anf($j')

Using Lemma S4, there exists ng = ng(d, ) > ns such that || z; —x ;|| < Gh;lf(k logn/n)+
6h, s(klogn/n) for n > ng and hence, by a very similar argument to that leading up
to (S45), we have that | f(z;/)/f(z;) — 1] < 21log= /D)y for n > ng. Thus, writing z

for an element of our covering set with [|z; — 27 || <r(z;, 27), there exists n7 = n7(d, ) > ne
such that, on Qg Ny, for all n > n; we have that

‘{jlevnidist(Cj,Cj/)<4(T’le;w)1/d}‘

SHjIGV”3||$j—;Uj/ Sg(m)l/d}‘

) . klogn \1/d
SHJIEVTL:HZj_xj/HSlG(anf(m)) H
j
< 2%Hd oo n

for all j € V,,. This establishes that, for n > n7, with probability at least 1 — 2/k we have
that both (i) and (ii) hold. Thus, since k£ > 3, there is a positive probability of both (i) and (ii)
holding simultaneously and we can deduce the existence of the required partition. O

PROOF OF THEOREM 3. We start by linearising our unweighted estimator. Consider

1 & ~ R ~ R
Enn = - Z{(b(f(kx),iag(ky),i) — O (fihn)ir 9(Xe)) = S(f(Xi)s Gy )i) + ¢X,-}
=1

ILs e -
:mz;gﬁ (f(kx),ivg(ky),i)
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with ¢*(u,v) := ¢(u,v) — ¢(u,g(z)) — ¢(f(x),v) + ¢(f(2),g(x)). This is of the same
form as the estimators we have already considered, and we have ¢*(f(x),g(x)) =
d10(f(2),9(x)) = &5, (f(x),g(x)) = 0. Therefore, by very similar arguments to those used
in the proof of Proposition 11, we have that Var(E,, ) = o(1/m + 1/n). Further, we have
that

E[Var( Z{¢ Bo) — ¢x}‘YI, Y)]

E[Var<¢(f(X1)7§(ky),1) — dx,
[{¢( kv )1) — OX, } } =o(1/m).

Recalling the definitions of T#} ) and T(Q) in (12), we therefore have that

% Yl,...,Yn>]
i

Var(fmm — Tr(nl) — T7(12)) < 2Var< 2)_ Z{¢ ) Gy, ) bx, }> + 2Var(Ep, )
:2Var< {T<2>—Z{¢ Tk 1) — Ox. ) ‘Yl,...,Yn}> +o(1/m+1/n)
=o(l/m+1/n).

It now follows immediately from Proposition 4 that Var( mmn T( P Tng)’p) =o(1/m+

1/n). Noting that Ty(n)’p depends only on M, Xy,...,X,, and T,s )P depends only on
N,Yi,...,Y, (so they are independent), we now proceed to establish the asymptotic nor-
mality of these two random variables separately, and then the result will follow.

We start with TT(n1 )’p, and adopt the notation of Proposition 4. Define the events A; ,, :=
{hx, 1 (Pky,im) € Imx } fori=1,..., M, similarly to in (S72), and define
_q kxlog?m
X f 1= {a: s f(x)Mp(z)™% > g}.
By separately considering the event that | M /m — 1| < 1/kx and its complement we may use

similar arguments to those in Proposition 4 and Lemma S9 to see that P(A{,,) = o(m™),
and moreover that

m

2
{]lA; mqle(Mf ),1,M> ]zo(m_4).

Further,
M 2
1 M ~
E H - Zl L, Lix.gx, 1 9%, <mf(lcx),i,M) } ]

1 M ~ M ~
=—E [M(M = DA, .04, Lix, Xagx., 1%, (mf(kx),l,M> %, <mf(kx),2,M)]

- m2
1 M
g
+t3 [MﬂAl‘mﬂ{xlexm,,}aﬁXl < -

Writing

) 1 M g (M~
15,7 = mizl]lAi,m]l{XieXm,f}{fﬁxi (mf(kx),i,M> - /Xf(il?){% + (f¢10)m}d$}v

Fapiar) | =ot1/m)
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we may now see that Var(TTg)’p - f,%”p) =o(1/m). Letting {C; : j € 1,...,V,,} denote a

partition of X, ; as in the statement of Proposition S2, and writing Xf(rf )f = Cj N A, s, for
7=1,...,V,, define

M
W= ;Z ]lAi,m]l{Xiexg)f}{&a <]T\§ﬁkx),i,M> - /X f@){¢e + (fé10)e} da?}

so that T Z ‘m W;.For j,j'=1,...,Vp,, write j ~ j' if W; and W} are dependent.

Because we are workmg on the events Al .m. the random variable W 18 only a function of

those X; that lie within distance sup__ ) h, f(a X) of the set C}. Hence by the indepen-
m, f

dence properties of Poisson processes, we can only have j ~ j’ if
dist(C},Cjr) < sup hoplah x)+ sup hilp(af ).
zex?, arexl)

Hence, by Lemma S5 and property (1) of the partition and arguing as after (S46), there exists
mo = mo(d, ) such that for m > mg, we can only have j ~ j if

| Shex 1/d oy 1/d kx 1/d
O < _— PYSETRr Y = mVif(x:)
dist(C;,Cjr) < sup f <2def(l‘)> + sup 2mVyf(x') <4 mVaf(zj) 7

zex) aexy)
where {z;: j =1,...,V},} are the points associated to our partition given in Proposition S2.
By property (ii) of our partition, then, for each j = 1,...,V},, we have |{j’ : j' ~ j}| <
22+4d oo m. For j =1,...,V,, and p € N, we write L;p ) for the number of connected subsets
of {1,...,V,,} (with edge relations defined by ~) of cardinality at most p containing j. Then

L;p) < o(p—1)(2+4d) logp—l m

for p = 3,4. Now, by Lemma S5 and property (i) of our partition, for any j =1,...,V,, we
have

Y

(S47) sup max{
IEC]'

f() g(x) _1‘}< 2 x 3118
f(zj) 9(x) = (Vylog®/4 m)(nB)/d”

Moreover, by very similar methods to those used in the proof of Proposition 11, we may see
that

(S48) Var(TP) = Var(T)) + o(1/m) = ZZ o(1/m).

Hence, using (S47), (S48) and the facts that vy > 1/C and py, 5 ;) = P(X1 € X( 7) )
9(kx /m)logm, we have that for p = 3,4,

1
- N WE — EW;|P
Varp/Q(T(l) Z {1 = EW;"}
2 1 \- - M ’
v () ]}
j=1 i=1 '
Vi
SmPPloghtm Yy ()P g ()P {mPp], o ) mpmgGy }
j=1
kp_l log m 14+pk K
S /f PR g (2)P52 daz — 0,
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It now follows from Theorem 1 of Baldi and Rinott (1989) that

m 2T — BT}
dic <£( e ),N(O,l)) 0.
1

7(2)

We now take a similar approach to establish the asymptotic normality of 7,,™. Letting
) - j = n iti n i 2
{Cj:5=1 V,} denote a partition of &, ; as in the statement of Proposition S2, we

may write p(, ) y () = | Vi) () = 2|, An = {2 B (pyy v (%)) € oy }, X5 = C50
Xn,g» and

W; = f(a:)ﬁf)éf( by ( )d>d:c i YeXn H/f )(9%01)z

X0 nAY anp(ky) n(z

Writing T(Z) P Z ', W; and arguing as above, we can see that Var (7, TP ﬁ?)’p) =

)

o(1/n). By properties (i) and (ii) of our partition we again have that Lg-p < logP~1n, as

above. Recall the definition of the conditional distribution function Fﬁ);y from the proof of

Proposition 11. By similar but simpler arguments to those used in Proposition 11, we have
that

Var(T??) = Var(T?) 4 o(1/n) Var</f

:/Xf(x)f(y) /IY /IW¢(f(:1:),vx,t1)¢(f(y)7vy,t2)

x {dF?),(t1,t2) = Biy nt1-ky (81)Bry a1, (t2) dt1 dtz } dx dy + o(1/n)

ky

an,O(ky) BL )dw) +o(1/n)

(S49)
_ b2
= +o(1/n).

Now, using an analogous statement to that in (S47), using (S49) and the facts that P(Y; €
X)) < (ky /n)logn and that va > 1/C, we have for p = 3, 4 that

- p/2 EL”)E{W EW;|”}
ar _

kp 1log . .
S {/ flz)PPrg(z) =P )+p2dx+1}—>0.

By Theorem 1 of Baldi and Rinott (1989) we now have that

n /(TP — BT
dK<£< e ),N(O,l)) 0.

For our weighted estimator Tm .n» we can define weighted analogues T,SL) and T(z) of T(l)
and TT(L ) and deduce that

(S50) T —E(Tonn) = TSH, —E(TSD) + T2, — E(T2,) + op(m ™2 4 n71/2),

m,n n

where

m!2{T5) — BT}
()
1
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1/277(2) _ pp(2)
(S51) + dy <£(” {Tn - L }),N(0,1)> — o(1).

