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SUPPLEMENTARY MATERIAL FOR “A CAUSAL BOOTSTRAP”

By Guido Imbens∗ and Konrad Menzel†

Stanford GSB∗ and New York University†

This online supplement contains additional formal results and proofs for [7]. Section A gives
formal conditions under which the pivotal version of the causal bootstrap achieves refinements over
Gaussian inference. Section B contains the proofs for formal results in the paper.

APPENDIX A: REFINEMENTS

In this appendix, we state conditions under which the pivotal version of the causal bootstrap can
achieve refinements over the Gaussian asymptotic approximation. For expositional ease, we only
state a result regarding refinements for the case of completely randomized treatment assignment,
where we assume

(Yi(0), Yi(1))⊥⊥Wi

In this section, we let F0(y0), F1(y1) denote the respective marginal distributions of potential out-
comes in the infinite superpopulation, and their (finite) population and sample counterparts are
marked with p- and s-superscripts. We also assume that the bootstrap uses the respective empirical
counterparts

F̂0n(y0) :=
1

n(1− p)

N
∑

i=1

Ri(1−Wi)1l{Yi ≤ y0}

F̂1n(y1) :=
1

np

N
∑

i=1

RiWi1l{Yi ≤ y1}

as estimators for these marginal distributions.
We state sufficient conditions for refinements in terms of a general smooth functional τ(F0, F1)

with variance bound σ(F0, F1), where for the case of the average treatment effect,

τ(F0, F1) := EF1 [Yi(1)]− EF0 [Yi(0)], and σ(F0, F1) := σ(Ciso(F0, F1))

We assume throughout that the functionals τ(·) and σ(·) are Fréchet differentiable: For a Banach
space H we say that a functional P 7→ T (P ), T : H → R is Fréchet differentiable at P ∈ H if there
exists a bounded linear functional T ′ : h 7→ T ′(P )(h), T ′ : H → R such that

lim
h→0

|T (P + h)− T (P )− T ′(P )(h)|
‖h‖ = 0

In a similar fashion, we can also define higher-order Fréchet derivatives: the (s+ 1)th derivative of
T (P ) is a mapping T (s+1)(P )(h1, . . . , hs+1) that is multilinear in its s + 1 arguments and that is
defined recursively as

lim
hs+1→0

∣

∣T (s)(P + hs+1)(h1, . . . , hs)− T (s)(P )(h1, . . . , hs)− T (s+1)(P )(h1, . . . , hs, hs+1)
∣

∣

‖hs+1‖
= 0
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Denoting Vi := (Yi(0), Yi(1)), we let

g1p(Vi) := τ ′(F01)(δVi − F01)

g2p(Vi, Vj) := τ ′′(F01)(δVi − F01, δVj − F01)

where δv is the point mass at Vi = v, i.e. a distribution with P (Vi = v) = 1.

Assumption A.1. (Smooth Functionals) (a) The functionals τ(F0, F1), τ(F0, F1), and σ(F0, F1)
are three times Fréchet-differentiable, with two bounded derivatives. Furthermore, (b) the random
variable g1(Vi) satisfies Cramér’s condition,

(A.1) ̺ := 1− sup
t:
√
n≥|t|≥t0

E [exp {itg1p(Vi)}] > 0

where t0 := b1/E |g1p(Vi)|3 for some small constant b1 > 0, and the expectation is taken over the
distribution Ciso(F0, F1), and the analogous condition holds for the lower bound.

Part (a) imposes smoothness conditions on the functionals characterizing the bounds, in partic-
ular for the functional T (F0, F1) := (τ(F0, F1) − τ(F p

01))/σ(F0, F1), we have that ‖T (2)‖2∞ < ∞.
Part (b) translates the formulation of Cramérs condition from [5] into the notation of this paper.

