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This is the supplementary material for Cannings, Berrett and Samworth
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1. The relationship between our classes and the margin assump-
tion. Recall from Mammen and Tsybakov (1999) that a distribution P on
Rd × {0, 1} with marginal PX on Rd and regression function η satisfies a
margin assumption with parameter α > 0 if there exists C > 0 such that

PX
(
{x : |η(x)− 1/2| ≤ s}

)
≤ Csα

for all sufficiently small s > 0. The following lemma clarifies the relationship
between our classes and the margin assumption.

Lemma 1. Let P ∈ Pd,θ for some θ = (ε0,M0, ρ, `, g) ∈ Θ. Then P
satisfies a margin assumption with parameter α = 1.

Proof. By the final part of (A.3), we have

PX
(
{x : |η(x)− 1/2| ≤ s}

)
≤ PX

(
{x : |η(x)− 1/2| ≤ s} ∩ Sε0

)
+ PX

(
{x : `(f̄(x)) ≥ 1/s}

)
.(32)

Now, by Proposition 2 in Section 7.2, for x ∈ Sε0 , there exists x0 ∈ S and
t ∈ (−ε0, ε0) such that x = x0+tη̇(x0)/‖η̇(x0)‖. Thus, by a Taylor expansion,

|η(x)− 1/2| ≥ |t|ε0M0 −
1

2
M0t

2 ≥ 1

2
|t|ε0M0.
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We deduce as in Step 5 of the proof of Theorem 5 that there exists s0 =
s0(d, θ) > 0 such that for all s ∈ (0, s0],

PX
(
{x : |η(x)− 1/2| ≤ s}∩Sε0

)
≤ PX

(
S

2s
ε0M0

)
≤ 8s

ε0M0

∫
S
f̄(x0) dVold−1(x0) ≤ 8sA′1

ε0M0
,(33)

where the final bound follows from (28) in the main text. For the second term
in (32), we exploit the fact that since ` ∈ L, there exists A = A(d, θ) > 0

such that `(δ) ≤ Aδ
− ρ

2(ρ+d) for all δ > 0. Hence, arguing as in (30) in the
main text, we find that

PX
(
{x : `(f̄(x)) ≥ 1/s}

)
≤ PX

({
x : f̄(x) ≤ (As)

2(ρ+d)
ρ

})
≤ As(1 +M0)

ρ+2d
2(ρ+d)

{∫
Rd

1

(1 + ‖x‖ρ)
ρ+2d
ρ

dx

} ρ
2(ρ+d)

.(34)

The result follows from (32), (33) and (34).

2. Example 1 from the main text. Recall that we consider the dis-
tribution P on Rd × {0, 1} for which f̄(x) = Γ(3+d/2)

2πd/2
(1 − ‖x‖2)2

1{x∈B1(0)}
and η(x) = min(‖x‖2, 1). Since f̄ is continuous on all of Rd, it is clear that
(A.1) is satisfied.

Now, S = {x ∈ Rd : ‖x‖ = 2−1/2} and clearly S ∩ {x ∈ Rd : f̄(x) >

0} is non-empty. For all x0 ∈ S we have that f̄(x0) = Γ(3+d/2)

8πd/2
≤ M0.

Since ε0 ≤ 1/10 we have that Sε0 ⊆ B9/10(0) \ B3/5(0) and thus f̄ is twice
continuously differentiable on Sε0 . Differentiating f̄ twice on B1(0), we have

that ˙̄f(x) = −2π−d/2Γ(3 + d/2)(1− ‖x‖2)x and

¨̄f(x) = 2π−d/2Γ(3 + d/2){2xxT − (1− ‖x‖2)I}.

Thus, for x0 ∈ S, we have ‖ ˙̄f(x0)‖/f̄(x0) = 25/2 ≤ `(f̄(x0)). We also have
that, for any x ∈ B1(0),

‖ ¨̄f(x)‖op = 2π−d/2Γ(3 + d/2)‖2xxT − (1− ‖x‖2)I‖op ≤
6Γ(3 + d/2)

πd/2
,

so that supu∈Bε0 (0) ‖ ¨̄f(x0 + u)‖op/f̄(x0) < 48 ≤ `(f̄(x0)) for any x0 ∈ S.

Finally for (A.2) we consider the cases x ∈ B1(0) \ Bε0(0) and x ∈ Bε0(0)
separately. If x ∈ B1(0)\Bε0(0) then, for r ∈ (0, ε0], at least a proportion 2−d

of the ball Br(x) is closer to the origin than x, and thus has larger density.
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This gives us that, for such x and r, pr(x) ≥ 2−dadr
df̄(x) ≥ ε0adr

df̄(x).
When x ∈ Bε0(0) and r ∈ (0, ε0] we instead have that

pr(x) ≥ adrd
Γ(3 + d/2)

2πd/2
(1− 4ε20)2 ≥ ad(1− 4ε20)2rdf̄(x) ≥ ε0adrdf̄(x).

We now turn to condition (A.3). First, for any x0 ∈ S we have that
‖η̇(x0)‖ = ‖2x0‖ = 21/2 ≥ ε0M0. For x ∈ S2ε0 we have that ‖η̇(x)‖ ≤
2(2−1/2 + 2ε0) ≤ M0 and ‖η̈(x)‖op = ‖2I‖op = 2 ≤ M0. Since η̈ is constant
on S2ε0 it is trivially true that

sup
x,z∈S2ε0 :‖z−x‖≤g(ε)

‖η̈(z)− η̈(x)‖op ≤ ε

for any g ∈ G. Now for x ∈ Rd \ Sε0 we have that

|η(x)− 1/2| ≥ 21/2ε0 − ε20 ≥ ε0 ≥ 1/`(f̄(x)).

Since the support of f̄ is equal to B1(0), we have that
∫
Rd ‖x‖

ρdPX(x) ≤
1 ≤M0, so (A.4) is satisfied.

We finally check (A.5) to show that P ∈ Qd,2,λ for λ ≥ 6π−d/2Γ(3+d/2).
First, it is clear that ‖f̄‖∞ ≤ λ. Now, for any x, y ∈ Rd we have that

‖ ˙̄f(y)− ˙̄f(x)‖ ≤ ‖y − x‖ sup
z∈B1(0)

‖ ¨̄f(z)‖op ≤ 6π−d/2Γ(3 + d/2)‖y − x‖.

3. Example 2 from the main text.

Proof of claim in Example 2. Fix ε > 0 and k ∈ Kβ, let

Tn := (0, 1/2)×
(
(1 + ε) log(n/k),∞

)
,

and for γ > 0, let

Bk,γ :=
⋂

x=(x1,x2)∈Tn

{γ < ‖X(k+1)(x)− x‖ < x2 − 1}.

Now, for εβ log n > 4 and γ ∈ [2, ε log(n/k)/2),

P(Bc
k,γ) ≤ P(T ≥ k + 1) + P(T ′ ≤ k),

where T ∼ Bin(n, p∗γ), T ′ ∼ Bin(n, p∗),

p∗γ :=

∫ 1

0

∫ ∞
(1+ε) log(n/k)−γ

t1 exp(−t2) dt1dt2 ≤
1

2

(k
n

)1+ε
eγ ≤ 1

2

(k
n

)1+ε/2
,

p∗ :=

∫ 1

0

∫ 3+31/2

3−31/2
t1 exp(−t2) dt1dt2 ≥

1

8
.

imsart-aos ver. 2014/10/16 file: LknnSuppFinal.tex date: May 14, 2019
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Therefore, there exists n0 ∈ N such that np∗ − (k + 1) ≥ k/2 and k + 1 −
np∗γ ≥ k/2 for all k ∈ Kβ, γ ∈ [2, ε log(n/k)/2) and n ≥ n0. It follows by

Bernstein’s inequality that supk∈Kβ supγ∈[2,ε log(n/k)/2) P(Bc
k,γ) = O(n−M )

for every M > 0.
Now, for x = (x1, x2) ∈ Tn, εβ log n > 4 and γ ∈ [2, x2 − 1), we have that∫

Bγ(x) η(t)f̄(t) dt∫
Bγ(x) f̄(t) dt

=

∫ 1
0

∫ x2+{γ2−(t1−x1)2}1/2
x2−{γ2−(t1−x1)2}1/2 t

2
1e
−t2 dt2 dt1∫ 1

0

∫ x2+{γ2−(t1−x1)2}1/2
x2−{γ2−(t1−x1)2}1/2 t1e

−t2 dt2 dt1

=

∫ 1
0 t

2
1 sinh({γ2 − (t1 − x1)2}1/2) dt1∫ 1

0 t1 sinh({γ2 − (t1 − x1)2}1/2) dt1

≥ 2

3

sinh
(
(γ2 − 1)1/2

)
sinh(γ)

≥ 2

3

sinh(31/2)

sinh(2)
>

1

2
.

