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Appendices to “Bayesian hierarchical stacking:

Some models are (somewhere) useful”

Yuling Yao, Pirš Gregor, Aki Vehtari, Andrew Gelman

The appendices contain five parts: (A) an illustrative theory example, (B) proofs of
theorems, (C) guidance on software implementation in R and Stan, (D) recommendations
on prior choices and (E) details of the numerical experiments.

The indices of equations and graphs in the appendices follow the main manuscript.

Appendix A: A theoretical example

Before theorem proofs, we first consider a toy example. It can be solved with a closed
form solution and illustrates how Theorems 1–4 apply.

As shown in Figure 10, the true data generating process (DG) of the outcome is
y ⇠ uniform(�3, 1), and there are two given (pre-trained) models with spike-and-slab
predictive distributions

M1 : y ⇠ .99 uniform(�4, 0) + .01 uniform(0, 2),

M2 : y ⇠ .99 uniform(0, 2) + .01 uniform(�4, 0),

which yield piece-wise constant predictive densities

p1(y) = 0.99/4 (y 2 [�4, 0]) + 0.01/2 (y 2 [0, 2]),

p2(y) = 0.99/2 (y 2 [0, 2]) + 0.01/4 (y 2 [�4, 0]).

Using our notation in Section 3.2, the region in which M1 predominates is J1 = [�4, 0],
and M2 outperforms on J2 = (0, 2] (the conventions send the tie {0} to M1). We count
their masses with respect to the true DG: Pr(J1) = 3/4 and Pr(J2) = 1/4.

Complete-pooling stacking solves

max
w2S2

Z 1

�3
1/4 log

⇣
(w10.99/4 + w20.01/4) (y 2 [�4, 0])+

(w20.99/2 + w10.01/2) (y 2 [0, 2])
⌘
dy.

The exact optimal weight is w1 = 0.755, close to the mass Pr(J1) = 0.75 and is irrelevant
to the height of each regions. For instance, if the right bump in M2 shrinks to the
interval (0, 1) (i.e., y ⇠ 0.99 uniform(0, 1) + 0.01 uniform(�4, 0)), then the winning
margin therein is twice as big, while the winning probability as well as the stacking
weight remains nearly unchanged.

At the pointwise level, stacking behaves as a plurality voting system: as long a model
“wins” a sub-region (subject to a prefixed threshold L in condition (19)), the winner

take all and its winning margin no longer matters.
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By contrast, likelihood-based model averaging techniques such as Bayesian model
averaging (BMA, Hoeting et al., 1999) and pseudo-Bayesian model averaging (Yao et al.,
2018) are analogies of proportional representation: every count of the winning margin
matters. For illustration, we vary the slab probability � in Model 1 and 2:

M1 | � : y ⇠ (1� �)⇥ uniform(�4, 0) + � ⇥ uniform(0, 2),

M2 | � : y ⇠ (1� �)⇥ uniform(0, 2) + � ⇥ uniform(�4, 0).

The left column in Figure 11 visualizes the predictive densities from these two models
at � = 0.2, 0.33, and 0.45.

When the slab probability � increases from 0 to 0.5, these two models
are closer and closer to each other, measured by a smaller KL(M1,M2). The
(0.5, 1) counterpart is similar, though not exactly symmetric. We compute stack-
ing weight and the expected pseudo-BMA weight with sample size n: wBMA

1 (n, �) =�
1 + exp

�
nEy|� log p2(y)� nEy|� log p1(y)

���1
.

Interestingly, pseudo-BMA weight wBMA
1 (n, �) is strictly decreasing as a function

of � 2 (0, 1). This is because when � ! 0+, log predictive density of model 2 in the
left part log(�/4) ! 1 can be arbitrarily small, and the influence of this bad region
dominates the overall performance of model 2. By contrast, stacking weight is monotonic
non-increasing on (0, 0.5) (strictly decreasing on (0, 1/3), and remains flat afterwards)—
the opposite direction of BMA. Stacking simply recognizes model 1 winning the [�3, 0]
interval and does not haggle over how much it wins.

In addition, when � = 1/3, M1 becomes a uniform density on [�4, 2]. When � 2

(1/3, 1/2), model 2 is not only strictly worse than model 1 but also provides no extra
information for model averaging. Hence stacking assigns it weight zero.

The first two panels in Figure 12 show the KL divergence from model 1 or from
model 2 to the data generating process and the KL divergence between model 1 and
model 2. The third panel is the largest separation constant L for which the separation
condition (19) holds. The last two panels show the stacking epld gain (compared with
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Figure 10: The true data is generated from uniform(�3, 1) and there are two models with spikes

and slabs on intervals (�4, 0) and (0, 2) respectively. J1 and J2 in Theorem 1 are [�4, 0] and
(0, 2], with DG probabilities 3/4 and 1/4. The stacking weights are approximately these two

probabilities, and irrelevant to how high the winning margins are.
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Figure 11: Left: Pointwise predictive density p(ỹ|M1 or M2) when the slab probability � is

chosen 0.2, 1/3 and 0.45. Right: Weight of model 1 in complete-pooling stacking (not defined

at � = 0.5) and pseudo-BMA (sample size n=1 or 10, not defined at � = 0 or 1) as a function

of the slab probability �. They evolve in the opposite direction. Besides, stacking weights are

more polarized when models are more similar.
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Figure 12: From left: (1) KL divergence between model 1 or model 2 and data generating process.

