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1 Implementation

1.1 Tuning the Hyperparameters

We discuss our recommendation on the hyperparameters of the model, given at the
end of Section 2.2 of the main paper. For this study, we applied our methodology on
Dataset 1 and fixed the hyperparameters v0, v, a around the recommended values.
Remember that Dataset 1 is a synthetic dataset simulated with a coefficient function
that is a Step Function (the black curve of Figure 2 of the paper), with a high level of
signal over noise (r = 5) and with a low level of autocorrelation within the covariate
(ζ = 1). The following values are considered for each hyperparameter:

• for a: 2K, 5K, 10K, 15K and 20K;

• for v: 10, 5, 2, 1 and 0.5;

• and for K: any integer between 1 and 10.

The numerical results are given in Table 1. The default values we recommend are not
the best values here, but we have done numerous other trials on many synthetic datasets
and these choices are relatively robust. We do not highlight any particular value for K
since this value can (and should) be chosen with the Bayesian model choice machinery.

1.2 Computation and visualization of the posterior distribution

The full posterior distribution can be written explicitly from the Bayesian model given
in Equations (9). As usual with hierarchical models, sampling from the posterior distri-
bution πK(θ|D) can be done with a Gibbs algorithm (see, e.g., Robert and Casella, 2013,
Chapter 7). The details of the MCMC algorithm are given in Section 1.3 for the case
of one single functional covariate and in Section 1.4 for the case of several functional
covariates.

Now, for simplicity of notation, we focus on the single functional covariate case. Let
θ(s), s = 1, . . . , N , denote the output of the MCMC sampler after the burn-in period.

The computation of the Bayes estimate Ŝγ(D) of the support as defined in Theorem 1
depends on the probabilities α(t|D). With the Monte Carlo sample from the MCMC,
we can easily approximate these posterior probabilities by the frequencies

α(t|D) ≈ 1

N

N∑
s=1

1{βθ(s)(t) �= 0}.
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Table 1: Performances of Bliss with respect to the tuning of the hyperparameters.

Error on the β Error on the support

Bliss estimate L2-estimate Support of the stepwise Bliss estimate Bayes support estimate
a = 2K 1.000 0.698 0.222 0.439

a = 5K ♥ 1.013 1.135 0.222 0.192
a = 10K 1.642 1.364 0.242 0.202
a = 15K 3.060 1.645 0.364 0.212
a = 20K 2.032 1.888 0.263 0.263
v = 10 1.628 1.125 0.242 0.192
v = 5 ♥ 1.711 1.131 0.242 0.192
v = 2 1.082 1.143 0.273 0.192
v = 1 1.207 1.119 0.273 0.192
v = 0.5 1.675 1.129 0.263 0.192
K = 1 1.798 1.782 0.424 0.449
K = 2 0.993 1.101 0.222 0.222
K = 3 1.696 1.124 0.242 0.192
K = 4 1.736 1.159 0.283 0.172
K = 5 2.081 1.233 0.303 0.172
K = 6 2.177 1.243 0.283 0.202
K = 7 2.135 1.221 0.303 0.232
K = 8 1.343 1.184 0.263 0.242
K = 9 1.439 1.166 0.263 0.328
K = 10 1.897 1.089 0.364 0.348

The ♥ symbol indicates the default values.

What remains to be computed are the approximations of β̂L2(·) and β̂ε
K0

(·) based
on the MCMC sample. First, the Monte Carlo approximation of (14) is given by

β̂L2(t) ≈ 1

N

N∑
s=1

βθ(s)(t).

More interestingly, the Bayes estimate β̂ε
K0

(·) can be computed by minimizing∥∥∥d(·)− β̂L2(t)
∥∥∥2

over the set Eε
K0

. To this end we run a Simulated Annealing algorithm (Kirkpatrick
et al., 1983), described in Section 1.5.

We also provide a striking graphical display of the posterior distribution on the
set EK with a heat map. More precisely, the aim is to sketch all marginal posterior
distributions πt

K(·|D) of βθ(t) for any value of t ∈ T in one single figure. To this end
we introduce the probability measure Q on T × R defined as follows. Its marginal
distribution over T is uniform, and given the value t of the first coordinate, the second
coordinate is distributed according to the posterior distribution of βθ(t). In other words,

(t, h) ∼ Q ⇐⇒ t ∼ Unif(T ), h|t ∼ πt
K(·|D).

We can easily derive an empirical approximation of Q from the MCMC sample {θ(s)}
of the posterior. Indeed, the first marginal distribution of Q, namely Unif(T ) can be
approximated by a regular grid ti, i = 1, . . . ,M . And, for each value of i, set his =
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βθ(s)(ti), s = 1, . . . , N . The resulting empirical measure is

Q̂ =
1

M N

∑
i=1,...,M

∑
s=1,...,N

δ(ti,his),

where δ(t,h) is the Dirac measure at (t, h). The graphical display we propose is rep-

resenting Q̂ with a heat map on T × R. Each small area of T × R is thus coloured
according to its Q̂-probability. This should be done cautiously as the marginal posterior
distribution πt

K(·|D) has a point mass at zero: πt
K(h = 0|D) > 0 by construction of

the prior distribution. Finally the colour scale can be any monotone function of the
probabilities, in particular nonlinear functions to handle the atom at 0. Examples are
provided in Section 3 in Figures 1 and 2.