)

If W, XY, Z are independent random variables it can be seen by simple conditioning
arguments that

(S852) dg (L(W +X),L(Y + Z)) <dk (L(W), E(Y)) + dk (ﬁ(X), L(Z)).
Thus, by (S50), (S51), (S52) and Corollary 7, we may write

~

5 o Twa-T
T Ly fm+ vg /n}1/2

where di (L(Z}, ,),N(0,1)) = 0 and Wy, 5, = 0,(1). Thus, for any € > 0,

= Z:n,n + Wm,na

di (Zm’n,N((), 1)) < sug‘P(Z\m,n <z, [ Winl < e) — @(a:)‘ +P(|Win| > €)
T€

<supmax{P(Z;,, <z +e)— 0(z), () —P(Z;,, <z —€)} + 2P(|Wpnn| > )
zeR

_ ¢
(2%)1/2

so the result follows. O

<dk(Z},,, N(0,1)) + + 2P(|Wipn| > €),

PROOF OF THEOREM 5. The main task is to establish the consistency of ‘7”(1121 and 17,,(1221

For the first of these, we start by noting that

E [{¢X1 + (f(blO)Xl }4] < 16L4CSL+4(“1|+|’{2)/ f(x)1+4li1g(x)4ﬁz dr
X

(S53) < 16LAC1H8L+4(r | HlRal),

Using this and Lemmas S3(i), S6 and S7, and writing ¢(u, v) := {é(u, v) + u¢1o(u,v)}? and
bymn :=1logm Alogn, we have that

\El&lkl - [ @6+ (o7

)

— ‘/Xf(g;)/gl/ol [min{qS(ux,s,vx,t),bm,n}—min{qu,bm,n}]

+0 ;
logm Alogn

<[ @] [ 13m0 =Bt (9B e (0) dsde o
X, L xVI,

m,n 1, Y

1 M I A1 1 1
o(b, , max (kX ogm) 7(ky ogn) L
’ m n m* nt’ b2,

. log% m logé n ]fXMﬁ@)d 2a8 kYM5($)d 2
< 1+2k, 2Ko ky Mg (x)® d
N/Xm ;f(x) g(x) { k;{/g + k}l//z + ( mf (@) ) + ( g () ) x

—i—O(bm,nmaX{(leogm))\l,(kylogn>)\271 L }):0(1).

47 40 p2
m n m* n* by, ,

X Bry m—tkx (8)Bhy nti1—ky (t) dsdt da
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Now, for:=1,...,m, write & := mln{(b(f(kx 3 9(ky ),i) Omm ) § = min{qui,bm,n} and

5o @ R g) |k

)

We now have that
E{(&1 — £)°} <E{Laxnar Lixex, (& — )%}
1 1 A1/2 A2 /2
0t man{ e L (B ()
m*’n m n
logm logn kxMg(z)i\ 252 kyMg(z)?y %52
< 142K, 2kKo B B d
N/X f(@) 9(x) { kx + ky +< mf(x) ) +< ng(x) > v
11 skx\M/2 fky\A/2
+O<b ma"{mwnw(m) () )
logm logn (kx\*%" (ky\*" [kx\5 [ky\ %
_ 2 A or - -
—O<bm,nmax{ kX’ky’(m> ’(n) ’(m) ’(n) ’
It therefore follows by Cauchy—Schwarz that

Var(Vi) = %Var@l) +2(1- ) Covler ~&5,65) + (1- - ) Covler — .6~ &)

2

m,n

T 4 Db [B{ (61— €1) D2 E{(& - &)} =o(1)

By Very 51m11ar arguments to those employed in the proof of Proposition S1 we have that
Vm n )= [y f(@){be+ (fé10)e} dz = o(1). By Proposition 1| we have that Var(T}, ) =

( ). Since ¢<1 /2, the summands in ‘7,,(11212 — Ton n, are square integrable and, writing &; :=
f(kx 910 (f(kx ),is (ky ), ;) and & := (f¢10) x,» we have by Cauchy—Schwarz again that

Var <711 ;5Z) < %Var(fl) +2Var'/?(&) Var'2(& — &) + Var(& — &) = o(1).

Combining our bounds on expectations and variances we have now established that, for any
€>0,

(S54) sup  sup max P(]A(l% —wvy1| >€)—0.

P kXE{ka 7k}>J(}
PEREO T T it k)

Now, we have by Cauchy—Schwarz and Lemma S7 that

sup /f {f 1+2r€1 ( )—1+2@}3/2dw

(f.9)E€Fu.0

1/2 1/2
< s { [ gapenpesianh e <o

(f.9)EFa.0

Hence, by analogous calculations to those carried out earlier in this proof, we have for any
€ > 0 that

(S55) sup  sup max (|T7n(321 —vg| >€) —0.
PER(E) (fg)eFuo fX XS

X
(kY kY
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To conclude the proof, given € > 0, we will consider the event B, := {max(HA/n(@l}L Jvi —
1], |177222L Jvg — 1|) < e}, and define the shorthand

T —T e Tyn—T

d 77 .= .
O im0 iz (o1 /m + va/n} 172
For all € € (0,1/2) we have that

7=

dx (L(Z),N(0,1)) <S£\P 2) —P(Z* < 2)| +dx (L(Z*),N(0,1))
< sup{ (1+€e)2) —P(Z* <2)|V [P(Z* < 2) —P(2* < (1 — e)z)y}
z€R

+di (L(Z7),N(0,1)) +2P(B¢)
=sup|P(Z* < (14 €)z)-P(Z* < (1 - €)2)| + dx (L(Z*),N(0,1)) +2P(B¢)
z€R
|2[e*"/8

The first conclusion of Theorem 5 now follows from (S54), (S55) and (S56). The second
conclusion is an immediate consequence of the first. O

+3dk (L(Z*),N(0,1)) + 2P(BY).

S1.6. Proof of Proposition 2.

PROOF OF PROPOSITION 12. Since f vanishes at infinity, there exists xg > 0 such that
h(z) >0 for all z < xy and h(z) <0 for all x > xg. Further, as © — oo, we have by Kara-
mata’s theorem (Bingham, Goldie and Teugels, 1989, Proposition 1.5.10) that

h(z) ~ —P'(z) /0 * a-nPw) g, - P'(@) / |

1—k e(1—r)P(0) W

e(1=r) P(z)

du

P’(a:) e(1—r)P(z) B f(x)—(l—/{)
(557) A Pl(z) 1-r

In particular, since h is continuous, we can now see that sup,-qh(z) < oo and
inf;>o f(z)h(xz) > —oco. Hence, for ¢ > 0 sufficiently small, the function f; : [0,00) — R
defined by

fi(@) == {1 —th(x)} f (),

is bounded and takes values in [0, c0). Moreover, by Fubini’s theorem,

/ ahta) da= [ T ) / [6(fw) ~ BN} dyda

. /0 T {0 (F) — H(f) dy =0,

so there exists ¢ty > 0, depending only on k and f, such that f; is a density function for
te [0, to].
Observe that the function h defined in (22) solves the differential equation

(558 (0 5D = w(7@) - 1) =91,




30

We now derive, for ¢ € [0,%], the density function of the non-negative random variable
ft(X1) when X has density function f; on [0,00). As x — 0, we have that

filw) = f'(x) = tf"(x) /Oxg(y) dy —tf'(x)g(x) ~ f'(z) — tg(0)f"(x) — tf'(2)g(0)

I P"(x) — P'(1)? "(x
(S59) :f/(x)[l_tg(o) {P"(x) 5((33)) }+P( )].

We can also see that as £ — co we have

S (x) /Oxg(y) dy + f'(x)g(x) ~

@) ()"0
(=) P(@)

e[ D@ =P@) o,
using the fact that P () < P'(z)? as x — oo for strictly increasing polynomials P. Finally,
we note that sup,c, 4 f'() < 0 for every 0 < a < b < co. This, together with (S59) and
(S60), means that by reducing ¢ty = to(k, f) > 0 if necessary, we may assume that f; is strictly
decreasmg on [0,00) for ¢ € [0,%g]. Thus, for t € [0,to], we can define the inverse function
ft , and since f¢(0) = f(0), see that when X ~ f;, the density of f;(X;) at z € (0, f(0)) is
given by

+ £ (@) f ()0

1—/§P,( @),

z

;g% 5 / ft Il{ft(ac)<z-i-<5} - ]l{ft(x)<z}) W ::pt(z).

Our goal now is to show that the family {p; : t € [0,%o]} is differentiable in quadratic
mean at ¢ = 0, with score function g o f~1. For a fixed z € (0, f(0)), let z = f~1(2) and
xy = f;'(2). Then we have

0= fi(ze) = f(x) = f(ze) — fzx) = tf(x)h(2e) = (21 — 2) f' () — tzh(x) + o(t)
as t \, 0, and hence dx/dt|;—o = zh(z)/ f'(x). It now follows from (S58) that

) 9 z Gili=ofi ()
f)lf’topt(z)aif‘t0< —f xt)) ‘ tf’(x)z

<
[ W@ @ @@
=i (o + e ST
— po(2) (=) — H().