(2) KL divergence between model 1 and model 2. (3) Separation constant L. (4) Stacking elpd

gain compared with the best individual model. (5) Stacking elpd gain as a function of L.

the best individual model) as a function of � and L. This constructive example reflects

the worst case for it matches the theoretical lower bound g⇤(L,K, ⇢, ✏) = log(⇢) + (1�

⇢)(log(1� ⇢)� log(K � 1)) (here L = L,K = 2, ⇢ = 1/4, ✏ = 0) in Theorem 3.

When � 2 [1/3, 1/2), Model 2 still wins on the interval J2 = (0, 2] with the sepa-

ration constant ✏ = 0 and L  log 2 (the winning margin is maximized at � = 1/3).

Nevertheless, a zero stacking weight and a non-zero winning area do not contradict

Theorem 1. Indeed, Theorem 2 precisely bounds the mass of the winning region when

stacking weight is zero. We provide self-contained theorem proofs in the next section.

Loosely speaking, BMA computes the probability of a model being true (if one

model has to be true), while stacking (through the approximation Pr(Jk)) computes

the probability of a model being the best.
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Appendix B: Proofs of theorems

For brevity, in later proofs we will use the abbreviation for the posterior pointwise
conditional predictive density from the k-th model:

pk(ỹ|x̃) := p(ỹ|x̃,Mk) =

Z
p(ỹ|x̃, ✓k)p(✓k|D)d✓k, k = 1, . . . ,K.

This subscript index k should not be confused with the notation t as in pt(ỹ|x̃) or
pt(ỹ, x̃): the unknown conditional or joint density of the true data generating process.
The subscript letter t is always reserved for “true”.

Recall that in this section wstacking refers to the complete-pooling stacking in the
population:

wstacking := arg max
w2SK

elpd(w),

elpd(w) =

Z

X⇥Y
log

 
KX

k=1

wkp(ỹ|Mk, x̃)

!
pt(ỹ, x̃)dỹdx̃.

Theorem 1. We call K predictive densities {p(ỹ = ·|x̃ = ·,Mk)}Kk=1 to be locally

separable with a constant pair L > 0 and 0 < ✏ < 1 with respect to the true data

generating process pt(ỹ, x̃), if

KX

k=1

Z

(x̃,ỹ)2Jk

⇣
log p(ỹ|x̃,Mk) < log p(ỹ|x̃,Mk0) + L, 8k0 6= k

⌘
pt(ỹ, x̃)dỹdx̃  ✏.

For a small ✏ and a large L, the stacking weights that solve (3) is approximately the

proportion of the model being the locally best model:

wstacking
k ⇡ wapprox

k := Pr(Jk) =

Z

Jk

pt(ỹ|x̃)p(x̃)dỹdx̃.

in the sense that the objective function is nearly optimal:

|elpd(wapprox)� elpd(wstacking)|  O(✏+ exp(�L)).

Proof. The expected log predictive density of the weighted prediction
P

k wkpk(·|x) (as
a function of w) is

elpd(w) =

Z

X⇥Y
log

 
KX

l=1

wlpl(ỹ|x̃)

!
pt(ỹ|x̃)p(x̃)dx̃dỹ

=
KX

k=1

Z

Jk

log

 
KX

l=1

wlpl(ỹ|x̃)

!
pt(ỹ|x̃)p(x̃)dx̃dỹ

=
KX

k=1

Z

Jk

log

0

@wkpk(ỹ|x̃) +
X

l 6=k

wlpl(ỹ|x̃)

1

A pt(ỹ|x̃)p(x̃)dx̃dỹ
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=
KX

k=1

Z

Jk

0

@log (wkpk(ỹ|x̃)) + log

0

@1 +
X

l 6=k

wlpl(ỹ|x̃)

wkpk(ỹ|x̃)

1

A

1

A pt(ỹ|x̃)p(x̃)dx̃dỹ.

The expression is legit for any simplex vector w 2 SK that does not contain zeros. We
will treat zeros later. For now we only consider a dense weight: {w 2 SK : wk > 0, k =
1, . . .K}.

Consider a surrogate objective function (the first term in the integral above):

elpdsurrogate(w) =
KX

k=1

Z

Jk

log (wkpk(ỹ|x̃)) pt(ỹ|x̃)p(x̃)dx̃dỹ

=
KX

k=1

Z

Jk

(logwk + log pk(ỹ|x̃)) pt(ỹ|x̃)p(x̃)dx̃dỹ

=
KX

k=1

logwk

Z

Jk

pt(ỹ|x̃)p(x̃)dx̃dỹ +
KX

k=1

Z

Jk

log pk(ỹ|x̃)pt(ỹ|x̃)p(x̃)dx̃dỹ

=
KX

k=1

(Pr(Jk) logwk) + constant.

Ignoring the constant term above (the expected cross-entropy between each con-
ditional prediction and the true DG), to maximize the surrogate objective function is

equivalent to maximizing
PK

k=1 Pr(Jk) logwk, we call this function elbo(w), the evi-

dence lower bound. To optimize elpdsurrogate is equivalent to optimizing elbo. We show
that this elbo function has a closed form optimum. Using Jensen’s inequality,

elbo(w) =
KX

k=1

Pr(Jk) logwk

=
KX

k=1

Pr(Jk) log
wk

Pr(Jk)
+

KX

k=1

Pr(Jk) log Pr(Jk)

 log

 
KX

k=1

Pr(Jk)
wk

Pr(Jk)

!
+

KX

k=1

Pr(Jk) log Pr(Jk)

=
KX

k=1

Pr(Jk) log Pr(Jk).