Remark In practice the whole function xi may be unknown and only observed at a
finite set of time points {tij , j = 1, . . . , ni}. The time points may be irregularly spaced
and vary between individuals. This common situation of applied functional data analysis
is usually handled by converting the discrete measures {xi(tij), j = 1, . . . , ni} to a
function computable for any time point by using interpolation or smoothing techniques
(see Ramsay and Silverman, 2005 page 9 and chapter 15 of the second edition, or
Crambes, Kneip, and Sarda, 2009 page 41). In the present paper, it is worth noting
that the whole curve xi is actually not needed. The only requirement is to compute the
value of the integral

∫
Ik

xi(t)dt for any given interval Ik. Several numerical techniques

are available for this purpose when the observed time points are irregular (see, for
example, Deheuvels, 1980, Chapter V or Phythian and Williams, 1986). For simplicity,
we choose the trapezoidal rule in the simulations as the derived precision is sufficient in
our context.

1.3 Gibbs algorithm and Full conditional distributions for a single
functional covariate

The full conditional distributions for the Gibbs Sampler in Section 1.2 are as follows:

μ, b|y, σ2,m, 	 ∼ NK+1

(
(xT x + V)−1xy , σ2(xT x + V)−1

)
,

σ2|y, μ, b,m, 	 ∼ Γ−1

(
n+K + 1

2
,
1

2
RSS +

1

2
(μ, b)TV−1(μ, b)

)
,

π
(
mk|y, μ, b, σ2,m−k, 	

)
∝ exp

(
−RSS/2σ2

)
× π(b|m, 	, σ2)

π
(
	k|y, μ, b, σ2,m, 	−k

)
∝ exp

(
−RSS/2σ2

)
× π(	k)× π(b|m, 	, σ2)

where RSS = ‖y − μ1n − x.(I.)b‖2, x =
(
1n | x.(I.)

)
, and

V =

(
v−1
0 0

0 n−1
(
x.(I.)Tx.(I.) + vIK

)) .
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The full conditional distributions for the hyperparameters mk and 	k are unusual distri-
butions. As the covariate curves xi are observed on a grid TG = (tj)j=1,...,p, we consider
that mk belongs to TG and 	k is defined so that mk ± 	k ∈ TG. Thus, the number of
possible values for mk and 	k is finite and the full conditional distributions of mk and
	k are easily computable.

1.4 Gibbs Algorithm and Full Conditional Distributions for q
Functional Covariates

Remember K =
∑q

j=1 Kj . We denote

• bj = (b1j , . . . , bKjj) and b = (b1, . . . , bq),

• mj = (m1j , . . . ,mKjj) and m = (m1, . . . ,mq),

• 	j = (	1j , . . . , 	Kjj) and 	 = (	1, . . . , 	q).

The full conditional distributions are

μ, b|y, σ2,m, 	 ∼ NK+1

(
(xT x + V)−1xy , σ2(xT x + V)−1

)
,

σ2|y, μ, b,m, 	 ∼ Γ−1

(
n+K + 1

2
,
1

2
RSS +

1

2
(μ, b)TV−1(μ, b)

)
,

π
(
mkj |y, μ, b, σ2,m−(kj), 	

)
∝ exp

(
−RSS/2σ2

)
× π(b|m, 	, σ2)

π
(
	kj |y, μ, b, σ2,m, 	−(kj)

)
∝ exp

(
−RSS/2σ2

)
× π(	kj)× π(b|m, 	, σ2)

where RSS =
∥∥∥y − μ1n −

∑q
j=1 x.j(I.j)bj

∥∥∥2, x =
(
1n | x·1(I·1) | . . . | x·q(I·q)

)
and

V =

⎛⎜⎜⎜⎜⎜⎝
v−1
0 0 . . . 0

0 n−1
(
x·1(I·1)Tx·1(I·1) + vIK1

)
0

...
. . .

0 0 n−1
(
x·q(I·q)Tx·q(I·q) + vIKq

)

⎞⎟⎟⎟⎟⎟⎠ .

1.5 Simulated Annealing Algorithm

We give in this section the details of the Simulated Annealing algorithm we use. In pres-
ence of more than one functional covariate, the following algorithm is used to determine
the estimate of each coefficient function one by one.

Let Θ̃K0 =
⊗K0

K=1

(
K,ΘK

)
where ΘK is the space of all θ = (b1, . . . , bK ,m1, . . . ,mK , 	1, . . . , 	K)

and let the function C(d(·)) =
∥∥d(·)− β̂L2(·)

∥∥2.
Algorithm : Simulated Annealing
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• Initialize: a deterministic decreasing schedule of temperature (τi)i=1,...,NSANN , a

value of K0 and an initial vector (K(0), θ(0)) ∈ Θ̃K0
.

• Compute the function β(0)(t) from (K(0), θ(0)).