To prove differentiability in quadratic mean at t = 0 with score function g o f !, i.e. that

FO T (N2 — ()12 2
(S61) /0 [pt() tm() —;{¢(2)—H(f)}po(2)1/2] dz—0

z

as t \, 0, it now suffices by the dominated convergence theorem to show that t=2{p;(z)"/? —

po(2)1/2}? can be bounded by an integrable function of z for t € [0, to]. Define b; := (3t/(1 —
£)YO=5) and a; := f~1(b;). Now, by (S57), (S59) and (S60), it follows that there exists
C" =C'(k, f) > 0 such that for all x < a; and t € [0, o], we have

fi(z) fi(z) ‘} { , 3f(x)~ (1) } 1
max — 1], — 1| <tmax{ ", —F—— » < —.
{ f(z) f(@) 2(1 = k) 2
Write € , := t max{C’, %} so that for z > 2b; we have ¢, , <1/2 and

(7 (7)) s r [ e e o 2G0T
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We can similarly establish that f;(f~'(z/(1 — €..))) > z. Now, there exists zo € (0, 00),
depending only on £, such that f”(z) = {P'(x)? — P"(x)}f(x) > 0 for all 2 > x¢. We can
therefore see that, by the convexity of P, for z > 2b; sufficiently small we have

_ _ _ V4 _ Z
) - < f 1<1+%>—f (1_>

1+es - 1—€:
—p! <log Itens et’z) —p! (log Lo Et’z> < log === — k;ge :
z z P'(P~1(log —=))

z 1462 z .
1—é: - log 1—é:,» 1—€;,. log 1—€;,. tz"

PG/ —an) T ) Y SRR)
tz_(l_“)f_l(z)
P (=)

and f~1(2)P'(f~1(2)) = oo as z \, 0. The derivative P’(x) is bounded away from zero for
x bounded away from zero, so for z bounded away from f(0) and 0, we can also see that

1f7N2) /M z) = 1 Skt Asz — 0,
f@) _ "(z ’ =1—txP'(z 0
<1402 @) [ gt =1~ P @)1 + 00, 1)

uniformly for ¢ € [0, o). Thus, similarly to in (S62) and by a Taylor expansion, we can see
that for z close to f(0) we have that

A HP(R) )
—f'(f71(z)) z
Hence, combining this fact with (S62), uniformly over all z € (th, f (0)), we now have that
) | _[Plx) 1

() -
We deduce that there exists ¢ = c(k, f) € (0, 525£) such that for ¢ € [0,%9], when
tz=(1=%) < ¢ we have z > 2b; and

n) 1‘ PUTE) PUTE) 1' e
po(2) FUTN ) AT R) 1T 2

Now, after reducing to = to(k, f) > 0 if necessary, for ¢ € [0,%] and ¢f(x)~(1=%) > ¢, we
have by (S57) that

(S62) =

) = 7 Sy Septf ().

Tt
—_ </£f -
P'(z) 1 —th(xy) ‘N ’

- 1‘ itz U7 < e AR,

(S63)

<

N | —

) < £+ 5L <tptor (L4 1)

Thus, when tz=(=%) > ¢, we have z; = f; '(2) < f~ ((m)l/“). Moreover, for

z bounded away from f(0), we have that po(z) = 1/P’(f~!(z)) is bounded. Hence, when
t €[0,to] and tz—(1=%) > ¢, using (S60) we can see that

po(z) = z < 2(1-k)z
_ft(ft t{f” z1) o 9(y) dy + f'(z)g(we) } — Ktf(z) P ()
2(1 K)
(S64) it

- nP’(xt) ’
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so py is also bounded uniformly for ¢ € [0,¢y] and tz=(1=%) > ¢ It now follows from (S63)
and (S64) that for ¢ € [0, %],

{p+(2)'% = po(2)"/?}? e _
+2 Sﬂ,f ﬂ{t§021*~}p0(z)22 2 + ]].{t>cz1fﬁ}t 2

S po(z)zQ;i—Q + C_2Z2n_2.

Since k > 1/2, we have

£(0) o0
/ 2257 2po(2) dz = / f(2)* 1 da < oo,
0 0

and also the second term is integrable. Finally, then, the differentiability in quadratic mean
property (S61) follows from the dominated convergence theorem.

To complete the proof of the first part of Proposition 12, it suffices to study the differentia-
bility properties of the functional H along our path { f; : t € [0,%0]}. To this end, integrating
by parts and using (S57), we may see that

ccl’;‘to (fe) = dtto/ f(@)™{1 —th(z )}"dx——n/ f(x)*h(x) d

_— / Py () / ) dy de = / < (rayy / ) dy de
/ F(2)g(x) dz = /0 {F(2)~0-9) — H(f)}g(2) f () da

- [0 - i )i

We therefore conclude that the efficient influence function is given by z — {z_(l_“) —
H(f) }, and our result now follows from van der Vaart (1998, Theorem 25.21).

We now turn to the second claim of Proposition 12. First, it is clear that || f||.c = f(0) <
oo for all t € [0,%p]. As shown by (S57), we have that f;(z) < f(z)" uniformly for z €
[0,00) and ¢ € [0, to], and it follows that, for any a > 0, we have sup;c(g 4, Jo© a® fe(x) dx <
oo. For the smoothness condition, in the interests of brevity, we will restrict attention here
to 5 € (0,1]; the arguments extend naturally to any 3 > 0. For 8 € (0,1] we claim that
SUPse(0,t) My,,5(2) Sk,p max{1/z, P'(z)}, so that we have

00 M A 0o )
s / ft<x>{]{’g<f)} o Sy [ 1@ maxta ™ Pa) o < o

for any A € (0,1). To establish this claim, we have inf;c(g s, inf,e(0,1) fe(*) > 0, and so it
follows from the smoothness of f and h that for ¢ € [0, o],

I 16 B 10
z€(0,1] y,2€[0,2z],y#= ’Z - y|6ft(x)
Cap o SOOI S
z€(0,1] y,2€[0,2z],y#= ’Z - y‘

It follows that for « € (0,1] we have My g(x) Sk, 1/x. Writing deg(P) for the degree of
the strictly increasing polynomial P, we have that

P'(x)
0< xel[rllgo) xdee(P)=1 = oy o) xdes(P)=1
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Now for x > 1 and y such that |y — 2| < x A {1/P’(x)} we have that
|P(y) — P(2)] Sy ly — | max(z, y) =)~ S |y — 2| Pl(x) <1

(865 |P'(y)— P'(x)| Sy ly — | max(x,y) V22 g |y — | P(x),
It therefore follows that

sup sup |f(2) = f(y)l
wel1,00) y,2€ Bo(an{1/ P ()}) f (@ P’ (2)]2 — y[}#
y#z
eP0)-P)|P)-P() _ 1|
= sup sup < 0.
2€[1,00) y,2€Ba (an{1/ P’ (2)}) {P'(2)]z —y[}P
y#z

We conclude from (S57) both that sup,cp oo f(z )15 P ()] [y 9(y) dy] < oo and that
infyep,00) ft(2)/{f(x) +tf(x)"} > 0. Using (S65) we can now see that for z € [1,00) and
Y,z € By(x AN{1/P'(x)}) we have for t € [0, to] that

() = S - G = FW) |, (k) = FW)h)]
flmy T () fla)~

S {P'(2)]z —yl}
N 1f'(2) J,, g(u)dul +| [ g(w) dul{f(2)| P'(2) — P'(y)| + P'(y)| f(2) — f(y)I}
f(z)"
St (P @)z =y} + 1z —yllf @)/ f (@) + |z =yl + |£(2)/ F(y) = 1]

Snf {P'(2)]z —y[}P.
This verifies our claim and the result therefore follows. UJ

S1.7. Proof of Theorem 14 on the local asymptotic minimax lower bound.

PROOF OF THEOREM 14. (i) We check the conditions of, and apply, Theorem 3.11.5 of
van der Vaart and Wellner (1996), and therefore borrow some of their terminology. Define the
Hilbert space H := R? with inner product ((t1,%2), (t],t5)) g := t1tv1(f, g) + tathva(f, 9).
We first claim that our sequence of experiments is asymptotically normal. That is to say, for
independent normal random variables Z; ~ N(0,v;) and Zy ~ N(0,v2), if we define the
iso-Gaussian process {A; =121 + toZs : t = (t1,t2) € H} we claim that

dPp ¢ 1
log dP _An,t—ﬁnt”z%l
with Ay, A A for each fixed t € H. Since [, f(x)h1(x)* < 0o, and since K (0) = K'(0) =

K"(0) = 1, we have by the dominated convergence theorem that

t2
‘1/01(t1) —1- 511)1‘

2

K(tihi(2)) — 1 — tiha(2) — %hl(x)Q} dz

<X ap 1K) / @)t (@) de
6 we[-1,1] lt1ha (2)| <1

+ {2 sup | K (w)|+1+ ;}/t A F(@){tihy(2)}? dz = o(t?)

weR
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as t; — 0, with a similar calculation holding for 1/ca(t2) since f gh% < 00. Therefore, for
each fixed ¢t = (tl, t2) € H we have

f 1/2151 g /2t2 )

m t h B tghg y. )
:Z ( 1 11/2 )>—|—mlog01(m 1/2t1)+210gK<n152])> + nlogca(n 1/2152)
i=1 -

1 d 1
1p2h mEﬁe = gl +0p(1) 5 A = el

as claimed.