Our next observation is that for γ ∈ [0,∞) and x(k+1) ∈ Rd such that

‖x(k+1)−x‖ = γ, we have that (X(1), Y(1), . . . , X(k), Y(k))|(X(k+1) = x(k+1))
d
=

(X̃(1), Ỹ(1), . . . , X̃(k), Ỹ(k)), where the pairs (X̃1, Ỹ1), . . . , (X̃k, Ỹk) are inde-

pendent and identically distributed, and then (X̃(1), Ỹ(1)), . . . , (X̃(k), Ỹ(k)) is

a reordering such that ‖X̃(1) − x‖ ≤ . . . ≤ ‖X̃(k) − x‖. Here X̃1
d
= X|(‖X−

x‖ ≤ γ) and P(Ỹ1 = 1|X̃1 = x) = η(x). Writing S̃n(x) := 1
k

∑k
i=1 1{Ỹi=1} we

therefore have by Hoeffding’s inequality that, for x ∈ Tn, εβ log n > 4 and
‖x(k+1) − x‖ ∈ [2, x2 − 1),

P{Ŝn(x) < 1/2
∣∣X(k+1) = x(k+1)} =P{S̃n(x) < 1/2}

= P{S̃n(x)− ES̃n(x) < −(Eη(X̃1)− 1/2)}

≤exp

(
−2k

(2

3

sinh(31/2)

sinh(2)
− 1

2

)2
)

= O(n−M )

for all M > 0, uniformly for k ∈ Kβ. Writing P(k+1) for the marginal distri-
bution of X(k+1), we deduce that

P{Ŝn(x) < 1/2}
≤ P{Ŝn(x) < 1/2, ‖X(k+1) − x‖ ∈ [2, x2 − 1)}+ P(Bc

k,2)

=

∫
Bx2−1(x)\B2(x)

P{Ŝn(x) < 1/2
∣∣X(k+1) = x(k+1)} dP(k+1)(x(k+1)) +O(n−M )

= O(n−M )
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for all M > 0, uniformly for k ∈ Kβ. We conclude that for every M > 0,

RTn(Ĉknn
n )−RTn(CBayes)

=

∫
Tn

[
P{Ŝn(x) < 1/2} − 1{η(x)<1/2}

]
{2η(x)− 1}f̄(x) dx

=

∫ ∞
(1+ε) log(n/k)

∫ 1/2

0
P{Ŝn(x) ≥ 1/2}(1− 2x1)x1 exp(−x2) dx1 dx2

=
1

24

(k
n

)1+ε
+O(n−M ),

uniformly for k ∈ Kβ. The claim (4) follows from this together with Theo-
rem 1(ii).

4. Proof of Theorem 4.

Proof of Theorem 4. For an integer q ≥ 3 and ν ≥ 0, define a grid
on Rd by

Gq,ν :=
{(
γ1, γ2 +

2κ2 + 1

2q
, γ3 +

2κ3 + 1

2q
, . . . , γd +

2κd + 1

2q

)
:

γ1, . . . , γd ∈ {1, . . . , dqνe}, κ2, . . . , κd ∈ {0, 1, . . . , q − 1}
}
.

Now, for x ∈ Rd, let nq(x) be the closest point to x among those in Gq,ν (if
there are multiple points, pick the one that is smallest in the lexicographic
ordering). Let m := dqνedqd−1 and define closed Euclidean balls X1, . . . ,Xm
in Rd of radius 1/(2q), where the lth ball is centered at the lth grid point in
the lexicographic ordering.

Writing [z] for the closest integer to z (where we round half-integers to the
nearest even integer), define the ‘saw-tooth’ function η0 : Rd → [3/8, 5/8],
by η0(x) := 3/8 +

∣∣x1 + 1/4− [x1 + 1/4]
∣∣/2, for x = (x1, . . . , xd)

T . Further,

for x ∈ Rd, set u(x) := α0g−1(1/q)
q2

(
1/4− q2‖x−nq(x)‖2

)4
, where α0 := 1/27.

For σ := (σ1, . . . , σm)T ∈ {−1, 1}m, we now define the distribution Pσ on
Rd×{0, 1} by setting the regression function to be ησ(x) := η0(x)+ 1

2σlu(x),
for x ∈ Xl, l = 1, . . . ,m, and setting ησ(x) := η0(x), otherwise. To define
the marginal distribution on Rd induced by Pσ, which will be the same
for each σ, we first define the boxes B0 := (0, dqνe + 3/2)d and Br :=
[−r/2 + 1/4 − a/16,−r/2 + 1/4 + a/16] × [−a, a]d−1 for r = 1, . . . , 20 and
some a > 0 to be chosen later. We further define a modified bump function
by

h(x) :=


0 if x ≤ 0
Φ
(

2x−1
x(1−x)

)
if x ∈ (0, 1)

1 if x ≥ 1,
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6 T. I. CANNINGS, T. B. BERRETT AND R. J. SAMWORTH

where Φ denotes the standard normal distribution function. For x ∈ Rd we
then set

f̄(x) := w0h
(
1− 4dist(x,B0)

)
+ h
(

1− 16 min
r=1,...,20

dist(x,Br)
)

for some w0 < 1/(dqνe + 2)d to be specified later. Here, a in the definition
of Br is chosen such that

∫
Rd f̄ = 1, and we note that

1 ≥ 20
a

8
(2a)d−1 =

5

4
(2a)d,

so a ≤ (4/5)1/d/2.
Let

Pm :=
{
Pσ : σ := (σ1, . . . , σm) ∈ {−1, 1}m

}
.

We show below that Pm ⊆ Pd,θ ∩ Qd,2,λ for all θ ∈ Θ and λ > 0 satisfying
the conditions of the theorem.

Letting Eσ denote expectation with respect to P⊗nσ and writing [[x1]] :=
x1 − [x1 + 1/4] for x1 ∈ R, we have that, for any classifier Cn,

sup
P∈Pd,θ∩Qd,2,λ

{R(Cn)−R(CBayes)} ≥ max
P∈Pm

{R(Cn)−R(CBayes)}

= max
σ∈{−1,1}m

∫
Rd

Eσ{1{Cn(x)=0} − 1{ησ(x)<1/2}}{2ησ(x)− 1} dPX(x)

≥ max
σ∈{−1,1}m

m∑
l=1

∫
Xl

Eσ{1{Cn(x)=0} − 1{ησ(x)<1/2}}
{

[[x1]] + σlu(x)
}
dPX(x)

≥ 1

2m

∑
σ∈{−1,1}m

m∑
l=1

∫
Xl
Eσ{1{Cn(x)=0}−1{ησ(x)<1/2}}

{
[[x1]]+σlu(x)

}
dPX(x).

Now let σl,r := (σ1, . . . , σl−1, r, σl+1, . . . , σm) for l = 1, . . . ,m, and r ∈
{−1, 0, 1}, and define the distribution Pl,r on Rd × {0, 1} by ηl,r(x) :=
η0(x) + (1/2)ru(x), for x ∈ Xl and ηl,r(x) = ησl,r(x) := ησ(x) otherwise

(the marginal distribution on Rd is again taken to be PX). We write El,r to
denote expectation with respect to P⊗nl,r .

For l = 1, . . . ,m and r ∈ {−1, 1} define

Ll,r :=

∏n
i=1[Yiηl,r(Xi) + (1− Yi){1− ηl,r(Xi)}]∏n
i=1[Yiηl,0(Xi) + (1− Yi){1− ηl,0(Xi)}]

.
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By the Radon–Nikodym theorem, we have that

1

2m

∑
σ∈{−1,1}m

m∑
l=1

∫
Xl

Eσ{1{Cn(x)=0} − 1{ησ(x)<1/2}}
{

[[x1]] + σlu(x)
}
dPX(x)

=
1

2

m∑
l=1

El,0
(∫
Xl

[
Ll,1{1{Cn(x)=0} − 1{ηl,1(x)<1/2}}

]{
[[x1]] + u(x)

}
dPX(x)

+

∫
Xl

[
Ll,−1{1{Cn(x)=0} − 1{ηl,−1(x)<1/2}}

]{
[[x1]]− u(x)

}
dPX(x)

)
≥ 1

2

m∑
l=1

El,0
{(∫

Xl
{1{Cn(x)=0} − 1{ηl,1(x)<1/2}}

{
[[x1]] + u(x)

}
dPX(x)

+

∫
Xl
{1{Cn(x)=0}−1{ηl,−1(x)<1/2}}

{
[[x1]]−u(x)

}
dPX(x)

)
min(Ll,1, Ll,−1)

}
.

Now fix x = (x1, . . . , xd)
T ∈ Xl, and writing Cn = Cn(x), ηl,1 = ηl,1(x) and

ηl,−1 = ηl,−1(x) as shorthand, observe that

{1{Cn=0} − 1{ηl,1<1/2}}
{

[[x1]] + u(x)
}

+ {1{Cn=0} − 1{ηl,−1<1/2}}
{

[[x1]]− u(x)
}

= 2
{
1{Cn=0,ηl,1≥1/2,ηl,−1≥1/2} − 1{Cn=1,ηl,1<1/2,ηl,−1<1/2}

}
[[x1]]

+
{
1{Cn=0,ηl,1≥1/2,ηl,−1<1/2} − 1{Cn=1,ηl,1<1/2,ηl,−1≥1/2}

}
{[[x1]] + u(x)}

+
{
1{Cn=0,ηl,1<1/2,ηl,−1≥1/2} − 1{Cn=1,ηl,1≥1/2,ηl,−1<1/2}

}
{[[x1]]− u(x)}

= 2
{
1{Cn=0,ηl,1≥1/2,ηl,−1≥1/2} − 1{Cn=1,ηl,1<1/2,ηl,−1<1/2}

}
[[x1]]

+ 1{ηl,1≥1/2,ηl,−1<1/2}
[
1{Cn=0}{[[x1]] + u(x)} − 1{Cn=1}{[[x1]]− u(x)}

]
≥ 1{ηl,1≥1/2,ηl,−1<1/2}

{
u(x)−

∣∣[[x1]]
∣∣}.