The equality is attained at wk = Pr(Jk), k = 1, . . . ,K, which reaches our definition of
wapprox in Theorem 1.

What remains to be proved is that the surrogate objective function is close to the
actual objective. We divide each set Jk into two disjoint subsets Jk = J� [ J

•
k , for

J
�
k := {(x̃, ỹ) 2 Jk : log p(ỹ|x̃,Mk) < log p(ỹ|x̃,Mk0) + L} ;
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J
•
k := {(x̃, ỹ) 2 Jk : log p(ỹ|x̃,Mk) � log p(ỹ|x̃,Mk0) + L} .

The separation condition ensures
PK

k=1 Pr(J
�
k )  ✏.

Let �(w) = elpd(w)�elpdsurrogate(w). For any fixed simplex vector w, this absolute
di↵erence of the objective function is bounded by

|�(w)| =

������

KX

k=1

Z

Jk

0

@log

0

@1 +
X

l 6=k

wlpl(ỹ|x̃)

wkpk(ỹ|x̃)

1

A

1

A pt(ỹ|x̃)p(x̃)dx̃dỹ

������



KX

k=1

Z

Jk

������
log

0

@1 +
X

l 6=k

wlpl(ỹ|x̃)

wkpk(ỹ|x̃)

1

A

������
pt(ỹ|x̃)p(x̃)dx̃dỹ

=
KX

k=1

 Z

J �
k

+

Z

J •
k

!������
log

0

@1 +
X

l 6=k

wlpl(ỹ|x̃)

wkpk(ỹ|x̃)

1

A

������
pt(ỹ|x̃)p(x̃)dx̃dỹ



KX

k=1

Z

J �
k

log(1 +
X

l 6=k

wl

wk
)pt(ỹ|x̃)p(x̃)dx̃dỹ +

KX

k=1

Z

J •
k

X

l 6=k

wl

wk

pl(ỹ|x̃)

pk(ỹ|x̃)
pt(ỹ|x̃)p(x̃)dx̃dỹ



0

@
KX

k=1

X

l 6=k

wl

wk

1

A
 

KX

k=1

Z

J �
k

pt(ỹ|x̃)p(x̃)dx̃dỹ +
KX

k=1

Z

J •
k

pl(ỹ|x̃)

pk(ỹ|x̃)
pt(ỹ|x̃)p(x̃)dx̃dỹ

!



 
KX

k=1

1� wk

wk

!
(✏+ exp(�L)).

The second inequality used log(1 + x)  x for x � 0.

The exact optima of objective function is wstacking. Using the inequality above twice,

0  elpd(wstacking)� elpd(wapprox)  |elpdsurrogate(wstacking)� elpd(wstacking)|

+ |elpdsurrogate(wapprox)� elpd(wapprox)|

+ elpdsurrogate(wstacking)� elpdsurrogate(wapprox)

 |�(wapprox)|+ |�(wstacking)|



KX

k=1

 
1� wapprox

k

wapprox
k

+
1� wstacking

k

wstacking
k

!
(✏+ exp(�L)).

It has almost finished the proof except for the simplex edge where wstacking
k or wapprox

k
attains zero.

Without loss of generality, if wapprox
1 = 0, wapprox

k 6= 0, 8k 6= 1, which means
p(ỹ|Mk, x̃) is always inferior to some other models. This will only happen if p(ỹ|Mk, x̃)
is almost sure zero (w.r.t pt(ỹ|x̃)p(x̃)) hence we can remove model 1 from the model
list, and the same O(✏+ exp(�L)) bound applies to remaining model 2, . . . ,K. If there
are more than one zeros, repeat until all zeros have been removed.
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Next, we deal with wstacking
1 = 0, wstacking

k 6= 0, 8k 6= 1. If wapprox
1 = 0, too, then we

have solved in the previous paragraph. If not, Theorem 2 shows that wapprox
1 has to be

a small order term:

Pr(J1)  (1 + (exp(L)� 1)(1� ✏) + ✏)�1 < exp(�L) + ✏.

We leave the proof of this inequality in Theorem 2.

The contribution of the first model in the surrogate model is at most
Pr(J1) log Pr(J1). After we remove the first model from the model list, with the surro-
gate model elpd changes by at most a small order term, not a↵ecting the final bound.
Because the separation condition with constant (✏, L) applies to model 1, . . . ,K, and
due to lack of a competition source, the same separation condition applies to model
2, . . . ,K and the same bound applies.

Theorem 2. When the separation condition (19) holds, and if the k-th model has zero

weight in stacking, wstacking
k = 0, then the probability of its winning region is bounded

by:

Pr(Jk)  (1 + (exp(L)� 1)(1� ✏) + ✏)�1 .

The right hand side can be further upper-bounded by exp(�L) + ✏.

Proof. Without loss of generality, assume wstacking
1 = 0. Let p0(ỹ|x̃) =PK

k=2 w
stacking pk(ỹ|x̃). Consider a constrained objective gelpd(w1) = E(log(w1p1(ỹ|x̃)+

(1 � w1)p0(ỹ|x̃))) where the expectation is over both ỹ and x̃ as before. Because the
max is attained at w1 = 0 and because log(·) is a concave function, the derivative at
any w1 2 [0, 1] is

d

dw1

gelpd(w1) = Eỹ,x̃

✓
p1(ỹ|x̃)� p0(ỹ|x̃)

w1p1(ỹ|x̃) + (1� w1)p0(ỹ|x̃)

◆
 0.