We will now show that the sequence of parameters defined by k,(t) :=
T(fm-1/2t, n-1/2¢,) is regular, in that there exists a continuous linear map < : H — R and a
sequence (r,,) of real numbers such that

Tn{kin(t) — Kn(0)} — A(t)
for each t € H. Indeed, for any fixed t = (¢1,t2) € H we have

nlt) = 860(0) = [ { B2, )6 (72,0 g0, (@) — S (0)0

X

= [ s (o (e (M) 1o < (B2 Yatw)) - o f
+o(m™ 1?2 4712

Z/Xf(iﬁ [tlhi/Q {bz+ (for0)2} + t2h12/(2)( ®01)z ]dx—i—o(m_l/Q—i—n_l/z)

t1v1 tovo
T oml/2 T pl/2

We may therefore take

+ O(mfl/Q + n71/2)_

tiv] + A1/2t2v2

= (vi/m—+vy/n) Y% and F(ty, 1) = (o1 5 Ay 2

to conclude that our sequence of parameters x,, is regular.
The adjoint £* : R — H of £ is given by
b* A1/2b*
(0 = ( , )
(v1 4+ Ava) V27 (v1 + Avg)1/2
as this satisfies (#*(b*),t) g = b*f:(t) for all b* € R and ¢ € H. Since ||#*(b*)]|%, = (b*)? for

all b* € R, we may therefore take G ~ N (0, 1) and apply Theorem 3.11.5 of van der Vaart
and Wellner (1996) to deduce that for any estimator sequence T, ,

e

vi/m—+ve/n

supliminfmaxEp_,
Iex n—oo el

This concludes the proof of (i).
(ii) Since k : R — [1/2,3/2] we have that f(z)/3 < fi(z) < 3f(x) and g(z)/3 <
gi(r) < 3g(x) for all t € R and = € RY and, to establish the result, it remains to show that
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max{Mft 5(x), M, 5()} < Mg(z) for t <1, say. For ease of presentation, we first prove
this in the case 3 € (0,1]. When = € X and y, z € B, (1/Mp(x)), we have that

[fe(2) = fe(y)] _ [K(thi(2))f(2) = K(thi(y))f(y)]

@) K(thy @)/ ()
<SR- 1w+ iﬁ(j’fu«ml(z)) _ K(thi(y)|
(S66) <3{Mp(z)||z — yll}? + 4|K (th1(2)) — K (th1(y))|-

Additionally,

h1(2) = I (y)] < P2 = dy[ + f(2)[(D10)z = (P10)y| + [(D10)y [/ (2) = £ (y)]

s1:(1v|¢y+(f¢10)y|)(1+%){3 (2) 1‘<5*_1)A1+g(2) 1)%1}

S67) S (1+|hi(y)){Ms()|z - y|}.

In particular, there exists ¢ = c¢(d, 9, &) such that, whenever ||z — y||Mz(z) < ¢, we have
|h1(z) — hi(y)| < max(1,|h1(y)| A |hi(2)])/2. Writing Ly, . for the line segment between
thi(y) and thy(z), and using the fact that sup,,cg(1 + |w])|K’(w)| < oo, we now have for
z,y such that ||z — y||Mg(z) < c that

| K (thi(2)) — K (tha(y))| < tlhi(2) = ha(y)] sup |K'(w)]

WELy 4y -
1+ th(y)[ A (2)]) B < B
e Tl M@= =y} S (M)l o1}

From (S66), (S67) and (S68), we deduce that Mft B(az) < Mpg(x). Moreover, when y, z €
B, (1/Mpg(z)), we have that

|ha(2) = ha(y)| < F(2)[(do1)= = (Po1)y| + |(Po1)y[[f (2) = f ()]

f(2) f(2) B*AL | g(z) (B*—1)Al
Sf<y>(”L"@)'@Ol)-v'){U@) 17 |52 }+I(¢01)y|!f(z)—f(y)\

9(y)
< (1 + [ha(y)D{Ms(2) |2 = ylI}".
It now follows by very similar arguments to those in (S68) that M 5(z) S Ma(x).

f()

9(y)

(S68) <

~

We now extend these arguments to cover the 3 > 1 case. For a multi-index o € N& with
lo| < B:=[3] — 1, we have that 9*{ K (th1(x))} can be written as a finite sum of terms of
the form

(S69) (0% hy) .. (0% hy) (2) KT (thy (2))

where r € Ny satisfies 7 < |a/, and the multi-indices a(!),... (") € N¢ satisfy |aM)] +
...+ |a] = |a|. Moreover, for any j = 1,...,r, we have that 9*" h, is a finite sum of
terms of the form

(S70) @27 £) .. P 07 ). (07 9) (@) eyt (f(2), 9(x)),

where (1,05 € Ny satisfy 1 + fo < |a(j)| + 1, and where moreover the multi-indices
BW, ... B0~ ~E) e N satisfy |8 4 ... + B8] + 7D + ... 4 |y&)| =
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|aU)|. Using the fact that sup,,cg (1 + |w|")| K ") (w)| < oo for any € N and assumption (i)
in the definition of ®, we therefore have the bounds

0% ()] S My(@) N (1 ()]} and |0 (K (thn (2) }] S Mis()\.
It follows that, for any multi-index a with |a| < B we have that

‘aaft ‘ el

Since, for any multi-index a with |a| < ﬁ , we have that 9 hs is a finite sum of terms of the
form a

(@7 f).. (@7 D@ g). (@ ) (@) (f (), 9(2)),

we deduce by similar arguments that |0%g; ()| < g¢(x) Ms(z)!?! for any multi-index o with
|a| < B. Now we have for any /1, (s € Ng with /1 + /5 <p* —1and y,z € Bx(l/Mg(x))
that

G0, (f(2),9(2)) = Pe,e, (f(y): 9(y))]

S I gy (v ]hl(y)\){‘ % T f,gyi B 1‘@*_%1}

< Fy) U g(y) "2V ha(y) ) { M (x)|| 2 — g yrin{ts =018 ~6a}

It follows from this, together with the representation (S70) and Lemma S5 that, for any multi-
index o with |a| < /3, we have that

0% (=) — 0% ()] S M)/ (1 [ (9) ) (M )|z — [ ymino-5" 150

S Mg(@) (1 (b (y)){ Mg () | 2 — [ }72.
By a similar argument to (S68), and using (S69) and the fact that sup,cp(l +
lw|") | K" (w)| < oo for any r € N, we can now see that, for any multi-index a with |ar| < B,

(0% K (tha ()} = 0 { K (th1 (1) }| £ My (@)= {Mp @)= — ]} 2.
Using Lemma S5 it then follows that, for any multi-index o with |a| = é we have
0% fu(2) — 0% fi(y)| S fulw) Mp()2{Mp() |2 — y||}* 2
);

and so M, 5(x) < Mg(z), as required. Similarly, M 5(z) < Mg(x
the proof of the first statement in Theorem 14(ii). 7

It remains to prove the local asymptotic minimax result for fm,n under the conditions of
Theorem 2, together with 3 = 3. Observe that

and this completes

. S 2
suplimsup max nEp , [{Tmn — T(fm—1/2tl,gn—1/2t2)} }
IeZ n—oo t:(t1,t2)€l ’

<limsup sup {nEﬁg [{fmn — T(f,g)}Z] - %m(f,f]) — 7)2(f~7§)}

n—o0 (f’g)ej:d,&

n
+suplimsup max *Ul(fm 1/2¢1yGn- 1/2t2)+v2(fm 124, 9n- 1/2t2)
IeT n—oo t=(t1,t2)€l

< %vl(fag) +v2(fag)a

where, in the second inequality, we have applied Theorem 2 to the first term, and used the
continuity properties of v; and vs for the second term. The fact that the inequalities in this
display are attained follows from Theorem 14(i), and this completes the proof. O
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S1.8. Auxiliary lemmas.

LEMMA S3.  Suppose that ¢ € (&) for some & = (k1, ka2, 5, L) € Z. Then
(i) Forall € = (e1,€2) € (—1/2,1/2)? and z = (u,v) € (0,00)? we have
max{u|pi0(z + €0z) — ¢10(z)|,v|d01(z + €0 2) — ¢o1(2)| }

AU UR O

(ii) Forall e = (e1,€2) € (—1/2,1/2)? and z = (u,v) € (0,00)? we have
o

uer ) (veg) 2
'</>(Z+€OZ)— > ﬂ{éﬁezgﬂ*—l}wwleg(@
l1,62=0

< 21—‘,-\/@1|+|H2\+2LLu“1u€Uﬁ2vv(|€1| V ’62‘)

PROOF OF LEMMA S3. By the definition of the class ®, for each z € Z, the Hessian

matrix
_ [(uPP20(2) uveyi(z)
H(z):= <uv¢?? (2) v2¢§§<z>>

satisfies || H (z)|lop < 2Lui'ubvi?vl. Now, fixing z € Z, the function g : [0,1] — R given
by g(t) := up10(z + te 0 z) is differentiable with ¢/ (t) = { H (z +teoz)(e1,e2)” }1. Thus, by
the mean value theorem,

ulpro(z + € 02) — d1o(z)| = [g(1) — g(0)]
<2L(1+1/2)* maxc{(1/2) 7 7%=, (14 1/2)" 7% Y el ulogeol.

A similar calculation with ¢g; completes the proof of part (i).
To prove part (ii) we use the mean value form of the remainder in Taylor’s theorem. Fixing
z€ Zande€ (—1/2,1/2)? define h: [0,1] — R by h(t) = ¢(z + te o z). Then we have

o0

Ue Ve
‘¢(z+eoz)_ > ﬂ{elwzgﬁ*l}ww 6(2) _' Z b‘h(b '
Kl 32:0
< sup \hﬁ> (t)| = sup 52 ue) %2 _eqﬁ (z +teoz)
= 0,8*—¢
tefo,1] B*! t€[0,1] v

L(ler| V Jeo])? 2l Hlral 2Ly Lo Z G

< QitlmalHlrzlF2L g g Loz L) | V| eg] )P

as claimed. O

LEMMA S4. Fix f € Fyand B € (0,00), and let S, C (0,1), &,, C R? be such that

M d
ap := Sup sup sM;.5(@)

—— (.
ses, zex, Vaf(z)
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Then there exist n, = n.(d, 5, (ay)) € N, coefficients by(x) and A = A(d, 3, (a,)) € (0,00)
such that, for all n > ny, s € S, and x € X,,, we have

[8/2]-1 d
_ sMy g(z)*\ B/d
Vaf (x)h y(s)" = ;:0 by(z)s' 204 SAS{i}c(’i) } :

Moreover, by(z) = 1 and |by(z)| < A{ My g(x)?/ f(x)}2/.