• Repeat for i from 1 to NSANN :

• Choose randomly a move from (K(i−1), θ(i−1)) to (K ′, θ′) among :

1. propose a new bk
′ for an arbitrary k ≤ K(i−1),

2. propose a new m′
k for an arbitrary k ≤ K(i−1),

3. propose a new 	′k for an arbitrary k ≤ K(i−1),

4. propose to append a new interval (b′,m′, 	′) or

5. propose to drop out an interval (bk,mk, 	k) for an arbitrary k ≤ K(i−1).

• Compute the function β′(t) from the proposal (K ′, θ′).

• Compute the acceptance ratio

α = min

{
1, exp

(
C(β′(·))− C

(
β(i)(·)

)
τi

)}
.

• Draw u from Unif(0, 1).

• If u < α, (K(i), θ(i)) = (K ′, θ′) (move accepted),
else (K(i), θ(i)) = (K(i−1), θ(i−1)) (move rejected).

• Compute the function β(i)(t) from (K(i), θ(i)).

• Return the iteration (K(i), θ(i)) minimizing the criteria C(.).

For the schedule of temperature, we use by default a logarithmic schedule (see Bélisle,
1992), which is given for each iteration i by

Te/ log ((i− 1) + e) , (S.1)

where Te is a parameter to calibrate and corresponds to the initial temperature. The
result of the Simulated Annealing algorithm is sensitive to the scale of Te and it is quite
difficult to fix an a priori suitable value. For example, if the initial temperature is too
small, almost all the proposed moves are rejected during the algorithm. On the other
hand, if it is too large, they are almost all accepted. So, we run the algorithm a few
times and each time Te is determined with respect to the previous runs. For instance,
if for a run the moves are always rejected or always accepted, the initial temperature
for the next run is accordingly adjusted. Only 2 or 3 runs are necessary to determine a
suitable scale of Te.
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2 Theoretical results

2.1 Proof of Theorem (1)

Without loss of generality we can assume that T = [0, 1]. We begin the proof with the
following lemma whose simple proof is left to the reader.

Lemma S.2.1. Set ψ∗(γ, α) = min{γ(1− α) ; (1− γ)α} for any α, γ ∈ [0, 1]. We have

ψ∗(γ, α) =

{
γ(1− α) if γ ≤ α,

(1− γ)α if γ ≥ α.

Remember that the posterior loss we optimise is given in (12), where S is any
Borel subset of T = [0, 1]. Using Fubini’s theorem (for non-negative functions) and the
definition of α(t|D) given in (10), we have∫

ΘK

Lγ(S, Sθ)πK(θ|D)dθ = γ

∫ 1

0

∫
ΘK

1{t ∈ S \ Sθ}πK(θ|D)dθdt

+ (1− γ)

∫ 1

0

∫
ΘK

1{t ∈ Sθ \ S}πK(θ|D)dθdt

=

∫ 1

0

ψS

(
t, γ, α(t|D)

)
dt (S.2)

where, for all α ∈ [0, 1] we have set

ψS(t, γ, α) = 1{t ∈ S}γ
(
1− α

)
+ 1{t �∈ S}(1− γ)α.

Now, whatever the set S, ψS(t, γ, α) ≥ ψ∗(γ, α). Reporting this bound in (S.2) yields∫
ΘK

Lγ(S, Sθ)πK(θ|D)dθ ≥
∫ 1

0

ψ∗(γ, α(t|D)
)
dt

whatever the Borel set S. Moreover, this inequality is an equality if and only if the Borel
set S is chosen so that, for almost all t ∈ [0, 1], ψS

(
t, γ, α(t|D)

)
= ψ∗(γ, α(t|D)

)
. Using

Lemma S.2.1, the last condition is equivalent to saying that for almost all t ∈ [0, 1], either
α(t|D) = γ or

(
t ∈ S ⇐⇒ γ ≤ α(t|D)

)
. This concludes the proof of Theorem (1).

2.2 Proof of Proposition (2)

Obviously, β̂L2(·) minimizes∫ ∫
T
(βθ(t)− d(t))

2
dt πK(θ|D)dθ =

∫
T

∫
(βθ(t)− d(t))

2
πK(θ|D)dθ dt

because it need to optimize
∫
(βθ(t)− d(t))

2
πK(θ|D)dθ for all t ∈ T . It remains to show

that β̂L2(·) ∈ L2(T ). We have

‖β̂L2(·)‖2 =

∫
T

(∫
βθ(t)πK(θ|D)dθ

)2

dt
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=

∫∫ ∫
T
βθ(t)βθ′(t)dt πK(θ|D)πK(θ′|D)dθdθ′

≤
∫∫

‖βθ(·)‖‖βθ′(·)‖ πK(θ|D)πK(θ′|D)dθdθ′ with Cauchy-Schwarz inequality

≤
(∫

‖βθ(·)‖πK(θ|D)dθ

)2

And the last integral is finite because of the assumption. Hence β̂L2(·) is in L2(T ).