Theorem A.1. (Refinements) Suppose that Assumptions 1.1, 1.2, and A.1 hold, and that
the population consists of draws from a distribution of Yi(0), Yi(1) whose marginals are non-lattice
with six bounded moments. Then we have

∥

∥

∥

∥

∥

P
∗
n

(

√
n
τ(F̂ ∗

0n, F̂
∗
1n)− τ(F̂0n, F̂1n)

σ(F̂ ∗
0n, F̂

∗
1n)

)

− P

(

√
n
τ(F̂0n, F̂1n)− τ(F s

0 , F
s
1 )

σ(F̂0n, F̂1n)

)
∥

∥

∥

∥

∥

∞
= OP (n

−1)

Proof of Theorem A.1: Let n∗ := min{n,N−n}. If n∗ = N−n and its value remains bounded as n → ∞, then we
can ignore the contribution of sampling uncertainty and will focus on randomization error alone. Hence, without loss
of generality we can focus on the second case in which both n, n∗ → ∞. In the following we let Vi := (Yi(0), Yi(1), Xi)

′

denote the attributes and potential outcomes for the ith observation, and without loss of generality we assume that
observations are ordered such that Ri = 1 for i = 1, . . . , n and Ri = 0 for i = n+ 1, . . . , N .

Separate contributions of sampling and randomization error. We can write the estimation error in the
upper bound for τ as

√
n(τ̂ − τ ) =

√
n(τ (F̂0n, F̂1n)− τ (F s

0n, F
s
1n)) +

√
n(τ (F s

0 , F
s
1 )− τ (F p

0 , F
p
1 )) =: B1 +B2

In the following we suppress the L,U superscripts and take the expansions to apply to either bound. We first consider
separate stochastic expansions for the terms B1, B2, noting that B1 is conditionally independent of B2 given F s

01. We
also let S2

1 , S
2
2 denote the respective variances of B1, B2 under the distribution C(F̂1n, F̂0n).

Orthogonal decomposition for sampling error. We denote Vi := (Yi(0), Yi(1), Xi). Also let

g1s(Vi) :=
N − 1

N − n
(E[τ (F s

0 , F
s
1 )|Vi]− E[τ (F s

0 , F
s
1 )])

g2s(Vi, Vj) :=
(N − 2)(N − 3)

(N − n)(N − n− 1)

(

E[τ (F s
0 , F

s
1 )|Vi, Vj ]− E[τ (F s

0 , F
s
1 )]−

N − n

N − 2
(g1s(Vi) + g1s(Vj))

)

where we also let σ2
1s := Varp(g1s(Vi)).

Now consider T1 ≡ T1(Z1, . . . , Zn) := B1/S1. By Theorem 1 in [4], T1 can be expanded according to

T1 = EpT1 + U11 + U21 +R31
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where U11 :=
∑N

i=1 g1s(Vi) and U21 :=
∑N

i=1

∑N
j=1 g2s(Vi, Vj) and

EpR
2
31 ≤ n−1

∗ E
[

(n∗D1D2T1)
2] =: n−1

∗ δs

where

D1D2T1 := T1(V1, V2, . . . , Vn)− T1(Vn+1, V2, . . . , Vn)− T1(V1, Vn+2, . . . , Vn) + T1(Vn+1, Vn+2, . . . , Vn)

Adapting the formal argument in sections 2.3 and 2.6 of [2] we can bound

δs := E
[

(n∗D1D2T1)
2
]

≤ Cn−2
∗ ‖T (2)‖2∞

for some constant C, noting that the relevant bounds are in terms of marginal distributions and therefore continue
to apply for sampling without replacement. It follows from Assumption A.1 that δs = O(n−2

∗ ).

Orthogonal decomposition for randomization error. From (5.2) and Section 2.6 in [2] we obtain a similar
decomposition for the randomization error conditional on the sample. Specifically, let

g1r(Vi) :=
n− 1

n− n1

1
∑

w=0

ξ(w) (E[τ (F s
0 , F

s
1 )|Yi(z)]− E[τ (F s

0 , F
s
1 )])

g2r(Vi, Vj) :=
(n− 2)(n− 3)

(n− n1)(n− n1 − 1)

1
∑

w,w′=0

ξ(w)ξ(w′)

×
(

E[τ (F s
0 , F

s
1 )|Yi(z), Yj(z

′)]− E[τ (F s
0 , F

s
1 )]

n− n1

n− 2
(g1r(Vi) + g1r(Vj))

)

where ξ(w) := (w − p)/(1 − p), and we also let σ2
1r := Varp(g1r(Vi)). Then, applying Theorem in [4] again, we can

expand T1 ≡ T2(V1, . . . , Vn) := B2/S2 as

T2 = EsT2 + U12 + U22 +R32

where U12 :=
∑N

i=1 g1r(Vi) and U22 :=
∑N

i=1

∑N
j=1 g2r(Vi, Vj) and

EpR
2
32 ≤ C(n∗p)