That is

0 �E
✓
p1(ỹ|x̃)� p0(ỹ|x̃)

p0(ỹ|x̃)

◆

=Pr(J1)E[
p1(ỹ|x̃)� p0(ỹ|x̃)

p0(ỹ|x̃)
|J1] + (1� Pr(J1))E[

p1(ỹ|x̃)� p0(ỹ|x̃)

p0(ỹ|x̃)
|J0]

�Pr(J1)E[
p1(ỹ|x̃)� p0(ỹ|x̃)

p0(ỹ|x̃)
|J1]� (1� Pr(J1)).

Rearranging this inequality arrives at

1 �Pr(J1)

✓
1 + E[p1(ỹ|x̃)� p0(ỹ|x̃)

p0(ỹ|x̃)
|J1]

◆

�Pr(J1)(1 + (exp(L)� 1)(1� ✏) + ✏).
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As a result, the model that has stacking weight zero cannot have a large probability to
predominate all other models,

Pr(J1)  (1 + (exp(L)� 1)(1� ✏) + ✏)�1 < exp(�L) + ✏.

Theorem 3. Let ⇢ = sup1kK Pr(Jk), and two deterministic functions g and g⇤ by

g(L,K, ⇢, ✏) = L(1� ⇢)(1� ✏)� logK

g⇤(L,K, ⇢, ✏) = L(1� ⇢)(1� ✏) + ⇢ log(⇢) + (1� ⇢)(log(1� ⇢)� log(K � 1)).

Assuming the separation condition (19) holds for all k = 1, . . . ,K, then the utility gain

of stacking is further lower-bounded by

elpdstacking � elpdk � max (g⇤(L,K, ⇢) +O(exp(�L) + ✏), 0) .

Proof. As before, we consider the approximate weights: wapprox
k = Pr(Jk), and the

surrogate elpd elpdsurrogate(w) =
PK

k=1

R
Jk

log (wkpk(ỹ|x̃)) pt(ỹ|x̃)p(x̃)dx̃dỹ.

elpdsurrogate(wapprox)� elpdk

=
KX

l=1

Z

Jl

log (Pr(Jl)pl(ỹ|x̃)) pt(ỹ|x̃)p(x̃)dx̃dỹ �
KX

l=1

Z

Jl

log (pk(ỹ|x̃)) pt(ỹ|x̃)p(x̃)dx̃dỹ

=
KX

l=1

Z

Jl

(log Pr(Jl) + log pl(ỹ|x̃)� log pk(ỹ|x̃)) pt(ỹ|x̃)p(x̃)dx̃dỹ

=
KX

l=1

Pr(Jl) log Pr(Jl) +
KX

l=1

(l 6= k)

Z

Jl

log(pl(ỹ|x̃)� log pk(ỹ|x̃))pt(ỹ|x̃)p(x̃)dx̃dỹ

=
KX

l=1

Pr(Jl) log Pr(Jl) +
KX

l=1

(l 6= k)

 Z

J �
l

+

Z

J •
l

!
log(pl(ỹ|x̃)� log pk(ỹ|x̃))pt(ỹ|x̃)p(x̃)dx̃dỹ

�

KX

l=1

Pr(Jl) log Pr(Jl) + (1� ✏)(1� ⇢)L� ✏

�⇢ log ⇢+ (1� ⇢) log
1� ⇢

K � 1
+ (1� ✏)(1� ⇢)L� ✏

=g⇤(L,K, ⇢, ✏)� ✏.

The last inequality comes from the fact that, under the constraint of maxk Pr(Jk) = ⇢,

the entropy
PK

k=1 Pr(Jk) log Pr(Jk) attains its minimal when each of the Pr(Jk) term
equals (1 � ⇢)/(K � 1) except for the largest term ⇢. This inequality is due to the
convexity of x log x.

Finally, using the proof of Theorem 1, the error from the surrogate is bounded,

|elpdsurrogate(wapprox)� elpdstacking(wstacking)|  O(exp(�L) + ✏).
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Hence the overall utility is bounded,

elpdstacking � elpdk

=
�
elpdstacking � elpdsurrogate(wapprox)

�
+
�
elpdsurrogate(wapprox)� elpdk

�

� g⇤(L,K, ⇢) +O(exp(�L) + ✏).

Because selection is always a specials case of averaging, the utility is further bounded
below by 0.

To replace g⇤(·) with the looser bound g(·), we only need to ensure ⇢ log ⇢ + (1 �

⇢) log 1�⇢
K�1 � � logK, for the range ⇢ 2 [1/K, 1),K � 2. The proof is elementary.

For any fixed K � 2, let h(⇢) = ⇢ log ⇢ + (1 � ⇢) log 1�⇢
K�1 + logK. It is increasing on

⇢ 2 [1/K, 1), for d
d⇢h(⇢) = log (K�1)⇢

1�⇢ � 0 . Hence, h(⇢) attains minimum at ⇢ = 1/K,

at which h(1/K) = 0.

From the constrictive example (Appendix A), g⇤(·) is a tight bound. We use the
looser bound g(·) in the main paper for its simpler form.

