SUPPLEMENTARY MATERIAL TO 'ROBUST INFERENCE WITH KNOCKOFFS’

By Rina Foygel Barber*, Emmanuel J. Candès ${ }^{\dagger}$, and Richard J. Samworth ${ }^{\ddagger}$
The University of Chicago*, Stanford University ${ }^{\dagger}$ and University of Cambridge ${ }^{\ddagger}$

APPENDIX B: ADDITIONAL PROOFS

B.1. Proof of Theorem 3. First, we will show that our statement can be reduced to a binary hypothesis testing problem. We will work under the global null hypothesis where $Y \Perp X$, and our test will be constructed independently of Y. More formally, let $P_{Y \mid X}$ be any fixed distribution, e.g. $\mathcal{N}(0,1)$. Since all features are null, this means that the false discovery proportion is 1 whenever $\widehat{\mathcal{S}}(\mathbf{X}, \mathbf{Y}) \neq \emptyset$, that is,

$$
\operatorname{FDR}(\widehat{\mathcal{S}})=\mathbb{P}\{\widehat{\mathcal{S}}(\mathbf{X}, \mathbf{Y}) \neq \emptyset\}
$$

Therefore, in order to prove the theorem, it is sufficient to construct a binary test $\psi(\mathbf{X}) \in\{0,1\}$ such that
(B.1)
i.e. a test ψ that has better-than-random performance for testing whether the conditional distribution of X_{j} is given by P_{j}^{\star} or P_{j}. Once ψ is constructed, then this is sufficient for the FDR result, e.g. setting

$$
\widehat{\mathcal{S}}(\mathbf{X}, \mathbf{Y})= \begin{cases}\{j\}, & \psi(\mathbf{X})=1 \\ \emptyset, & \psi(\mathbf{X})=0\end{cases}
$$

Note that, by the well-known equivalence between total variation distance and hypothesis testing [Lehmann and Romano, 2008], the existence of such a test ψ is essentially equivalent to proving a lower bound on

$$
\mathrm{d}_{\mathrm{TV}}\left(\left(P_{X}^{\star}\right)^{\otimes n},\left(P_{X}\right)^{\otimes n}\right)
$$

uniformly over all distributions P_{X} whose j th conditional is P_{j}. In fact, our ψ will be given by a randomized procedure (to be fully formal, we can use the independent
imsart-aos ver. 2012/08/31 file: rk_supp_rev2.tex date: April 18, 2019
random vector \mathbf{Y} as a source of randomness, if needed). First, we draw $\widetilde{\mathbf{X}} \mid \mathbf{X}$, independently of \mathbf{Y} and drawn from the rule $P_{\tilde{X} \mid X}$ as specified in the theorem, and independently we also draw $B \sim \operatorname{Bernoulli}(2 q)$ and $B^{\prime} \sim \operatorname{Bernoulli}(q)$. Next, defining $\widehat{\mathrm{KL}}_{j}$ as in (13), we let

$$
\psi\left(\mathbf{X}, \widetilde{\mathbf{X}}, B, B^{\prime}\right)=\mathbb{1}\left\{B=1 \text { and } \widehat{\mathrm{KL}}_{j}>0\right\}+\mathbb{1}\left\{B^{\prime}=1 \text { and } \widehat{\mathrm{KL}}_{j}=0\right\} .
$$

Clearly, by definition of B and B^{\prime}, we have

$$
\begin{equation*}
\mathbb{P}\left\{\psi\left(\mathbf{X}, \widetilde{\mathbf{X}}, B, B^{\prime}\right)=1\right\}=2 q \cdot \mathbb{P}\left\{\widehat{\mathrm{KL}}_{j}>0\right\}+q \cdot \mathbb{P}\left\{\widehat{\mathrm{KL}}_{j}=0\right\} \tag{B.2}
\end{equation*}
$$

where $\mathbb{P}\left\{\widehat{\mathrm{KL}}_{j}>0\right\}$ and $\mathbb{P}\left\{\widehat{\mathrm{KL}}_{j}=0\right\}$ are taken with respect to the joint distribution of $(\mathbf{X}, \widetilde{\mathbf{X}})$.
Next, we check that the test ψ satisfies the properties (B.1), as required for the FDR bounds in this theorem. We first prove the second bound in (B.1). Suppose $\mathbf{X}_{i, *} \stackrel{\text { iid }}{\sim} P_{X}$ —that is, P_{j} is indeed the correct conditional distribution for $X_{j} \mid X_{-j}$. The knockoff generating mechanism $P_{\widetilde{X} \mid X}$ was defined to satisfy pairwise exchangeability with respect to P_{j} (5), meaning that \mathbf{X}_{j} and $\widetilde{\mathbf{X}}_{j}$ are exchangeable conditional on the other variables in this scenario. Examining the form of $\widehat{\mathrm{KL}}_{j}$, we see that swapping \mathbf{X}_{j} and $\widetilde{\mathbf{X}}_{j}$ has the effect of changing the sign of $\widehat{\mathrm{KL}}_{j}$. The exchangeability of the pair $\left(\mathbf{X}_{j}, \widetilde{\mathbf{X}}_{j}\right)$ implies that the distribution of $\widehat{\mathrm{KL}}_{j}$ is symmetric around zero, and so under $\left(\mathbf{X}_{i, *}, \widetilde{\mathbf{X}}_{i, *}\right) \stackrel{\text { iid }}{\sim} P_{X} \times P_{\tilde{X} \mid X}$,

$$
\mathbb{P}\left\{\widehat{\mathrm{KL}}_{j}>0\right\}+0.5 \cdot \mathbb{P}\left\{\widehat{\mathrm{KL}}_{j}=0\right\}=0.5
$$

