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APPENDIX A: PROOFS OF PREPARATORY PROPOSITIONS

Proof of Proposition 7. For any f : [0, 1]d → R, define Mnf :=
2
∑n

i=1 εi{f(Xi) − f0(Xi)} −
∑n

i=1{f(Xi) − f0(Xi)}2 and Mf := EMnf =

−n‖f − f0‖2L2(P ). By the definition of f̂n, we have that
∑n

i=1(f̂n(Xi) −
f0(Xi) − εi)2 ≤

∑n
i=1 ε

2
i , which implies that Mnf̂n ≥ 0. We therefore have

that for any r > 0,

P
(
{‖f̂n − f0‖L2(P ) ≥ r} ∩ {‖f̂n − f0‖∞ ≤ 6 log1/2 n}

)
≤
∞∑
`=1

P
(

sup
f∈G(f0,2`r,6 log1/2 n)\G(f0,2`−1r,6 log1/2 n)

(Mn −M)f ≥ n22`−2r2

)

≤
∞∑
`=1

P
(

sup
f∈G(f0,2`r,6 log1/2 n)

∣∣∣∣ 1

n1/2

n∑
i=1

εi(f − f0)(Xi)

∣∣∣∣ ≥ 22`−4n1/2r2

)

+
∞∑
`=1

P
(

sup
f∈G(f0,2`r,6 log1/2 n)

∣∣∣Gn(f − f0)2
∣∣∣ ≥ 22`−3n1/2r2

)
.(1)

By a moment inequality for empirical processes (Giné, Lata la and Zinn,
2000, Proposition 3.1) and (18) in the main text, we have for all p ≥ 1 that

E
[

sup
f∈G(f0,2`r,6 log1/2 n)

∣∣∣∣ 1

n1/2

n∑
i=1

εi{f(Xi)− f0(Xi)}
∣∣∣∣p]1/p

. Kφn(2`r) + 2`rp1/2 + n−1/2p log n.(2)

For any C ′ > 0 and r ≥ C ′Krn, we have φn(2`r) ≤ 2`(r/rn)φn(rn) ≤
2`n1/2rnr ≤ (C ′K)−12`n1/2r2. It therefore follows from (2) and Lemma 11
that there exist universal constants C,C ′ > 0 such that for all ` ∈ N and
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r ≥ C ′Krn,

P
(

sup
f∈G(f0,2`r,6 log1/2 n)

∣∣∣∣ 1

n1/2

n∑
i=1

εi{f(Xi)− f0(Xi)}
∣∣∣∣ ≥ 22`−4n1/2r2

)
≤ C exp

(
− 22`nr2

C log n

)
.(3)

Similarly, by a symmetrisation inequality (cf. van der Vaart and Wellner
(1996, Lemma 2.3.1)), (19) in the main text and the same argument as
above, and by increasing C,C ′ if necessary, we have that for all ` ∈ N and
r ≥ C ′Krn,

P
(

sup
f∈G(f0,2`r,6 log1/2 n)

∣∣∣Gn(f − f0)2
∣∣∣ ≥ 22`−3n1/2r2

)
≤ C exp

(
− 22`nr2

C log n

)
.

(4)

Substituting (3) and (4) into (1), we obtain that for all r ≥ C ′Krn,

P
({
‖f̂n − f0‖L2(P ) ≥ r

}
∩
{
‖f̂n − f0‖∞ ≤ 6 log1/2 n

})
.
∞∑
`=1

exp

(
− 22`nr2

C log n

)
. exp

(
− nr2

C log n

)
.

It follows that

E
(
‖f̂n − f0‖2L2(P )1{‖f̂n−f0‖∞≤6 log1/2 n}

)
=

∫ ∞
0

2tP
({∥∥f̂n − f0

∥∥
L2(P )

≥ t
}
∩
{
‖f̂n − f0‖∞ ≤ 6 log1/2 n

})
dt

. K2r2
n +

∫ ∞
C′Krn

2t exp

(
− t2

Cr2
n

)
dt . K2r2

n,

as desired, where we have used r2
n ≥ n−1 log n in the penultimate inequality.

Proof of Proposition 8. [Upper bound] It is convenient here to work
with the class of block decreasing functions Fd,↓ := {f : [0, 1]d → R : −f ∈
Fd} instead. We write F+

d := {f ∈ Fd : f ≥ 0} and F+
d,↓ := {f ∈ Fd,↓ :

f ≥ 0}. By replacing f with −f and decomposing any function f into its
positive and negative parts, it suffices to prove the result with G+

↓ (0, r, 1) :=

F+
d,↓ ∩B2(r, P ) ∩B∞(1) in place of G(0, r, 1). Since G+

↓ (0, r, 1) = G+
↓ (0, 1, 1)

for r ≥ 1, we may also assume without loss of generality that r ≤ 1. We
handle the cases d = 2 and d ≥ 3 separately.
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ISOTONIC REGRESSION IN GENERAL DIMENSIONS 3

Case d = 2. We apply Lemma 7 with η = r/(2n) and Lemma 8 to obtain

E sup
f∈F+

2,↓∩B2(r,P )∩B∞(1)

∣∣∣∣ 1

n1/2

n∑
i=1

ξif(Xi)

∣∣∣∣
.d,m0,M0 n

1/2η + log3 n

∫ r

η

r

ε
dε+

(log4 n)(log logn)2

n1/2
. r log4 n,

as desired.