−2‖T (2)‖2∞

Edgeworth expansion. By Theorem 1 in [4], these bounds on the remainders R1n, R2n establish the validity
of separate orthogonal expansions

(A.2) T1 + T2 = E[T1 + T2] + (U11 + U21) + (U12 + U22) + (R1n +R2n)

where E[R2
1n + R2

2n] ≤ C‖T (2)‖2∞(np)−1. Noting that U21, U22 are conditionally independent of U11, U12, it follows
from Theorem 1.1 in [5] and the law of iterated expectations that the sum

√
n(τ̂ − τ )/σ = (B1 +B2)/(S1 + S2) also

has an Edgeworth expansion

P

(

√
n
τ (F̂0n, F̂1n)− τ (F p

0 , F
p
1 )

σ(F̂1n, F̂0n)
≤ t

)

= Φ(t)− (1− 2q)αs + (1− 2p)αr + 3(κs + κr)

6n(N − n)/N
Φ′′′(t) +∆n

where ∆n = O((np)−1), where the coefficient on the second term in the Edgeworth expansion, n−1/2(1−2q)αs +(1−
2p)αr +3(κs +κr) corresponds, up to order n−1, to the third moment of the approximand (U11 +U21)+ (U12 +U22).
Specifically, we have

αs :=
1

N

N
∑

i=1

σ−3g1s(Vi)
3

αr :=
1

N

N
∑

i=1

σ−3g1r(Vi)
3

κs :=
2Nq(1− q)

N − 1

N
∑

i=1

i−1
∑

j=1

σ−3g2s(Vi, Vj)g1s(Vi)g1s(Vj)

κr :=
2Nqp(1− p)

N − 1

N
∑

i=1

i−1
∑

j=1

σ−3g2r(Vi, Vj)g1r(Vi)g1r(Vj)

Under Assumption A.1 we can verify that these cumulants are bounded as N increases.
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Edgeworth expansion for bootstrap distribution. From the basic consistency argument, the bootstrap
estimate F̂01n := C(F̂0n, F̂1n) is consistent for the finite-population distribution F p

01 := C(F p
0 , F

p
1 ), and inherits

its main properties from the same distribution for the infinite meta-population, F01 := C(F0, F1). Specifically, the
bootstrap distribution satisfies an analogous orthogonal expansion to (A.2), and Cramér’s condition (A.1) holds with
the same constant ̺.

Specifically, given F̂0n, F̂1n we define the bootstrap influence functions g∗1s(w1), g
∗
1r(w1), g

∗
2s(w1, w2), g

∗
2r(w1, w2),

and σ∗ in analogy to their sampling/randomzation counterparts. We then have that for the bootstrap distribution,

P
∗
n

(

√
n
τ (F̂ ∗

0n, F̂
∗
1n

σ(F̂ ∗
1n, F̂

∗
0n)

− τ (F̂0n, F̂1n)) ≤ t

)

= Φ(t)− (1− 2q)α∗
s + (1− 2p)α∗

r + 3(κ∗
s + κr∗)

6n(N − n)/N
Φ′′′(t) + ∆∗

n

where ∆∗
n = O((np)−1), and

α∗
s :=

1

N

N
∑

i=1

(σ∗)−3g∗1s(V
∗
i )

3

α∗
r :=

1

N

N
∑

i=1

(σ∗)−3g∗1r(V
∗
i )3

κ∗
s :=

2Nq(1 − q)

N − 1

N
∑

i=1

i−1
∑

j=1

(σ∗)−3g∗2s(Vi, Vj)g
∗
1s(Vi)g

∗
1s(Vj)

κ∗
r :=

2Nqp(1− p)

N − 1

N
∑

i=1

i−1
∑

j=1

(σ∗)−3g∗2r(Vi, Vj)g
∗
1r(Vi)g

∗
1r(Vj)

Convergence of bootstrap cumulants. It remains to be shown that σ∗ and the cumulants α∗
1, α

∗
2, κ

∗
1 , κ

∗
2

converge in probability at a root-n rate to their population counterparts. Under the assumption of six bounded
moments for g1s, g1r, g12s, g12r and noting that 0 < p < 1, this can be established using a finite-population CLT. The
conclusion then follows from Theorem 1.1 in [5]