Checking (B.2), this proves that $\left.\mathbb{P}_{\mathbf{X}_{i, *} \sim}{ }^{\text {iid }} P_{X}(\mathbf{X})=1\right\}=q$, which ensures FDR control for the case that the estimated conditional P_{j} is in fact correct.
Finally we turn to the first part of (B.1), where now we assume that $\left(\mathbf{X}_{i, *}, \widetilde{\mathbf{X}}_{i, *}\right) \stackrel{\text { iid }}{\sim}$ $P_{X}^{\star} \times P_{\tilde{X} \mid X}$. From this point on, we will condition on the observed values of \mathbf{X}_{-j} and $\widetilde{\mathbf{X}}_{-j}$. By assumption in the theorem, under this distribution we have $\mathbb{P}\left\{\widehat{\mathrm{KL}}_{j} \geq \epsilon\right\} \geq c$. As in the proof of Lemma 2, we consider the unordered pair $\left\{\mathbf{X}_{j}, \widetilde{\mathbf{X}}_{j}\right\}$-that is, we see the two vectors \mathbf{X}_{j} and $\widetilde{\mathbf{X}}_{j}$ but do not know which is which. Note that, with this information, we are able to compute $\left|\widehat{\mathrm{KL}}_{j}\right|$ but not $\operatorname{sign}\left(\widehat{\mathrm{KL}}_{j}\right)$. Without loss of generality, we can label the unordered pair of feature vectors $\left\{\mathbf{X}_{j}, \widetilde{\mathbf{X}}_{j}\right\}$, as $\mathbf{X}_{j}^{(0)}$ and $\mathbf{X}_{j}^{(1)}$, such that

- if $\mathbf{X}_{j}=\mathbf{X}_{j}^{(0)}$ and $\widetilde{\mathbf{X}}_{j}=\mathbf{X}_{j}^{(1)}$, then $\widehat{\mathrm{KL}}_{j} \geq 0$;
imsart-aos ver. 2012/08/31 file: rk_supp_rev2.tex date: April 18, 2019
- if $\mathbf{X}_{j}=\mathbf{X}_{j}^{(1)}$ and $\widetilde{\mathbf{X}}_{j}=\mathbf{X}_{j}^{(0)}$, then $\widehat{\mathrm{KL}}_{j} \leq 0$.

Define $C=\operatorname{sign}\left(\widehat{\mathrm{KL}}_{j}\right)$, so that $\widehat{\mathrm{KL}}_{j}=C \cdot\left|\widehat{\mathrm{KL}}_{j}\right|$. By definition of the distribution of $(\mathbf{X}, \widetilde{\mathbf{X}})$, it follows from Lemma 1 that

$$
\begin{aligned}
& \frac{\mathbb{P}\left\{\left(\mathbf{X}_{j}, \widetilde{\mathbf{X}}_{j}\right)=\left(\mathbf{X}_{j}^{(0)}, \mathbf{X}_{j}^{(1)}\right) \mid \mathbf{X}_{j}^{(0)}, \mathbf{X}_{j}^{(1)}, \mathbf{X}_{-j}\right\}}{\mathbb{P}\left\{\left(\mathbf{X}_{j}, \widetilde{\mathbf{X}}_{j}\right)=\left(\mathbf{X}_{j}^{(1)}, \mathbf{X}_{j}^{(0)}\right) \mid \mathbf{X}_{j}^{(0)}, \mathbf{X}_{j}^{(1)}, \mathbf{X}_{-j}\right\}} \\
&=\prod_{i} \frac{P_{j}^{\star}\left(\mathbf{X}_{i j}^{(0)} \mid \mathbf{X}_{i,-j}\right) P_{j}\left(\mathbf{X}_{i j}^{(1)} \mid \mathbf{X}_{i,-j}\right)}{P_{j}\left(\mathbf{X}_{i j}^{(0)} \mid \mathbf{X}_{i,-j}\right) P_{j}^{\star}\left(\mathbf{X}_{i j}^{(1)} \mid \mathbf{X}_{i,-j}\right)} .
\end{aligned}
$$