Case d ≥ 3. We assume without loss of generality that n = nd1 for some
n1 ∈ N. We define strips I` := [0, 1]d−1 × [ `−1

n1
, `
n1

] for ` = 1, . . . , n1, so that

[0, 1]d = ∪n1
`=1I`. Our strategy is to analyse the expected supremum of the

symmetrised empirical process when restricted to each strip. To this end,
define S` := {X1, . . . , Xn}∩ I` and N` := |S`|, and let Ω0 := {m0n

1−1/d/2 ≤
min`N` ≤ max`N` ≤ 2M0n

1−1/d}. Then by Hoeffding’s inequality,

P(Ωc
0) ≤

n1∑
`=1

P
(∣∣∣N` − EN`

∣∣∣ > m0n

2n1

)
≤ 2n1 exp

(
−m2

0n
1−2/d/8

)
.

Hence we have

E sup
f∈F+

d,↓∩B2(r,P )∩B∞(1)

∣∣∣ 1

n1/2

n∑
i=1

ξif(Xi)
∣∣∣

≤ E
( ∑
`:N`≥1

N
1/2
`

n1/2
E` 1Ω0

)
+ C exp

(
−m2

0n
1−2/d/16

)
,(5)

where

E` := E
{

sup
f∈F+

d,↓∩B2(r,P )∩B∞(1)

∣∣∣ 1

N
1/2
`

∑
i:Xi∈S`

ξif(Xi)
∣∣∣ ∣∣∣∣ N1, . . . , Nn1

}
.

By Lemma 9, for any f ∈ F+
d,↓ ∩ B2(r, P ) ∩ B∞(1) and ` ∈ {1, . . . , n1}, we

have
∫
I`
f2 dP ≤ 7(M0/m0)`−1r2 logd n =: r2

n,`. Consequently, we have by
Lemma 7 that for any η ∈ [0, rn,`/3),

(6) E` . N
1/2
` η +

∫ rn,`

η
H

1/2
[ ],` (ε) dε+

H[ ],`(rn,`)

N
1/2
`

,

where H[ ],`(ε) := logN[ ]

(
ε,F+

d,↓(I`)∩B2(rn,`, P ; I`)∩B∞(1; I`), ‖ ·‖L2(P ;I`)

)
.

Here, the set F+
d,↓(I`) is the class of non-negative functions on I` that are
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block decreasing, B∞(1; I`) is the class of functions on I` that are bounded
by 1 and B2(rn,`, P ; I`) is the class of measurable functions f on I` with
‖f‖L2(P ;I`) ≤ rn,`. Note that any g ∈ F+

d,↓(I`)∩B2(rn,`, P ; I`)∩B∞(1; I`) can

be rescaled into a function fg ∈ F+
d,↓ ∩ B2

(
n

1/2
1 (M0/m0)1/2rn,`, P

)
∩ B∞(1)

via the invertible map fg(x1, . . . , xd−1, xd) := g(x1, . . . , xd−1, (xd+`−1)/n1).
Moreover, we have

∫
[0,1]d(fg − fg′)2 dP ≥ n1(m0/M0)

∫
I`

(g − g′)2 dP . Thus,

by Lemma 8, for ε ∈ [η, rn,`],

H[ ],`(ε) ≤ logN[ ]

(
n1/(2d)(m0/M0)1/2ε,

F+
d,↓ ∩B2

(
n1/(2d)(M0/m0)1/2rn,`, P

)
∩B∞(1), ‖ · ‖L2(P )

)
.d,m0,M0

(
rn,`
ε

)2(d−1)

logd
2

+ (1/ε).

Substituting the above bound into (6), and choosing η = n−1/(2d)rn,`, we
obtain

E` .d,m0,M0 N
1/2
` η + logd

2/2 n

∫ rn,`

η

(
rn,`
ε

)d−1

dε+
logd

2
n

N
1/2
`

. N
1/2
` η +

rd−1
n,` logd

2/2 n

ηd−2
+

logd
2
n

N
1/2
`

.

Hence

E`1Ω0 .d,m0,M0 rn,` n
1/2−1/d logd

2/2 n+ n−1/2+1/(2d) logd
2
n

.m0,M0 rn,` n
1/2−1/d logd

2/2 n,(7)

where in the final inequality we used the conditions that d ≥ 3 and r ≥
n−(1−2/d) log(d2−d)/2 n. Combining (5) and (7), we have that

E sup
f∈F+

d,↓∩B2(r,P )∩B∞(1)

∣∣∣∣ 1

n1/2

n∑
i=1

ξif(Xi)