PROOF OF LEMMA S4. By a Taylor expansion, for r < 1/M;y g(x) we have that

[8/21-1
ha(r) = Var®f(z) — Y r ey ()

/=1

(S71) Spartf(@){Myg()r}’

for some coefficients ¢, () satistying |c,(x)| Sga f(x) My g(z)%. In particular,

g (1)
Vardf(x)
Thus there exists C' = C(d, ) > 0 such that we have | hog () _ 1] < 1/2 whenever r <

Vard f(x)
1/{CM;g(x)}. Setting r = Vﬁf&x) }1/4 we have

- 1' Spa{Myp(x)ry*"?.

sMy g(x)ty1/d
rCM; g(z) = 2”@{%} < (2an)Y4C = 0.

So, for n large enough that (2a,)Y/¢C < 1, we have hxf({‘/?f(x /4y > s, s0 h_ (8 <

{Vd }1/d for all z € X, and s € S,,. Now, since My g(x)h, ( )<{25MM (2)* }1d

(2an, )l/d — 0, we may substitute 7 = h__ ;( s) into (S71) to see that

s e be(x) |, 1, (2 < sMy 5(x)? #/d
Tt DD B (5| Spagan { b
Vaf (2)h; 5(s) 2 V() ™ /(@)
This expansion can be inverted to yield the desired result by substituting this bound into itself
and expanding functions of the form r — r2¢/¢ about r = 1. O

LEMMA S5. Fix f € F4and (B € (0,00), and suppose that max{||y — x|, ||z — x|} <
1/{(6d)"/ =5 My g(x)}. Then, for multi-indices t € N§ with |t| < S, we have that

[(0"1)(2) = (0" ) (9)] < 2Mj, g ()™ P f ()| 2 — gy A7,
PROOF. First, if |t| = 3 then we simply have that

(0" 1)(z) = (@' N )| < 1F D (2) = fO W) < My p(2)° f(2)]]2 - y)|P 2,

and the claim holds. Henceforth assume that [¢t| < 8 — 1 and 3 > 1. Writing |[-[| here for
the largest absolute entry of an array, writing L. for the line segment between y and z, and
arguing inductively we have that

|0°f(2) = 0"F ()| < = =y Sup [V f(w)]|

yz

<l =yl O @) + a2z - yl!{”(f('t“) D)
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+ s [| A0 w) - 00}

weL,.,

< ||z = yllf (@) | My ()
+ 2d1/2Mf7ﬁ(-T)min(6’|tl+2){Hy o :E||min(1,ﬂ—|t\—1) + ||Z _ y||min(1,ﬁ—\t|—1)}j|
< 1o — yll 7 @) { My p(2) 17+ My ) in(o 2 minch -4

=2My5(2) " f(2)]|2 = yll,
as required. O

The following lemma presents a tail bound for a Beta(a,b — a) random variable that is
convenient to apply in settings where a > 0 is large and a/b is small.

LEMMA S6. Suppose b > a >0 and B ~ Beta(a,b — a). Writing h(t) :==t —log(1 +t)

we have that
a—1/2p1/24, w
) < 2exp<—ah<b1/2 FpAYou u>> —|—2exp<—bh(b1/2 Al —|—u>>

(-5l

forall u € 0, oo)

PROOF. Our proof relies on concentration inequalities for gamma random variables,
which we establish now. For a > 0, letting I';, ~ I'(a, 1) we have by a Chernoff bound that

fort >0,
IP’(F > t) inf e MA (1 — é) o e ah(®),
a A€(0,a) a

Similarly, for ¢ € [0,1) we have that

P(Fa —a < —t) < inf 6,\_,\t(1 i é)—a = ¢~ h(~1) < g=ah(t),

a A>0 a

and thus, for all ¢ > 0, we have that P(|T', — a| > at) < 2¢~2"(t)  Now, for independent
random variables I';, ~ I'(a,1) and I',—, ~ T'(b — a,1) we have that I'y/(I'y + I'p—y) ~
Beta(a,b), and so for ¢ > 0 and € € (0, 1) we have that

a I'n—a a
——|>t|=P 1

P(‘B b‘_t) (ra+rba+b<ra+rba ‘ )

a b Ty — | (I1—e)t

" _1)|>
]P( b(Fa+Fb_a 1)‘ €t> ( - 1+etb/a
SP(]FQ—I-FZ,_Q—MZ etb )+P<\I’a—a|2(l—e)tb>.

a

b a+ et a+ etb

IN

Choosing € = a'/?/(a'/? 4+ b'/?) and writing t = a'/?u/b we may now see that
g g

al/2u
)

_ _ —1/2p1/2
SP(]FQ—I—Fb_a b|> u >+P<|Fa a|> a 20t Ay >

b - a1/2+b1/2+u a - al/2+b1/2+u

P(B-3l=5

" a-1/2p1/2
< 26Xp<_bh<b1/2+a1/2+u>> + 2eXp<_ah(bl/2+a1/2—|—u>>’
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as required. O

LEMMA S7. Fixd € N and 9 = (o, 8, A1, A2, C) € O. Suppose that a,b,c € [0,00) are
such that /\% + i + £ < 1. Then

sup /f Mﬁ } {MB( 2)° } (14 ||lz]))°dx < oo.

(f,9)€Fa.» (I‘)

PROOF. By the generalised Holder inequality (e.g. Folland, 1999, Chapter 6, Exercise 31),
if X ~ f we have that

[ s {2y B s

(2)
:E[{MB } M;((XX) } 1+||X||)b] |
SE[{MfB(( }A} E[{ o(X } ] [(1+HXH)1‘A°’:—A’; AT

<ORPR E{(L+ X))} TR TR <ot e o)y TR,

as required. O

LEMMA S8. Fix f € Fy with max (|| f||sc, tta(f)) < C and B € (0,00). Then for all
xeXands e (0,1),

(evp) " <o <minf1at + (£55)

(Vdis(:c)f/d [1 + (60) DMy () ] + (fs)l/}] }

PROOF. The lower bound is immediate on noting that

ha p(r) < CVyr.

For the upper bound, by Lemma S5, if ||y — =/ < 1/{(6d)"/®*~8 M/ 5(x)}, then we have
that

_1‘<2Mfﬁ( VM y — x| < <

l\DM—l

g
Thus, whenever r < 1/{(6d)"/(*=2) My 5(z)} we have that

SVar' (o) < ha () < SVar(a).

Now, by the triangle and Markov’s inequalities, for every s € (0, 1),

C \1l« C \le
P10 - ol > ol + (;55) ") <P (Inl> (;55) ) <1 -,

C 1/a
-1 < — .
hos) < lall+ (1)

so that
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2s 1/d
—1
hey(s) = (T f(x)> Lot (9)<1/4(6) /4~ My (@) 1)}

C 1/a
+{llel+ (m) Pz (511600752 01, (o)1

= <Vd§s(x)>1/d [1 + (6d)1/(67@Mfﬁ(1’){H$H + (1?5)1/04}]7

as required. O

The following lemma shows that we may restrict our main attention to the events

ST AF = (s () €Tu ) AL = {xaglofhn i) € Tor )

forz':l,...,n.

LEMMA S9. FixdeN, 9 €0, (/11, k2) € R? and suppose that

g )

<1.
)\1 )\ o -

Let k¥ ¥ < k‘U k:{“/ < ky be deterministic sequences of positive integers such that k‘g‘( /logm —
00, k{“//logn—>oo kY /m — 0 and ky} /n — 0. Then

max sup E|max3 i | ., f f(X
kxe{kxv 2 X}(fg)e].'d19 |: { (k 1 kx)l ( 1) }
kye{k}’1 )ky}

X max{ (k ), 179(ky) N (X1)F”2}(1 — 1 x ﬂAf)} = 0(m*4 + n*4)

as m,n — oQ.

PROOF OF LEMMA S9. Given a > —min(kx, ky),b> —min(m — kx,n+ 1 — ky) de-
fine

A;Z = / Bloctam—kx-+b(s) ds, Afz); = / Biy +an+1-ky+b(t) dt.
[0,1N\Zm. x [0,1\Z. v
By Lemma S6 we have that
max sup max(A(lg, A(zg) = o(m~079/2 4 5 79(1=€)/2)
k‘xe{kx, gl x}a be[ AA] @ @
ky €{k¥,...kV}

for any fixed A > 0 and ¢ > 0. Now, by Lemma S8 and writing ;" := max(x;,0) fori = 1,2,
we have that

E[max{f&l 1,]/‘77@( 1. f(X1)" }max{g(k )179(ky)17 (Xl)fiz}(l—]lAf]lA{)}

- [ 1 / / mae (uf ub , f(a)™) max (53, v, g(2)")

X maX(ﬂ{sgzm,X}7 Litgz, v })Bhxm—kx (8) By s 1-ky () ds dt da

S/Xf(x) /01 /01 max{ <:§)”TVL7 <mzﬁ((§))zl(1_t)|!jg;!)d)nf7f(ac)m}
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kIVL /p x)? z||)% w2
xmax{ (%) L7< tk{\jzgx;él_‘:)ud/l) > 79(93)&2}

x max (Lisgr,, o3 Liegz, v 1) Bhxm—bx (8)Bhy mt1-ky (t) ds dt dz
< max(A) A, Al A% Af), AP )

—(HTVL),O’ g1 ,—df{;/()é’ —(E;VL),O’ H;,—dﬁ;/a

IR (Aiﬁ(%)d)m (Mﬂ(xx))d)%(l a5 de

x)4N\ K x)4N Kz - -

The conclusion follows immediately on appealing to Lemma S7. O

LEMMA S10. Let a,b,c € R be any fixed constants, and let k" < kY be deterministic
sequences of positive integers such that k" — oo and kY /n — 0 as n — co. Then

(j0):

n

1 1
| [ [Biratssmteni-os)=Bisanms&)Bersn-o(o)]dsar < T o))
0 Jo
as n — oo, uniformly for j,0 € {k", ... kV}.