In other words, if $\left|\widehat{K L}_{j}\right| \neq 0$, then

$$
\begin{aligned}
& \frac{\mathbb{P}\{C=+1}{\mathbb{P}\left\{C=-1 \mid \mathbf{X}_{j}^{(0)}, \mathbf{X}_{j}^{(1)}, \mathbf{X}_{-j}, \widetilde{\mathbf{X}}_{-j}\right\}},=\prod_{j}^{(0)}, \mathbf{X}_{j}^{(1)}, \mathbf{X}_{-j}, \widetilde{\mathbf{X}}_{-j}\left(\mathbf{X}_{i j}^{(0)} \mid \mathbf{X}_{i,-j}\right) P_{j}\left(\mathbf{X}_{i j}^{(1)} \mid \mathbf{X}_{i,-j}\right) \\
& P_{j}\left(\mathbf{X}_{i j}^{(0)} \mid \mathbf{X}_{i,-j}\right) P_{j}^{\star}\left(\mathbf{X}_{i j}^{(1)} \mid \mathbf{X}_{i,-j}\right) \\
&=\exp \left\{\left|\widehat{\mathrm{KL}}_{j}\right|\right\},
\end{aligned}
$$

where the last step holds by our choice of which vector to label as $\mathbf{X}^{(0)}$ and which to label as $\mathbf{X}^{(1)}$.
Therefore, we can write
$c \leq \mathbb{P}\left\{\widehat{\mathrm{KL}}_{j} \geq \epsilon\right\}=\mathbb{P}\left\{C=+1\right.$ and $\left.\left|\widehat{\mathrm{KL}}_{j}\right| \geq \epsilon\right\}$

$$
=\mathbb{E}\left[\mathbb{P}\left\{C=+1 \mid \mathbf{X}_{j}^{(0)}, \mathbf{X}_{j}^{(1)}, \mathbf{X}_{-j}, \widetilde{\mathbf{X}}_{-j}\right\} \cdot \mathbb{1}\left\{\left|\widehat{\mathrm{KL}}_{j}\right| \geq \epsilon\right\}\right]
$$

$$
\begin{equation*}
=\mathbb{E}\left[\frac{e^{\left|\widehat{\mathrm{KL}}_{j}\right|}}{1+e^{\left|\widehat{\mathrm{KL}}_{j}\right|}} \cdot \mathbb{1}\left\{\left|\widehat{\mathrm{KL}}_{j}\right| \geq \epsilon\right\}\right] . \tag{B.3}
\end{equation*}
$$

We can similarly calculate

$$
\mathbb{P}\left\{\widehat{\mathrm{KL}}_{j}>0\right\}=\mathbb{E}\left[\frac{e^{\left|\widehat{\mathrm{KL}}_{j}\right|}}{1+e^{\left|\widehat{\mathrm{K}}_{j}\right|}} \cdot \mathbb{1}\left\{\left|\widehat{\mathrm{KL}}_{j}\right|>0\right\}\right] .
$$

Therefore,

$$
\begin{aligned}
& \frac{1}{2} \mathbb{P}\left\{\widehat{\mathrm{KL}}_{j}=0\right\}+\mathbb{P}\left\{\widehat{\mathrm{KL}}_{j}>0\right\} \\
& \quad=\mathbb{E}\left[\frac{e^{0}}{1+e^{0}} \cdot \mathbb{1}\left\{\left|\widehat{\mathrm{KL}}_{j}\right|=0\right\}\right]+\mathbb{E}\left[\frac{e^{\left|\widehat{\mathrm{KL}}_{j}\right|}}{\left.1+e^{\left|\widehat{\mathrm{KL}}_{j}\right|} \cdot \mathbb{1}\left\{\left|\widehat{\mathrm{KL}}_{j}\right|>0\right\}\right]}\right. \\
& \quad=\mathbb{E}\left[\frac{e^{\left|\widehat{\mathrm{KL}}_{j}\right|}}{1+e^{\left|\widehat{\mathrm{K}}_{j}\right|}}\right] .
\end{aligned}
$$

To continue, observe that for $t \geq 0, e^{t} /\left(1+e^{t}\right) \geq 1 / 2$. Hence,

$$
\begin{aligned}
\mathbb{E}\left[\frac{e^{\left|\widehat{\mathrm{KL}}_{j}\right|}}{\left.1+e^{\left|\widehat{\mathrm{KL}}_{j}\right|}\right]}\right. & \geq \frac{1}{2}+\mathbb{E}\left[\left(\frac{e^{\left|\widehat{\mathrm{KL}}_{j}\right|}}{\left.\left.1+e^{\left|\widehat{\mathrm{K}}_{j}\right|}-\frac{1}{2}\right) \cdot \mathbb{1}\left\{\left|\widehat{\mathrm{KL}}_{j}\right| \geq \epsilon\right\}\right]}\right.\right. \\
& \geq \frac{1}{2}+\min _{t \geq \epsilon} \frac{\frac{e^{t}}{1+e^{t}}-\frac{1}{2}}{\frac{e^{t}}{1+e^{t}}} \cdot \underbrace{\mathbb{E}\left[\frac{e^{\left|\widehat{\mathrm{K}}_{j}\right|}}{1+e^{\left|\widehat{\mathrm{KL}}_{j}\right|}} \cdot \mathbb{1}\left\{\left|\widehat{\mathrm{KL}}_{j}\right| \geq \epsilon\right\}\right]}_{\geq c \text { by (B.3) }} \\
& \geq \frac{1}{2}\left(1+c\left(1-e^{-\epsilon}\right)\right),
\end{aligned}
$$

where for the last step we check that the minimum is attained at $t=\epsilon$. This proves that, when $\mathbf{X}_{i, *} \stackrel{\text { iid }}{\sim} P_{X}^{\star}$, we have $\psi\left(\mathbf{X}, \widetilde{\mathbf{X}}, B, B^{\prime}\right)=1$ with probability at least $q\left(1+c\left(1-e^{-\epsilon}\right)\right)$, and so the first part of (B.1) is satisfied, as desired.
B.2. Proof of Lemma 3. We will in fact prove a more general result, which will be useful later on:

Lemma B.1. Fix any $\delta \geq 0$, and define the event

$$
\mathcal{E}_{\delta}=\left\{\sum_{i}\left[\log \left(\frac{P_{j}^{\star}\left(\mathbf{X}_{i j} \mid \mathbf{X}_{i,-j}\right) P_{j}\left(\widetilde{\mathbf{X}}_{i j} \mid \mathbf{X}_{i,-j}\right)}{P_{j}\left(\mathbf{X}_{i j} \mid \mathbf{X}_{i,-j}\right) P_{j}^{\star}\left(\widetilde{\mathbf{X}}_{i j} \mid \mathbf{X}_{i,-j}\right)}\right)\right]^{2} \leq n \delta^{2} \text { for all } j\right\} .
$$

Then

$$
\mathbb{P}\left\{\max _{j=1, \ldots, p} \widehat{\mathrm{KL}}_{j} \leq \frac{n \delta^{2}}{2}+2 \delta \sqrt{n \log (p)}\right\} \geq 1-\frac{1}{p}-\mathbb{P}\left\{\left(\mathcal{E}_{\delta}\right)^{c}\right\} .
$$

In order to prove Lemma 3, then, we simply observe that if the universal bound (17) holds for the likelihood ratios, then the event \mathcal{E}_{δ} occurs with probability 1 .

Now we prove the general result, Lemma B.1. Fix any j. Suppose that we condition on $\mathbf{X}_{-j}, \widetilde{\mathbf{X}}_{-j}$, and on the unordered pair $\left\{\mathbf{X}_{i j}, \widetilde{\mathbf{X}}_{i j}\right\}=\left\{a_{i j}, b_{i j}\right\}$ for each i-that is, after observing the unlabeled pair, we arbitrarily label them as a and b. Write $a_{j}=\left(a_{1 j}, \ldots, a_{n j}\right)$ and same for b_{j}. Let $C_{i j}=0$ if $a_{i j}=b_{i j}$, and otherwise let

$$
C_{i j}:= \begin{cases}+1, & \text { if }\left(\mathbf{X}_{i j}, \widetilde{\mathbf{X}}_{i j}\right)=\left(a_{i j}, b_{i j}\right), \\ -1, & \text { if }\left(\mathbf{X}_{i j}, \widetilde{\mathbf{X}}_{i j}\right)=\left(b_{i j}, a_{i j}\right) .\end{cases}
$$

Then we have

$$
\begin{aligned}
\widehat{\mathrm{KL}}_{j}= & \sum_{i} \log \left(\frac{P_{j}^{\star}\left(\mathbf{X}_{i j} \mid \mathbf{X}_{i,-j}\right) \cdot P_{j}\left(\widetilde{\mathbf{X}}_{i j} \mid \mathbf{X}_{i,-j}\right)}{P_{j}\left(\mathbf{X}_{i j} \mid \mathbf{X}_{i,-j}\right) \cdot P_{j}^{\star}\left(\widetilde{\mathbf{X}}_{i j} \mid \mathbf{X}_{i,-j}\right)}\right) \\
& =\sum_{i} C_{i j} \log \left(\frac{P_{j}^{\star}\left(a_{i j} \mid \mathbf{X}_{i,-j}\right) \cdot P_{j}\left(b_{i j} \mid \mathbf{X}_{i,-j}\right)}{P_{j}\left(a_{i j} \mid \mathbf{X}_{i,-j}\right) \cdot P_{j}^{\star}\left(b_{i j} \mid \mathbf{X}_{i,-j}\right)}\right)=: \sum_{i} C_{i j} \widehat{\mathrm{KL}}_{i j} .
\end{aligned}
$$

By Lemma 1, for each i with $a_{i j} \neq b_{i j}$ we have

$$
\begin{align*}
&\left.\left.\frac{\mathbb{P}\left\{C_{i j}=+1\right.}{} \right\rvert\, a_{j}, b_{j}, \mathbf{X}_{-j}, \widetilde{\mathbf{X}}_{-j}\right\} \\
& \mathbb{P}\left\{C_{i j}=-1\right.\left.a_{j}, b_{j}, \mathbf{X}_{-j}, \widetilde{\mathbf{X}}_{-j}\right\} \\
&= \frac{\mathbb{P}\left\{\left(\mathbf{X}_{i j}, \widetilde{\mathbf{X}}_{i j}\right)=\left(a_{i j}, b_{i j}\right) \mid a_{j}, b_{j}, \mathbf{X}_{-j}, \widetilde{\mathbf{X}}_{-j}\right\}}{\mathbb{P}\left\{\left(\mathbf{X}_{i j}, \widetilde{\mathbf{X}}_{i j}\right)=\left(b_{i j}, a_{i j}\right) \mid a_{j}, b_{j}, \mathbf{X}_{-j}, \widetilde{\mathbf{X}}_{-j}\right\}} \\
&=\frac{P_{j}^{\star}\left(a_{i j} \mid \mathbf{X}_{i,-j}\right) P_{j}\left(b_{i j} \mid \mathbf{X}_{i,-j}\right)}{P_{j}\left(a_{i j} \mid \mathbf{X}_{i,-j}\right) P_{j}^{\star}\left(b_{i j} \mid \mathbf{X}_{i,-j}\right)}=e^{\widehat{\mathrm{KL}}_{i j} .} \tag{B.4}
\end{align*}
$$