Here we used the fact that ηl,1(x) ≥ ηl,−1(x), so 1{ηl,1(x)<1/2,ηl,−1(x)≥1/2} = 0,
and that the minimum is attained by taking Cn(x) = 1{[[x1]]≥0} for x ∈ Xl;
it is interesting to note that this remains the optimal classifier even if f̄ is
known. Moreover, whenever [[x1]] ≥ 0, we have ηl,1(x) ≥ 1/2, and when
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[[x1]] < 0, we have ηl,−1(x) < 1/2. It follows that

sup
P∈Pd,θ

{R(Cn)−R(CBayes)}

≥ 1

2

m∑
l=1

El,0
{

min(Ll,1, Ll,−1)

∫
Xl
1{ηl,1≥1/2,ηl,−1<1/2}

{
u(x)−

∣∣[[x1]]
∣∣} dPX(x)

}

=

m∑
l=1

El,0
{

min(Ll,1, Ll,−1)
}∫
Xl∩{[[x1]]≥0}

1{ηl,−1<1/2}
{
u(x)− [[x1]]

}
dPX(x)

= mw0E1,0

{
min(L1,1, L1,−1)

}∫
B1/(2q)(0)∩{x1≥0}

1{η̃(x)<1/2}{ũ(x)− x1} dx,

(35)

where ũ(x) := α0g
−1(1/q)q6( 1

4q2
− ‖x‖2)4 and η̃(x) := 1

2{1 + x1 − ũ(x)}.
Now, observe that

E1,0

{
min(L1,1, L1,−1)

}
= 1− dTV(P⊗n1,1 , P

⊗n
1,−1)

and

d2
TV(P⊗n1,1 , P

⊗n
1,−1) ≤ 1

2
d2

KL(P⊗n1,1 , P
⊗n
1,−1) =

n

2
d2

KL(P1,1, P1,−1).

Moreover, using the fact that log(1 + x) ≤ x for x ≥ 0, we have that

d2
KL(P1,1, P1,−1)

=

∫
Rd
η1,1(x) log

(
η1,1(x)

η1,−1(x)

)
+ {1− η1,1(x)} log

(
1− η1,1(x)

1− η1,−1(x)

)
dPX(x)

≤ 24

∫
X1

u2(x) dPX(x)

= 24α2
0w0q

12g−1(1/q)2

∫
B1/(2q)(0)

( 1

4q2
− ‖x‖2

)8
dx

=
945α2

0adw0g
−1(1/q)2Γ(1 + d/2)

2d+6Γ(9 + d/2)
q−(4+d).

We now turn to finding a lower bound for the integral in (35). First, we
observe that sgn

(
ũ(x)− x1

)
= sgn

(
1/2− η̃(x)

)
, and moreover for d = 1 and

0 ≤ x1 <
α0g−1(1/q)

213q2
, we have that

ũ(x1)− x1 = q6α0g
−1(1/q)

(
1

4q2
− x2

1

)4

− x1 >
α0g

−1(1/q)

212q2
− x1

>
α0g

−1(1/q)

213q2
> 0.
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LOCAL NEAREST NEIGHBOUR CLASSIFICATION 9

Thus ∫ 1/(2q)

0
1{η̃(x1)<1/2}{ũ(x1)− x1} dx1 ≥

α2
0g
−1(1/q)2

226q4
.

Furthermore, for d ≥ 2, writing x−1 := (x2, . . . , xd)
T , we have that η̃(x) <

1/2 if and only if

0 > x1 − q6α0g
−1(1/q)

( 1

4q2
− ‖x‖2

)4

which is satisfied if

‖x−1‖ < (1− 2−1/4)1/2

√
1

4q2
−
( x1

q6α0g−1(1/q)

)1/4
− x2

1 =: t(x1).

Now t(x1) is real if 0 ≤ x1 ≤ α0g−1(1/q)
214q2

. Moreover, t(x1) > 1/(8q) for x1 ∈[
0, α0g−1(1/q)

214q2

]
. We also require the observation that ũ(x) − x1 ≥ α0g−1(1/q)

214q2

when x1 ∈
[
0, α0g−1(1/q)

214q2

]
and ‖x−1‖ < t(x1). Hence∫

B1/(2q)(0)∩{x1≥0}
1{η̃(x)<1/2}{ũ(x)− x1} dx

≥
∫ α0g

−1(1/q)

214q2

0

∫
‖x−1‖<t(x1)

{ũ(x)− x1} dx−1 dx1

≥ α0g
−1(1/q)

214q2
ad−1

∫ α0g
−1(1/q)

214q2

0
t(x1)d−1 dx1

≥ α2
0g
−1(1/q)2

228q3+d
ad−12−3(d−1).

We have therefore shown that, for q ≥ 3,

sup
P∈Pd,θ

{R(Cn)−R(CBayes)}

≥ mw0ad−1α
2
0g
−1(1/q)2

228+3(d−1)q3+d

{
1−

√
n945adw0α2

0g
−1(1/q)2Γ(1 + d/2)

2d+6Γ(9 + d/2)q4+d

}
,

where a0 := 1. It follows that if we set

w0 =
q4+d

4d+1ng−1(1/q)2
,
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10 T. I. CANNINGS, T. B. BERRETT AND R. J. SAMWORTH

and choose q to satisfy q4+d+ν(ρ+d)

g−1(1/q)2
= n, then

sup
P∈Pd,θ

{R(Cn)−R(CBayes)} ≥ qd+νd

n

ad−1α
2
0

228+5d

= g−1(1/q)
2d(1+ν)

4+d+ν(ρ+d)n
− 4+νρ

4+d+ν(ρ+d)
ad−1α

2
0

228+5d
.

It remains to show that Pσ belongs to the desired classes Pd,θ ∩Qd,2,λ for
each σ. First note that

w0 =
q4+d

4d+1ng−1(1/q)2
=

1

4d+1
q−ν(ρ+d) <

1

(dqνe+ 2)d
.

Condition (A.1) is satisfied by f̄ by construction. To verify the minimal
mass assumption, we take ε∗ < 2−max(d,5), and observe that when ε0 ∈ (0, ε∗],

inf
r0∈(0,ε0],x∈Rd:f̄(x)>0

1

adr
d
0 f̄(x)

∫
Br0 (x)

f̄

≥ inf
r0∈(0,ε0]

1

adr
d
0

∫
Br0 (0)

Φ

(
1− 32‖x‖

16‖x‖(1− 16‖x‖)

)
dx ∧ 2−d ≥ 2−d,

as required. It follows that (A.2) is satisfied for such ε0 ∈ (0, ε∗] and for any
M0 ≥ 1.

The main condition to check is (A.3). For x ∈ B1/(2q)(0), consider

η̃±(x) := (1/2)

{
1 + x1 ± q6α0g

−1(1/q)

(
1

4q2
− ‖x‖2

)4}
.

Then

˙̃η±(x) = (1/2, 0, . . . , 0)T ∓ 8q6α0g
−1(1/q)

(
1

4q2
− ‖x‖2

)3

x,

and

¨̃η±(x) = ∓8q6α0g
−1(1/q)

(
1

4q2
− ‖x‖2

)3

Id×d

± 48q6α0g
−1(1/q)

(
1

4q2
− ‖x‖2

)2

xxT .

From these calculations, we see that each ησ is twice continuously differen-
tiable on S2ε0 , with ‖η̇σ(x)‖ ∈ (1/4, 3/4) for all x ∈ S2ε0 and ‖η̈σ(x)‖op ≤ 1.
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LOCAL NEAREST NEIGHBOUR CLASSIFICATION 11

We have that, when nq(z) = nq(x),

‖η̈σ(z)− η̈σ(x)‖op

≤ 8q6α0g
−1(1/q)

∣∣∣∣( 1

4q2
− ‖z‖2

)3

−
(

1

4q2
− ‖x‖2

)3∣∣∣∣
+ 48q6α0g

−1(1/q)

∥∥∥∥( 1

4q2
− ‖z‖2

)2

zzT −
(

1

4q2
− ‖x‖2

)2

xxT
∥∥∥∥

= 8q6α0g
−1(1/q)(‖z‖+ ‖x‖)

∣∣‖z‖ − ‖x‖∣∣{( 1

4q2
−‖z‖2

)2

+
( 1

4q2
−‖z‖2

)( 1

4q2
−‖x‖2

)
+
( 1

4q2
−‖x‖2

)2
}

+ 48q6α0g
−1(1/q)

∥∥∥∥( 1

4q2
−‖z‖2

)2{
(z−x)(z−x)T

+ x(z−x)T +(z−x)xT
}

+ (‖x‖2−‖z‖2)
{ 1

2q2
− ‖x‖2 − ‖z‖2

}
xxT

∥∥∥∥
≤ 1

2
qg−1(1/q)‖z − x‖.

