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APPENDIX B: ADDITIONAL PROOFS

B.1. Proof of Theorem 3. First, we will show that our statement can be reduced
to a binary hypothesis testing problem. We will work under the global null hypoth-
esis where Y ⊥⊥ X , and our test will be constructed independently of Y . More
formally, let PY |X be any fixed distribution, e.g. N (0, 1). Since all features are
null, this means that the false discovery proportion is 1 whenever Ŝ(X,Y) 6= ∅,
that is,

FDR
(
Ŝ
)

= P
{
Ŝ(X,Y) 6= ∅

}
.

Therefore, in order to prove the theorem, it is sufficient to construct a binary test
ψ(X) ∈ {0, 1} such that
(B.1)
P
Xi,∗

iid∼P ?
X

{ψ(X) = 1} ≥ q
(
1 + c(1− e−ε)

)
, P

Xi,∗
iid∼PX

{ψ(X) = 1} = q,

i.e. a test ψ that has better-than-random performance for testing whether the con-
ditional distribution of Xj is given by P ?j or Pj . Once ψ is constructed, then this is
sufficient for the FDR result, e.g. setting

Ŝ(X,Y) =

{
{j}, ψ(X) = 1,

∅, ψ(X) = 0.

Note that, by the well-known equivalence between total variation distance and hy-
pothesis testing [Lehmann and Romano, 2008], the existence of such a test ψ is
essentially equivalent to proving a lower bound on

dTV
(
(P ?X)⊗n,

(
PX)⊗n

)
uniformly over all distributions PX whose jth conditional is Pj . In fact, our ψ will
be given by a randomized procedure (to be fully formal, we can use the independent
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random vector Y as a source of randomness, if needed). First, we draw X̃ | X,
independently of Y and drawn from the rule P

X̃|X as specified in the theorem,
and independently we also draw B ∼ Bernoulli(2q) and B′ ∼ Bernoulli(q). Next,
defining K̂Lj as in (13), we let

ψ(X, X̃, B,B′) = 1

{
B = 1 and K̂Lj > 0

}
+ 1

{
B′ = 1 and K̂Lj = 0

}
.

Clearly, by definition of B and B′, we have

(B.2) P
{
ψ(X, X̃, B,B′) = 1

}
= 2q · P

{
K̂Lj > 0

}
+ q · P

{
K̂Lj = 0

}
,

where P
{

K̂Lj > 0
}

and P
{

K̂Lj = 0
}

are taken with respect to the joint distri-

bution of (X, X̃).

Next, we check that the test ψ satisfies the properties (B.1), as required for the
FDR bounds in this theorem. We first prove the second bound in (B.1). Suppose
Xi,∗

iid∼ PX—that is, Pj is indeed the correct conditional distribution forXj | X−j .
The knockoff generating mechanism P

X̃|X was defined to satisfy pairwise ex-

changeability with respect to Pj (5), meaning that Xj and X̃j are exchangeable
conditional on the other variables in this scenario. Examining the form of K̂Lj , we
see that swapping Xj and X̃j has the effect of changing the sign of K̂Lj . The ex-
changeability of the pair (Xj , X̃j) implies that the distribution of K̂Lj is symmetric

around zero, and so under (Xi,∗, X̃i,∗)
iid∼ PX × PX̃|X ,

P
{

K̂Lj > 0
}

+ 0.5 · P
{

K̂Lj = 0
}

= 0.5.

Checking (B.2), this proves that P
Xi,∗

iid∼PX
{ψ(X) = 1} = q, which ensures FDR

control for the case that the estimated conditional Pj is in fact correct.

Finally we turn to the first part of (B.1), where now we assume that (Xi,∗, X̃i,∗)
iid∼

P ?X × P
X̃|X . From this point on, we will condition on the observed values of

X−j and X̃−j . By assumption in the theorem, under this distribution we have

P
{

K̂Lj ≥ ε
}
≥ c. As in the proof of Lemma 2, we consider the unordered pair

{Xj , X̃j}—that is, we see the two vectors Xj and X̃j but do not know which
is which. Note that, with this information, we are able to compute

∣∣K̂Lj
∣∣ but not

sign(K̂Lj). Without loss of generality, we can label the unordered pair of feature
vectors {Xj , X̃j}, as X(0)

j and X
(1)
j , such that

• if Xj = X
(0)
j and X̃j = X

(1)
j , then K̂Lj ≥ 0;
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• if Xj = X
(1)
j and X̃j = X

(0)
j , then K̂Lj ≤ 0.