Note that this binary outcome is independent for each i. From this point on we treat $\mathbf{X}_{-j}, \widetilde{\mathbf{X}}_{-j}, a_{j}, b_{j}$ as fixed (where $a_{j}=\left(a_{1 j}, \ldots, a_{n j}\right)$ and same for b_{j}), and only the $C_{i j}$'s as random. Since $\widehat{\mathrm{KL}}_{i j}$ depends only on $\mathbf{X}_{-j}, \widetilde{\mathbf{X}}_{-j}, a_{j}, b_{j}$ (i.e. on the variables that we are conditioning on), and is therefore treated as fixed, while $\left|C_{i j}\right| \leq 1$ by definition, we see that, writing $\mu_{j}=\mathbb{E}\left[\widehat{\mathrm{KL}}_{j} \mid \mathbf{X}_{-j}, \widetilde{\mathbf{X}}_{-j}, a_{j}, b_{j}\right]$,

$$
\mathbb{P}\left\{\widehat{\mathrm{KL}}_{j}-\mu_{j} \geq 2 \sqrt{\log (p)} \sqrt{\sum_{i}\left(\widehat{\mathrm{KL}}_{i j}\right)^{2}} \mid \mathbf{X}_{-j}, \widetilde{\mathbf{X}}_{-j}, a_{j}, b_{j}\right\} \leq \frac{1}{p^{2}}
$$

by Hoeffding's inequality. Next we work with the conditional expectation of $\widehat{\mathrm{KL}}_{j}$. For any i with $a_{i j} \neq b_{i j}$, we use (B.4) to calculate

$$
\left|\mathbb{E}\left[C_{i j} \mid \mathbf{X}_{-j}, \widetilde{\mathbf{X}}_{-j}, a_{j}, b_{j}\right]\right|=\left|\frac{e^{\widehat{\mathrm{KL}}_{i j}}-1}{e^{\widehat{\mathrm{KL}}_{i j}}+1}\right| \leq \frac{\left|\widehat{\mathrm{KL}}_{i j}\right|}{2} .
$$

imsart-aos ver. 2012/08/31 file: rk_supp_rev2.tex date: April 18, 2019

Then

$$
\begin{aligned}
\left|\mathbb{E}\left[\widehat{\mathrm{KL}}_{j} \mid \mathbf{X}_{-j}, \widetilde{\mathbf{X}}_{-j}, a_{j}, b_{j}\right]\right| & =\left|\sum_{i} \mathbb{E}\left[C_{i j} \mid \mathbf{X}_{-j}, \widetilde{\mathbf{X}}_{-j}, a_{j}, b_{j}\right] \cdot \widehat{\mathrm{KL}}_{i j}\right| \\
& \leq \frac{1}{2} \sum_{i}\left(\widehat{\mathrm{KL}}_{i j}\right)^{2} .
\end{aligned}
$$

Therefore, combining everything,

$$
\mathbb{P}\left\{\left.\widehat{\mathrm{KL}}_{j} \geq \frac{1}{2} \sum_{i}\left(\widehat{\mathrm{KL}}_{i j}\right)^{2}+2 \sqrt{\log (p)} \sqrt{\sum_{i}\left(\widehat{\mathrm{KL}}_{i j}\right)^{2}} \right\rvert\, \mathbf{X}_{-j}, \widetilde{\mathbf{X}}_{-j}, a_{j}, b_{j}\right\} \leq \frac{1}{p^{2}} .
$$

Now, under the event \mathcal{E}_{δ} we must have $\sum_{i}\left(\widehat{\mathrm{KL}}_{i j}\right)^{2} \leq n \delta^{2}$, and so we can write

$$
\mathbb{P}\left\{\left.\widehat{\mathrm{KL}}_{j} \cdot \mathbb{1}\left\{\mathcal{E}_{\delta}\right\} \geq \frac{n \delta^{2}}{2}+2 \delta \sqrt{n \log (p)} \right\rvert\, \mathbf{X}_{-j}, \widetilde{\mathbf{X}}_{-j}, a_{j}, b_{j}\right\} \leq \frac{1}{p^{2}}
$$

Marginalizing over all the conditioned variables, and taking a union bound over all j, we have proved that

$$
\mathbb{P}\left\{\max _{j=1, \ldots, p} \widehat{\mathrm{KL}}_{j} \cdot \mathbb{1}\left\{\mathcal{E}_{\delta}\right\} \geq \frac{n \delta^{2}}{2}+2 \delta \sqrt{n \log (p)}\right\} \leq \frac{1}{p} .
$$