2.3 Proof of Proposition (3)

First, the norm ‖d(·)− β̂L2(·)‖ is non negative, hence the set{
‖d(·)− β̂L2(·)‖, d(·) ∈ Eε

K0

}
admits an infimum. Let m denote this infimum. We have to prove that m is actually
a minimum of the above set, namely that there exists a function d(·) ∈ Eε

K0
so that

m = ‖d(·)− β̂L2(·)‖.

To this end, we introduce a minimizing sequence {dn(·)} and we will show that one
of its subsequences admits a limit within Eε

K0
. Let dn(·) be so that

m = inf
{
‖d(·)− β̂L2(·)‖, d(·) ∈ Eε

K0

}
≤ ‖dn(·)− β̂L2(·)‖ ≤ m+ 2−n. (S.4)

The step function dn(·) can be written as

dn(t) =

L∑
k=1

αk,n1{t ∈ (ak,n, bk,n)}

where the (ak,n, bk,n), k = 1, . . . , L are non-overlapping intervals. Note that their
number L does not depend on n because all dn(·) lie in EK0

for some fixed value of
K0, and we can always choose L = 2K0 + 1. Moreover, because dn(t) is in Fε, we can
assume that

bk,n − ak,n ≥ ε, for all k, n. (S.5)

Now the sequence {a1,n}n has its elements in the compact interval T hence we extract
a subsequence (still denoted {a1,n}n) which converges an element a1,∞ of T . Likewise,
by extracting subsequences 2L times, we can assume that all sequences {a1,n}n,. . . ,
{aL,n}n, {b1,n}n, . . . , {bL,n}n are convergent, and that

ak,∞ = lim
n→∞

ak,n, bk,∞ = lim
n→∞

bk,n, and bk,∞ − ak,∞ ≥ ε, k = 1, . . . , L

where the last inequalities come from (S.5).
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The sequence dn(·) is bounded (in L2-norm):

‖dn(·)‖ ≤ ‖β̂L2(·)‖+ ‖dn(·)− β̂L2(·)‖ ≤ R+
√
m+ 1

with (S.4), where R = ‖β̂L2(·)‖. Moreover

‖dn(·)‖2 =

L∑
k=1

α2
k,n

(
bk,n − ak,n

)
≥ ε

L∑
k=1

α2
k,n.

Hence, each sequence {α1,n}n, . . . , {αL,n}n is bounded. Thus, by further extracting
subsubsequences, we can assume that, for k = 1, . . . , L,

lim
n→∞

αk,n = αk,∞.

Finally, by setting

d∞(·) =
L∑

k=1

αk,∞1{t ∈ (ak,∞, bk,∞)}

we can easily prove that dn(·) tends to d∞(·) in L2-norm and that d∞(·) ∈ Eε
K0

. And,
with (S.4)

m = ‖d∞(·)− β̂L2(·)‖
which concludes the proof.

2.4 Topological Properties of EK

Proposition S.2.2. Let K ≥ 1.

(i) The convex hull of EK is E.

(ii) Under the L2(T )-topology, the closure of E is L2(T ).

Proof. The result of (ii) is rather classical, see, e.g., Rudin (1986). The convex hull of
EK includes any step function. Indeed, any step function can be written as a convex
combination of simple a1{t ∈ I}’s which all belongs to EK . Moreover, E is convex
because it is a linear space. Hence claim (i) is proven.

For a given K, the set of functions EK is not suitable to define a projection of β̂L2(·).
Indeed, let {dn(·)} be a minimizing sequence of the set

{
‖d(·)− β̂L2(·)‖, d(·) ∈ EK(·)

}
,

so
m = inf

{
‖d(·)− β̂L2(·)‖, d(·) ∈ EK

}
≤ ‖dn(·)− β̂L2(·)‖ ≤ m+ 2−n.

Knowing that β̂L2(·) and dn(·) belong to L2 for all n, we have

dn(.) ∈ EK ∩ BL2(R+m+ 1), for all n,

where BL2(r) is the L2-ball of radius r around the origin. Note that EK∩BL2(R+m+1)
is not a compact set, for example consider dn(t) =

√
n1{t ∈ [0, 1

n ]}. Hence it is not
possible to extract a subsequence of {dn(·)} which converges to a d∞(·) ∈ EK so that

‖d(·)− β̂L2(·)‖ = m.
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3 Application

3.1 Comparison of Bliss and competitors

In order to compare the methods for the estimation of the coefficient function, we use
the L2-error, namely ∫ 1

0

(β̂(t)− β0(t))
2dt (9)

where β̂(t) is an estimate we compare to the true coefficient function β0(t). Table 2 of
the paper shows the results of Bliss and its competitors on these simulated datasets.
It appears that the numerical results of the three methods have the same order of
magnitude although the three methods may have different accuracy, depending on the
shape of the coefficient function that generated the dataset.