(36)

Hence, using the fact that r 7→ r/g−1(r) is increasing for sufficiently small
r > 0, we have that for sufficiently large q,

sup
‖x−z‖≤g(ε),nq(x)=nq(z)

‖η̈σ(x)− η̈σ(z)‖op ≤ ε.

Now consider the case where z ∈ Xl and x ∈ Xl′ with l 6= l′, so that
nq(z) 6= nq(x). Let z′ denote the closest point in Xl to Xl′ on the line
segment joining x to z, and similarly let x′ denote the closest point in Xl′
to Xl on the same line segment. Then η̈σ(x′) = η̈σ(z′) = 0, so, by (36),

‖η̈σ(z)− η̈σ(x)‖op ≤ ‖η̈σ(z)− η̈σ(z′)‖op + ‖η̈σ(x′)− η̈σ(x)‖op

≤ 1

2
qg−1(1/q)(‖z − z′‖+ ‖x− x′‖) ≤ 1

2

{
g−1(‖z − z′‖) + g−1(‖x− x′‖)

}
.

We therefore deduce that

sup
‖x−z‖≤g(ε)

‖η̈σ(x)− η̈σ(z)‖op ≤ ε.

For the final part of (A.3), we note that

inf
x∈(ε0±Z/2)×Rd−1

∣∣∣ησ(x)− 1

2

∣∣∣ ≥ ε0
2
.

imsart-aos ver. 2014/10/16 file: LknnSuppFinal.tex date: May 14, 2019



12 T. I. CANNINGS, T. B. BERRETT AND R. J. SAMWORTH

Finally, we check the moment condition in (A.4). First,∫
Rd
‖x‖ρf̄(x) dx = w0

∫
x:dist(x,B0)≤1/4

‖x‖ρh
(

4
(
1− dist(x,B0)

))
dx

+

∫
[−10,−1]×[−a−1/16,a+1/16]d−1

‖x‖ρh
(

16
(

1− min
r=1,...,20

dist(x,Br)
))

dx

≤ w0d
ρ
2 (dqνe+ 2)d+ρ + max(1, 2

ρ−2
2 ){100

ρ
2 + (d− 1)

ρ
2 (a+ 1/16)

ρ
2 }

≤ 3d+ρd
ρ
2

4d+1
+ max(1, 2(ρ−2)/2){100

ρ
2 + (d− 1)

ρ
2 (a+ 1/16)

ρ
2 } =: M01(ρ),

say. We conclude that there exists q∗ = q∗(d) such that for q ≥ q∗ and
any ν ≥ 0, we have P ∈ Pd,θ for θ = (ε0,M0, ρ, `, g) with any ρ > 0,
M0 ≥ max(M01(ρ), 1), ε0 ∈ (0,min(2−max(d,5), 1/(4M0))), any ` ∈ L with
` ≥ 2/ε0 and any g ∈ G.

Finally, we note that ‖f̄‖∞ ≤ 1 and

‖ ¨̄f‖∞ ≤ 28 sup
x∈(0,1)

φ

(
2x− 1

x(1− x)

){
2

(1− x)3
− 2

x3
− 2x− 1

x(1− x)

( 1

(1− x)2
+

1

x2

)}
≤ 210 × 5.

Hence P ∈ Qd,2,λ for λ ≥ 210 × 5.

5. Proof of Theorem 5 (continued).

Proof of Theorem 5 – Step 7. To complete the proof of Theorem 5,
it remains to bound the error terms R1, R2, R5 and R6.

To bound R1: We have

R1 =
1

kL

kL∑
i=1

(
Eη(X(i))− η(x)− E{(X(i) − x)T η̇(x)}

− 1

2
E{(X(i) − x)T η̈(x)(X(i) − x)}

)
.

By a Taylor expansion and (A.3), for all ε ∈ (0, 1), x ∈ Sε0 and ‖z − x‖ <
min{g(ε), ε0} =: r,∣∣∣∣η(z)− η(x)− (z − x)T η̇(x)− 1

2
(z − x)T η̈(x)(z − x)

∣∣∣∣ ≤ ε‖z − x‖2.
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LOCAL NEAREST NEIGHBOUR CLASSIFICATION 13

Hence

|R1| ≤ ε
1

kL

kL∑
i=1

E{‖X(i) − x‖21{‖X(kL)−x‖≤r}}+ 2P{‖X(kL) − x‖ > r}

+ sup
z∈Sε0

‖η̇(z)‖E{‖X(kL) − x‖1{‖X(kL)−x‖>r}}

+ sup
z∈Sε0

‖η̈(z)‖opE{‖X(kL) − x‖21{‖X(kL)−x‖>r}}.(37)

Now, by similar arguments to those leading to (17), we have that

ε

kL

kL∑
i=1

E(‖X(i) − x‖21{‖X(kL)−x‖≤r}) = ε
( kL

nadf̄(x)

)2/d d

d+ 2
{1 + o(1)},

(38)

uniformly for P ∈ Pd,θ, kL ∈ Kβ,τ , x0 ∈ Sn and |t| < εn. Moreover, for every
M > 0,

(39) P{‖X(kL) − x‖ > r} = qnr (kL) = O(n−M ),

uniformly for P ∈ Pd,θ, kL ∈ Kβ,τ , x0 ∈ Sn and |t| < εn, by (16) in Step 1.
For the remaining terms, note that

E{‖X(kL) − x‖21{‖X(kL)−x‖>r}}

= P{‖X(kL) − x‖ > r}+

∫ ∞
r2

P{‖X(kL) − x‖ >
√
t} dt

= qnr (kL) +

∫ ∞
r2

qn√
t
(kL) dt.(40)

Let t0 = t0(x) := 52/ρ(1 + 2ρ−1)2/ρ
(
M0 +‖x‖ρ

)2/ρ
. Then, for t ≥ t0, we have

1− p√t ≤ (1 + 2ρ−1)
E(‖X‖ρ) + ‖x‖ρ

tρ/2
≤ 1

5
.

It follows by Bennett’s inequality that for ρ{n− (n− 1)1−β} > 4,∫ ∞
t0

qn√
t
(kL) dt

≤ ekL(1 + 2ρ−1)(n−kL)/2
{
M0 + ‖x‖ρ

}(n−kL)/2
∫ ∞
t0

t−ρ(n−kL)/4 dt

=
4ekL52/ρ

ρ(n− kL)− 4
(1 + 2ρ−1)2/ρ

{
M0 + ‖x‖ρ

}2/ρ
5−(n−kL)/2.
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14 T. I. CANNINGS, T. B. BERRETT AND R. J. SAMWORTH

But, when β log(n− 1) ≥ (d+ 2)/d and n ≥ max{n0, n2},

sup
x∈Rn∪Sεnn

‖x‖ ≤ ε0 +

{
(n− 1)1−βcdnM0

µ0βd/2 logd/2(n− 1)

}1/ρ

.

We deduce that for every M > 0,

(41) sup
P∈Pd,θ

sup
k∈Kβ,τ

sup
x∈Rn∪Sεnn

∫ ∞
t0

qn√
t
(kL) dt = O(n−M ).

Moreover, by Bernstein’s inequality, for every M > 0,

(42) sup
P∈Pd,θ

sup
kL∈Kβ,τ

sup
x∈Rn∪Sεnn

{
qnr (kL) +

∫ t0

r2
qn√

t
(kL) dt

}
= O(n−M ).

We conclude from (14), (37), (38), (39), (40), (41) and (42), together with
Jensen’s inequality to deal with the third term on the right-hand side of (37),
that (10) holds. With only simple modifications, we have also shown (13),
which bounds R2.

To bound R5: Write

R5 :=

∫
Sn
R5(x0) dVold−1(x0)

=

∫
Sn

∫ εn

−εn
t‖ψ̇(x0)‖

[
P{Ŝn(xt0) < 1/2} − EΦ

(
θ̂(xt0)

)]
dt dVold−1(x0).

Now by a non-uniform version of the Berry–Esseen theorem (Paditz, 1989,
Theorem 1), for every t ∈ (−εn, εn) and x0 ∈ Sn,

(43)
∣∣P{Ŝn(xt0) < 1/2|Xn} − Φ

(
θ̂(xt0)

)∣∣ ≤ 32

kL(xt0)σ̂n(xt0, X
n)

1

1 + |θ̂(xt0)|3
.

Let

tn = tn(x0) := C max

{
kL(x0)−1/2,

( kL(x0)

nf̄(x0)

)2/d
`
(
f̄(x0)

)}
,

where

C :=
4

a
2/d
d ε0

.