This proves the lemma.
B.3. Proof of Lemma 4. Fix any feature index j, and consider any distribution $D^{(j)}$ on \mathbb{R}^{p} with j th conditional equal to P_{j}, as defined in (19). For simplicity, from this point on, we will perform calculations treating $D^{(j)}$ as a joint density, but the result is valid without this assumption. Drawing $X \sim D^{(j)}$ and $\widetilde{X} \mid X \sim$ $P_{\widetilde{X} \mid X}(\cdot \mid X)$, then the joint density of (X, \widetilde{X}) is given by

$$
\begin{aligned}
& D^{(j)}(x) \cdot P_{\tilde{X} \mid X}(\widetilde{x} \mid x) \\
& =\underbrace{D_{-j}^{(j)}\left(x_{-j}\right)}_{\text {Term 1 }} \cdot \underbrace{\left(\frac{P_{j}\left(x_{j} \mid x_{-j}\right)}{\exp \left\{-\frac{1}{2} x^{\top} \widetilde{\Theta} x\right\}}\right)}_{\text {Term 2 }} \cdot \underbrace{\left(P_{\widetilde{X} \mid X}(\widetilde{x} \mid x) \cdot \exp \left\{-\frac{1}{2} x^{\top} \widetilde{\Theta} x\right\}\right)}_{\text {Term 3 }},
\end{aligned}
$$

where $D_{-j}^{(j)}$ is the marginal distribution of X_{-j} under the joint distribution $X \sim$ $D^{(j)}$. In order to check that $\left(X_{j}, \widetilde{X}_{j}, X_{-j}, \widetilde{X}_{-j}\right) \stackrel{\mathrm{d}}{=}\left(\widetilde{X}_{j}, X_{j}, X_{-j}, \widetilde{X}_{-j}\right)$ under this distribution, we therefore need to check that this joint density is exchangeable in
the variables x_{j} and \widetilde{x}_{j}; that is, swapping x_{j} and \widetilde{x}_{j} does not change the value of the joint density $D^{(j)}(x) \cdot P_{\widetilde{X} \mid X}(\widetilde{x} \mid x)$. We check this by considering each of the three terms separately. Term 1 clearly does not depend on either x_{j} or \widetilde{x}_{j}. Next, using the calculation of P_{j} in (19), we can simplify Term 2 to obtain

$$
\begin{aligned}
& \text { Term } 2 \propto \exp \left\{-\frac{1}{2 / \widetilde{\Theta}_{j j}}\left(x_{j}+x_{-j}^{\top} \widetilde{\Theta}_{-j, j} / \widetilde{\Theta}_{j j}\right)^{2}+\frac{1}{2} x^{\top} \widetilde{\Theta} x\right\} \\
&=\exp \left\{\frac{1}{2} x_{-j}^{\top}\left(\widetilde{\Theta}_{-j,-j}-\frac{\widetilde{\Theta}_{-j, j} \widetilde{\Theta}_{-j, j}^{\top}}{\widetilde{\Theta}_{j j}}\right) x_{-j}\right\}
\end{aligned}
$$

which also does not depend on either x_{j} or \widetilde{x}_{j}. Finally, Term 3 is exchangeable in the pair x_{j}, \widetilde{x}_{j} by the construction of the knockoff distribution $P_{\tilde{X} \mid X}$. More concretely, using the definition of $P_{\tilde{X} \mid X}$ given in (18), we can calculate

Term 3

$$
\begin{aligned}
& \propto \exp \left\{-\frac{1}{2}(\widetilde{x}-(\mathbf{I}-D \widetilde{\Theta}) x)^{\top}(2 D-D \widetilde{\Theta} D)^{-1}(\widetilde{x}-(\mathbf{I}-D \widetilde{\Theta}) x)-\frac{1}{2} x^{\top} \widetilde{\Theta} x\right\} \\
& =\exp \left\{-\frac{1}{2}(x+\widetilde{x})^{\top}(2 D-D \widetilde{\Theta} D)^{-1}(x+\widetilde{x})+x^{\top} D^{-1} \widetilde{x}\right\}
\end{aligned}
$$

which is clearly exchangeable in the pair x_{j}, \widetilde{x}_{j} (note that the exchangeability of x_{j}, \widetilde{x}_{j} in the term $x^{\top} D^{-1} \widetilde{x}$ follows from the fact that D is a diagonal matrix).
B.4. Proof of Lemma 5. We will apply Lemma B. 1 to prove this result. We first recall the conditional distributions P_{j}^{\star} for the joint distribution $P_{X}^{\star}=\mathcal{N}_{p}(0, \Theta)^{-1}$, which can be computed as

$$
P_{j}^{\star}\left(\cdot \mid x_{-j}\right)=\mathcal{N}\left(x_{-j}^{\top}\left(-\Theta_{-j, j} / \Theta_{j j}\right), 1 / \Theta_{j j}\right),
$$

and the conditionals P_{j}, calculated earlier in (19) as

$$
P_{j}\left(\cdot \mid x_{-j}\right)=\mathcal{N}\left(x_{-j}^{\top}\left(-\widetilde{\Theta}_{-j, j} / \widetilde{\Theta}_{j j}\right), 1 / \widetilde{\Theta}_{j j}\right) .
$$