Define C = sign(K̂Lj), so that K̂Lj = C ·
∣∣K̂Lj

∣∣. By definition of the distribution
of (X, X̃), it follows from Lemma 1 that

P
{

(Xj , X̃j) = (X
(0)
j ,X

(1)
j )

∣∣∣X(0)
j ,X

(1)
j ,X−j

}
P
{

(Xj , X̃j) = (X
(1)
j ,X

(0)
j )

∣∣∣X(0)
j ,X

(1)
j ,X−j

}
=
∏
i

P ?j (X
(0)
ij | Xi,−j)Pj(X

(1)
ij | Xi,−j)

Pj(X
(0)
ij | Xi,−j)P ?j (X

(1)
ij | Xi,−j)

.

In other words, if |K̂Lj | 6= 0, then

P
{
C = +1

∣∣∣X(0)
j ,X

(1)
j ,X−j , X̃−j

}
P
{
C = −1

∣∣∣X(0)
j ,X

(1)
j ,X−j , X̃−j

} =
∏
i

P ?j (X
(0)
ij | Xi,−j)Pj(X

(1)
ij | Xi,−j)

Pj(X
(0)
ij | Xi,−j)P ?j (X

(1)
ij | Xi,−j)

= exp
{∣∣K̂Lj

∣∣} ,
where the last step holds by our choice of which vector to label as X(0) and which
to label as X(1).

Therefore, we can write

c ≤ P
{

K̂Lj ≥ ε
}

= P
{
C = +1 and

∣∣K̂Lj
∣∣ ≥ ε}

= E
[
P
{
C = +1

∣∣∣X(0)
j ,X

(1)
j ,X−j , X̃−j

}
· 1
{∣∣K̂Lj

∣∣ ≥ ε}]
= E

 e

∣∣K̂Lj

∣∣
1 + e

∣∣K̂Lj

∣∣ · 1{∣∣K̂Lj
∣∣ ≥ ε}

 .(B.3)

We can similarly calculate

P
{

K̂Lj > 0
}

= E

 e

∣∣K̂Lj

∣∣
1 + e

∣∣K̂Lj

∣∣ · 1{∣∣K̂Lj
∣∣ > 0

} .
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Therefore,

1

2
P
{

K̂Lj = 0
}

+ P
{

K̂Lj > 0
}

= E
[

e0

1 + e0
· 1
{∣∣K̂Lj

∣∣ = 0
}]

+ E

 e

∣∣K̂Lj

∣∣
1 + e

∣∣K̂Lj

∣∣ · 1{∣∣K̂Lj
∣∣ > 0

}
= E

 e

∣∣K̂Lj

∣∣
1 + e

∣∣K̂Lj

∣∣
 .

To continue, observe that for t ≥ 0, et/(1 + et) ≥ 1/2. Hence,

E

 e

∣∣K̂Lj

∣∣
1 + e

∣∣K̂Lj

∣∣
 ≥ 1

2
+ E

 e

∣∣K̂Lj

∣∣
1 + e

∣∣K̂Lj

∣∣ − 1

2

 · 1{∣∣K̂Lj
∣∣ ≥ ε}


≥ 1

2
+ min

t≥ε

et

1+et −
1
2

et

1+et

· E

 e

∣∣K̂Lj

∣∣
1 + e

∣∣K̂Lj

∣∣ · 1{∣∣K̂Lj
∣∣ ≥ ε}


︸ ︷︷ ︸

≥ c by (B.3)

≥ 1

2

(
1 + c(1− e−ε)

)
,

where for the last step we check that the minimum is attained at t = ε. This proves
that, when Xi,∗

iid∼ P ?X , we have ψ(X, X̃, B,B′) = 1 with probability at least
q
(
1 + c(1− e−ε)

)
, and so the first part of (B.1) is satisfied, as desired.

B.2. Proof of Lemma 3. We will in fact prove a more general result, which will
be useful later on:

LEMMA B.1. Fix any δ ≥ 0, and define the event

Eδ =

∑
i

[
log

(
P ?j (Xij | Xi,−j)Pj(X̃ij | Xi,−j)

Pj(Xij | Xi,−j)P ?j (X̃ij | Xi,−j)

)]2

≤ nδ2 for all j

 .