In the following we integrate the bound in (43) over the regions |t| ≤ tn and
|t| ∈ (tn, εn) separately. Define the event

BkL :=

{
σ̂n(xt0, X

n) ≥ 1

3kL(xt0)1/2
for all x0 ∈ Sn, t ∈ (−εn, εn)

}
,
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so that, by very similar arguments to those used to bound P(AckL) in Step 2,

we have P(Bc
kL

) = O(n−M ) for every M > 0, uniformly for P ∈ Pd,θ and
kL ∈ Kβ,τ . It follows by (43) and Step 2 that there exists n4 ∈ N such that
for all n ≥ n4, kL ∈ Kβ,τ and x0 ∈ Sn,∣∣∣∣∫ tn

−tn
t
[
P{Ŝn(xt0) < 1/2} − EΦ

(
θ̂(xt0)

)]
dt

∣∣∣∣
≤
∫ tn

−tn
E
(

32|t|1BkL
kL(xt0)σ̂n(xt0, X

n)

)
dt+ t2nP(Bc

kL
) ≤ 128t2n

kL(x0)1/2
.(44)

By Step 1, there exists n5 ∈ N such that for n ≥ n5, P ∈ Pd,θ, kL ∈ Kβ,τ ,
x0 ∈ Sn and |t| ∈ (tn, εn),

|µn(xt0)− 1/2| ≥ |η(xt0)− 1/2| − |µn(xt0)− η(xt0)|

≥ 1

2
inf
z∈S
‖η̇(z)‖|t| − 1

4
Cε0M0

( kL(x0)

nf̄(x0)

)2/d
`
(
f̄(x0)

)
>

1

4
ε0M0|t|.(45)

Thus for n ≥ n5, P ∈ Pd,θ, kL ∈ Kβ,τ , x0 ∈ Sn and |t| ∈ (tn, εn), we have
that

P
{
|θ̂(xt0)| < 1

4
ε0M0k

1/2
L (x0)|t|

}
≤ P

{
|µ̂n(xt0, X

n)− µn(xt0)| > |µn(xt0)− 1/2| − 1

8
ε0M0|t|

}
≤ P

{
|µ̂n(xt0, X

n)− µn(xt0)| > 1

8
ε0M0|t|

}
≤ 64Var{µ̂n(xt0, X

n)}
ε20M

2
0 t

2
.(46)

It follows by (43), (46) and Step 3 that, for n ≥ n5,∣∣∣∣∫
|t|∈(tn,εn)

t
[
P{Ŝn(xt0) < 1/2} − EΦ

(
θ̂(xt0)

)]
dt

∣∣∣∣
≤
∫
|t|∈(tn,εn)

|t|E
(

321BkL
kL(xt0)σ̂n(xt0, X

n)

1

1+ 1
64ε

3
0M

3
0kL(x0)3/2|t|3

)
dt

+

∫
|t|∈(tn,εn)

64Var{µ̂n(xt0, X
n)}

ε20M
2
0 |t|

dt+ ε2nP(Bc
kL

)

≤ 192

kL(x0)3/2

∫ ∞
0

u

1 + 1
64ε

3
0M

3
0u

3
du

+
128

ε20M
2
0

sup
|t|∈(tn,εn)

Var{µ̂n(xt0, X
n)} log

(εn
tn

)
+ ε2nP(Bc

kL
)

= o
( 1

kL(x0)

)
(47)
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16 T. I. CANNINGS, T. B. BERRETT AND R. J. SAMWORTH

uniformly for P ∈ Pd,θ, kL ∈ Kβ,τ and x0 ∈ Sn. We conclude from (44)
and (47) that |R5| = o(γn(kL)), uniformly for P ∈ Pd,θ and kL ∈ Kβ,τ .

To bound R6: Let θ(xt0) := −2kL(xt0)1/2{µn(xt0)− 1/2}. Write

R6 :=

∫
Sn
R6(x0) dVold−1(x0) = R61 +R62,

where

R61 :=

∫
Sn

∫ εn

−εn
t‖ψ̇(x0)‖

[
EΦ
(
θ̂(xt0)

)
− Φ

(
θ(xt0)

)]
dt dVold−1(x0)

and

R62 :=

∫
Sn

∫ εn

−εn
t‖ψ̇(x0)‖

[
Φ
(
θ(xt0)

)
− Φ

(
θ̄(x0, t)

)]
dt dVold−1(x0).

To bound R61: We again deal with the regions |t| ≤ tn and |t| ∈ (tn, εn)
separately. First let θ̃(xt0) := −2kL(xt0)1/2{µ̂n(xt0, X

n)− 1/2}. Writing φ for
the standard normal density, and using the facts that |θ̂(xt0)| ≥ |θ̃(xt0)|, that
θ̂(xt0) and θ̃(xt0) have the same sign, and that |xφ(x)| ≤ 1, we have∣∣∣∣∫ tn

−tn
t
[
EΦ
(
θ̂(xt0)

)
− Φ

(
θ(xt0)

)]
dt

∣∣∣∣
≤
∫ tn

−tn
|t|E
{
|θ̂(xt0)− θ̃(xt0)|φ

(
θ̃(xt0)

)
1AkL

+ |θ̃(xt0)− θ(xt0)|
}
dt+ t2nP(AckL)

≤
∫ tn

−tn
|t|
[
E
{
1AkL

∣∣∣ 1

2kL(xt0)1/2σ̂n(xt0, X
n)
− 1
∣∣∣}

+ 2kL(xt0)1/2Var1/2{µ̂n(xt0, X
n)}
]
dt+ t2nP(AckL) = o(t2n)

uniformly for P ∈ Pd,θ, kL ∈ Kβ,τ and x0 ∈ Sn. Note that for |t| ∈ (tn, εn)
and x0 ∈ Sn, we have when εn < ε0 and n ≥ n5 that

E
{
1AkL∩BkL

∣∣θ̂(xt0)− θ(xt0)
∣∣}

≤ E
{
1AkL∩BkL
σ̂n(xt0, X

n)
|µ̂n(xt0, X

n)− µn(xt0)|

+ 1AkL∩BkL |θ(x
t
0)|
∣∣∣ 1

2kL(xt0)1/2σ̂n(xt0, X
n)
− 1
∣∣∣}

≤ 3kL(x0)1/2Var1/2{µ̂n(xt0, X
n)}

+
5

2
kL(x0)1/2M0|t|E

{
1AkL∩BkL

∣∣∣ 1

2kL(xt0)1/2σ̂n(xt0, X
n)
− 1
∣∣∣}.(48)
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Thus by (45), (46), (48) and Step 3, for εn < ε0 and n ≥ n5,∫
|t|∈(tn,εn)

|t|
∣∣EΦ

(
θ̂(xt0)

)
− Φ

(
θ(xt0)

)∣∣ dt
≤
∫
|t|∈(tn,εn)

|t|E
{
1AkL∩BkL

∣∣θ̂(xt0)− θ(xt0)
∣∣}φ(1

4
ε0M0k

1/2
L (x0)|t|

)
dt

+ P(AckL ∪B
c
kL

) +
128

ε20M
2
0

sup
|t|∈(tn,εn)

Var{µ̂n(xt0, X
n)} log

(εn
tn

)
= o
( 1

kL(x0)

)
(49)

uniformly for P ∈ Pd,θ, kL ∈ Kβ,τ and x0 ∈ Sn.

To bound R62: Let

u(x) ≡ un(x) := kL(x)1/2
( kL(x)

nf̄(x)

)2/d
.

Given ε > 0 small enough that ε2 + ε
2ε0

< 1/2, by Step 1 there exists n6 ∈ N
such that for n ≥ n6, P ∈ Pd,θ, kL ∈ Kβ,τ , x0 ∈ Sn and |t| < εn,∣∣θ(xt0)− θ̄(x0, t)

∣∣ ≤ ε2{|t|kL(x0)1/2 + u(x0)`
(
f̄(x0)

)}
.

By decreasing ε and increasing n6 if necessary, it follows that∣∣Φ(θ(xt0)
)
− Φ

(
θ̄(x0, t)

)∣∣ ≤ ε2{|t|kL(x0)1/2 + u(x0)`
(
f̄(x0)

)}
φ
(1

2
θ̄(x0, t)

)
,

for all n ≥ n6, P ∈ Pd,θ, kL ∈ Kβ,τ , x0 ∈ Sn and t ∈ (−εn, εn) satisfying
2εu(x0)`

(
f̄(x0)

)
‖η̇(x0)‖ ≤ |θ̄(x0, t)|. Substituting u = θ̄(x0, t)/2, it follows

that there exists C∗ > 0 such that for all n ≥ n6, P ∈ Pd,θ and kL ∈ Kβ,τ ,

|R62|

≤
∫
Sn

∫
|u|≤εu(x0)`(f̄(x0))‖η̇(x0)‖

2f̄(x0)

‖η̇(x0)‖kL(x0)
|u+ u(x0)a(x0)| du dVold−1(x0)

+

∫
Sn

∫ ∞
−∞

2f̄(x0)|u+ u(x0)a(x0)|
‖η̇(x0)‖2kL(x0)

{
ε2|u+ u(x0)a(x0)|

+ ε|u|
}
φ(u) du dVold−1(x0) ≤ C∗εγn(kL).

