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Appendix A: Lotka–Volterra Model

The Lotka-Volterra model (Lotka, 1925; Volterra, 1927) describes two interacting popu-
lations and in their original ecological setting representing predators and prey. Since the
true posterior distribution is not available, the ABC posteriors from Toni et al. (2009),
are used as benchmarks. The interaction between the predators (y) and the prey (x) is
defined by the following two differential equations:

dx

dt
= ax− xy (A.1)

dy

dt
= bxy − y, (A.2)

where the parameters of interests are a and b.

Inference on this model using ABC was considered originally in Toni et al. (2009),
and we use their same model, dataset, summary statistic and distance function in order
to test the performance of our proposed aABC-PMC algorithm. The same configuration
was also used by Järvenpää et al. (2016) in order to test their ABC extensions. The
dataset for the analysis (xobs, yobs) was obtained by using Eq. (A.1) and Eq. (A.2) with
input values a = 1 and b = 1. The sample size is n = 8 for the two species, and the
distance function for comparing real data, (x, y), with the simulated data, (xsim, ysim),
is defined as:

d[(xobs, yobs), (xsim, ysim)] =

n∑
i=1

[
(xi,obs − xi,sim)2 + (yi,obs − yi,sim)2

]
. (A.3)

The forward model solves the deterministic set of differential equations defined above
for x and y, then Gaussian noise is added from N(0, 0.52) to obtain a simulated dataset,
(xsim, ysim). The prior for both a and b is a Uniform distribution with the range [−10, 10].
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For t > 1 of the ABC-PMC algorithm, rather than using the Gaussian perturbation

kernel as displayed in Algorithm 1, the selected particles are additively perturbed by

draws from an U(−0.1, 0.1), in order to avoid degeneracy of the samplers. The impor-

tance weights are calculated by taking into account of the fact that a Uniform kernel

is used. In Toni et al. (2009), the series of tolerances is manually selected as listed in

Table 1.

For the proposed aABC-PMC procedure, the initial number of draws sampled from

the prior distributions is set at Ninit = 5 × 1, 000 in order to sufficiently explore the

parameter space. A comparison between the two procedures is done as before, in terms of

the computational time and the total number of draws, with the results shown in Table

1. The results are based on 21 independent runs and the table includes the values for the

run that produced the median number of total draws. Although aABC-PMC requires

more iterations, the proposed procedure outperforms Toni et al. (2009)’s implementation

of ABC-PMC in terms of total number of draws and computational time.

The ABC posteriors for parameters a and b for the manually-selected tolerances

of Toni et al. (2009) and the proposed aABC-PMC approach are displayed in Figure

1. Additionally, ABC posteriors are displayed for two quantile-selected tolerances (0.5

and 0.75) for comparison. For each iteration t > 1 of the ABC–PMC procedure, in the

first analysis the quantile of level 0.5 (i.e. the median) of the distances of the accepted

particles from iteration t − 1 is used in order to provide the tolerance for the next

iteration, while in the second analysis the quantile of level 0.75 of the distances of the

accepted particles from iteration t−1 is used. The quantile-selected tolerance algorithms

are stopped once the final number of draws needed by the aABC–PMC is reached. The

ABC–PMC algorithm that uses a quantile-selected tolerance of 0.5 is stopped after

T = 11 iterations, with a final tolerance equal to ε11 = 5.57. When a quantile of

0.75 is used, T = 21 iterations are performed by the ABC–PMC algorithm and the

final tolerance is ε21 = 5.43. Both final tolerances are higher than the one adaptively

selected by the proposed aABC-PMC approach, which is ε9 = 4.76. As shown in Fig. 1,

when using the ABC–PMC algorithm with quantile-selected tolerances of 0.5 and 0.75,

less informative posterior distributions are obtained than the posterior distributions

obtained with the aABC–PMC approach.

The series of tolerances for the proposed aABC-PMC algorithm is adaptively selected

in such a way that the forward model is drawn from fewer times than the manually-

selected tolerances from Toni et al. (2009) and the common quantile-selected approaches.

Though the final tolerance from Toni et al. (2009), ε5 = 4.23, is smaller than the

final tolerance of aABC-PMC, ε9 = 4.76, the posteriors for a (Hdist = 0.25) and b

(Hdist = 0.34) are comparable (Figure 1)1.

1The Hellinger distances are calculated between the ABC posterior distributions found by Toni
et al. (2009) and those retrieved with the proposed aABC-PMC approach.
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Toni et al. (2009) aABC-PMC

t εt Dt t εt qt Dt

1 30 3,541 1 27.82 5,000

2 16 48,402 2 25.56 0.65 2,734

3 6 52,471 3 22.59 0.50 3,645

4 5 25,097 4 18.52 0.33 5,853

5 4.3 47,521 5 10.19 0.09 12,429

6 6,70 0.17 12,146

7 5,73 0,49 12,295

8 4,99 0.51 20,890

9 4.76 0.78 22,870

Total 177,032 97,862

Table 1: Lotka–Volterra model results. The number of draws needed in each iteration
to reach N = 1, 000 accepted values for the ABC-PMC algorithm of Toni et al. (2009)
and the aABC-PMC algorithm. (The displayed results were obtained by running the
procedure 21 times and using the run that produced the median number of total draws.)
The aABC-PMC algorithm quantiles automatically selected through the iterations are
listed under qt. The procedure stopped once the quantile q10 = 0.999 was calculated.
For the ABC–PMC algorithm a total of 177, 032 (1, 074 sec.) draws were required, while
the aABC-PMC took 97, 862 (548 sec.) draws overall.
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Figure 1: Lotka–Volterra posterior distributions. Comparison between the final posterior
distributions for (a) a and (b) b obtained using Toni et al. (2009)’s manually selecting
the tolerances (black), by fixing the quantile equal to .50 (green) and 0.75 (cyan), and
by using the aABC-PMC (blue).
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Appendix B: Gaussian Mixture Model: Sedki et al.
(2012)’s Results

Thanks to Sedki et al. (2012), a comparison for this example with the method proposed
by Del Moral et al. (2012) was possible. (We also discuss the Del Moral et al. (2012)
method in Sec. 3.3 of the main text.) The desired particle sample size was fixed at
N=10,000 and their final threshold was εfinal = 0.09. Using the same εfinal, the results
of the analyses for the aABC-PMC approach are based on 21 independent runs with the
same dataset yobs = 0 and k = 5 (i.e. Ninit = 50000). The run with the median number
of total draws used the simulator 399, 577 times. For the ABC–SMC algorithm, we set
the parameters required by the algorithm by using the specifications privided in Sedki
et al. (2012): N = 10000, α = 0.95, M = 50, nbthreshold = N/2 and εfinal = 0.09 (these
parameters are defined in Sec. 3.3 of the main text, while further details can be found
in Del Moral et al. (2012)). We performed the analyses on 21 independent runs with
the same dataset, yobs = 0, and considered that run the produced the median number
of total draws. For that run the total number of draws was equal to 3, 088, 550. We
note that the number of draws reported by Sedki et al. (2012) in their paper is 4.6 · 106

(Table 1, Sedki et al. 2012).
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