Then

P
{

max
j=1,...,p

K̂Lj ≤
nδ2

2
+ 2δ

√
n log(p)

}
≥ 1− 1

p
− P {(Eδ)c} .

In order to prove Lemma 3, then, we simply observe that if the universal bound (17)
holds for the likelihood ratios, then the event Eδ occurs with probability 1.
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Now we prove the general result, Lemma B.1. Fix any j. Suppose that we condition
on X−j , X̃−j , and on the unordered pair {Xij , X̃ij} = {aij , bij} for each i—that
is, after observing the unlabeled pair, we arbitrarily label them as a and b. Write
aj = (a1j , . . . , anj) and same for bj . Let Cij = 0 if aij = bij , and otherwise let

Cij :=

{
+1, if (Xij , X̃ij) = (aij , bij),

−1, if (Xij , X̃ij) = (bij , aij).

Then we have

K̂Lj =
∑
i

log

(
P ?j (Xij | Xi,−j) · Pj(X̃ij | Xi,−j)

Pj(Xij | Xi,−j) · P ?j (X̃ij | Xi,−j)

)

=
∑
i

Cij log

(
P ?j (aij | Xi,−j) · Pj(bij | Xi,−j)

Pj(aij | Xi,−j) · P ?j (bij | Xi,−j)

)
=:
∑
i

CijK̂Lij .

By Lemma 1, for each i with aij 6= bij we have

P
{
Cij = +1

∣∣∣ aj , bj ,X−j , X̃−j}
P
{
Cij = −1

∣∣∣ aj , bj ,X−j , X̃−j}
=

P
{

(Xij , X̃ij) = (aij , bij)
∣∣∣ aj , bj ,X−j , X̃−j}

P
{

(Xij , X̃ij) = (bij , aij)
∣∣∣ aj , bj ,X−j , X̃−j}

=
P ?j (aij | Xi,−j)Pj(bij | Xi,−j)

Pj(aij | Xi,−j)P ?j (bij | Xi,−j)
= eK̂Lij .(B.4)

Note that this binary outcome is independent for each i. From this point on we
treat X−j , X̃−j , aj , bj as fixed (where aj = (a1j , . . . , anj) and same for bj), and
only the Cij’s as random. Since K̂Lij depends only on X−j , X̃−j , aj , bj (i.e. on
the variables that we are conditioning on), and is therefore treated as fixed, while
|Cij | ≤ 1 by definition, we see that, writing µj = E

[
K̂Lj

∣∣∣X−j , X̃−j , aj , bj],
P

K̂Lj − µj ≥ 2
√

log(p)

√∑
i

(K̂Lij)2

∣∣∣∣∣∣X−j , X̃−j , aj , bj
 ≤ 1

p2

by Hoeffding’s inequality. Next we work with the conditional expectation of K̂Lj .
For any i with aij 6= bij , we use (B.4) to calculate∣∣∣E [Cij ∣∣∣X−j , X̃−j , aj , bj]∣∣∣ =

∣∣∣∣∣eK̂Lij − 1

eK̂Lij + 1

∣∣∣∣∣ ≤ |K̂Lij |
2

.
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Then∣∣∣E [K̂Lj
∣∣∣X−j , X̃−j , aj , bj]∣∣∣ =

∣∣∣∣∣∑
i

E
[
Cij

∣∣∣X−j , X̃−j , aj , bj] · K̂Lij

∣∣∣∣∣
≤ 1

2

∑
i

(K̂Lij)2.

Therefore, combining everything,

P

K̂Lj ≥
1

2

∑
i

(K̂Lij)2 + 2
√

log(p)

√∑
i

(K̂Lij)2

∣∣∣∣∣∣X−j , X̃−j , aj , bj
 ≤ 1

p2
.

Now, under the event Eδ we must have
∑

i(K̂Lij)2 ≤ nδ2, and so we can write

P
{

K̂Lj · 1 {Eδ} ≥
nδ2

2
+ 2δ

√
n log(p)

∣∣∣∣X−j , X̃−j , aj , bj} ≤ 1

p2
.

Marginalizing over all the conditioned variables, and taking a union bound over all
j, we have proved that

P
{

max
j=1,...,p

K̂Lj · 1 {Eδ} ≥
nδ2

2
+ 2δ

√
n log(p)

}
≤ 1

p
.