∣∣∣∣
.d,m0,M0 rn

1/2−3/(2d) log(d2+d)/2 n

n1∑
`=1

`−1/2 . rn1/2−1/d log(d2+d)/2 n,

which completes the proof.
[Lower bound] Assume without of loss of generality that n = nd1 for some

n1 ∈ N. For a multi-index w = (w1, . . . , wd) ∈ Ld,n, let Lw :=
∏d
j=1(wj −

1/n1, wj ] and Nw := |{X1, . . . , Xn} ∩ Lw|. We define W := {(w1, . . . , wd) :
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ISOTONIC REGRESSION IN GENERAL DIMENSIONS 5∑d
j=1wj = 1} to be indices of a mutually incomparable collection of cubelets

and define W̃ := {w ∈ W : Nw ≥ 1} to be the (random) set of indices of
cubelets in this collection that contain at least one design point. For each
w ∈ W̃ , associate iw := min{i : Xi ∈ Lw}. For each realisation of the
Rademacher random variables ξ = (ξi)

n
i=1 and design points X = {Xi}ni=1,

define fξ,X : [0, 1]d → [−1, 1] to be the function such that

fξ,X(x) :=


r ξiw if x ∈ Lw, w ∈ W̃
r if x ∈ Lw with

∑d
j=1wj > n1

−r otherwise.

For r ≤ 1, we have fξ,X ∈ Fd ∩B2(r, P ) ∩B∞(1). Therefore,

E sup
f∈Fd∩B2(r,P )∩B∞(1)

n∑
i=1

ξif(Xi) ≥ E
n∑
i=1

ξifξ,X(Xi)

≥ E
[
E
{ n∑
i=1

ξifξ,X(Xi)

∣∣∣∣ X1, . . . , Xn, {ξiw : w ∈ W̃}
}]

= E
∑
w∈W̃

ξiwfξ,X(Xiw) = rE|W̃ |.

The desired lower bound follows since E|W̃ | ≥ {1 − (1 − m0/n)n}|W | ≥
(1 − e−m0)|W | &d,m0 n

1−1/d, where the final bound follows as in the proof
of Proposition 5.

Proof of Proposition 9. Let rn := n−1/d logγd n. We write
(8)

E
∥∥f̃n∥∥2

L2(Pn)
= E

{∥∥f̃n∥∥2

L2(Pn)
1{‖f̂n‖L2(P )≤rn}

}
+E
{∥∥f̃n∥∥2

L2(Pn)
1{‖f̂n‖L2(P )>rn}

}
and control the two terms on the right hand side of (8) separately. For the
first term, we have

E
{∥∥f̃n∥∥2

L2(Pn)
1{‖f̂n‖L2(P )≤rn}

}
≤ E sup

f∈Fd∩B2(rn,P )∩B∞(6 log1/2 n)

1

n

n∑
i=1

f2(Xi)

. r2
n +

1

n
E sup
f∈Fd∩B2(rn,P )∩B∞(6 log1/2 n)

∣∣∣∣ n∑
i=1

ξif
2(Xi)

∣∣∣∣
. r2

n +
log1/2 n

n
E sup
f∈Fd∩B2(rn,P )∩B∞(6 log1/2 n)

∣∣∣∣ n∑
i=1

ξif(Xi)

∣∣∣∣
.d,m0,M0 r

2
n + rnn

−1/d logγd n . r2
n,(9)
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where the second line uses the symmetrisation inequality (cf. van der Vaart
and Wellner, 1996, Lemma 2.3.1), the third inequality follows from Lemma 6
and the penultimate inequality follows from Proposition 8. For the second
term on the right-hand side of (8), we first claim that there exists C ′d,m0,M0

>
0, depending only on d,m0 and M0, such that

(10) P(Ec) ≤ 2

n2
,

where

E :=

{
sup

f∈Fd∩B2(rn,P )c∩B∞(6 log1/2 n)

∣∣∣∣Pnf2

Pf2
− 1

∣∣∣∣ ≤ C ′d,m0,M0

}
.

To see this, we adopt a peeling argument as follows. Let Fd,` := {f ∈
Fd∩B∞(6 log1/2 n) : 2`−1r2

n < Pf2 ≤ 2`r2
n} and let m be the largest integer

such that 2mr2
n < 32 log n (so that m � log n). We have that

sup
f∈Fd∩B∞(6 log1/2 n)
‖f‖L2(P )>rn

∣∣∣∣Pnf2

Pf2
− 1

∣∣∣∣ ≤ 2

n1/2
max

`=1,...,m

{
(2`r2

n)−1 sup
f∈Fd,`

|Gnf
2|
}
.

By Talagrand’s concentration inequality for empirical processes (Talagrand,
1996), in the form given by Massart (2000, Theorem 3), applied to the class
{f2 : f ∈ Fd,`}, we have that for any s` > 0,

P
{

sup
f∈Fd,`

|Gnf
2| > 2E sup

f∈Fd,`

|Gnf
2|+ 12

√
2
(
2`s` log n

)1/2
rn +

1242s` log n

n1/2

}
≤ e−s` .

Here we have used the fact that supf∈Fd,`
VarP f

2 ≤ supf∈Fd,`
Pf2‖f‖2∞ ≤

36 · 2`r2
n log n. Further, by the symmetrisation inequality again, Lemma 6

and Proposition 8, we have that

E sup
f∈Fd,`

|Gnf
2| ≤ 2

n1/2
E sup
f∈Fd,`

∣∣∣∣ n∑
i=1

ξif
2(Xi)

∣∣∣∣ ≤ 48 log1/2 n

n1/2
E sup
f∈Fd,`

∣∣∣∣ n∑
i=1

ξif(Xi)

∣∣∣∣
.d,m0,M0 2`/2rnn

1/2−1/d logγd n.