Then we can calculate

$$
\begin{aligned}
& \sum_{i}\left[\log \left(\frac{P_{j}^{\star}\left(\mathbf{X}_{i j} \mid \mathbf{X}_{i,-j}\right) P_{j}\left(\widetilde{\mathbf{X}}_{i j} \mid \mathbf{X}_{i,-j}\right)}{P_{j}\left(\mathbf{X}_{i j} \mid \mathbf{X}_{i,-j}\right) P_{j}^{\star}\left(\widetilde{\mathbf{X}}_{i j} \mid \mathbf{X}_{i,-j}\right)}\right)\right]^{2} \\
& =\sum_{i}\left[-\left(\mathbf{X}_{i j}-\widetilde{\mathbf{X}}_{i j}\right) \cdot \frac{\widetilde{\Theta}_{j j}-\Theta_{j j}}{2}+\mathbf{X}_{i *}^{\top}\left(\widetilde{\Theta}_{j}-\Theta_{j}\right)\right]^{2} \cdot\left[\mathbf{X}_{i j}-\widetilde{\mathbf{X}}_{i j}\right]^{2} \\
& \quad \leq \frac{1}{2} \sum_{i}[\underbrace{-\left(\mathbf{X}_{i j}-\widetilde{\mathbf{X}}_{i j}\right) \cdot \frac{\widetilde{\Theta}_{j j}-\Theta_{j j}}{2}+\mathbf{X}_{i *}^{\top}\left(\widetilde{\Theta}_{j}-\Theta_{j}\right)}_{\sim \mathcal{N}\left(0, v_{j}^{2}\right) \text { for each } i}]^{4} \\
& +\frac{1}{2} \sum_{i}[\underbrace{\mathbf{X}_{i j}-\widetilde{\mathbf{X}}_{i j}}_{\sim \mathcal{N}\left(0, w_{j}^{2}\right) \text { for each } i}]^{4} .
\end{aligned}
$$

Using standard tail bounds on Gaussian and χ^{2} random variables, and computing the variances v_{j}^{2} and w_{j}^{2}, after some calculations we can show that the quantity above is bounded as

$$
\begin{aligned}
& \sum_{i}\left[\log \left(\frac{P_{j}^{\star}\left(\mathbf{X}_{i j} \mid \mathbf{X}_{i,-j}\right) P_{j}\left(\widetilde{\mathbf{X}}_{i j} \mid \mathbf{X}_{i,-j}\right)}{P_{j}\left(\mathbf{X}_{i j} \mid \mathbf{X}_{i,-j}\right) P_{j}^{\star}\left(\widetilde{\mathbf{X}}_{i j} \mid \mathbf{X}_{i,-j}\right)}\right)\right]^{2} \\
& \quad \leq 4\left[\left(\frac{\delta_{\Theta}}{1-\delta_{\Theta}}\right)^{2}+\left(\frac{\delta_{\Theta}}{1-\delta_{\Theta}}\right)^{4}\right] \cdot(\sqrt{n}+2 \sqrt{\log (n p)})^{2}
\end{aligned}
$$

with probability at least $1-\frac{1}{p}$, and therefore, $\mathbb{P}\left\{\mathcal{E}_{\delta}\right\} \geq 1-\frac{1}{p}$ when we take

$$
\delta=2 \sqrt{\left(\frac{\delta_{\Theta}}{1-\delta_{\Theta}}\right)^{2}+\left(\frac{\delta_{\Theta}}{1-\delta_{\Theta}}\right)^{4}} \cdot\left(1+2 \sqrt{\frac{\log (n p)}{n}}\right)=2 \delta_{\Theta} \cdot(1+o(1))
$$

where the last step holds as long as $\frac{\log (p)}{n}=o(1)$ and $\delta_{\Theta}=o(1)$. Applying Lemma B. 1 then proves that

$$
\mathbb{P}\left\{\max _{j=1, \ldots, p} \widehat{\mathrm{KL}}_{j} \leq \frac{n \delta^{2}}{2}+2 \delta \sqrt{n \log (p)}\right\} \geq 1-\frac{2}{p}
$$

Assuming this upper bound on the $\widehat{\mathrm{KL}}_{j}$'s is bounded by a constant, the dominant term is therefore $2 \delta \sqrt{n \log (p)}$, which proves the lemma.
B.5. Proof of Lemma 6. First, recall that $T=T(W)$ is defined as follows:

$$
T=\min \{t \geq \epsilon(W): \underbrace{\frac{c+\sum_{\ell=1}^{p} \mathbb{1}\left\{W_{\ell} \leq-t\right\}}{\sum_{\ell=1}^{p} \mathbb{1}\left\{W_{\ell} \geq t\right\}}}_{=: f(W, t)} \leq q\}
$$

where $\epsilon(W)>0$ is chosen to be the smallest magnitude of the W statistics, i.e. $\epsilon(W)=\min \left\{\left|W_{\ell}\right|:\left|W_{\ell}\right|>0\right\}$, and where $c=0$ for knockoff or $c=1$ for knockoff+. Next, define

$$
W^{j}:=\left(W_{1}, \ldots, W_{j-1},\left|W_{j}\right|, W_{j+1}, \ldots, W_{p}\right)
$$