Theorem 4. Under the strong separation assumption

KX

k=1

Z

x̃2Ik

Z

ỹ2Y

⇣
log p(ỹ|Mk, x) < log p(ỹ|Mk0 , x)+L, 8k0 6= k⇤(x)

⌘
pt(ỹ|x,D)dỹdx̃  ✏,

and if the sets {Ik} are known exactly, then we can construct pointwise selection

p(ỹ|x, pointwise selection) =
KX

k=1

(x 2 Ik)p(ỹ|x,Mk).

Its utility gain is bounded from below by

elpdpointwise selection � elpdstacking � � log ⇢X +O(exp(�L) + ✏).

Proof.

elpdpointwise selection � elpdsurrogate(wapprox)

=
KX

l=1

Z

Il

(log pl(ỹ|x̃)� log (Pr(Il)pl(ỹ|x̃))) pt(ỹ|x̃)p(x̃)dx̃dỹ

= �

KX

l=1

Pr(Il) log Pr(Il)

� �

KX

l=1

Pr(Il) log ⇢x

= � log ⇢x.
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Finally, from the proof of Theorem 1,

|elpdsurrogate(wapprox)� elpdstacking(wstacking)|  O(exp(�L) + ✏).

We close this section with two remarks. First, Yao (2019) approximates the proba-
bilistic stacking weights under the strong separation condition (23). The result therein
can be viewed as a special case of Theorem 4 in the present paper as Pr(Jk) ⇡ Pr(Ik)
under assumption (23).

Second, most proofs only use the concavity of the log scoring rule. Therefore, some
proprieties of stacking weights could be extended to other concave scoring rules, too.
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Appendix C: Software implementation in Stan

We summarize our formulation of hierarchical stacking by pseudo code 1.

Algorithm 1: Hierarchical stacking

Data: y: outcomes; x: input on which the stacking weights vary, z: other
inputs;

pk,�i: approximate leave-one-out predictive densities of the k-th model and i-th
data.
Result: input-dependent stacking weight w(x) : X ! SK ; combined model.

1 Sample from the joint densities p(↵, µ,�|D) in hierarchical stacking model (11);
2 Compute posterior mean of wk(x̃) at any x̃, and make predictions p(ỹ|x̃, z̃) by

(12).

To code the basic additive model, we prepare the input covariate X =
(Xdiscrete, Xcontinuous), where Xdiscrete is discrete dummy variable, and Xcontinuous are
remaining features (already rectified as in (16)). The dimension of these two parts are
dcontinuous and ddiscrete.

Here we use the “grouped hierarchical priors” (Section 6.3) with only two groups,
distinguishing between continuous and discrete variables. We discuss more on the hyper
prior choice in the next section.

w1:K(x) = softmax(w⇤
1:K(x)), w⇤

k(x) =
MX

m=1

↵mkfm(x) + µk, k  K � 1, w⇤
K(x) = 0,

↵mk | �k1 ⇠ normal(0,�k1), k = 1, . . . ,K � 1, m = 1, . . . , ddiscrete,

↵mk | �k2 ⇠ normal(0,�k2), k = 1, . . . ,K � 1, m = ddiscrete + 1, . . . , ddiscrete + dcontinuous,

µk ⇠ normal(µ0, ⌧µ), �k1 ⇠ normal+(0, ⌧�1),�k2 ⇠ normal+(0, ⌧�2), k = 1, . . . ,K � 1.

Stan code for hierarchical stacking. Besides advantage listed in this paper, another
benefit of stacking now being a Bayesian model is the automated inference in generic
computing programs, such as Stan (Stan Development Team, 2020). The following Stan

program is one example of stacking with a linear additive form.

1 data {

2 int <lower=1> N; // number of observations

3 int <lower=1> d; // number of input variables

4 int <lower=1> d_discrete; // number of discrete dummy inputs

5 int <lower=2> K; // number of models

6 //when K=2, replace softmax by inverse -logit for higher efficiency

7 matrix[N,d] X; // predictors

8 // including continuous and discrete in dummy variables , no constant

9 matrix[N,K] lpd_point; //the input pointwise predictive density

10 real<lower=0> tau_mu;
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11 real<lower=0> tau_discrete;// global regularization for discrete x

12 real<lower=0> tau_con;// overall regularization for continuous x

13 }

14

15 transformed data {

16 matrix[N,K] exp_lpd_point = exp(lpd_point);

17 }

18

19 parameters {

20 vector[K-1] mu;

21 real mu_0;

22 vector <lower =0>[K-1] sigma;

23 vector <lower =0>[K-1] sigma_con;

24 vector[d-d_discrete] beta_con[K-1];

25 vector[d_discrete] tau[K-1]; // using non -centered parameterization

26 }

27

28 transformed parameters {

29 vector[d] beta[K-1];

30 simplex[K] w[N];

31 matrix[N,K] f;

32 for (k in 1:(K-1))

33 beta[k] = append_row(mu_0*tau_mu + mu[k]* tau_mu + sigma[k]*tau[k],

34 sigma_con[k]* beta_con[k]);

35 for (k in 1:(K-1))

36 f[,k] = X * beta[k];

37 f[,K] = rep_ vector(0, N);

38 for (n in 1:N)

39 w[n] = softmax(to_ vector(f[n, 1:K]));

40 }

41

42 model{

43 for (k in 1:(K-1)){

44 tau[k] ⇠ std_normal ();

45 beta_con[k] ⇠ std_normal ();

46 }

47 mu ⇠ std_normal ();

48 mu_0 ⇠ std_normal ();

49 sigma ⇠ normal(0, tau_discrete);

50 sigma_con ⇠ normal(0,tau_con);

51 for (i in 1:N)

52 target += log(exp_lpd_point[i,] * w[i]); //log likelihood

53 }

54

55 // optional block: needed if an extra layer of LOO (eq.28) is called to

evaluate the final stacked prediction.