APPENDIX B: DERIVATIONS AND PROOFS FOR RESULTS IN THE MAIN TEXT

B.1. Randomization Distribution for F̂0(y0), F̂1(y1). We first compute the randomization co-

variance Covp
W,R(F̂0(y0), F̂1(y1)) given the population distribution F p

01(y0, y1), where

F̂0(y0) =
1

n(1− p)

N
∑

i=1

Ri(1−Wi)1l{Yi(0) ≤ y0}

F̂1(y1) =
1

np

N
∑

i=1

RiWi1l{Yi(1) ≤ y1}

In the following we write A0i := 1l{Yi(0) ≤ y0} and A1i := 1l{Yi(1) ≤ y1}, and take any moments to be with respect
to the distribution of Ri and Wi and conditional on the values of (Yi(0), Yi(1))

N
i=1 in the population. We then have

E[F̂0(y0)F̂1(y1)] =
1

n2p(1− p)
E

[

N
∑

i=1

N
∑

j=1

RiRj(1−Wi)WjA0iA1j

]

=
1

n2p(1− p)

N
∑

i=1

N
∑

j=1

E [RiRj(1−Wi)Wj ]A0iA1j

=
1

n2p(1− p)

N
∑

i=1

∑

j 6=i

E [RiRj ]E [(1−Wi)Wj ]A0iA1j

=
1

n2p(1− p)

N
∑

i=1

∑

j 6=i

n(n− 1)

N(N − 1)

n2p(1− p)

n(n− 1)
A0iA1j

=
1

N(N − 1)

N
∑

i=1

∑

j 6=i

A0iA1j =
1

N(N − 1)

([

N
∑

i=1

A0i

][

N
∑

j=1

A1j

]

−
N
∑

i=1

A0iA1i

)
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so that

Cov(F̂0(y0), F̂1(y1)) = − 1

N − 1
(F p

01(y0, y1)− F p
0 (y0)F

p
1 (y1))

To evaluate Cov
(

F̂0(y0), F̂0(y1)
)

, let B0i := 1l{Yi(0) ≤ y0} − F p
0 (y0) and B1i := 1l{Yi(0) ≤ y1} − F p

0 (y1). We can

then write

Cov
(

F̂0(y0), F̂0(y1)
)

=
1

n2(1− p)2

N
∑

i=1

N
∑

j=1

E [RiRj(1−Wi)(1−Wj)]B0iB1j

=
1

n2(1− p)2





n
∑

i=1

n

N

n(1− p)

n
B0iB1i +

N
∑

i=1

∑

j 6=i

n(n− 1)

N2

n(1− p)(n(1− p)− 1)

n2
B0iB1j





=
1

n(1− p)N

N
∑

i=1

B0iB1i +
(n− 1)(n(1− p)− 1)

n2(1− p)





1

N2

N
∑

i=1

∑

j 6=i

B0iB1j





=

[

1

N

N
∑

i=1

B0iB1i

]

(

1

n(1− p)
− (n− 1)(n(1− p)− 1)

Nn2(1− p)

)

= (min{F p
0 (y0), F

p
0 (y1)} − F p

0 (y0)F
p
0 (y1))

(

1

n(1− p)
− 1

N
+O

(

1

nN

))

Similarly,

Cov
(

F̂1(y0), F̂1(y1)
)

= (min{F p
1 (y0), F

p
1 (y1)} − F p

1 (y0)F
p
1 (y1))

(

1

np
− 1

N
+O

(

1

nN

))

Furthermore,

Cov
(

F̂0(y0), F̂0(y1)
)

=
1

n
min{F p

0 (y0), F
p
0 (y1)} − F p

0 (y0)F
p
0 (y1)

Cov
(

F̂1(y0), F̂1(y1)
)

=
1

n
min{F p

1 (y0), F
p
1 (y1)} − F p

1 (y0)F
p
1 (y1)

We let H denote the covariance kernel of the randomization process with elements

H00(y0, y
′
0) = lim

n
nCov(F̂0(y0), F̂0(y

′
0)) =

(

1

1− p
− n

N

)

(

min{F p
0 (y0), F

p
0 (y

′
0)} − F p

0 (y0)F
p
0 (y

′
0)
)

H01(y0, y1) = lim
n

nCov(F̂0(y0), F̂1(y
′
1)) = lim

n

n

N
(F p

01(y0, y1)− F p
0 (y0)F

p
1 (y1))(B.1)

H11(y1, y
′
1) = lim

n
nCov(F̂1(y1), F̂1(y

′
1)) =

(

1

p
− n

N

)

(

min{F p
1 (y1), F

p
1 (y

′
1)} − F p

1 (y1)F
p
0 (y

′
1)
)

Note also that 1
1−p

≥ 1 ≥ n
N

≥ 0 and 1
p
≥ 1 ≥ n

N
≥ 0, so that H00(·, ·) and H11(·, ·) are nonnegative.