By a union bound, we have that with probability at least 1−
∑m

`=1 e
−s` ,

sup
f∈Fd∩B2(rn,P )c∩B∞(6 log1/2 n)

∣∣∣∣Pnf2

Pf2
− 1

∣∣∣∣
.d,m0,M0 max

`=1,...,m

{
n1/2−1/d logγd n+ s

1/2
` log1/2 n

2`/2n1/2rn
+
s` log n

2`nr2
n

}
.
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ISOTONIC REGRESSION IN GENERAL DIMENSIONS 7

By choosing s` := 2` log n, we see that on an event of probability at least
1−

∑m
`=1 e

−s` ≥ 1−
∑∞

`=1 n
−`−1 ≥ 1− 2n−2, we have

sup
f∈Fd∩B2(rn,P )c∩B∞(6 log1/2 n)

∣∣∣∣Pnf2

Pf2
− 1

∣∣∣∣ .d,m0,M0 1,

which verifies (10). Thus

E
{∥∥f̃n∥∥2

L2(Pn)
1{‖f̂n‖L2(P )>rn}

}
≤ E

{∥∥f̃n∥∥2

L2(Pn)
1{‖f̂n‖L2(P )>rn}

1E
}

+
72 log n

n2

≤ (C ′d,m0,M0
+ 1)E

∥∥f̃n∥∥2

L2(P )
+

72 log n

n2
.(11)

Combining (8), (9) and (11), we obtain

E
∥∥f̃n∥∥2

L2(Pn)
.d,m0,M0 r

2
n + E

∥∥f̃n∥∥2

L2(P )
,

as desired.

Proof of Proposition 10. Let rn := n−1/d logγd n and observe that
by Lemma 5 and Proposition 8, we have that for r ≥ rn,

E sup
f∈Fd∩B2(r,P )∩B∞(6 log1/2 n)

∣∣∣∣ 1

n1/2

n∑
i=1

εif(Xi)

∣∣∣∣ .d,m0,M0 rn
1/2−1/d logγd n.

On the other hand, by Lemma 6 and Proposition 8, for r ≥ rn,

E sup
f∈Fd∩B2(r,P )∩B∞(6 log1/2 n)

∣∣∣∣ 1

n1/2

n∑
i=1

ξif
2(Xi)

∣∣∣∣ .d,m0,M0 rn
1/2−1/d logγd n.

It follows that the conditions of Proposition 7 are satisfied for this choice
of rn with φn(r) := rn1/2−1/d logγd n and K .d,m0,M0 1. By Lemma 10,
Propositions 9 and 7, we have that

Rn(f̂n, 0) ≤ E‖f̃n‖2L2(Pn) + n−1

.d,m0,M0 n
−2/d log2γd n+ E‖f̃n‖2L2(P ) .d,m0,M0 n

−2/d log2γd n,

as desired.
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APPENDIX B: AUXILIARY LEMMAS

We collect here various auxiliary results used in the proofs in the main
document (Han et al., 2018).

The proof of Corollary 1 in the main document requires the following
lemma on Riemann approximation of block increasing functions.

Lemma 1. Suppose n1 = n1/d is a positive integer. For any f ∈ Fd, de-
fine fL(x1, . . . , xd) := f

(
n−1

1 bn1x1c, . . . , n−1
1 bn1xdc

)
and fU (x1, . . . , xd) :=

f
(
n−1

1 dn1x1e, . . . , n−1
1 dn1xde

)
. Then∫

[0,1]d
(fU − fL)2 ≤ 4dn−1/d‖f‖2∞.

Proof. For x = (x1, . . . , xd)
> and x′ = (x′1, . . . , x

′
d)
> in Ld,n, we say

x and x′ are equivalent if and only if xj − x1 = x′j − x′1 for j = 1, . . . , d.

Let Ld,n =
⊔N
r=1 Pr be the partition of Ld,n into equivalence classes. Since

each Pr has non-empty intersection with a different element of the set
{(x1, . . . , xd) ∈ Ld,n : maxj xj = 1}, we must have N ≤ dn1−1/d. There-
fore, we have∫

[0,1]d
(fU − fL)2 =

N∑
r=1

∫
Pr+n−1

1 (−1,0]d
(fU − fL)2

≤ 2

n
‖f‖∞

N∑
r=1

∑
x=(x1,...,xd)>∈Pr

{
f(x1, . . . , xd)− f

(
x1 − n−1

1 , . . . , xd − n−1
1

)}
≤ 2N

n
‖f‖∞

(
f(1, . . . , 1)− f(0, . . . , 0)

)
≤ 4dn−1/d‖f‖2∞,

as desired.

The following is a simple generalisation of Jensen’s inequality.

Lemma 2. Suppose h : [0,∞) → (0,∞) is a non-decreasing function
satisfying the following:

(i) There exists x0 ≥ 0 such that h is concave on [x0,∞).
(ii) There exists some x1 > x0 such that h(x1)− x1h

′
+(x1) ≥ h(x0), where

h′+ is the right derivative of h.