(50)

The combination of (49) and (50) yields the desired error bound on |R6|
in (26), uniformly for P ∈ Pd,θ, kL ∈ Kβ,τ , and therefore completes the
proof.
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18 T. I. CANNINGS, T. B. BERRETT AND R. J. SAMWORTH

6. Empirical analysis. In this section, we compare the kOnn and
kSSnn classifiers, introduced in Section 4 of the main text, with the stan-
dard knn classifier studied in Section 3 of the main text. We investigate
three settings that reflect the differences between the main results in these
sections.

• Setting 1: P1 is the distribution of d independent N(0, 1) components;
whereas P0 is the distribution of d independent N(1, 1/4) components.
• Setting 2: P1 is the distribution of d independent t5 components; P0 is

the distribution of d independent components, the first bd/2c having
a t5 distribution and the remainder having a N(1, 1) distribution.
• Setting 3: P1 is the distribution of d independent standard Cauchy

components; P0 is the distribution of d independent components, the
first bd/2c being standard Cauchy and the remainder standard normal.

The corresponding marginal distribution PX in Setting 1 satisfies (A.4)
for every ρ > 0. Hence, for the standard k-nearest neighbour classifier when
d ≥ 5, we are in the setting of Theorem 1(i), while for d ≤ 4, we can only ap-
peal to Theorem 1(ii). On the other hand, for the local-k-nearest neighbour
classifiers, the results of Theorems 2(i) and 3(i) apply for all dimensions,
and we can expect the excess risk to converge to zero at rate O(n−4/(d+4)).
In Setting 2, (A.4) holds for ρ < 5, but not for ρ ≥ 5. Thus, for the stan-
dard k-nearest neighbour classifier, we are in the setting of Theorem 1(ii)
for d < 20, whereas Theorems 2(i) and 3(i) again apply for all dimensions
for the local classifiers. Finally, in Setting 3, (A.4) does not hold for any
ρ ≥ 1, and only the conditions of Theorems 1(ii), 2(ii) and 3(ii) apply.

For the standard knn classifier, we use 5-fold cross validation to choose k,
based on a sequence of equally-spaced values between 1 and bn/4c of length
at most 40. For the oracle classifier, we set

k̂O(x) := max
[
1,min

[
bB̂O{f̄(x)n/‖f̄‖∞}4/(d+4)c, n/2

]]
,

where B̂O was again chosen via 5-fold cross validation, but based on a se-
quence of 40 equally-spaced points between n−4/(d+4) (corresponding to
the 1-nearest neighbour classifier) and nd/(d+4). Similarly, for the semi-
supervised classifier, we set

k̂SS(x) := max
[
1,min

[
bB̂SS{f̂m(x)n/‖f̂m‖∞}4/(d+4)c, n/2

]]
,

where B̂SS was chosen analogously to B̂O, and where f̂m is the d-dimensional
kernel density estimator constructed using a truncated normal kernel and
bandwidths chosen via the default method in the R package ks (Duong,
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Table 1
Misclassification rates for Settings 1, 2 and 3. In the final two columns we present the

regret ratios given in (51) (with standard errors calculated via the delta method).

d Bayes risk n k̂nn risk k̂Onn risk k̂SSnn risk O RR SS RR

Setting 1
1 22.67 50 26.850.13 25.910.12 25.980.13 0.780.022 0.790.023

200 24.070.06 23.520.06 23.480.05 0.610.030 0.580.029

1000 23.200.04 22.930.04 22.940.04 0.480.048 0.500.048

2 13.30 50 17.700.09 16.960.08 16.950.08 0.830.015 0.830.015

200 15.090.05 14.690.04 14.740.05 0.770.018 0.800.019

1000 14.040.04 13.780.03 13.800.03 0.650.025 0.670.025

5 3.53 50 9.460.07 8.950.06 8.940.06 0.910.006 0.910.006

200 6.940.03 6.670.03 6.700.03 0.920.006 0.930.007

1000 5.490.02 5.180.02 5.230.02 0.840.008 0.870.008

Setting 2
1 31.16 50 36.550.14 36.070.14 35.930.14 0.910.020 0.880.020

200 32.930.08 32.380.07 32.420.07 0.690.031 0.710.032

1000 31.620.05 31.370.05 31.370.05 0.460.065 0.470.066

2 31.15 50 37.790.13 38.020.12 37.900.12 1.020.014 1.010.015

200 33.640.08 33.630.07 33.540.07 1.000.028 0.960.026

1000 31.830.05 31.810.05 31.800.05 0.970.039 0.950.038

5 20.10 50 28.740.12 29.160.12 29.130.11 1.050.011 1.050.011

200 23.600.06 23.750.06 23.930.06 1.040.014 1.090.015

1000 21.860.04 21.710.04 21.770.04 0.910.014 0.950.014

Setting 3
1 37.44 50 44.760.10 43.090.12 43.080.12 0.770.013 0.770.013

200 41.860.08 40.180.09 40.230.09 0.620.017 0.630.017

1000 38.680.06 37.850.05 37.890.05 0.330.033 0.360.032

2 37.45 50 46.200.09 44.810.10 45.240.10 0.840.009 0.890.009

200 43.500.07 42.290.08 42.860.08 0.800.011 0.890.011

1000 40.530.06 39.640.06 39.960.06 0.710.013 0.820.014

5 23.23 50 41.560.11 38.130.11 39.260.12 0.810.005 0.870.005

200 36.020.07 33.340.06 34.680.07 0.790.004 0.900.004

1000 31.460.05 29.910.05 30.580.05 0.810.004 0.890.004

2015). In practice, we estimated ‖f̂m‖∞ by the maximum value attained on
the unlabelled training set.

In each of the three settings above, we generated a training set of size
n ∈ {50, 200, 1000} in dimensions d ∈ {1, 2, 5}, an unlabelled training set
of size 1000, and a test set of size 1000. In Table 1, we present the sample
mean and standard error (in subscript) of the risks computed from 1000
repetitions of each experiment. Further, we present estimates of the regret
ratios, given by

(51)
R(Ĉ k̂Onn

n )−R(CBayes)

R(Ĉ k̂nn
n )−R(CBayes)

and
R(Ĉ k̂SSnn

n )−R(CBayes)

R(Ĉ k̂nn
n )−R(CBayes)

,
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20 T. I. CANNINGS, T. B. BERRETT AND R. J. SAMWORTH

for which the standard errors given are estimated via the delta method.
From Table 1, we saw improvement in performance from the oracle and semi-
supervised classifiers in 22 of the 27 experiments, comparable performance
in three experiments, and there were two where the standard knn classifier
was the best of the three classifiers considered. In those latter two cases,
the theoretical improvement expected for the local classifiers is small; for
instance, when d = 5 in Setting 2, the excess risk for the local classifiers
converges at rate O(n−4/9), while the standard k-nearest neighbour classifier
can attain a rate at least as fast as o(n−1/3+ε) for every ε > 0. It is therefore
perhaps unsurprising that we require the larger sample size of n = 1000 for
the local classifiers to yield an improvement in this case. The semi-supervised
classifier exhibits similar performance to the oracle classifier in all settings,
though some deterioration is noticeable in higher dimensions, where it is
harder to construct a good estimate of f̄ from the unlabelled training data.

7. An introduction to differential geometry, tubular neighbour-
hoods and integration on manifolds. The purpose of this section is to
give a brief introduction to the ideas from differential geometry, specifically
tubular neighbourhoods and integration on manifolds, which play an impor-
tant role in our analysis of misclassification error rates, but which we expect
are unfamiliar to many statisticians. For further details and several of the
proofs, we refer the reader to the many excellent texts on these topics, e.g.
Guillemin and Pollack (1974), Gray (2004).

7.1. Manifolds and regular values. Recall that if X is an arbitrary subset
of RM , we say φ : X → RN is differentiable if for each x ∈ X , there
exists an open subset U ⊆ RM containing x and a differentiable function
F : U → RN such that F (z) = φ(z) for z ∈ U ∩ X . If Y is also a subset of
RM , we say φ : X → Y is a diffeomorphism if φ is bijective and differentiable
and if its inverse φ−1 is also differentiable. We then say S ⊆ Rd is an m-
dimensional manifold if for each x ∈ S, there exist an open subset Ux ⊆ Rm,
a neighbourhood Vx of x in S and a diffeomorphism φx : Ux → Vx. Such a
diffeomorphism φx is called a local parametrisation of S around x, and we
sometimes suppress the dependence of φx, Ux and Vx on x. It turns out that
the specific choice of local parametrisation is usually not important, and
properties of the manifold are well-defined regardless of the choice made.

Let S ⊆ Rd be an m-dimensional manifold and let φ : U → S be a
local parametrisation of S around x ∈ S, where U is an open subset of Rm.
Assume that φ(0) = x for convenience. The tangent space Tx(S) to S at
x is defined to be the image of the derivative Dφ0 : Rm → Rd of φ at 0.
Thus Tx(S) is the m-dimensional subspace of Rd whose parallel translate
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x+ Tx(S) is the best affine approximation to S through x, and (Dφ0)−1 is
well-defined as a map from Tx(S) to Rm. If f : S → R is differentiable, we
define the derivative Dfx : Tx(S)→ R of f at x by Dfx := Dh0 ◦ (Dφ0)−1,
where h := f ◦ φ.