B.2. Proofs for Section 2.5.

B.2.1. Least Favorable Coupling for the Average Treatment Effect. We first prove a more general
result than Proposition 2.1 by showing that the isotone coupling of potential outcomes in fact results in a distribution
for the ATE parameter which is dominates by that under any other coupling in the sense of second-order stochastic
dominance (SOSD):

Lemma B.1. (Ordering of Distributions) Let F01 be an arbitrary joint distribution with marginal distributions

F0 and F1, and let F iso
01 := Ciso(F0, F1) be the joint distribution under the isotone coupling. Then for any convex

function, the randomization distribution for τ̂ATE satisfies

EF iso
01

[v(τ̂ATE)] ≥ EF01
[v(τ̂ATE)]

For any strictly convex function v(·) this inequality is strict whenever F01 6= F iso
01 .

This result is a straightforward consequence of the familiar observation that the isotone (assortative) coupling of
potential outcomes results in the distribution of Yi(0)+Yi(1) which is dominated according to second-order stochastic
dominance by the distribution resulting from any other coupling (see e.g. [1], [6], and [8]). For illustrative purposes,
we give a complete proof here.
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Proof: In order to establish second-order stochastic dominance with respect to the isotone assignment Yi(1) =
F−1
1 (F0(Yi(0))), consider the expectation of v(τ̂ATE) for any convex function v(u). Note that for any pair of obser-

vations i, j we can write

τ̂ATE =
1

n
(B−ij +RiWi (Yi(0)/(1− p) + Yi(1)/p) +RjWj (Yj(0)/(1− p) + Yj(1)/p))

where B−ij :=
∑

k 6=i,j Rk (Wk(Yk(0)/(1− p) + Yk(1)/p)− Yk(0)/(1− p))− (RiYi(0) +RjYj(0))/(1− p).
We can now consider the change in E[v(τ̂ATE)] from pairwise substitutions of potential outcomes between units i

and j. Specifically suppose that under the initial coupling, the potential outcomes for unit i are given by Yi(0), Yi(1),
and the potential outcomes for unit j are Yj(0), Yj(1). We then consider the effect of switching the assignment to
potential outcomes Yi(0), Yj(1) for unit i, and potential outcomes Yj(0), Yi(1) for unit j.

Since Wi,Wj are independent of Wk, that change leads to an increase in E[v(τ̂ATE)] if and only if

0 ≤ P (Wi = 1,Wj = 0)

{

v

(

1

n
(B−ij + Yi(0)/(1− p) + Yj(1)/p)

)

− v

(

1

n
(B−ij + Yi(0)/(1− p) + Yi(1)/p)

) }

+P (Wi = 0,Wj = 1)

{

v

(

1

n
(B−ij + Yj(0)/(1− p) + Yi(1)/p)

)

− v

(

1

n
(B−ij + Yj(0)/(1− p) + Yj(1)/p)

) }

= p(1− p)

{

v

(

1

n
(B−ij + Yi(0)/(1− p) + Yj(1)/p)

)

+ v

(

1

n
(B−ij + Yi(0)/(1− p) + Yj(1)/p)

)

−v

(

1

n
(B−ij + Yi(0)/(1− p) + Yi(1)/p)

)

− v

(

1

n
(B−ij + Yj(0)/(1− p) + Yj(1)/p)

) }

for any pair of observations with Ri = Rj = 1. Noting that for any convex function v(·), v(b+x0+x1) is supermodular
in x = (x0, x1)

′, this difference is nonnegative whenever Yi(0) − Yj(0) and Yi(1) − Yj(1) have the opposite sign.
Furthermore, if in addition v(·) is strictly convex, the first inequality is strict.