Then there exists Ch > 0, depending only on h, such that for any nonnegative
random variable X with EX <∞, we have

Eh(X) ≤ Chh(EX).
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ISOTONIC REGRESSION IN GENERAL DIMENSIONS 9

Proof. Define H : [0,∞)→ [h(0),∞) by

H(x) :=

{
h(x1)− x1h

′
+(x1) + xh′+(x1) if x ∈ [0, x1)

h(x) if x ∈ [x1,∞).

Then H is a concave majorant of h. Moreover, we have H ≤ (h(x1)/h(0))h.
Hence, by Jensen’s inequality, we have

Eh(X) ≤ EH(X) ≤ H(EX) ≤ h(x1)

h(0)
h(EX),

as desired.

We need the following lower bound on the metric entropy of M(L2,n) ∩
B2(1) for the proof of Proposition 2.

Lemma 3. There exist universal constants c > 0 and ε0 > 0 such that

logN
(
ε0,M(L2,n) ∩B2(1), ‖ · ‖2

)
≥ c log2 n.

Proof. It suffices to prove the equivalent result that there exist universal
constants c, ε0 > 0 such that the packing number D

(
ε0,M(L2,n)∩B2(1), ‖ ·

‖2
)

(i.e. the maximum number of disjoint open Euclidean balls of radius ε0

that can be fitted into M(L2,n) ∩ B2(1)) is at least exp(c log2 n). Without
loss of generality, we may also assume that n1 := n1/2 = 2` − 1 for some
` ∈ N, so that ` � log n. Now, for r = 1, . . . , `, let Ir := n−1

1 {2r−1, . . . , 2r−1}
and consider the set

M̄ :=

{
θ ∈ RL2,n : θIr×Is ∈

{ −1Ir×Is√
2r+s+1 log n

,
−1Ir×Is√
2r+s log n

}}
⊆M(L2,n) ∩B2(1),

where 1Ir×Is denotes the all-one vector on Ir × Is. Define a bijection ψ :
M̄ → {0, 1}`2 by

ψ(θ) :=
(
1{

θIr×Is=−1Ir×Is/
√

2r+s+1 logn
})`

r,s=1
.

Then, for θ, θ′ ∈ M̄,

‖θ − θ′‖22 =
dH(ψ(θ), ψ(θ′))

log2 n

1

4

(
1− 1

21/2

)2

,
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where dH(·, ·) denotes the Hamming distance. On the other hand, by the
Gilbert–Varshamov inequality (e.g. Massart, 2007, Lemma 4.7), there exists
a subset I ⊆ {0, 1}`2 such that |I| ≥ exp(`2/8) and dH(v, v′) ≥ `2/4 for
any distinct v, v′ ∈ I. Then the set ψ−1(I) ⊆ M̄ has cardinality at least
exp(`2/8) ≥ exp(log2 n/32), and each pair of distinct elements have squared

`2 distance at least ε0 := `2/4

log2 n
1
4(1− 1

21/2
)2 & 1, as desired.

Lemma 4 below gives a lower bound on the size of the maximal antichain
(with respect to the natural partial ordering on Rd) among independent and
identically distributed X1, . . . , Xn.

Lemma 4. Let d ≥ 2. Let X1, . . . , Xn
iid∼ P , where P is a distribution

on [0, 1]d with Lebesgue density bounded above by M0 ∈ [1,∞). Then with

probability at least 1 − e−ed−1(M0n)1/d log(M0n), there is an antichain in GX
with cardinality at least n1−1/d/(2eM

1/d
0 ).

Proof. By Dilworth’s Theorem (Dilworth, 1950), for each realisation of
the directed acyclic graph GX , there exists a covering of V (GX) by chains
C1, . . . , CM , where M denotes the cardinality of a maximum antichain of
GX . Thus, it suffices to show that with the given probability, the maximum
chain length of GX is at most k := de(M0n)1/de ≤ 2e(M0n)1/d. By a union
bound, we have that

P(∃ a chain of length k in GX) ≤ n!

(n− k)!
P(X1 � · · · � Xk)

≤
(
n

k

)
(k!)−(d−1)Mk

0 ≤
(
en

k

)k(k
e

)−k(d−1)

Mk
0

≤ (M0n)−k/d ≤ e−ed−1(M0n)1/d log(M0n),

as desired.

The following two lemmas control the empirical processes in (18) and (19)
in the main text by the symmetrised empirical process in (20) in the main
text.