In practice, it is usually rather inefficient to define manifolds through
explicit diffeomorphisms. Instead, we can often obtain them as level sets of
differentiable functions. Suppose that R ⊆ Rd is a manifold and η : R → R
is differentiable. We say y ∈ R is a regular value for η if image(Dηx) = R
for every x ∈ R for which η(x) = y. If y ∈ R is a regular value of η, then
η−1(y) is a (d − 1)-dimensional submanifold of R (Guillemin and Pollack,
1974, p. 21).

7.2. Tubular neighbourhoods of level sets. For any set S ⊆ Rd and ε > 0,
we call S + εB1(0) the ε-neighbourhood of S. In circumstances where S is
a (d − 1)-dimensional manifold defined by the level set of a continuously
differentiable function η : Rd → R with non-vanishing derivative on S, the
set Sε is often called a tubular neighbourhood, and η̇(x)T v = 0 for all x ∈ S
and v ∈ Tx(S). We therefore have the following useful representation of the
ε-neighbourhood of S in terms of points on S and a perturbation in a normal
direction.

Proposition 2. Let η : Rd → [0, 1], suppose that S := {x ∈ Rd : η(x) =
1/2} is non-empty, and suppose further that η is continuously differentiable
on S + εB1(0) for some ε > 0, with η̇(x) 6= 0 for all x ∈ S, so that S is a
(d− 1)-dimensional manifold. Then

S + εB1(0) =
{
x0 +

tη̇(x0)

‖η̇(x0)‖
: x0 ∈ S, |t| < ε

}
=: Sε.

Proof. For any x0 ∈ S and |t| < ε, we have x0 + tη̇(x0)/‖η̇(x0)‖ ∈
S + εB1(0). On the other hand, suppose that x ∈ S + εB1(0). Since S is
closed, there exists x0 ∈ S such that ‖x − x0‖ ≤ ‖x − y‖ for all y ∈ S.
Rearranging this inequality yields that, for y 6= x0,

(52) 2(x− x0)T
(y − x0)

‖y − x0‖
≤ ‖y − x0‖.

Let U be an open subset of Rd−1 and φ : U → S be a local parametrisation
of S around x0, where without loss of generality we assume φ(0) = x0. Let
v ∈ Tx0(S) \ {0} be given and let h ∈ Rd−1 \ {0} be such that Dφ0(h) = v.
Then for t > 0 sufficiently small we have th ∈ U , so by (52),

2(x− x0)T
{φ(th)− φ(0)}
‖φ(th)− φ(0)‖

≤ ‖φ(th)− φ(0)‖.
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Letting t ↘ 0 we see that (x − x0)T v ≤ 0. Since v ∈ Tx0(S) \ {0} was
arbitrary and −v ∈ Tx0(S) \ {0}, we therefore have that (x− x0)T v = 0 for
all v ∈ Tx0(S). Moreover, η̇(x0)T v = 0 for all v ∈ Tx0(S), so x− x0 ∝ η̇(x0),
which yields the result.

In fact, under a slightly stronger condition on η, we have the following
useful result:

Proposition 3. Let R be a d-dimensional manifold in Rd, suppose that
η : R → [0, 1] satisfies the condition that S := {x ∈ R : η(x) = 1/2}
is non-empty. Suppose further that there exists ε > 0 such that η is twice
continuously differentiable on Sε. Assume that η̇(x0) 6= 0 for all x0 ∈ S.
Define g : S × (−ε, ε)→ Sε by

g(x0, t) := x0 +
tη̇(x0)

‖η̇(x0)‖
.

If

(53) ε ≤ inf
x0∈S

‖η̇(x0)‖
supz∈B2ε(x0)∩Sε ‖η̈(z)‖op

,

then g is injective. In fact g is a diffeomorphism, with

(54) Dg(x0,t)(v1, v2) = (I + tB)

(
v1 +

η̇(x0)

‖η̇(x0)‖
v2

)
,

for v1 ∈ Tx0(S) and v2 ∈ R, where

(55) B :=
1

‖η̇(x0)‖

(
I − η̇(x0)η̇(x0)T

‖η̇(x0)‖2

)
η̈(x0).

Proof. Assume for a contradiction that there exist distinct points
x1, x2 ∈ S and t1, t2 ∈ (−ε, ε) with |t1| ≥ |t2| such that

x1 +
t1η̇(x1)

‖η̇(x1)‖
= x2 +

t2η̇(x2)

‖η̇(x2)‖
.

Then

(56) 0 < ‖x2− x1‖2 =
2t1η̇(x1)T (x2 − x1)

‖η̇(x1)‖
+ t22− t21 ≤

2t1η̇(x1)T (x2 − x1)

‖η̇(x1)‖
.
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By Taylor’s theorem and (56),

|η̇(x1)T (x2 − x1)| = |η(x2)− η(x1)− η̇(x1)T (x2 − x1)|

≤ 1

2
sup

z∈B2ε(x1)∩Sε
‖η̈(z)‖op‖x2 − x1‖2

< sup
z∈B2ε(x1)∩Sε

‖η̈(z)‖op
ε|η̇(x1)T (x2 − x1)|

‖η̇(x1)‖
,

contradicting the hypothesis (53).
To show that g is a diffeomorphism, let x0 ∈ S be given and let φ :

U → S be a local parametrisation around x0 with φ(0) = x0. Define Φ :
U × (−ε, ε) → S × (−ε, ε) by Φ(u, t) := (φ(u), t), and H : U × (−ε, ε) → Sε
by H := g ◦ Φ. Finally, define the Gauss map n : S → Rd by n(x0) :=
η̇(x0)/‖η̇(x0)‖. Then, for h = (hT1 , h2)T ∈ Rd−1 × R and s ∈ R \ {0},

lim
s→0

H(sh1, t+ sh2)−H(0, t)

s

= lim
s→0

{
φ(sh1)− φ(0)

s
+
t{n(φ(sh1))− n(φ(0))}

s
+ h2n

(
φ(sh1)

)}
= Dφ0(h1) + tDnx0 ◦Dφ0(h1) + h2n(x0)

= Dg(x0,t) ◦DΦ(0,t)(h1, h2),

where Dg(x0,t) : Tx0(S)× R→ Rd is given in (54).
To show that Dg(x0,t) is invertible, note that for v1 ∈ Tx0(S) and |t| < ε,

|t|
‖η̇(x0)‖

∥∥∥∥(I − η̇(x0)η̇(x0)T

‖η̇(x0)‖2

)
η̈(x0)v1

∥∥∥∥ ≤ |t|‖η̈(x0)‖op

‖η̇(x0)‖
‖v1‖ < ‖v1‖,

where the final inequality follows from (53). Then, since v1 + t
‖η̇(x0)‖

(
I −

η̇(x0)η̇(x0)T

‖η̇(x0)‖2

)
η̈(x0)v1 and n(x0)v2 are orthogonal, it follows that Dg(x0,t) is

indeed invertible. The inverse function theorem (e.g. Guillemin and Pollack,
1974, p. 13) then gives that g is a local diffeomorphism, and moreover,
by Guillemin and Pollack (1974, Exercise 5, p. 18) and the fact that g is
bijective, we can conclude that g is in fact a diffeomorphism.

7.3. Forms, pullbacks and integration on manifolds. Let V be a (real)
vector space of dimension m. We say T : V p → R is a p-tensor on V if it is
p-linear, and write Fp(V ∗) for the set of p-tensors on V . If T ∈ Fp(V ∗) and
S ∈ Fq(V ∗), we define their tensor product T ⊗ S ∈ Fp+q(V ∗) by

T ⊗ S(v1, . . . , vp, vp+1, . . . , vp+q) := T (v1, . . . , vp)S(vp+1, . . . , vp+q).
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Let Sp denote the set of permutations of {1, . . . , p}. If π ∈ Sp and T ∈
Fp(V ∗), we can define T π ∈ Fp(V ∗) by T π(v) := T (vπ(1), . . . , vπ(p)) for v =
(v1, . . . , vp) ∈ V p. We say T is alternating if T σ = −T for all transpositions
σ : {1, . . . , p} → {1, . . . , p}. The set of alternating p-tensors on V , denoted
Λp(V ∗), is a vector space of dimension

(
m
p

)
. The function Alt : Fp(V ∗) →

Λp(V ∗) is defined by

Alt(T ) :=
1

p!

∑
π∈Sp

(−1)sgn(π)T π,

where sgn(π) denotes the sign of the permutation π. If T ∈ Λp(V ∗) and
S ∈ Λq(V ∗), we define their wedge product T ∧ S ∈ Λp+q(V ∗) by

T ∧ S := Alt(T ⊗ S).