This proves the lemma.

B.3. Proof of Lemma 4. Fix any feature index j, and consider any distribution
D(j) on Rp with jth conditional equal to Pj , as defined in (19). For simplicity,
from this point on, we will perform calculations treating D(j) as a joint density,
but the result is valid without this assumption. Drawing X ∼ D(j) and X̃ | X ∼
P
X̃|X(·|X), then the joint density of (X, X̃) is given by

D(j)(x) · P
X̃|X(x̃ | x)

= D
(j)
−j(x−j)︸ ︷︷ ︸
Term 1

·

 Pj(xj | x−j)

exp
{
−1

2x
>Θ̃x

}


︸ ︷︷ ︸
Term 2

·
(
P
X̃|X(x̃ | x) · exp

{
−1

2
x>Θ̃x

})
︸ ︷︷ ︸

Term 3

,

where D(j)
−j is the marginal distribution of X−j under the joint distribution X ∼

D(j). In order to check that (Xj , X̃j , X−j , X̃−j)
d
= (X̃j , Xj , X−j , X̃−j) under this

distribution, we therefore need to check that this joint density is exchangeable in
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ROBUST INFERENCE WITH KNOCKOFFS 7

the variables xj and x̃j ; that is, swapping xj and x̃j does not change the value of
the joint density D(j)(x) · P

X̃|X(x̃ | x). We check this by considering each of the
three terms separately. Term 1 clearly does not depend on either xj or x̃j . Next,
using the calculation of Pj in (19), we can simplify Term 2 to obtain

Term 2 ∝ exp

{
− 1

2/Θ̃jj

(
xj + x>−jΘ̃−j,j/Θ̃jj

)2
+

1

2
x>Θ̃x

}

= exp

{
1

2
x>−j

(
Θ̃−j,−j −

Θ̃−j,jΘ̃
>
−j,j

Θ̃jj

)
x−j

}
,

which also does not depend on either xj or x̃j . Finally, Term 3 is exchangeable in
the pair xj , x̃j by the construction of the knockoff distribution P

X̃|X . More con-
cretely, using the definition of P

X̃|X given in (18), we can calculate

Term 3

∝ exp

{
−1

2

(
x̃− (I−DΘ̃)x

)>
(2D −DΘ̃D)−1

(
x̃− (I−DΘ̃)x

)
− 1

2
x>Θ̃x

}
= exp

{
−1

2
(x+ x̃)>(2D −DΘ̃D)−1(x+ x̃) + x>D−1x̃

}
,

which is clearly exchangeable in the pair xj , x̃j (note that the exchangeability of
xj , x̃j in the term x>D−1x̃ follows from the fact that D is a diagonal matrix).

B.4. Proof of Lemma 5. We will apply Lemma B.1 to prove this result. We first
recall the conditional distributions P ?j for the joint distribution P ?X = Np(0,Θ)−1,
which can be computed as

P ?j (·|x−j) = N
(
x>−j (−Θ−j,j/Θjj) , 1/Θjj

)
,

and the conditionals Pj , calculated earlier in (19) as

Pj(·|x−j) = N
(
x>−j

(
−Θ̃−j,j/Θ̃jj

)
, 1/Θ̃jj

)
.
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Then we can calculate

∑
i

[
log

(
P ?j (Xij | Xi,−j)Pj(X̃ij | Xi,−j)

Pj(Xij | Xi,−j)P ?j (X̃ij | Xi,−j)

)]2

=
∑
i

[
− (Xij − X̃ij) ·

Θ̃jj −Θjj

2
+ X>i∗

(
Θ̃j −Θj

)]2

·
[
Xij − X̃ij

]2

≤ 1

2

∑
i

[
−(Xij − X̃ij) ·

Θ̃jj −Θjj

2
+ X>i∗

(
Θ̃j −Θj

)
︸ ︷︷ ︸

∼N (0,v2j ) for each i

]4

+
1

2

∑
i

[
Xij − X̃ij︸ ︷︷ ︸

∼N (0,w2
j ) for each i

]4
.