Lemma 5. Let n ≥ 2, and suppose that X1, . . . , Xn, ε̃1, . . . , ε̃n are inde-
pendent, with X1, . . . , Xn identically distributed on X and ε̃1, . . . , ε̃n iden-
tically distributed, with |ε̃1| stochastically dominated by |ε1|. Then for any
countable class F of measurable, real-valued functions defined on X , we have

E sup
f∈F

∣∣∣∣ n∑
i=1

ε̃if(Xi)

∣∣∣∣ ≤ 2 log1/2 nE sup
f∈F

∣∣∣∣ n∑
i=1

ξif(Xi)

∣∣∣∣.
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ISOTONIC REGRESSION IN GENERAL DIMENSIONS 11

Proof. Let α0 := 0, and for k = 1, . . . , n, let αk := E|ε̃(k)|, where |ε̃(1)| ≤
· · · ≤ |ε̃(n)| are the order statistics of {|ε̃1|, . . . , |ε̃n|}, so that αn ≤ (2 log n)1/2.
Observe that for any k = 1, . . . , n,

E sup
f∈F

∣∣∣∣ k∑
i=1

ξif(Xi)

∣∣∣∣ = E sup
f∈F

∣∣∣∣ k∑
i=1

ξif(Xi) + E
n∑

i=k+1

ξif(Xi)

∣∣∣∣
≤ E sup

f∈F
E
{∣∣∣∣ n∑

i=1

ξif(Xi)

∣∣∣∣ ∣∣∣∣ X1, . . . , Xk, ξ1, . . . , ξk

}

≤ E sup
f∈F

∣∣∣∣ n∑
i=1

ξif(Xi)

∣∣∣∣.(12)

We deduce from Han and Wellner (2017, Proposition 5) and (12) that

E sup
f∈F

∣∣∣∣ n∑
i=1

ε̃if(Xi)

∣∣∣∣ ≤ 21/2
n∑
k=1

(αn+1−k − αn−k)E sup
f∈F

∣∣∣∣ k∑
i=1

ξif(Xi)

∣∣∣∣
≤ 21/2αnE sup

f∈F

∣∣∣∣ n∑
i=1

ξif(Xi)

∣∣∣∣,
as required.

Lemma 6. Let X1, . . . , Xn be random variables taking values in X and
F be a countable class of measurable functions f : X → [−1, 1]. Then

E sup
f∈F

∣∣∣∣ n∑
i=1

ξif
2(Xi)

∣∣∣∣ ≤ 4E sup
f∈F

∣∣∣∣ n∑
i=1

ξif(Xi)

∣∣∣∣.
Proof. By Ledoux and Talagrand (2013, Theorem 4.12), applied to

φi(y) = y2/2 for i = 1, . . . , n (note that y 7→ y2/2 is a contraction on
[0, 1]), we have

E sup
f∈F

∣∣∣∣ n∑
i=1

ξif
2(Xi)

∣∣∣∣ = E
{
E sup
f∈F

∣∣∣ n∑
i=1

ξif
2(Xi)

∣∣∣ ∣∣∣∣ X1, . . . , Xn

}

≤ 4E
{
E sup
f∈F

∣∣∣ n∑
i=1

ξif(Xi)
∣∣∣ ∣∣∣∣ X1, . . . , Xn

}
= 4E sup

f∈F

∣∣∣∣ n∑
i=1

ξif(Xi)

∣∣∣∣,
as required.
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12 Q. HAN, T. WANG, S. CHATTERJEE AND R. J. SAMWORTH

The following is a local maximal inequality for empirical processes un-
der bracketing entropy conditions. This result is well known for η = 0 in
the literature, but we provide a proof for the general case η ≥ 0 for the
convenience of the reader.

Lemma 7. Let X1, . . . , Xn
iid∼ P on X with empirical distribution Pn,

and, for some r > 0, let G ⊆ B2(r, P ) ∩ B∞(1) be a countable class of
measurable functions. Then for any η ∈ [0, r/3), we have

E sup
f∈G
|Gnf | . n1/2η +

∫ r

η
log

1/2
+ N[ ](ε,G, ‖ · ‖L2(P )) dε

+
1

n1/2
log+N[ ](r,G, ‖ · ‖L2(P )).

The above inequality also holds if we replace Gnf with the symmetrised em-
pirical process n−1/2

∑n
i=1 ξif(Xi).

Proof. Writing Nr := N[ ](r,G, ‖ · ‖L2(P )), there exists {(fL` , fU` ) : ` =
1, . . . , Nr} that form an r-bracketing set for G in the L2(P ) norm. Letting
G1 := {f ∈ G : fL1 ≤ f ≤ fU1 } and G` := {f ∈ G : fL` ≤ f ≤ fU` } \ ∪

`−1
j=1Gj for

` = 2, . . . , Nr, we see that {G`}Nr
`=1 is a partition of G such that the L2(P )-

diameter of each G` is at most r. It follows by van der Vaart and Wellner
(1996, Lemma 2.14.3) that for any choice of f` ∈ G`, we have that

E sup
f∈G
|Gnf | . n1/2η +

∫ r

η
log

1/2
+ N[ ](ε,G, ‖ · ‖L2(P )) dε

+ E max
`=1,...,Nr

|Gnf`|+ E max
`=1,...,Nr

∣∣∣Gn

(
sup
f∈G`
|f − f`|

)∣∣∣.(13)

The third and fourth terms of (13) can be controlled by Bernstein’s inequal-
ity (in the form of (2.5.5) in van der Vaart and Wellner (1996)):

E max
`=1,...,Nr

|Gnf`| ∨ E max
`=1,...,Nr

∣∣∣Gn

(
sup
f∈G`
|f − f`|

)∣∣∣ . log+Nr

n1/2
+ r log

1/2
+ Nr.