Since any coupling of potential outcomes can be obtained from the isotone assignment by pairwise substitutions
of this form, the isotone assignment maximizes the expectation

E[v(τ̂ATE)] = E

[

v

(

1

n

N
∑

i=1

Ri {WiYi(1)/p− (1−Wi)Yi(0)/(1− p)}
)]

for all convex functions v(·). Therefore the distribution of τ̂ATE under the isotone assignment dominates that under
any alternative coupling, as claimed above.

Proof of Proposition 2.1:. The claim in the proposition follows immediately from Lemma B.1 and the
observation that the function v(y) = y2 is strictly convex

B.3. Proofs for Section 5.

B.3.1. Proof of Theorem 5.1. From standard results (see e.g. Example 19.6 in [9]), the class F := {(−∞, y] :
y ∈ R} is Glivenko-Cantelli, so that (F̂0 −F p

0 , F̂1 −F p
1 ) converges to zero almost surely as an element of the space of

bounded functions on R. Since Assumption 2.1 is sufficient to guarantee that the functionals τ (F0, F1) and σ(F0, F1),
are continuous in F0, F1, the claim of the Theorem follows immediately from the continuous mapping theorem (see
e.g. Theorem 18.11 in [9])

For the proof of Theorem 5.2, we need to characterize functional convergence of the randomization process. To that
end, we first introduce some standard notation from empirical process theory (see [10]). Let F := {1l{y ≤ (−∞, t]} :
t ∈ R} be the class of indicator functions for the left-open half-lines on R and let ℓ∞(F) be the space of bounded
functions from F to R endowed with the norm ‖z‖F := supf∈F |z(f)|. Also, let BL1 denote the set of all functions
h : ℓ∞F 7→ [0, 1] with |h(z1)− h(z2)| ≤ ‖z1 − z2‖F .

Lemma B.2. Suppose that (Yi(0), Yi(1))
iid∼ F01. Then the randomization process

Ĝn :=
√
n

(

F̂0 − F p
0

F̂1 − F p
1

)

converges in outer probability to G under the bounded Lipschitz metric,

sup
h∈BL1

|EWh(Ĝn)− Eh(G)| → 0

in outer probability, where G is a Gaussian process with covariance kernel H.
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Proof: As before, denote the joint c.d.f. of potential outcomes (observed and counterfactuals) for the n units
included in the sample with

F s
01(y0, y1) :=

1

n

N
∑

i=1

Ri1l{Yi(0) ≤ y0, Yi(1) ≤ y1}

and the empirical c.d.f. among the units included in the sample for which Wi = 1,

F t
01(y0, y1) :=

1

np

N
∑

i=1

RiWi1l{Yi(0) ≤ y0, Yi(1) ≤ y1}

Using this notation we can write
√
n(F t

01(y0, y1)− F p
01(y0, y1)) =

√
n(F t

01(y0, y1)− F s
01(y0, y1)) +

√
n(F s

01(y0, y1)− F p
01(y0, y1))

Since Ri,Wi are drawn at random and without replacement, it follows from Theorem 3.1 in [3] that
√
n(F t

01(y0, y1)− F s
01(y0, y1))  GF s

01√
n(F s

01(y0, y1)− F p
01(y0, y1))  GF

p

01

for Brownian bridges GF s
01

andGF
p
01

. Since for any joint distribution F01(y0, y1) the marginals satisfy limy1→∞ F01(y0, y1) =

F0(y0) for each y0, weak convergence of the joint process implies weak convergence of the marginal empirical processes,
√
n(F t

0 − F p
0 )  GF s

0
+GF

p
0√

n(F t
1 − F p

1 )  GF s
1
+GF

p
1

Finally, F̂1(y1) ≡ F t
1(y1) and F̂0(y0) ≡ 1

(p−1)
(F s

0 (y0) − pF t
0(y0)), establishing the claim, where the structure of the

covariance kernel follows from the point-wise calculations in the derivation of (B.1)

B.3.2. Proof of Theorem 5.2:. From Assumption 2.1 it is immediate that τ (F0, F1) is Hadamard-differentiable.
Lemma B.2 and the functional delta method, see e.g. Theorem 20.8 in [9], then imply asymptotic normality of√
n(τ̂ − τ )/σ(F0, F1). Theorem 5.2 then follows from Slutsky’s theorem and consistency of σ̂ from Theorem 5.1