Using standard tail bounds on Gaussian and χ2 random variables, and computing
the variances v2

j and w2
j , after some calculations we can show that the quantity

above is bounded as∑
i

[
log

(
P ?j (Xij | Xi,−j)Pj(X̃ij | Xi,−j)

Pj(Xij | Xi,−j)P ?j (X̃ij | Xi,−j)

)]2

≤ 4

[(
δΘ

1− δΘ

)2

+

(
δΘ

1− δΘ

)4
]
·
(√

n+ 2
√

log(np)
)2
,

with probability at least 1− 1
p , and therefore, P {Eδ} ≥ 1− 1

p when we take

δ = 2

√(
δΘ

1− δΘ

)2

+

(
δΘ

1− δΘ

)4

·

(
1 + 2

√
log(np)

n

)
= 2δΘ · (1 + o(1)),

where the last step holds as long as log(p)
n = o(1) and δΘ = o(1). Applying

Lemma B.1 then proves that

P
{

max
j=1,...,p

K̂Lj ≤
nδ2

2
+ 2δ

√
n log(p)

}
≥ 1− 2

p
.

Assuming this upper bound on the K̂Lj’s is bounded by a constant, the dominant
term is therefore 2δ

√
n log(p), which proves the lemma.

B.5. Proof of Lemma 6. First, recall that T = T (W ) is defined as follows:

T = min

{
t ≥ ε(W ) :

c+
∑p

`=1 1 {W` ≤ −t}∑p
`=1 1 {W` ≥ t}︸ ︷︷ ︸

=:f(W,t)

≤ q
}
,
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where ε(W ) > 0 is chosen to be the smallest magnitude of the W statistics,
i.e. ε(W ) = min{|W`| : |W`| > 0}, and where c = 0 for knockoff or c = 1
for knockoff+. Next, define

W j := (W1, . . . ,Wj−1, |Wj |,Wj+1, . . . ,Wp)

and similarly

W k := (W1, . . . ,Wk−1, |Wk|,Wk+1, . . . ,Wp),

so that Tj = T (W j) and Tk = T (W k). Note that |W j | = |W k| = |W |, and so
ε(W j) = ε(W k) = ε(W ) since ε(W ) depends on W only through |W |.
Without loss of generality, assume Tj ≤ Tk, so that by assumption we have Wj ≤
−Tj and Wk ≤ −Tj . Consider

f(W k, Tj) =
c+

∑p
`=1 1

{
W k
` ≤ −Tj

}∑p
`=1 1

{
W k
` ≥ Tj

} .

We will next rewrite the numerator and denominator. Beginning with the numera-
tor, we have

p∑
`=1

1

{
W k
` ≤ −Tj

}
=

p∑
`=1

1

{
W j
` ≤ −Tj

}
+

1

{
W k
j ≤ −Tj

}
− 1

{
W j
j ≤ −Tj

}
+ 1

{
W k
k ≤ −Tj

}
− 1

{
W j
k ≤ −Tj

}
=

p∑
`=1

1

{
W j
` ≤ −Tj

}
+ (1− 0 + 0− 1) =

p∑
`=1

1

{
W j
` ≤ −Tj

}
,

where the first step holds since W j and W k differ only on entries j, k, while the
second step holds because we know from our assumptions and definitions that
W k
j = Wj ≤ −Tj , W j

j = |Wj | ≥ Tj , W k
k = |Wk| ≥ Tj , and W j

k = Wk ≤ −Tj .
Similarly, for the denominator, we have

p∑
`=1

1

{
W k
` ≥ Tj

}
=

p∑
`=1

1

{
W j
` ≥ Tj

}
+

1

{
W k
j ≥ Tj

}
− 1

{
W j
j ≥ Tj

}
+ 1

{
W k
k ≥ Tj

}
− 1

{
W j
k ≥ Tj

}
=

p∑
`=1

1

{
W j
` ≥ Tj

}
+ (0− 1 + 1− 0) =

p∑
`=1

1

{
W j
` ≥ Tj

}
.
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Therefore,

f(W k, Tj) =
c+

∑p
`=1 1

{
W k
` ≤ −Tj

}∑p
`=1 1

{
W k
` ≥ Tj

} =
c+

∑p
`=1 1

{
W j
` ≤ −Tj

}
∑p

`=1 1

{
W j
` ≥ Tj

}
= f(W j , Tj) ≤ q,

where the last step holds by definition of Tj . Therefore, since Tj ≥ ε(W j) =
ε(W k), we see from the definition of Tk that we must have Tk ≤ Tj . This proves
that Tj = Tk, as desired.
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