Since η < r/3, the last term r log
1/2
+ Nr in the above display can be as-

similated into the entropy integral in (13), which establishes the claim for
E supf∈G |Gnf |.

We now study the symmetrised empirical process. For f ∈ G, we define
e ⊗ f : {−1, 1} × X → R by (e ⊗ f)(t, x) := tf(x), and apply the previous
result to the function class e ⊗ G := {e ⊗ f : f ∈ G} ⊆ B2(r, Pξ ⊗ P ) ∩
B∞(1), where Pξ denotes the Rademacher distribution on {−1, 1}. Here the
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ISOTONIC REGRESSION IN GENERAL DIMENSIONS 13

randomness is induced by the independently and identically distributed pairs
(ξi, Xi)

n
i=1. For any f ∈ G and any ε-bracket [f, f̄ ] containing f , we have that

[e+⊗ f − e−⊗ f̄ , e+⊗ f̄ − e−⊗ f ] is an ε-bracket for e⊗ f in the L2(Pξ⊗P )
metric, where e+(t) := max{e(t), 0} = max(t, 0) and e−(t) := max(−t, 0). It
follows that for every ε > 0,

N[ ](ε, e⊗ G, L2(Pξ ⊗ P )) ≤ N[ ](ε,G, L2(P )),

which proves the claim for the symmetrised empirical process.

In the next two lemmas, we assume, as in the main text, that P is a
distribution on [0, 1]d with Lebesgue density bounded above and below by
M0 ∈ [1,∞) and m0 ∈ (0, 1] respectively. As in the proof of Proposition 8,
let F+

d,↓ = {f : −f ∈ Fd, f ≥ 0}. The following result is used to control the
bracketing entropy terms that appear in Lemma 7 when we apply it in the
proof of Proposition 8.

Lemma 8. There exists a constant Cd > 0, depending only on d, such
that for any r, ε > 0,

logN[ ]

(
ε,F+

d,↓ ∩B2(r, P ) ∩B∞(1), ‖ · ‖L2(P )

)
≤ Cd

{
(r/ε)2M0

m0
log2(M0

m0
) log4

+(1/ε) log2
+

( r log+(1/ε)

ε

)
if d = 2,

(r/ε)2(d−1)(M0
m0

)d−1 logd
2

+ (1/ε) if d ≥ 3.

Proof. We first claim that for any η ∈ (0, 1/4],

logN[ ]

(
ε,F+

d,↓ ∩B2(r, P ), ‖ · ‖L2(P ;[η,1]d)

)
.d

{
( rε)2M0

m0
log2(M0

m0
) log4(1/η) log2

+

( r log(1/η)
ε

)
if d = 2,

( rε)2(d−1)(M0
m0

)d−1 logd
2
(1/η) if d ≥ 3.

(14)

By the cone property of F+
d,↓, it suffices to establish the above claim when r =

1. We denote by vol(S) the d-dimensional Lebesgue measure of a measurable
set S ⊆ [0, 1]d. By Gao and Wellner (2007, Theorem 1.1) and a scaling
argument, we have for any δ,M > 0 and any hyperrectangle A ⊆ [0, 1]d that
(15)

logN[ ]

(
δ,F+

d,↓ ∩B∞(M), ‖ · ‖L2(P ;A)

)
.d

{
(γ/δ)2 log2

+(γ/δ) if d = 2,

(γ/δ)2(d−1) if d ≥ 3,

where γ := M
1/2
0 Mvol1/2(A). We define m := blog2(1/η)c and set I` :=

[2`η, 2`+1η] ∩ [0, 1] for each ` = 0, . . . ,m. Then for `1, . . . , `d ∈ {0, . . . ,m},
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14 Q. HAN, T. WANG, S. CHATTERJEE AND R. J. SAMWORTH

any f ∈ F+
d,↓ ∩ B2(1, P ) is uniformly bounded by

{
m0
∏d
j=1(2`jη)

}−1/2
on

the hyperrectangle
∏d
j=1 I`j . Then by (15) we see that for any δ > 0,

logN[ ]

(
δ,F+

d,↓∩B2(1, P ), ‖ · ‖L2(P ;
∏d

j=1 I`j )

)
.d

{
δ−2(M0/m0) log2(M0

m0
) log2

+(1/δ) if d = 2,

δ−2(d−1)(M0/m0)d−1 if d ≥ 3,

where we have used the fact that log+(ax) ≤ 2 log+(a) log+(x) for any a, x >
0. Note that these bounds do not depend on η, since the dependence of M
and vol(A) on η is such that it cancels in the expression for γ. Global brackets
for F+

d,↓ ∩ B2(1) on [η, 1]d can then be constructed by taking all possible
combinations of local brackets on I`1 × · · · × I`d for `1, . . . , `d ∈ {0, . . . ,m}.
Overall, for any ε > 0, setting δ = (m + 1)−d/2ε establishes the claim (14)
in the case r = 1.