56 generated quantities {

57 vector[N] log_lik;

58 for (i in 1:N)

59 log_lik[i] = log(exp_lpd_point[i,] * w[i]);
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60 }

To run this stacking program on model fits, we can fit all individual models in Stan, and
extract their leave-one-out likelihoods {pk,�i}. In R, we use the e�cient leave-one-out
approximation package loo (Vehtari et al., 2020):

1 library("loo") # https://mc-stan.org/loo/

2 lpd_point <- matrix(NA, nrow(X), K)

3 for (k in 1:K) {

4 fit_stan <- stan(stan_model = model_k, data = ...)

5 # input x may differ in models

6 log_lik <- extract_log_lik(fit_stan , merge_chains = FALSE)

7 lpd_point[,k] <- loo(log_lik ,

8 r_eff = relative_eff(exp(log_lik)))$pointwise

9 }

Finally, we run hierarchical stacking as a regular Bayesian model in Stan.

1 library("rstan") # https://mc-stan.org/rstan/

2 # save the stan code above to a file "stacking.stan".

3 stan_data <- list(X = X, N=nrow(X), d=ncol(X), d_discrete=d_discrete ,

4 lpd_point=lpd_point , K=ncol(lpd_point), tau_mu = 1,

5 tau_sigma = 1, tau_discrete= 0.5, tau_con = 1)

6 fit_stacking <- stan("stacking.stan", data = stan_data)

7 w_fit <- extract(fit_stacking , pars = �w�)$w # posterior simulation

of pointwise stacking weights.
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Appendix D: Prior recommendations

We believe the prior specification should follow the general principle of the weakly-
informative prior2. In the context of the additive model (Section 2.4), some weakly-
informative prior heuristics imply

• We would like to use a half-normal instead of a too wide half-Cauchy or inverse-
gamma for the model-wise scale parameter (i.e., �k ⇠ normal+(0, ⌧�)). This is not
only because generally, we prefer half-normal for its lighter right tail in hierarchical
models, but also because we know that the complete-pooling stacking (�k ⌘ 0) is
often a rational solution in many problems, to begin with.

On the contrary, a wide �2
k ⇠ InvGamma(10�2, 10�4) seems a popular choice in

the mixture of experts, which we do not recommend.

• When the number of features M is large, it is sensible to first standardize feature
such that Var(fm(x)) = 1, 1  m  M , and scale the hyper-parameter to control

Var(
PM

m=1 ↵mkfm(x)). With independent inputs, it leads to ⌧� = O(
p
1/M).

• When there are a small number of features and no extra information to incor-
porate, we often first standardize all features and use a half-normal(0, 1) prior
on model-wise scale �k (i.e., ⌧� := 1). The half-normal(0, 1) has been used as a
default informative prior for group-level scale in some applied regression tasks.

• The structure of the prior matters more than the scale of the prior. Hierarchical
stacking is typically not sensitive to the di↵erence between a half-normal(0, 1) or
half-normal(0, 2) hyper-prior on �k, although this sensitivity can be checked. But it
would be sensitive to the structure of priors, such as feature-model decomposition,
correlated priors, and horseshoe priors, as we have discussed in Section 2.4.

Second, instead of recommending a static default prior, we would rather adopt the
attitude that the prior is part of the model and can be checked and improved. Because
of our full-Bayesian formulation of hypercritical stacking, we do not have to reinvent
model checking tools. When there are concerns on the prior specification, we would like
to run prior predictive checks, sensitivity analysis by influence function or importance
sampling, and select, stacking, or hierarchically stack a sequence of priors based upon
an extra layer of (approximate) leave-one-out cross validation (28).

Choice of features and exploratory data analysis

How to construct features fm(x) on which model weights can vary is variable selection
problem in a regression (13). In ordinary statistical modeling, we often start variable
selection by exploratory data analysis. Here we cannot directly associate model weights
wki with observable quantities. Nevertheless, we can use the paired pointwise log pre-
dictive density di↵erence �ki = (log pk,�i � log pK,�i) as an exploratory approximation
to the trend of ↵k(xi). A scatter plot of �ki against x may suggest which margin of x

2For example, see https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations.

https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations
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is likely important. For example, the dependence of �ki on whether xi is in the bulk or
tail is an evidence for our previous recommendation of the rectified features.

As more variables x are allowed to vary in the stacking model, model averaging is
more prone to over-fitting. Pointwise stacking typically has a large noise-to-signal ratio
not only due to model similarity, but also a high variance of pointwise model evaluation:
the approximate leave-one-out cross validation possesses Monte Carlo errors; even if we
run exact leave-one-out, or use an independent validation set in lieu of leave-one-out,
we only observe one yi for one xi (if x is continuous) such that log pk,�i is at best an
one-sample-estimate of Eỹ|xi

(log p(ỹ|xi,Mk)) with non-vanishing variance. If fm(·) is
flexible enough, then the sample optimum of no-pooling stacking (7) always degenerates
to pointwise model selection that pointwisely picks the model that “best” fits current
realization of yi: wargmaxk pk,�i(xi) = 1, which is purely over-fitting.