We next turn to the bootstrap distribution: Consider the bootstrap replicates

F̂ ∗
0 (y0) :=

1

n(1− p)

n
∑

i=1

R∗
i (1−W ∗

i )1l{Y ∗
i (0) ≤ y0}, F̂ ∗

1 (y1) :=
1

np

n
∑

i=1

R∗
iW

∗
i 1l{Y ∗

i (1) ≤ y1}

by randomizing from F̂01. We also define the asymptotic covariance kernel Hiso corresponding to the coupling Ciso

in analogy to (B.1) where F01 is replaced with Ciso(F0, F1). We first show the two following Lemmas:

Lemma B.3. Suppose that (Yi(0), Yi(1))
iid∼ F01. Then for any copula C : [0, 1]2 → [0, 1],

sup
y0,y1∈R

∣

∣

∣
C(F̂0, F̂1)(y0, y1)−C(F p

0 , F
p
1 )(y0, y1)

∣

∣

∣

a.s.→ 0

Proof: From standard results, the class F := {(−∞, y] : y ∈ R} is Glivenko-Cantelli, so that (F̂0 − F p
0 , F̂1 − F p

1 )
converges to zero almost surely as an element of the space of bounded functions on R. Noting that any copula
C : [0, 1]2 → [0, 1] is a bounded nondecreasing function in each of its arguments, it follows that

sup
y0,y1∈R

∣

∣

∣
C(F̂0, F̂1)(y0, y1)−C(F p

0 , F
p
1 )(y0, y1)

∣

∣

∣

a.s.→ 0

establishing the claim

Lemma B.4. Suppose that (Yi(0), Yi(1))
iid∼ F01. Then the bootstrap process

Ĝ∗
n :=

√
n

(

F̂ ∗
0 − F̂0

F̂ ∗
1 − F̂1

)

converges in outer probability to G under the bounded Lipschitz metric, that is

sup
h∈BL1

∣

∣

∣
EWh(Ĝ∗

n)− Eh(G)
∣

∣

∣
→ 0

in outer probability, where G is a Gaussian processes with covariance kernel H.
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Proof: By construction of the coupling (Y ∗
i (0), Y

∗
i (1)), the marginal distributions of Y ∗

i (0) and Y ∗
i (1) are equal

to F̂0 and F̂1, respectively. By construction of the bootstrap, the bootstrap replications F̂ ∗
0 , F̂

∗
1 are generated by

randomization from the samples (Ỹi(1), Ỹi(1))
n
i=1 corresponding to the joint distribution F̂01 := Ciso(F̂0, F̂1).

Now let Ĥiso the covariance kernel obtained from (B.1) replacing F0 with F̂0, F1 with F̂1, and F01 with Ciso(F̂0, F̂1),
respectively. By construction, the bootstrap distribution of Ĝ∗

n conditional on F̂0, F̂1 have covariance given by Ĥ
iso.

Finally, Ĥiso is a continuous function of Ciso(F̂0, F̂1). Hence by Lemma B.3 and the continuous mapping theorem we
have that

‖Ĥiso −H
iso‖ a.s.→ 0

which completes the proof.
The claim of the Lemma then follows from the same arguments as in Lemma B.2 and the continuous mapping

theorem

B.3.3. Proof of Theorem 5.3:. It follows from Assumption 2.1 that τ (F0, F1), σ(F0, F1) are Hadamard dif-
ferentiable, so that Theorem B.4 follows from Lemma B.4 and the functional Delta method (e.g. Theorem 20.8 in
[9])

B.4. Proofs for Section 6.

B.4.1. Proof of Proposition 6.1.. To derive the least favorable coupling given covariates Xi, notice that by
the conditional variance (ANOVA) identity,

Var(Wi(Yi(0) + Yi(1))) = E[Var(Wi(Yi(0) + Yi(1))|Xi)] + Var(E[Wi(Yi(0) + Yi(1))|Xi])

Since the conditional mean E[Yi(0)+Yi(1)|Xi,Wi] is invariant to the coupling, the unconditional variance ofWi(Yi(0)+
Yi(1)) is maximized by the conditional copula CX(·|x) which maximizes the conditional variance of Yi(0) + Yi(1).
Hence, applying Proposition 2.1 to the conditional distribution of Yi(0) + Yi(1) given Xi, it follows that the least
favorable coupling in CX is the isotone coupling,

CX(u, v|x) := min{u, v}, for all x

By the same line of reasoning, the least favorable coupling in the set CB is the isotone coupling conditional on
Bi = b(Xi), which by Lemma 6.1 yields a randomization distribution with larger asymptotic variance than any joint
distribution F01(y0, y1) := CX [F0, F1], which establishes the claim

B.4.2. Proof of Theorem 6.1. The proofs of Theorems 5.1-5.3 followed from Lemmas B.2-B.4 and the
observation that for the completely randomized case, the functional σ(F0, F1) is Hadamard-differentiable given the
assumptions. By inspection, the remaining steps go through unchanged for the observational case as well.