Regarding Fused Lasso, we can see in Table 2 that its accuracy worsens when the
problem is not sparse, that is to say when the true function is Smooth (the red curve of
Figure 2 of the main paper). Next, we observe that Flirti is very sensitive. Its numerical
results can sometimes be quite accurate, but sometimes the L2-error can blow up (to
exceed 100) because the method did not manage to tune its parameters. Concerning the
BFDA method, we note that the estimate becomes irrelevant when the autocorrelation
increases (i.e. ζ decreases). In particular, for Step function and Smooth shapes, the L2-
errors can exceed 103. The L2-estimate defined in Proposition 2 frequently overperforms
the other methods. This first conclusion is not surprising because the L2-estimate has
been defined to optimize the L2-error integrated over the posterior distribution.

Even in situations where the true function is stepwise, the stepwise Bliss estimate of
Proposition 3 is less accurate than the L2-estimate, except for two examples (datasets
6 and 9). Nevertheless we do insist that the stepwise Bliss estimate was built to provide
a tradeoff between accuracy regarding the support estimate and accuracy regarding the
coefficient function estimate. Thus the stepwise estimate is a balance between support
estimate and coefficient function estimate that can help the statistician who can then
obtain an interpretation of the underlying phenomena that generated the data. In other
words, the stepwise Bliss estimate is not the best either at estimating the support or at
approximating the coefficient function, but provides a tradeoff.

To show more detailed results we have presented the estimate of the coefficient
function in three cases.

• Figure 1 displays the numerical results on Dataset 4 (medium level of signal,
low level of autocorrelation with the covariate). As can be expected when the
true coefficient is a stepwise function, the stepwise Bliss estimate behaves nicely.
The representation of the marginals of the posterior distribution with a heat map
shows the confidence we can have in the Bayes estimate of the coefficient function.
The smooth L2-estimate nicely follows the regions of high posterior density. Here,
the stepwise estimate clearly highlights two time periods (the first two intervals
of the true support) and the sign of the coefficient function on these intervals.
We can compare our proposal with its competitors. Flirti did not manage to
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Flirti Fused Lasso
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1
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0.0 0.2 0.4 0.6 0.8 1.0

−2
0

2
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BFDA Bliss

Figure 1: Estimates of the coefficient function on Dataset 4 (r = 3, ζ = 1). For each
plot, the black dotted line is the true coefficient function (Step function, in this case)
and the solid black lines are the estimates of each method. Concerning the Flirti plot,
the orange dotted lines correspond to the confidence bands of the estimate. For the
Bayesian methods (BFDA and Bliss), the marginal posterior distributions of β(t) are
represented using heat maps, as described in Section 1.2. Red (resp. white) colour is
used to represent high (resp. low) posterior densities. For the Bliss plot, the solid black
line is the L2-estimate and the light blue line is the stepwise Bliss estimate.
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Figure 2: Estimates of the coefficient function on Dataset 13 (r = 3, ζ = 1)) For
each plot, the black dotted line is the true coefficient function (Smooth, in this case)
and the solid black lines are the estimates of each method. Concerning the Flirti plot,
the orange dotted lines correspond to the confidence bands of the estimate. For the
Bayesian methods (BFDA and Bliss), the marginal posterior distributions of β(t) are
represented using heat maps, as described in Section 1.2. Red (resp. white) colour is
used to represent high (resp. low) posterior densities. For the Bliss plot, the solid black
line is the L2-estimate and the light blue line is the stepwise Bliss estimate.



13

Flirti Fused Lasso

0.0 0.2 0.4 0.6 0.8 1.0

2
1

0
1

0.0 0.2 0.4 0.6 0.8 1.0

−3
−2

−1
0

1
2

BFDA Bliss

Figure 3: Estimates of the coefficient function on Dataset 25 (r = 1, ζ = 1)) For each
plot, the black dotted line is the true coefficient function (Spiky, in this case) and the
solid black lines are the estimates of each method. Concerning the Flirti plot, the orange
dotted lines correspond to the confidence bands of the estimate. For the Bayesian methods
(BFDA and Bliss), the marginal posterior distributions of β(t) are represented using heat
maps, as described in Section 1.2. Red (resp. white) colour is used to represent high (resp.
low) posterior densities. For the Bliss plot, the solid black line is the L2-estimate and
the light blue line is the stepwise Bliss estimate.
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tune its own parameters, and the Flirti estimate is irrelevant. Fused Lasso on a
discretized version of the functional covariate provides a relatively nice estimate
of the coefficient function. BFDA is not that bad, although the estimate is clearly
too smooth to match the true coefficient function. As for the Bliss method, we
give a representation of the marginals of the posterior distribution based on the
MCMC sample provided by the BFDA method. In this case, the true coefficient
function is not in high posterior density regions, especially for t for which it equals
0.

• Figure 2 displays the numerical results on Dataset 13 (medium level of signal, low
level of autocorrelation with the covariate). In this example, the true coefficient
is not stepwise, but smooth, and is around zero on small time periods. Flirti and
Fused Lasso performed nicely. Their estimates are exactly 0 on intervals where
the true coefficient function is 0. Hence they clearly highlight the intervals. The
BFDA estimate decently fits the true coefficient function but it is less accurate
when the coefficient function is around 0. The L2-estimate performed as well as
the BFDA estimate, except it is around 0 for t in [0, 0.1] and [0.9, 1]. The stepwise
Bliss estimate performed relatively poorly because it does not detect a negative
interval around t = 0.5. With respect to Proposition 3, it is a projection of the
L2-estimate (which is clearly different to 0 around t = 0.5), hence we could expect
that the stepwise Bliss estimate is negative for t around 0.5. Therefore, in this
case, the simulated annealing algorithm does not correctly converge.