Even in companion with hierarchical priors, we do not expect to include too many
features on which stacking weights depend on. In our experiments, an additive model
with discrete variables and rectified continuous variables without interaction is often
adequate. After standardizing all features such that Var(fm(x)) = 1, we typically use a
generic informative prior setting ⌧µ = ⌧� = 1 in experiments. With a moderate or large
number of features/cells, M , it is sensible to scale the hyperprior ⌧� = O(

p
1/M), or

adopt other feature-wise shrinkage priors such as horseshoe for better regularization.



44 Appendices to Bayesian Hierarchical Stacking

Appendix E: Experiment details

The replication code for experiments is available at
https://github.com/yao-yl/hierarchical-stacking-code.

Well-switch. Vehtari et al. (2017) and Gelman et al. (2020) used the same point-
wise pattern (first panel in Figure 2) in our well-switch example to demonstrate the
heterogeneity of model fit. The input contains both continuous xcon 2 RD and cat-
egorical xcat 2 {1, . . . , 8}. As per previous discussion (16), we convert all contin-
uous inputs xcon into two parts x+

con,j := (xcon,j � median(xcon,j))+ and x�
con,j :=

(xcon,j � median(xcon,j))�. We then model the unconstrained weight by a linear re-
gression

↵k(x) =
DX

j=1

�
�2j�1,kx

+
con,j + �2j,kx

�
con,j

�
+ zk[xcat], k = 1, . . . , 4; ↵5(x) = 0. (29)

And place a default prior on parameters and hyper-parameters.

zk[j] ⇠ normal(µk,�k), �j , µk ⇠ normal(0, 1), �k ⇠ normal+(0, 1).

Gaussian process regression. We use training data {xi, yi} from Neal (1998) (file
odata.txt in our repo). Yao et al. (2020) use same setting to explain the benefit of
complete-pooling stacking. The training size is n = 100. We generate additional test
data for model evaluation. The univariate input x is distributed normal(0, 1), and the
corresponding outcome y is also Gaussian. The true but unknown conditional mean is

Etrue(y|x) = ftrue(x) = 0.3 + 0.4x+ 0.5 sin(2.7x) + 1.1/(1 + x2).

In the data generating process, with probability 0.95, y is a realization from y|ftrue =
normal(mean = ftrue, sd = 0.1). With probability 0.05, y is considered an outlier and
the standard deviation is inflated to 1: y|ftrue = normal(ftrue, 1). This outlier probability
is independent of location x, and the observational noises are mutually independent.

To infer the parameter ✓ = (a, ⇢,�) in the first level GP model

yi = f(xi) + ✏i, ✏i ⇠ normal(0,�), f(x) ⇠ GP

✓
0, a2 exp

✓
�
(x� x0)2

⇢2

◆◆
.

We integrate out all local f(xi) and obtain the marginal posterior distribution

log p(✓|y) = �
1
2y

T
�
K(x, x) + �2I

��1
y �

1
2 log |K(x, x) + �2I| + log p(✓) + constant,

where K is squared-exponential-kernel, and p(✓) is the prior for which we choose an
elementwise half-Cauchy(0, 3). Using initialization (log ⇢, log a, log �) = (1, 0.7, 0.1) and
(�1,�5, 2) respectively, we find two posterior modes of hyper-parameter ✓ = (a, ⇢,�).

The posterior multimodality relies on the particular realization of x and y. We
have tried other randomly generated training datasets, among which only Neal (1998)’s
original data realization can give rise to two distinct modes. We then consider three
standard mode-based approximate inference:

https://github.com/yao-yl/hierarchical-stacking-code
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• Type-II MAP: The value ✓̂ that maximizes the marginal posterior distribution.
We further draw f |✓̂, y.

• Laplace approximation. First compute ⌃: the inverse of the negative Hessian ma-
trix of the log posterior density at the local mode ✓̂, draw z from MVN(0, I3), and
use ✓(z) = ✓̂ +V⇤1/2z as the approximate posterior samples around the mode ✓̂,
where the matrices V,⇤ are from the eigen-decomposition ⌃ = V⇤1/2VT .

• Importance resampling. First draw z from uniform(�4, 4), resample z without
replacement with probability proportional to p (✓(z)|y), and use the kept samples
of ✓(z) as an approximation of p(✓|y).

With two local modes ✓̂1, ✓̂2, we either obtain two MAPs, or two nonoverlapped
draws, (✓1s)Ss=1, (✓2s)

S
s=1. We evaluate the predictive distribution of f , pk(f |y, ✓) =R

p(f |y, ✓)q(✓|✓̂k)d✓, k = 1, 2, where q(✓|✓̂k) is a delta function at the mode ✓̂k, or the

draws from the Laplace approximation and importance resampling expanded at ✓̂k.

In the model averaging phase, we form the model weight in GP prior stacking by

w1(x) = invlogit(↵(x)), ↵(x) ⇠ GP(0,K(x)), K(xi, xj) = a exp(� ((xi � xj)/⇢)
2).

Because input x is distributed normal(0, 1), the length scale ⇢ should be constrained on
a similar scale. We use the following hyperprior for GP prior stacking:

⇢ ⇠ Inv�Gamma(4, 1), a ⇠ normal(0, 1).

The Inv�Gamma(4, 1) prior puts 98% of mass on the interval 0.1 < ⇢ < 1.2.