For the extension of Lemma B.2 to the joint distribution of Yi(0) (Yi(1), respectively), b(Xi), and e(Xi), notice
first that Theorem 3.1 in [3] holds for multivariate distributions of arbitrary (finite) dimension. Specifically, if we let
F p
01(y0, y1, b, e) and F s

01(y0, y1, b, e) denote the joint empirical c.d.f. for (Yi(0), Yi(1), b(Xi), e(Xi)) in the population
and the sample, respectively, we have that

√
n(F s

01(y0, y1, b, e)− F p
01(y0, y1, b, e)) GF

p
01

where GF
p

01

is a Brownian bridge with covariance kernel depending on F p
01.

Next, let F s
01(y0, y1, b, e) be the empirical c.d.f. of (Yi(0), Yi(1), b(Xi), e(Xi)) among the units with Ri = Wi = 1.

Since Wi are independent draws from a Bernoulli distribution with conditional success probabilities e(Xi), we can
use a conditional multiplier CLT, see e.g. Theorem 2.9.7. in [10] to obtain

√
n(F t

01(y0, y1, b, e)− F s
01(y0, y1, b, e)) GF s

01

for a Brownian bridgeGF s
01
. By Assumption 6.1, the components (F s

01(y0, y1, b, e)−F p
01(y0, y1, b, e) and F t

01(y0, y1, b, e)−
F s
01(y0, y1, b, e) are uncorrelated, so that GF s

01
and GF

p
01

are independent.
It then follows that the randomization process

Ĝn :=
√
n

(

F̂0(y0, b)− F p
0 (y0, b)

F̂1(y1, b)− F p
1 (y1, b)

)

converges in outer probability to G under the bounded Lipschitz metric,

sup
h∈BL1

|EWh(Ĝn)− Eh(G)| → 0
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in outer probability, where G is a Gaussian process with a covariance kernel H depending on the joint distribution
F01(y0, y1, b) that is derived in analogy to the calculations in Appendix B.1.

We next show that we can extend Lemma B.3 to the observational case, that is

sup
y0,y1∈R

∣

∣

∣
CB [F̂0, F̂1](y0, y1)−CB [F p

0 , F
p
1 ](y0, y1)

∣

∣

∣

a.s.→ 0

Here the main difference to the completely randomized case is that the arguments F0, F1 are the joint distributions
of b(Xi) with Yi(0) and Yi(1), respectively, whereas the coupling CB[F0, F1] is defined in terms of the conditional
distributions given b(Xi). Under the conditions in Assumption 6.4 it follows from standard arguments that F̂0(y0|b)
and F̂1(y1|b) are uniformly consistent for the population distributions F0(y0|b) and F1(y1|b), respectively. In particular,
under Assumption 6.4, the denominator of the conditional probability, FB(b), is bounded away from zero with
probability approaching one everywhere on the support of b(Xi). The conclusion of Lemma B.3 then follows from
the dominated convergence theorem for the integral over FB(Bi), noticing that the isotone copula Ciso

B (F0, F1) is
continuous in its arguments.

Given Lemma B.3, the conclusion of Lemma B.4 then follow using the same steps. In particular, the bootstrap
process

Ĝ∗
n :=

√
n

(

F̂ ∗
0 (y0, b)− F̂0(y0, b)

F̂ ∗
1 (y1, b)− F̂1(y1, b)

)

converges in outer probability to G
∗, a Brownian bridge with covariance kernel H∗, where H

∗ is the covariance kernel
derived in Appendix B.1 corresponding to the joint distribution F01 ≡ CB [F0, F1]. The conclusions of Theorem 6.1
then follows from Lemma 6.1 which establishes that the variance bound σ2

B(F0, F1) is conservative for σ2(F01)
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