• Figure 3 displays the numerical results on Dataset 25 (low level of signal, and low
level of autocorrelation within the covariate). In this example, the true coefficient
is not stepwise, but smooth, and is around zero on large time periods. The L2-
estimate of Proposition 2 matches approximately the true coefficient function.
The stepwise Bliss estimate is a little bit poorer (maybe because of the difficult
calibration of the simulated annealing algorithm). When comparing these results
with other estimates on this dataset, we see that Flirti and Fused Lasso performed
decently also, even if they both highlight a third time period (around t = 0.85)
where they infer a negative coefficient function instead of 0. In this case, Flirti
has managed to tune its own parameters in a relevant way. The confidence bands
of Flirti are therefore reliable, but we stress here that they are relatively wide
around periods where the Flirti estimate is null and do not reflect high confidence
in any support estimate based on Flirti. Finally, the comments on BFDA are the
same as Dataset 4, the BFDA estimate has clearly been too smoothed to match
the true coefficient function, especially for t for which it is around 0.

3.2 All the graphical results for a single functional covariate

Below, Figure 4 (resp. 5) shows the estimates of the support (resp. de coefficient func-
tion) when the simulated β(·) is Step function described in Section 3.1 (see Figure 2
of the paper). Figures 6 and 7 show the estimates when the simulated β(·) is Smooth.
Next, Figures 8 and 9 show the estimates when the simulated β(·) is Spiky.



15

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

| | | | | |

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

| | | | | |

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

| | | |

Dataset 1 (r = 5, ζ = 1) Dataset 2 (r = 5, ζ = 1/3) Dataset 3 (r = 5, ζ = 1/5)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

| | | | | |

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

| |

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

| | | | | |

Dataset 4 (r = 3, ζ = 1) Dataset 5 (r = 3, ζ = 1/3) Dataset 6 (r = 3, ζ = 1/5)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

| | | | | |

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

| | | |

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

| |

Dataset 7 (r = 1, ζ = 1) Dataset 8 (r = 1, ζ = 1/3) Dataset 9 (r = 1, ζ = 1/5)

Figure 4: Prior (in gray) and posterior (in black) probabilities of being in the support,
computed on Datasets 1 to 9. Bayes estimate of support using Theorem 1 with γ = 1/2
are given in red.
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Figure 5: Estimates of the coefficient functions on the Datasets 1 to 9. For each plot,
the black dotted line is the true coefficient function (Step function, in this case), the
solid black line is the L2-estimate and the light blue line is the stepwise Bliss estimate.
The heat maps represents the marginal posterior distributions of β(t), as described in
Section 1.2. Red (resp. white) colour is used to represent high (resp. low) posterior
densities.
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Figure 6: Prior (in gray) and posterior (in black) probabilities of being in the support,
computed on Datasets 10 to 18. Bayes estimate of support using Theorem 1 with γ = 1/2
are given in red.
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Figure 7: Estimates of the coefficient functions on the Datasets 10 to 18. For each plot,
the black dotted line is the true coefficient function (Smooth, in this case), the solid black
line is the L2-estimate and the light blue line is the stepwise Bliss estimate. The heat
maps represents the marginal posterior distributions of β(t), as described in Section 1.2.
Red (resp. white) colour is used to represent high (resp. low) posterior densities.
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Figure 8: Prior (in gray) and posterior (in black) probabilities of being in the support,
computed on Datasets 19 to 27. Bayes estimate of support using Theorem 1 with γ = 1/2
are given in red.
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Figure 9: Estimates of the coefficient functions on the Datasets 19 to 27. For each plot,
the black dotted line is the true coefficient function (Spiky, in this case), the solid black
line is the L2-estimate and the light blue line is the stepwise Bliss estimate. The heat
maps represents the marginal posterior distributions of β(t), as described in Section 1.2.
Red (resp. white) colour is used to represent high (resp. low) posterior densities.
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3.3 Model Choice by using BIC

Below, we illustrate the model choice procedure in order to fix the hyperparameter K.
We apply the procedure on different simulated datasets and in Section 3.5 it is applied
on the truffle dataset.

We simulate four kinds of datasets to evaluate the performance of BIC in different
situations.

First, we show the results of BIC when the true interval number varies. Therefore,
we simulate datasets with the coefficient functions given in Figure 10 for which
the true K varies from 1 to 5. The values of BIC are given in Figure 11. When
the true K is 1 or 2, BIC selects the true model. Otherwise, when the true K is
greater than 3, it underestimates K which can be due to the small sample size
(n = 100).
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Figure 10: Coefficient functions used to simulate datasets with different numbers of
intervals.