Election polling. In the election example, we conduct a back-test for one-week-ahead
forecasts. For example, if there are 20 polls between Aug 1 and Aug 7, we first fit each
model on the data prior to Aug 1 and forecast for each of the 20 polls in this week.
Next, we move on to forecasting for the week between Aug 8 and Aug 14. We use this
step-wise approach for both, fitting the candidate models and stacking.

We use two variants of hierarchical stacking with discrete inputs—first with inde-
pendent priors from Eq. (9) and second with correlated priors from Eq. (15). We place
default priors on the hyperparameters in both variants:

µk ⇠ normal(0, 1), �k ⇠ normal+(0, 1).

We are evaluating all combining methods on the same data, therefore we can
compare them pointwisely by selecting a reference model—in our case this is the
proposed hierarchical stacking and set it to be zero in all visualisations. For each
combination method and each poll i, we compute the pointwise di↵erence in elpds:
elpd di↵

Mj

i = elpd
Mj

i � elpdMref
i , where Mj is the j-th model and Mref is the refer-

ence model. Then we report the mean of this di↵erences over all polls in the test data,
elpd di↵Mj = 1

N

P
i elpd di↵

Mj

i , where N is the number of all polls.
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Figure 13: Same pointwise model comparisons as in Figure 7, except this time all model aver-

aging and selection methods are trained using the previous 60 days rather than 4 weeks on each

backtesting day. The pattern remains similar.

In the main text, to account for non-stationarity discussed in Section 2.5, we only use
the last four weeks prior to prediction day for training model averaging. In the end we
obtain a trajectory of this back-testing performance of hierarchical stacking, complete-
pooling, and no-pooling stacking and single model selection. The time window of four-
week is a relatively ad-hoc choice and we did not tune it. Figure 13 displays the result
when trained with the previous 60 days rather than four weeks on each backtesting day.
The pattern remains similar.

Additionally, we are interested in how models perform depending on time, as there
are few polls available in the early days of the election year, and then their number
continuously increases toward election day. This results in noisier observations in the
beginning. To suitably evaluate the combining methods, we compute the cumulative

mean elpd at each day d, elpd
*,Mj

d = 1
Nd

P
jd elpd

Mj

j , where Nd is the number of
conducted polls prior to or on day d. Then we compute the pointwise di↵erences between

these cumulative mean elpds of each method and the reference method: elpd di↵
*,Mj

d =

elpd
*,Mj

d � elpd*,Mref
d .

To get the elpd of a state, we take the average of all elpds in that state, for example
elpdNY = 1

NNY

P
i2ANY

elpdi, where NNY is the number of polls conducted in New York,
and ANY is the set of indexes of polls in New York. Figure 14 displays the state-level
log predictive density of the combined model in six representative states.



47

RI (n=7) SD (n=9) WV (n=14) GA (n=41) NC (n=66) FL (n=78)

Apr Ju
l

Oct Apr Ju
l

Oct Apr Ju
l

Oct Apr Ju
l

Oct Apr Ju
l

Oct Apr Ju
l

Oct

−0.50

−0.25

0.00

0.25

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

−0.1

0.0

0.1

0.2

−0.6

−0.4

−0.2

0.0

−0.3

−0.2

−0.1

0.0

0.1

0.2

−0.75

−0.50

−0.25

0.00

0.25

0.50

date

method hierarchical 
stacking corr

hierarchical 
stacking stacking no−pooling 

stacking
model 
selection

pointwise differences in mean cumulative test log predictive density by state

Figure 14: Log predictive density of the combined model in three small states (in the number

of available state polls n, RI, SD, WV) and three swing states (GA, NC, FL). We fix the

uncorrelated hierarchical stacking to be constant zero as a reference. The number in the bracket

is the total number of polls in that state. With a large number of state polls available, for

example, close to election day in Florida and North Carolina, no-pooling stacking performs

well. With fewer polls, no-pooling stacking is unstable, as can be seen in Rhode Island, South

Dakota, West Virginia, and the early part of Georgia plots. Hierarchical stacking alleviates this

instability, while retaining enough flexibility for a good performance with large data come in.

FL (n=78)

GA (n=41)

MI (n=29)

NH (n=48)

IL (n=18)

MO (n=23)

NY (n=27)

OH (n=58)

PA (n=65)

AZ (n=42)

NC (n=66)
UT (n=28)

CA (n=37)

VA (n=51)

WI (n=37)

MA (n=19)

MS (n=11)

NJ (n=21)

MD (n=16)

CT (n=13)

IN (n=20)

TN (n=16)

WV (n=14)

LA (n=20)

OR (n=23)

NM (n=18)

NV (n=45)

IA (n=34)

KS (n=20)

TX (n=24)

ME (n=21)

WA (n=18)

AR (n=13)

CO (n=43)

ID (n=13)

VT (n=10)

DE (n=10)

OK (n=14)

AK (n=13)

AL (n=11)

HI (n=8)

KY (n=12)

MN (n=15)
MT (n=9)

ND (n=9)

NE (n=11)

RI (n=7)

SC (n=16)

SD (n=9)

WY (n=8)

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40
week

we
ig

ht

Figure 15: In the election pooling example, the posterior mean of hierarchical stacking weight of

Model 1 (the fundamental model) in di↵erent time and states. Apart from improving predictions,

this input-varying stacking weight is also informative for model understanding: which and when

states are more sensitive to macro fundamentals.
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