PROOF. In the following bound we make use the standard asymptotic expansions

1 z 1 1
logT'(z) =zlogz — z — ilog(%> + 122 —i—O(;)

11 1
V(z) =logz— -~ 53 +O(?>

as z — 0o. Using these expansions, by Lemma S6 and Pinsker’s inequality we have that

11
/ / ‘Bj+a,£+b,n+cfjff(37 t) = Bjtan—;i(s)Beton—e(t) ‘ dsdt
0 Jo

1 pl—t 1/2
Bjtaetbntce—j—e(s,t
< {2/ / Bj-‘ra,ﬁ—l—b,n-‘rc—j—ﬂ(sat) 10g< Jratintes) ( ))> ds dt}
0 JO

BjJra,nfj (5) BK—i—b,n—K (t

ot I'n+a+b+c)l'(n—j)I'(n—4{)
=2 [IOg<F(n+c—j — 0T (n+a)l'(n+b)

—(n—j—1)¥n+b+c—j5)—(n—L—=1)¥(n+a+c—1{)

>+(n—c—1)\11(n+a+b+c)

1/2
+(n+c—j—£—1)\ll(n+c—j—€)]

_ U™ Loy

n

as n — oo, uniformly for j,¢ € {k", ... kY1 d

The following lemma provides bounds on the normal approximation to relevant multino-
mial distributions.

LEMMA S11. Fix f € Fyand 3 € (0,1, and let k™ < kY be deterministic sequences
of positive integers satisfying k" /logn — oo and (kY /n)logn — 0. For k € {k",... kV}
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~

define Xn ={z: f(x)/Myspg(x )d > (k/n)logn}. For j,¢ € Nand z € R? define y = yé )=
x + (nV e ))l/dz, a(r) :=pqa(Bo(1) N B,(r))/Vy, and
1 (/O 2z ((/5)M %)
(/0 a((£/5)M) 1 '
For s,t € (0,1),5, € N and z,z € R? let pn = fBI(h;}f(s))mBy(h;jf(t))f(w)dw’ define
(N17N27N37N4) ~ MUItl(nas - pﬁat - pﬂapﬂvl —s—1+ pﬂ)’ let (M17M27M3) ~
Multi(n; s, t,1 — s —t), and

F(s,t) = F{:Y(s,t) ;== P(Ny + N3 > j, No + N3 > {)

Y=

G(s,t) := GV O (s,8) :=P(M, > j, My > 0).

Then, given c € (0,1) and writing ®v for the distribution function of the bivariate normal
distribution with mean zero and covariance matrix V, there exists A= A(d, 3, ¢, (k"), (kY))
ns—j nt— 6)

such that
ns—j nt—1~¢
2T G(S’t)_q)fz( 12 >’}

. 1 logl/Qn k‘Mfg(l’)d Bld
< P b
—Amm{l’ m( k72 *( ni (@)

for all k € {k",... kY, for all j,¢ € N such that ck < j,0 < k, for all x € X, for all
s, t € (0 1) such that 57Y%ns — j| v €7 12|nt — 0| < 3log"/?n, and for all 0 < ||z|| <

("Vd DVAE L (s) + by (),

)

max{ ‘F(s,t) - (Dz<

PROOF. We present here the approximation for F'(s,t), the approximation for G(s,t)

being similar but much simpler. Let X1,..., X %j fandfori=1,...,nand k,j,¢,x,s,t,2

in the SpeCiﬁed ranges, define }/Z = (1{“X1_$“Shzf(5)}’ H{llxi—yllﬁhy,f(t)})T’

V = Cov(Y;) = (;(:__;) f&‘_ii) and  Z; =V 2, — (s,t)7).

Then by the Berry—Esseen theorem of Gétze (1991) we have
(S73)  [P(N1+ N3 2 j, N+ Ny =€) — Doy (ns — jint — £)| Sn ™' ZE(| 21°).

In order to control the right hand side of this bound, we will require bounds on pn. Writing
o, for a,((€/§)"/%), we have

0 — | < 2o~ hal B35 0 By 310)

+ ?f(w)ud(B (hy4(5)) N By(hy 4(1)) — a
< EM z)P f(z w — z||? dw
< By (@) () /B PR o

1

N ' L, <BO <<nvdf(x;h;}<s)d>d> . Bg((nvdﬂx;h;#(t)d) ) o

< Ml S oy + | L O -+ Sl s

=

_1‘
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kMg g(z)? }5/d log!/?n
nf(x) k2 7
where the final bound follows by Lemma S4 and similar arguments to those in (S76)

and (S77) in the bounds on Uy below. We will also need to bound s 4+ t — 2pn below. If
h, f( )>h, ( ) then, by the mean value theorem and Lemma S4,

Md(By(hyf( )) N Ba(hy, 3(5))) = pa(By(hy () N Ba(hy 4(5))°)

B 1 Jlz =yl AR (s) k(2] A1)
v [ Ba s @dez o) TR e

-1
4hw,f(s)2

574 < {

A similar argument applies with («x, s) and (y,¢) swapped and so we have

s+t2pm:(/ +/ >f(w)dw
B (hyf(t))ﬁB (hy () JBa(hy s ()NBy(hy s (1)

7@ {pa(By (3 (0)) 0 Balh 5))°) + pra(Bah () 0 By 4(1))°) )
WIER 1>_

~

n

We will also use a lower bound on |V|:= det(V) when ||z|| > 1. Note that with e; =
(1,0,...,0)7 € RY, when ||z|| > 1 we have that a, = Az, < e, /5> (3/2)¢ then

llex
2
zZ

it I T (2) e

However if £/j < (3/2)¢ then
jo?

<a® <V 2pua(Bo(1) N Be, ((3/2)V/%)? < 1.

Thus there exists cq € (0,1) such that ja?/¢ < cq whenever ||z|| > 1. Thus, by (S74), we
have that

V] =st(1—s)(1—t) = (pn — st)> > {1+0(1)},
uniformly over ||z|| > 1. Similar to (36), (37) and (38) in the supplement of Berrett, Samworth

and Yuan (2019), and splitting up into cases ||z|| < 1 and ||z|| > 1 where necessary, we have
that

(1—cq)jt
n2

1/2
1/2 < sti # 3/2<L
pmHV < >H pmmm{ 2 m—st} ~ E1/2°

) e

1—s—1t
( S +pﬁ) |V|

Tl T

N lw

Likewise,

3
(8 _pm)HV—l/2 <1_—t5> ' < (3 —pm)t3/2‘v‘_3/2

= (s —pm)t%{(s—{-t— 2pn) (pﬂ —st+ : s_—]i—j;)EtQ;:m))}z < (k‘£‘|>;’
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3
V-1/2 —S
1—t

n~ V2B Zs)* S (kl21) 2,

which in combination with (S73) provides a bound on the difference between F'(s,t) and
&, (ns — j,nt — £). Next, similar to the displayed equation above (39) in the supplement of
Berrett, Samworth and Yuan (2019), we have

|y (ns — j,nt — £) — @y (j*1/2(ns — ), V2 (nt — 6))|
’E_i ( ns(l=s) 4 73(52;1%) _j1/2€—1/2az) -

J
R L R

with a similar bound holding for (¢ — p) . Thus

< min{l,Q

10g1/2n j1/2

S{L/(1- (/02 +1/(1 + u’/e)l/?az)}{ | e

J
1 log'/?n . (ka”g(x)d)ﬁ/d
Sl U K2 nf(z)

as required. O

S1.9. Bounds on remainder terms in the proof of Proposition 11. To bound Sy: Since
¢ < 1/2 we may apply Lemma S9 to see that

1 1
S 2=/Xf($)/0 /0 max(Lisgr,, o} Ligz, o }) O(Ua,s, Vo)’

X By m—bx (9)Bhy nt1-ky (1) dsdtde = o(m™ +n~%).
By Lemma S8 we have that for every € > 0,
|S12] == [S1 — Su|

/ f(z) / / & (U5, 021) B mm—tx () Bhy mt1ky (t) ds dt d
X, TxJTny

< f(x)lercfg(x)an;Mﬂ(x)Zd(anrn;)(1 + ||xH)2d(N;+K;) dr

~Y
Xom

o (54 (5

where the final bound holds by Lemma S7, as in the bound on ;.

To bound Sy: Using Lemma S4 we now have that

5] = ' / s / / {¢(u>

B d)(kxf(m) kyg(x)

ms = nt

2
) }ka,m—kx (8)Bhy nt1—ky (t) dsdt dx

< / £ ()25 g )2 / / Broe i (5)Bhy i1ty (1)
Xn I, x Y Iny

g

t

5 P e i 1‘} dsdtdx
Vdg(x)hx,g (t)

Vaf (x)hy 1 (s)?

—1‘+
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/ Fl2) 2R g(a )252{(7‘?)(73?2()) >226+<%>2A6}d$

ol ()% ()" () ()

for all € > 0, where for the final bound we use Lemma S7 as in (S10) and (S11).