and similarly

$$
W^{k}:=\left(W_{1}, \ldots, W_{k-1},\left|W_{k}\right|, W_{k+1}, \ldots, W_{p}\right)
$$

so that $T_{j}=T\left(W^{j}\right)$ and $T_{k}=T\left(W^{k}\right)$. Note that $\left|W^{j}\right|=\left|W^{k}\right|=|W|$, and so $\epsilon\left(W^{j}\right)=\epsilon\left(W^{k}\right)=\epsilon(W)$ since $\epsilon(W)$ depends on W only through $|W|$.
Without loss of generality, assume $T_{j} \leq T_{k}$, so that by assumption we have $W_{j} \leq$ $-T_{j}$ and $W_{k} \leq-T_{j}$. Consider

$$
f\left(W^{k}, T_{j}\right)=\frac{c+\sum_{\ell=1}^{p} \mathbb{1}\left\{W_{\ell}^{k} \leq-T_{j}\right\}}{\sum_{\ell=1}^{p} \mathbb{1}\left\{W_{\ell}^{k} \geq T_{j}\right\}} .
$$

We will next rewrite the numerator and denominator. Beginning with the numerator, we have

$$
\begin{aligned}
& \sum_{\ell=1}^{p} \mathbb{1}\left\{W_{\ell}^{k} \leq-T_{j}\right\}=\sum_{\ell=1}^{p} \mathbb{1}\left\{W_{\ell}^{j} \leq-T_{j}\right\}+ \\
& \mathbb{1}\left\{W_{j}^{k} \leq-T_{j}\right\}-\mathbb{1}\left\{W_{j}^{j} \leq-T_{j}\right\}+\mathbb{1}\left\{W_{k}^{k} \leq-T_{j}\right\}-\mathbb{1}\left\{W_{k}^{j} \leq-T_{j}\right\} \\
& \\
& =\sum_{\ell=1}^{p} \mathbb{1}\left\{W_{\ell}^{j} \leq-T_{j}\right\}+(1-0+0-1)=\sum_{\ell=1}^{p} \mathbb{1}\left\{W_{\ell}^{j} \leq-T_{j}\right\},
\end{aligned}
$$

where the first step holds since W^{j} and W^{k} differ only on entries j, k, while the second step holds because we know from our assumptions and definitions that $W_{j}^{k}=W_{j} \leq-T_{j}, W_{j}^{j}=\left|W_{j}\right| \geq T_{j}, W_{k}^{k}=\left|W_{k}\right| \geq T_{j}$, and $W_{k}^{j}=W_{k} \leq-T_{j}$. Similarly, for the denominator, we have

$$
\begin{aligned}
& \sum_{\ell=1}^{p} \mathbb{1}\left\{W_{\ell}^{k} \geq T_{j}\right\}=\sum_{\ell=1}^{p} \mathbb{1}\left\{W_{\ell}^{j} \geq T_{j}\right\}+ \\
& \mathbb{1}\left\{W_{j}^{k} \geq T_{j}\right\}-\mathbb{1}\left\{W_{j}^{j} \geq T_{j}\right\}+\mathbb{1}\left\{W_{k}^{k} \geq T_{j}\right\}-\mathbb{1}\left\{W_{k}^{j} \geq T_{j}\right\} \\
& \\
& =\sum_{\ell=1}^{p} \mathbb{1}\left\{W_{\ell}^{j} \geq T_{j}\right\}+(0-1+1-0)=\sum_{\ell=1}^{p} \mathbb{1}\left\{W_{\ell}^{j} \geq T_{j}\right\}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
f\left(W^{k}, T_{j}\right)=\frac{c+\sum_{\ell=1}^{p} \mathbb{1}\left\{W_{\ell}^{k} \leq-T_{j}\right\}}{\sum_{\ell=1}^{p} \mathbb{1}\left\{W_{\ell}^{k} \geq T_{j}\right\}} & =\frac{c+\sum_{\ell=1}^{p} \mathbb{1}\left\{W_{\ell}^{j} \leq-T_{j}\right\}}{\sum_{\ell=1}^{p} \mathbb{1}\left\{W_{\ell}^{j} \geq T_{j}\right\}} \\
& =f\left(W^{j}, T_{j}\right) \leq q,
\end{aligned}
$$

where the last step holds by definition of T_{j}. Therefore, since $T_{j} \geq \epsilon\left(W^{j}\right)=$ $\epsilon\left(W^{k}\right)$, we see from the definition of T_{k} that we must have $T_{k} \leq T_{j}$. This proves that $T_{j}=T_{k}$, as desired.

REFERENCES

E.L. Lehmann and J.P. Romano. Testing Statistical Hypotheses. Springer Texts in Statistics. Springer New York, 2008.

Department of Statistics The University of Chicago Chicago, IL, U.S.A.
E-MAIL: rina@uchicago.edu

Departments of Statistics and Mathematics Stanford University
Stanford, CA, U.S.A.
E-MAIL: candes@stanford.edu

Statistical Laboratory
University of Cambridge
Cambridge, U.K.
E-MAIL: r.samworth@statslab.cam.ac.uk