If W is another (real) vector space and A : V → W is a linear map, we
define the transpose A∗ : Λp(W ∗)→ Λp(V ∗) of A by

A∗T (v1, . . . , vp) := T (Av1, . . . , Avp).

Let S be a manifold. A p-form ω on S is a function which assigns to each
x ∈ S an element ω(x) ∈ Λp(Tx(S)∗). If ω is a p-form on S and θ is a
q-form on S, we can define their wedge product ω ∧ θ by (ω ∧ θ)(x) :=
ω(x) ∧ θ(x). For j = 1, . . . ,m, let xj : Rm → R denote the coordinate
function xj(y1, . . . , ym) := yj . These functions induce 1-forms dxj , given
by dxj(x)(y1, . . . , ym) = yj (so dxj(x) = D(xj)x in our previous notation).
Letting I := {(i1, . . . , ip) : 1 ≤ i1 < . . . < ip ≤ m}, for I = (i1, . . . , ip) ∈ I,
we write

dxI := dxi1 ∧ . . . ∧ dxip .

It turns out (Guillemin and Pollack, 1974, p. 163) that any p-form on an
open subset U of Rm can be uniquely expressed as

(57)
∑
I∈I

fI dxI ,

where each fI is a real-valued function on U .
Recall that the set of all ordered bases of a vector space V is partitioned

into two equivalence classes, and an orientation of V is simply an assignment
of a positive sign to one equivalence class and a negative sign to the other.
If V and W are oriented vector spaces in the sense that an orientation
has been specified for each of them, then an isomorphism A : V → W
always either preserves orientation in the sense that for any ordered basis
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β of V , the ordered basis Aβ has the same sign as β, or it reverses it.
We say an m-dimensional manifold X is orientable if for every x ∈ X ,
there exist an open subset U of Rm, a neighbourhood V of x in X and
a diffeomorphism φ : U → V such that Dφu : Rm → Tx(X ) preserves
orientation for every u ∈ U . A map like φ above whose derivative at every
point preserves orientation is called an orientation-preserving map.

If X and Y are manifolds, ω is a p-form on Y and ψ : X → Y is differ-
entiable, we define the pullback ψ∗ω of ω by ψ to be the p-form on X given
by

ψ∗ω(x) := (Dψx)∗ω
(
ψ(x)

)
.

If V is an p-dimensional vector space and A : V → V is linear, then A∗T =
(detA)T for all T ∈ Λp(V ) (Guillemin and Pollack, 1974, p. 160).

If ω is an m-form on an open subset U of Rm, then by (57), we can write
ω = f dx1∧ . . .∧dxm. If ω is an integrable form on U (i.e. f is an integrable
function on U), we can define the integral of ω over U by∫

U
ω :=

∫
U
f(x1, . . . , xm) dx1 . . . dxm,

where the integral on the right-hand side is a usual Lebesgue integral. Now
let S be anm-dimensional orientable manifold that can be parametrised with
a single chart, in the sense that there exists an open subset U of Rm and an
orientation-preserving diffeomorphism φ : U → S. Define the support of an
m-form ω on S to be the closure of {x ∈ S : ω(x) 6= 0}. If ω is compactly
supported, then its pullback φ∗ω is a compactly supported m-form on U ;
moreover φ∗ω is integrable, and we can define the integral over S of ω by

(58)

∫
S
ω :=

∫
U
φ∗ω.

Alternatively, we can suppose that ω is non-negative and measurable in the
sense that φ∗ω = f dx1∧ . . .∧dxm, say, with f non-negative and measurable
on U . In this case, we can also define the integral of ω over S via (58).

More generally, integrals of forms over more complicated manifolds can be
defined via partitions of unity. Recall (Guillemin and Pollack, 1974, p. 52)
that if X is an arbitrary subset of RM , and {Vα : α ∈ A} is a (relatively)
open cover of X , then there exists a sequence of real-valued, differentiable
functions (ρn) on X , called a partition of unity with respect to {Vα : α ∈ A},
with the following properties:

1. ρn(x) ∈ [0, 1] for all n ∈ N;
2. Each x ∈ X has a neighbourhood on which all but finitely many

functions ρn are identically zero;
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3. Each ρn is identically zero except on some closed set contained in some
Vα;

4.
∑∞

n=1 ρn(x) = 1 for all x ∈ X .

Now let S ⊆ Rd be an m-dimensional, orientable manifold, so for each x ∈ S,
there exist an open subset Ux of Rm, a neighbourhood Vx of x in S and an
orientation-preserving diffeomorphism φx : Ux → Vx. If ω is a compactly
supported m-form on S and (ρn) denotes a partition of unity on S with
respect to {Vx : x ∈ S}, we can define the integral of ω over S by

(59)

∫
S
ω :=

∞∑
n=1

∫
S
ρnω.

In fact, writing Ω for the compact support of ω, we can find a neighbourhood
Wx of x ∈ Ω, x1, . . . , xN ∈ Ω and a finite subset Nj of N such that {ρn : n /∈
Nj} are identically zero on Wxj , and such that∫

S
ω =

N∑
j=1

∑
n∈Nj

∫
S
ρnω.

Thus the integral can be written as a finite sum. Similarly, if ω is a non-
negative m-form on S, we can again define the integral of ω over S via (59).
Finally, if ω is an integrable m-form on S, the integral can be defined by
taking positive and negative parts in the usual way.

In our work, we are especially interested in integrals of a particular type of
form. Given an m-dimensional, orientable manifold S in Rd, the volume form
dVolm is the unique m-form on S such that at each x ∈ S, the alternating
m-tensor dVolm(x) on Tx(S) gives value 1/m! to each positively oriented
orthonormal basis for Tx(S). For example, when S = Rm, we have dVolm =
dx1 ∧ . . . ∧ dxm, provided we consider the standard basis to be positively
oriented. As another example, if R ⊆ Rd is a d-dimensional manifold and
η : R → R is continuously differentiable with S = {x ∈ R : η(x) = 1/2}
non-empty and η̇(x) 6= 0 for x ∈ S, then S is a (d−1)-dimensional, orientable
manifold (Guillemin and Pollack, 1974, Exercise 18, p. 106). If we say that
an ordered, orthonormal basis e1, . . . , ed−1 for Tx0(S) is positively oriented
whenever det(e1, . . . , ed−1, η̇(x0)) > 0, we have that

dVold−1(x0) =
d∑
j=1

(−1)j+d
ηj(x0)

‖η̇(x0)‖
dx1 ∧ . . . ∧ dxj−1 ∧ dxj+1 ∧ . . . ∧ dxd(x0),

where xj denotes the jth coordinate function. We now define an ordered,
orthonormal basis (e1, 0), . . . , (ed−1, 0), (0, 1) for Tx0(S)×R to be positively

imsart-aos ver. 2014/10/16 file: LknnSuppFinal.tex date: May 14, 2019



LOCAL NEAREST NEIGHBOUR CLASSIFICATION 27

oriented. Further, we define a (d−1)-form ω1 and a 1-form ω2 on S× (−ε, ε)
by

ω1(x0, t)
(
(v1, w1), . . . , (vd−1, wd−1)

)
:= dVold−1(x0)(v1, . . . , vd−1)

ω2(x0, t)(vd, wd) := dt(t)(wd) = wd.

Then, with g defined as in Proposition 3, and under the conditions of that
proposition,

g∗(dx1 ∧ . . . ∧ dxd)(x0, t)
(
(e1, 0), . . . , (ed−1, 0), (0, 1)

)
= dx1 ∧ . . . ∧ dxd(xt0)

(
Dg(x0,t)(e1, 0), . . . , Dg(x0,t)(ed−1, 0), Dg(x0,t)(0, 1)

)
=

1

d!
det(I + tB)

=
1

d
det(I + tB)dVold−1(x0)(e1, . . . , ed−1)dt(t)(1)

= det(I + tB) (ω1 ∧ ω2)(x0, t)
(
(e1, 0), . . . , (ed−1, 0), (0, 1)

)
,

so g∗(dx1 ∧ . . . ∧ dxd)(x0, t) = det(I + tB) (ω1 ∧ ω2)(x0, t). It follows that
if h : S × (−ε, ε) → R is either compactly supported and integrable, or
non-negative and measurable, then

(60)

∫
S×(−ε,ε)

hω1 ∧ ω2 =

∫
S

∫ ε

−ε
h(x0, t) dt dVold−1(x0).

We also require the change of variables formula: if X and Y are orientable
manifolds and are of dimension m, and if ψ : X → Y is an orientation-
preserving diffeomorphism, then

(61)

∫
X
ψ∗ω =

∫
Y
ω

for every compactly supported, integrable m-form on Y (Guillemin and
Pollack, 1974, p. 168). In particular, if f : Sε → R is either compactly
supported and integrable, or non-negative and measurable, then writing
xt0 := x0 + tη̇(x0)

‖η̇(x0)‖ , we have from (60) and (61) that∫
Sε
f(x) dx =

∫
S×(−ε,ε)

det(I + tB)f(xt0) (ω1 ∧ ω2)(x0, t)

=

∫
S

∫ ε

−ε
det(I + tB)f(xt0) dt dVold−1(x0).(62)
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