To bound S3: Using Lemma S9 and Lemma S7 we may write

/Wf // o(Rxltn) Brofe)y:

X By mten (5) By s (£) ds dt dar — / f(@)6? da

S ] | X

X Blox m—kx (8) By mt1—ky () ds dt dz + / f(@)¢rdr+o(m™ +n~")
XS

|S3] =

kxf kYQ( )) _ 42

xT

S (k‘)_(2+k;2)/)( f(w)l—l—QIflg(x)an dr + - f( )1-&-251 ( )2&2 dw+0(m_4—|—n_4)

_ _ kx\M(1=20)—¢ /ky\ A2(1-2¢)—¢
=0 (max{ K512 52, (A) () b,
m n
for every € > 0.
To bound T : We first consider

T11 = (/ —/ )/ / (hdH,,(r%) ngQ))(Sl,SQ,tl,tz)dedy.
x2 Jaz ) )z 12,

By symmetry we may write 117 = 1111 + 27112, where

Tm::/ f(x)f(y)/ / (hdH dGP)(s1, 59,1, t2) dz dy
X s XX ¢ 2 x VT2 y

and

Tm::/ fxfy/ / (hdH D dG ) (s1, 59,11, t2) dx dy.
Ko p XX, 72 JT2

m, X n,Y

Using Lemma S7 and Lemma S8 as in the bounds on .57, and using Lemma S10 we have that

kZX ke ko e - 2
Tl § ] 0ot Mt 0T e

_ O((Ij;f ) 1+2,\1(1<)e>

for all € > 0. We now turn to 7112, and similarly write

|T112]:‘/ f(x)f(y)/ / (hdH,SPdG,g2>)(sl,52,t1,t2)da:dy‘
Xm,fXX;y:L,f Ivzn,X I’!2L,Y
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< kx f(x) T g(x)" f(y)
TomJx, xxe o Fy)og(y)te

_ O((l;); ) 1+,\1(1g)e>

M (y) "o F5) (14 ||yl "+ dy da

for all € > 0. Combining our bounds on 7717 and 7712 we have that

Ty = 0((%) 1+>\1(1<)e>

for all € > 0. We can develop analogous bounds on

T12 = (/ _/ ) / / (hd(GS”rlL) - H?S%))dH’r(12))(517527t17t2)dxdy
xSRI IRy

to conclude that

Th=Tn+Ti2= O<max{ (kliX)]ﬁi’/\l(l*c)*f’ (]W)1+>\2(1C)e}>

m n

for all ¢ > 0.
To bound T5: Here we use the notation

Lg(s,t) = gzb(f(x),vx,t) + (% — 1)f(x)¢1g (f(az),vxﬂg)

R,j;(s,t) = gb(ux,s,vx,t) — Li(s,t)
for a linearised version of ¢(uys,v;+) and the linearisation error, so that we have
h(l)(sl, S9,t1,t2) = Lfé(sl, tl)L{;(sQ, t2). Again we write Ty = T + Tho, with

To1 = f(@/ / ({h =W} dH) dGD) (1, 52, t1,t2) dx dy
; L x VT

Xm, S f

:/XQ f(x)/zz /I {R](s1,t1)R] (sa,t2) + 2LL (s1,11) R] (s2,12) }
m,f m, X n,Y

x AHV (51, 59) AGP) (1, 1) dar dy
=:To11 + 1212
and Tho := T — T5; having a similar expression. Now

kx f(x)l-i-m dr dry kXMﬁ(x)d 2 logm 2
\Tznlf,m[/Xm’fg(x)@Mﬁ(@ (L+ [lll) {<mf(x)> +7€X}d4

=o((rmae{ () () )

for every € > (0. When bounding 7512 we first integrate over s; using the facts that

1
/ {Bk‘x,k‘x,m—2k‘x—1 (Slﬂ 52)7Bk‘x,m—k‘x (Sl)ka,m—kX (82)} dSl
0

m-—1

kx
S L ( - )
m—kyxy —1 hxm—hx—-1(52) 52 m—1
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and
k
/o mfl {Blx kxm—2kx—1(51,52) = Biy m—ky (51)Brym—ky (52) } ds1
kx(m—2) ( D) — 59)°
_ X7 4 ke 1- oyt
mkx — 1) oM 2(52){ (m—kx —1)(m—kx 2)( )

— ka,m_kx_2(32){2(mk)_( 5—52) + o(ffg + %) }

uniformly for s3 € Z,,, x. Using (S9) and the fact that k;’(ﬂ /m — 0 we can now see that

k‘l/2 f( )1 F1 - - kx M (y)d 22/5 logm
T < "X LACVER V) dk, 1 dn2{< B8 > }d
| 212| Nim ., g(y) B(y) ( + HZJH) 7mf(y) + k Y

oS {57 () e

for every € > 0. Combining our bounds on 7517 and 7512 we therefore have that

=0 (2™ SR AT ()))

for every € > (. By analogous arguments we can show that

r-o(m{ (3) TR T

for every e > 0, and this concludes the bound on 75.
To bound T3: Here we integrate out (s1, s2) in the X, r term and (¢1,%2) in the &), 4 term.

1— 81
/ / 517525t17t2)dG( )(51752)

—/ / W (s1,82,t1,t9)Bhy m—hx (51)Bhx.m—kx (52) ds1 dsa

= f(x)p10(f(2),va,t,) )¢10(f( ) Uy,tz)

/ /l S1 ( k‘X —1>dG(1)(31 82)
msl mso moany

k
/ / — = 1 7X - 1>ka m—kx (51)Bhx m—ky (52) ds1 dSQ}
msq mSQ

+{ f(x)¢10( ()Ux,t1)¢(f(y)avy,t2)+¢(f(33)ﬂ)a:,t1)f(y)¢10(f(y)avy,tz)}

1
k
X l{ka,mka*l(s) - Bk‘x,m*kx (S)} ds

0 ms
B kx kx(3m—5)
— i | { SR o fa)ona( ) ) S0l )

+ {f(@)P10(f(2),02)(f (1) b+ D(F (@) 02,0, ) f () D10 (f (1) 0yt } | -
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The contribution from the X, , term is simpler because the marginals of the By, . n—2k, +1
density are equal to By, ,,_, +1, and we have

1 1—t,
/ / h(2)(817827t17t2)dG$12)(t17t2)
0o Jo

/ / W (s1,52,t1,12)Bry ity +1(t1) By ey 11 (t2) dt1 dto
0 Jo

1—t,
— (&) o1 (tta 01, ()9 (1) o1 1ty 00 9y { / / L EPCCIS

n2t1t2

By ity +1(61)Bhy iy 1 (f2) diy dt
//thth ky n—ky +1(61)Bhy n—y 11 (2) dla 2}

Ry
= —Wg(ﬂf)%l(ur,sl :9(2))9(y) o1 (uy,s;,9())-
The error T3 is the error in, for example, k2 (ky — 1)~2/n ~ 1/n, together with the contri-
bution from (s1, $2) & Ifn’X and (t1,t2) & I72L,Y’ and we can use Lemma S6 to see that

Ts=o0(1/m+1/n).

To bound Upy: We write r%?x,y = h;}(a:;X) + h;}(a:)gx) and ré%)z,y =

h;vl( y) + hy ( ny) as shorthand. For si,so < a!  and t1,t0 < aly we
have Fm7n7x7y(51,52,t1,t2) = Gmn(s1,52,t1,t2) unless we also have |y — z| <
max{r%?ay,m(fgmy}. Here we will present bounds in the case ||y — || < riy. but
the other case follows using very similar arguments. First, by using Lemma S7 and
Lemma S8, we have that

f(z) sup |¢(uz,s, Um,t)| dx
X;;L’n SEImJ(,teIn,y

S/X f(:z:)l—nfg(:p)—f-c;Mﬁ(x)d(nf-&-n{)(l_|_ HxH)d(n;—i—n;)dx

(S875) =0 (max{ (%)Al(loe, (l%/) )\2(106}),

for every € > 0, and we proceed by showing that, since x and y are close, the contri-
bution from A7, , X & behaves similarly to the contribution from X7 , x X7 . which
can be bounded by the square of the final bound in (S75). It suffices to consider (x,y) €
X, n X X, as the contribution from X7, x X7, . is more straightforward.

By a very similar argument to that used to establish (S45) in the proof of Proposition S2,
we have that ||z — y| < {Ms(y)?log'/?m}~1/¢ for m sufficiently large, and hence, by

Lemma S5, that

[f(@)/f(y) = 1] < 2{Mp(y)lly — I} <1/2,
and in particular f(x) > f(y)/2. Thus, again using Lemma S5, we have that

1FO @)\
(S76) tirll?..},{,,8< @) > <4Mp(y).
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for m sufficiently large. In addition,

(S77)

179 (2) - £ (w)] 15O )~ O]
weeB (M) 12 — WP ﬂf( ) S wsenne) 2 —wlP Bf( )

< Ma(y)”,

and so we have that Mg(x) < 4Mpg(y). Using this fact and the previously established fact
that f(z) > f(y)/2, we may apply Lemma S4 to see that in fact

s ()

lz =yl <l

Using Lemma S5 we also have that g(x) > ¢(y)/2, and therefore that
d

FW)Mp(y)™" gW)Mp(y)™ "\ _ oa
(S878) max{ , <2 .
f(@)Mg(x)=4" g(ax) Mp(x)~
Since z € A7, ,,, we have now established that

- {mf(y)Mﬁ(y)‘d ng(y)Mﬁ(y)‘d} < 9241,

kxlogm = kylogn

Applying the same bounds as we would for X’¢

m,n?

o (5 ()Y,

for every € > 0, as claimed.
To bound U, : By Lemma S6 we have that

as in (S75), we can now see that

max sup | nmy G£L2)](t1,t2)
tle{anw nY}t2€[0 1}

(S79) max sup |[F3)  —GD|(t1,t9) = o(n™).
\/t2€{an y 1 Qn Y}t1€[0 1] n,%y "