Second, we illustrate the variation of BIC when the autocorrelation of the curves
xi(·) increases, i.e. ζ decreases (see Section 3.1). We simulate datasets with ζ =
1, 0.8, 0.6, 0.4 and 0.2, with n = 100 and the true coefficient function is the third
plot given in Figure 10. Plot (a) Figure 12 shows the values of BIC for different
values of ζ. When the autocorrelation is high (blue and light blue lines), BIC
trends to underestimate K, since in this example the true K is 3. The results
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Figure 11: The values of BIC for different values of the number of intervals of the true
coefficient function.

are the same if the true coefficient function is the Smooth function described in
Section 3.1 of the main paper, see Plot (b) Figure 12.

Third, we illustrate the variation of BIC when the sample size n increases. Fig-
ure 13 shows the values of BIC for n = 50, 100, 200 and 300. As expected, when the
sample size increases, BIC is more accurate for selecting the true model K = 3.
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Figure 12: The values of BIC for different levels of autocorrelation ζ. The left plot con-
cerns datasets simulated for which the coefficient function is Step function with three
intervals (see Figure 10). The right plot concerns simulated datasets for which the coef-
ficient function is Smooth described in Section 3.1 of the main paper.
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3.4 Simulation Study for Two Functional Covariates

Performances regarding the coefficient function

Figure 14 shows the estimators of β1(·) and β2(·) for c = 0 and for c = 0.9 (see
Section 3.4 of the main paper). We notice that the estimates behave poorly in the
presence of correlation between the covariates (c = 0.9), as in a classical multiple linear
regression model with scalar covariates. The investigation of the Plots (a), (b), (c)
and (d) Figure 14 leads us to almost the same remarks as in the previous paragraph.
When the cross-covariance between the covariates increases, the estimates become less
accurate. We notice additionnaly that the posterior distributions are flatter for c = 0.9
than for c = 0, hence the estimates have a higher variability when there is an important
cross-covariance between the covariates.

Graphical results for two functional covariates

In Section 3.4 of the main paper, we present the estimates when there are two functional
covariates and for different levels of cross-correlation. In the main paper, we show the
estimates when c = 0 and c = 0.9 (low cross-correlation and high cross-correlation).
Below, we show the estimates when c = 0.3 or 0.6 with Figures 15 and 16.
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Figure 14: Estimates of the coefficient functions for c = 0 and c = 0.9. For each
plot, the black dotted line is the true coefficient function, the solid black line is the L2-
estimate and the light blue line is the stepwise Bliss estimate. The marginal posterior
distributions of βθ(t) are represented by using heat maps, as described in Section 1.2.
Red (resp. white) colour is used to represent high (resp. low) posterior densities.
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Figure 15: Prior (in gray) and posterior (in black) probabilities of being in the support
when c = 0.3 or c = 0.6. Bayes estimate of support using Theorem 1 with γ = 1/2 are
given in red.
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Figure 16: Estimates of the coefficient functions when c = 0.3 or c = 0.6. For each
plot, the black dotted line is the true coefficient function, the solid black line is the L2-
estimate and the light blue line is the stepwise Bliss estimate. The heat maps represents
the marginal posterior distributions of β(t), as described in Section 1.2. Red (resp. white)
colour is used to represent high (resp. low) posterior densities.
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3.5 Application on the truffle dataset

Figure 17 shows the values of BIC for the truffle dataset described in Section 4 of the
main paper.
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Figure 17: The values of BIC for the truffle dataset described in Section 4 of the paper.

3.6 Computational Time

In this Section, we provide the computational time of the 3 algorithms used in this
paper:

1. a Gibbs sampler, for which the full conditional distributions are given in Sec-
tion 1.3 and 1.4,

2. an algorithm, denoted density estimation, which computes the heat map described
in Section 1.2 and

3. a simulated annealing algorithm described in Section 1.5.

The computational time of the simulated annealing algorithm is negligible (∼ 1s). More-
over, the computational time of the density estimation algorithms is around one minute
and it is mainly due to use of the kde2d function. Therefore, below we discuss only the
Gibbs sampler.

First, remember that we observe n curves for q covariates, evaluated on the regular
grid tj = (tj1, . . . , t

j
p) for the j

th covariates. Remember also that Kj are the fixed number

of intervals in (2) for the jth dimension and K =
∑q

j Kj . We give a sketch of the main
steps of the Gibbs sampler algorithm we use. The Gibbs sampler consists of two major
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steps in terms of computational time. Firstly, we compute the integrals
∫
I xij(t)dt on all

possible intervals I for j = 1, . . . , q and i = 1, . . . , n. The intervals I depend on a center
m and a half-length 	. In practice, we consider that m belongs to the grid t and we
consider p possible values for 	. Hence, we have to compute n×p2×q integrals. Secondly,
we perform a loop of N iterations for which each parameter is updated with regard to
full conditional distributions. At each iteration, the longer required computations are:

• q Singular Value Decompositions of matrix n ×Kj to compute the matrix Gj in
(18),

• inversions of a matrix (K + 1)× (K + 1) and

• determinants of a matrix (K + 1)× (K + 1).