In order to use this to bound Uj, corresponding to the right-hand side of (S32), we

must first develop bounds on the derivatives of h. Writing S,.(r) := {y € R?: ||z — y|| =

r} and dVolg for the associated volume element we have by Lemma S5 that for r <

1/{(6d)"/ D Mg(x)},

h/
dvddf(f) 1=l L ) = @ aVols )] < (r M)

with a similar bound holding for h%g(r). Using Lemma S4, for € &), ,, we have
that max{Mﬁ(a:)dh;;(aL’X)d,Mﬁ(a:)dh;é(aiy)d} < 1/logm — 0 and so we have, by
Lemma S3(i), that

2 ) BT (0) s

_ ‘_ Fxdio(as ver) | kxf@), (ka(Hf) /Wg(w))‘

mVah [ ()10, ((hy(s))  ms® ms ot
kxd

< - -
mVah ()T ((h 1 (s))

‘¢10 (U5, Ve ) — (2510<l’<:xf($)7 kyg(az))‘

ms nt
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“L(s)& 1 f(z) /K, T
e (S )

< ’“;fwflg(x)@{(”ﬁ;f’d) e (“‘jfg)d) i

(S80) 5(1/3)‘70(%)519(36)@{(W)QABW (W)(W\B)/d},

uniformly for x € X, ,, s € Ly, x and t € Z,, y . In particular, we have that

0
(S81) ‘%Qb(ux,&vx,t)’ S (L/s) f(z)™g(2)™,
uniformly for x € &}, , s € Z,,, x and t € Z,, y. Analogous arguments also reveal that
atqb(um 5 Uzt) S (1/t) f(x)" g(2)"*, uniformly for z € Xy, ., s € Ly, x and t € Z,, y. More-
over, since z € Xy, 5, and |y — x| < max{rm,m,y, rn@,y}, we may argue as we did leading

up to (S78) to obtain similar bounds on %qﬁ(uy,s, Uy,¢) and %qﬁ(uy,s, vy.t). Thus, using (S32)
and (S79), we find that U; = o(n™%).
To bound Usy: Again using Lemma S6, we have that

ms2

max{ sup |F{l),, —GD|(s1,05, y), sup [FY,, = GPl(ar, .52),
51€[0,1] 52€[0,1]

(582) B3,y = Gl o0, 1) = o(m™),
By similar arguments to those used in the bound on U; we have that

O s va)| = by 611t )
st x,sy Uzt manQh;’}(s)d+1hlx7f(h* ( ))h ()d+1h/ (h;’é(t))

., f
(S83) SAL/(st)}Hf(z)™ g(2)™,
uniformly for x € X, 5 € Iy, x and t € Z,, y; moreover, the same bound also holds

for 8S§t¢(uy s,Uy,t). We may therefore use (S32), (S80) and (S82) to conclude that Us =
o(m
To bound Us: By Lemma S6, we have that

Bl m—kx (51)
(S84) Fr(nl,)x,y(sh mX) G( )(317 mX) Xm—_}i
y—z| < rm?x,y and s € Z,, x, with an analogous statement

—4
Lijo—yli<h; sy To(m ™),

uniformly for x € &, »,
holding for JolS )my( ; > 52) — G’(I)( ; +»52). Now, combining this statement with our
bounds on the derlvatlves of h in (S81) and (S83), and applying the bounds |F () (sy, s9)| <

Ly—ali<rtt, 3 and |F@)(t1,t5)] < Ly <r), ,y» WE may write

IS [ T @ M 90 i)
>< m,n

1/2
" <logmlogn+ logn +log mlogn) de dy

kxky kxky mzk}(/QkY
logmlogn 5
O +2k1 22 1 ]
~ kxky /XXXm nf<$) 9@ Lyl <mingrits 2,3y 4 Y

logmlogn 2+2,_61 22 kx ky
S [, e st s s Y e
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Since min(m,n) > 3, if m > n, then (1/m)logm < (1/n)logn and therefore

logm1 k log?
|Uy| 5 —BTLO8T [ BX gy 128 g (262 gy < 25

~

kxky xr m nky ‘

Similarly, if n > m then

logmlogn [ ky 949 Per—1 log?m
Ul < +2K1 ko=l g < .
3] BB [ paypeieg ot e s 2

Putting these two statements together,

log?m log?
Us =0O| max o8 m’ o8 1 ,
ka TL/{Y
which establishes (S34).

To bound Uy: Using (S32), (S80) and (S82) we have that U = o(m™%).
(1)

To bound Us: We first bound the contribution to Us from the discontinuous parts of Fi, % 4,
arising due to the indicator functions in (S30). Recalling the definition of the multinomial

random vector (N(l), Ng(l),Nél), Nf)) in (S29), we have that

0< FL), (s1,80) — P(NY 4+ NV > ke, NV + NSV > k)

]P’(Nl(l +N(1) kx — 1) +P(NY + NV = by — 1)

Skx—l(l_s)m—kx—1+ m_2 tk‘x—l(l_t>m—k2x—1
kx —1

{1+o(1)},

uniformly for z € X, ., |ly — z|| < r%,)%y and (s1,s2) € Z?2 x> and we will see is of no

larger order than the error in the normal approximation for the continuous part. Now, writing
=z+ {mV e }l/dz define

(27rkX)1/2

CM:L%MMW@A 4GP (t1,15)

2
n,Y

msy —kx msy —k
X [/ h1100{F(1)(81,82)— (‘I)z—‘I’IQ)< 11/2 =, 21/2 X)}d81d82
12, x ky ky

Bry m—ky
—/ hlooo{F(l)(Sl,a;,X) Wﬂ{nzq}}dsl
Im,X

m_

Bry m—ky
—/ howo{F( )(a mX7S2) k}(’mk()ﬂ{”zq}} d82} dx dy.
Im X -

By Lemma S4 we have that

1
/X /I %Bkw*kx(3)‘1{\\y—x||3h;;<s>} - ]1{||z||s1}‘d5dy

1
<[ 1 N ) Y2 R
S lix Jre AGE) d <yl <hshah 0} R () <ly=al <G )

d -1/ — \d 1 log? m kx Mp(x)?y *3#
> k?X{h f mX) _h’x,i"(a’m,X) }Smf(x){ k}(/2 +< mf( ) ) }’

dy
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uniformly for x € X, ,,. Using this bound together with Lemma S11, (S80) and (S84) we
may say that

1 logl/Qm kex M (m)d (2nB)/d
< 1+2/€1 2”2 - ﬁ
|Us1| N/menf(fc) 9(z) |:m{ kL2 )
1NB
kx| o(%mx { 1 <log2m (kXMB(x)d>d>} ]
+ —log” | 2= / min + dz|dz
m (an,ﬂ e U TR\ m ()
1Og5/2m ) kx\(AB)/d /kx\AM(1-2¢)—€
—O(mmaX{k;/zJOg m(ﬁ) <R) ’

for every € > 0. In bounding Us it therefore remains to approximate the derivatives of h
using (S80) and to bound the contribution from the tails of the t;,¢2, s1, so integrals. By
Lemma S6 and standard normal tail bounds the error from these tail contributions is o(m %),
and so, using (S80),

U =|Us — U 1 lo 1/2m lo 1/271
’ 52’ : ‘ 5 51| 5 f(x)l-i-Qng(x)Q,‘{g g g
mJx, k‘l/2 k1/2
m,n

() - () e

1 log'?m log'?n /kx\%2 /ky\ 252
—O<max{ RTINS RV 7(m) 7(?)
X Y

X 1(1 2 ) € Y 2(1 2 ) €

To bound Ug: Using Lemma S7 we have that
1 1 kx \A(1=20)—€ /Ly \ A2(1-2¢)—e
< = 142K, 2Ko _ L X My
Ui % e [ 1@ gl o =0 max{ (2X) () b

Xr: m n

I

for every € > 0. This establishes (S36).

To bound U;: Analogously to our bounds on U;, we may use (S32), (S79) and (S80) to
show that Uy = o(n™%).

To bound Ug: Using Lemma S11, (S32), (S38), (S79) and (S80), and the change of vari-

ables y =z + (nvfj;(x) )1/e%, we have that

|Us1 | :=

/ f(z)f(y) / hoo1(s1, 52,1, t2) dGY (s1, 52)
XX X 2 J1z,

nty — ky nto — ky
1/2 7 1/2
ky/ ky/

x {F<2>(t1,t2) (@5, —@12)( )}dt1 dtgd:rdy’

1/2 kv M d\ (1nB)/d
x/ min{l,1<log1 2n + < v M (x) ) >}dzdx
Bo(2) 121\ &y ng(r)
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log?n _, (log'?n key Mg ()@ 18)/d
5 g / f($)2+2&1g(x)252 1{ g1/2 + < Y ,3( ) ) }dZL‘
noJx,. ky! ng(x)

<log2 n { log'?n /ky\(AAB)/d /ky N €o
=0 maxq — 5 (—) , <—) ,
n ky/ n n
As with Us we now define Ugs := Ug — Ug; and note that to bound Ugo we need to control the

tails of s1, s9,t1, to integrals and our approximations to the derivatives of h. By (S38), (S80)
and Lemma S6 we have that

1 K Ko—
el 51 [ roPgw

log1/2m 10g1/2n+ (kXMB(x)d>(2/\ﬁ)/d

1/2 1/2

kY ky/ mf ()

kv M dy (2nB)/d

+ <Y 5(@) ) +m2}d:c
ng(z)
_0 1 log'?n log'?m (kl)(QAB)/d <kl>(2Aﬂ)/d (k7X>‘-° (@)60 s
- nma’X k1/2 ) knl/Q ’ m ) n ) m ) n 7m ’
Y X

This establishes (S40), and therefore concludes the proof.
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