For one single functional covariate

For the case of one single functional covariate, we use a dataset described in Section 3.1
of the main paper with different values for n and p (50, 100 and 200). We apply the
Bliss method with K = 3 or K = 6 and different number iterations (10 000, 20 000 and
50 000). The computational times are given in Table 2.

Table 2: The computational time of the Gibbs sampler for different values of n, p, K
and the number iterations in the one single functional covariate case.

n p K iter computational time n p K iter computational time

50 50 3 10 000 1.3 min 50 50 6 20 000 11.5 min
100 50 3 10 000 3.3 min 100 50 6 20 000 26.8 min
200 50 3 10 000 11.5 min 200 50 6 20 000 1.5 h
50 100 3 10 000 2.5 min 50 100 6 20 000 23.6 min
100 100 3 10 000 6.7 min 100 100 6 20 000 54.7 min
200 100 3 10 000 23.3 min 200 100 6 20 000 3 h
50 200 3 10 000 5.2 min 50 200 6 20 000 48 min
100 200 3 10 000 13.7 min 100 200 6 20 000 1.9 h
200 200 3 10 000 47.5 min 200 200 6 20 000 6 h
50 50 6 10 000 5.7 min 50 50 3 50 000 6.4 min
100 50 6 10 000 13.4 min 50 100 3 50 000 17 min
200 50 6 10 000 44.2 min 50 200 3 50 000 59.3 min
50 100 6 10 000 11.8 min 50 100 3 50 000 12.6 min
100 100 6 10 000 27.4 min 100 100 3 50 000 33.3 min
200 100 6 10 000 1.5 h 200 100 3 50 000 1.9 h
50 200 6 10 000 24.5 min 50 200 3 50 000 25.5 min
100 200 6 10 000 55.8 min 100 200 3 50 000 1.1 h
200 200 6 10 000 3 h 200 200 3 50 000 3.9 h
50 50 3 20 000 2.5 min 50 50 6 50 000 28.8 min
100 50 3 20 000 6.6 min 100 50 6 50 000 1.1 h
200 50 3 20 000 23.1 min 200 50 6 50 000 3.6 h
50 100 3 20 000 5 min 50 100 6 50 000 59.1 min
100 100 3 20 000 13.3 min 100 100 6 50 000 2.3 h
200 100 3 20 000 46.2 min 200 100 6 50 000 7.4 h
50 200 3 20 000 10.2 min 50 200 6 50 000 2 h
100 200 3 20 000 27.2 min 100 200 6 50 000 4.6 h
200 200 3 20 000 1.6 h 200 200 6 50 000 14.8 h
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For two functional covariates

For the case of two functional covariates, we use a data set described in Section 3.1 with
different values for n, p1 and p2. We vary the value of K and the number iterations as
in the previous paragraph. The computational times are given in Table 3.

Table 3: The computational time of the Gibbs sampler for different values of n, p1, p2,
K and the number iterations in the one single functional covariate case.

n p1 and p2 K iter computational time n p1 and p2 K iter computational time

50 50 3 10 000 6 min 50 50 6 20 000 59 min
100 50 3 10 000 13.7 min 100 50 6 20 000 2 h
200 50 3 10 000 44 min 200 50 6 20 000 5.8 h
50 100 3 10 000 12.2 min 50 100 6 20 000 2.1 h
100 100 3 10 000 27.7 min 100 100 6 20 000 4.1 h
200 100 3 10 000 1.5 h 200 100 6 20 000 11.9 h
50 200 3 10 000 25.1 min 50 200 6 20 000 4.3 h
100 200 3 10 000 56.4 min 100 200 6 20 000 8.3 h
200 200 3 10 000 3 h 200 200 6 20 000 24 h
50 50 6 10 000 29.8 min 50 50 3 50 000 30.6 min
100 50 6 10 000 59 min 50 100 3 50 000 1.2 h
200 50 6 10 000 2.9 h 50 200 3 50 000 3.7 h
50 100 6 10 000 1 h 50 100 3 50 000 1 h
100 100 6 10 000 2 h 100 100 3 50 000 2.3 h
200 100 6 10 000 5.9 h 200 100 3 50 000 7.4 h
50 200 6 10 000 2.2 h 50 200 3 50 000 2.1 h
100 200 6 10 000 4.2 h 100 200 3 50 000 4.6 h
200 200 6 10 000 12 h 200 200 3 50 000 14.8 h
50 50 3 20 000 11.8 min 50 50 6 50 000 2.5 h
100 50 3 20 000 27.4 min 100 50 6 50 000 4.9 h
200 50 3 20 000 1.5 h 200 50 6 50 000 14.6 h
50 100 3 20 000 24.3 min 50 100 6 50 000 5.1 h
100 100 3 20 000 55.6 min 100 100 6 50 000 10.1 h
200 100 3 20 000 3 h 200 100 6 50 000 29.6 h
50 200 3 20 000 49.9 min 50 200 6 50 000 10.7 h
100 200 3 20 000 1.9 h 100 200 6 50 000 20.7 h
200 200 3 20 000 6 h 200 200 6 50 000 60.2 h
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