We conclude that if we fix any ε > 0, take η = ε2/(4d) ∧ 1/4 and take a
single bracket consisting of the constant functions 0 and 1 on [0, 1]d \ [η, 1]d,
we have

logN[ ]

(
ε,F+

d,↓ ∩B2(r, P ) ∩B∞(1), ‖ · ‖L2(P )

)
≤ logN[ ]

(
ε/2,F+

d,↓ ∩B2(r, P ), ‖ · ‖L2(P ;[η,1]d)

)
.d

{
(r/ε)2M0

m0
log2(M0

m0
) log4

+(1/ε) log2
+

( r log+(1/ε)

ε

)
if d = 2,

(r/ε)2(d−1)(M0
m0

)d−1 logd
2

+ (1/ε) if d ≥ 3,

completing the proof.

For 0 < r < 1, let Fr be the envelope function of F+
d,↓ ∩B2(r, P )∩B∞(1).

The lemma below controls the L2(P ) norm of Fr when restricted to strips
of the form I` := [0, 1]d−1 × [ `−1

n1
, `
n1

] for ` = 1, . . . , n1.

Lemma 9. For any r ∈ (0, 1] and ` = 1, . . . , n1, we have∫
I`

F 2
r dP ≤

7M0r
2 logd+(1/r2)

m0`
.

Proof. By monotonicity and the L2(P ) and L∞ constraints, we have

F 2
r (x1, . . . , xd) ≤ r2

m0x1···xd ∧ 1. We first claim that for any d ∈ N,∫
[0,1]d

(
t

x1 · · ·xd
∧ 1

)
dx1 · · · dxd ≤ 5t logd+(1/t).
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ISOTONIC REGRESSION IN GENERAL DIMENSIONS 15

To see this, we define Sd :=
{

(x1, . . . , xd) :
∏d
j=1 xj ≥ t

}
and set ad :=∫

Sd

t
x1···xd dx1 · · · dxd and bd :=

∫
Sd

dx1 · · · dxd. By integrating out the last
coordinate, we obtain the following relation

(16) bd =

∫
Sd−1

(
1− t

x1 · · ·xd−1

)
dx1 · · · dxd−1 = bd−1 − ad−1.

On the other hand, we have by direct computation that

ad =

∫ 1

t
· · ·
∫ 1

t
x1···xd−1

t

x1 · · ·xd
dxd · · · dx1

≤ ad−1 log(1/t) ≤ · · · ≤ a1 logd−1(1/t) = t logd(1/t).(17)

Combining (16) and (17), we have∫
[0,1]d

(
t

x1 · · ·xd
∧ 1

)
dx1 · · · dxd = ad + 1− bd

≤ min{ad + 1, ad + ad−1 + · · ·+ a1 + 1− b1}

≤ min

{
t logd(1/t) + 1,

t logd+1(1/t)

log(1/t)− 1

}
≤ 5t logd+(1/t),

as claimed, where the final inequality follows by considering the cases t ∈
[1/e, 1], t ∈ [1/4, 1/e) and t ∈ [0, 1/4) separately. Consequently, for ` =
2, . . . , n1, we have that∫

I`

F 2
r dP ≤ M0

m0

∫ `/n1

(`−1)/n1

∫
[0,1]d−1

(
r2/xd

x1 · · ·xd−1
∧ 1

)
dx1 · · · dxd−1dxd

≤ M0

m0

∫ `/n1

(`−1)/n1

5(r2/xd) logd−1
+ (xd/r

2) dxd

≤ M0

m0
5r2 logd−1

+ (1/r2) log
(
`/(`− 1)

)
≤

7M0r
2 logd−1

+ (1/r2)

m0`
,

as desired. For the remaining case ` = 1, we have∫
I1

F 2
r dP ≤M0

∫
[0,1]d

F 2
r dx1 · · · dxd ≤

5M0

m0
r2 logd+(1/r2),

which is also of the correct form.

Lemma 10. For any Borel measurable f0 : [0, 1]d → [−1, 1] and any
a > 2, we have P(‖f̂n − f0‖∞ > a) ≤ ne−(a−2)2/2. Consequently,

E
(
‖f̂n − f0‖2∞1{‖f̂n−f0‖∞>a}

)
≤ n

(
a2 + 2 + 2

√
2π
)
e−(a−2)2/2.
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Proof. Recall that we say U ⊆ Rd is an upper set if whenever x ∈ U and
x � y, we have y ∈ U ; we say, L ⊆ Rd is a lower set if −L is an upper set.
We write U and L respectively for the collections of upper and lower sets in
[0, 1]d. The least squares estimator f̂n over Fd then has a well-known min-
max representation (Robertson, Wright and Dykstra, 1988, Theorem 1.4.4):

f̂n(Xi) = min
L∈L,L3Xi

max
U∈U ,U3Xi

YL∩U ,

where YL∩U denotes the average value of the elements of {Yi : Xi ∈ L∩U}.
Thus we have

‖f̂n‖∞ = max
1≤i≤n

|f̂n(Xi)| ≤ max
1≤i≤n

|Yi|.

Since Yi = f0(Xi) + εi and ‖f0‖∞ ≤ 1, we have by a union bound that

P
(
‖f̂n − f0‖∞ ≥ t

)
≤ nP(|ε1| ≥ t− 2).

The first claim follows using the fact that P(ε1 ≥ t) ≤ 1
2e
−t2/2 for any t ≥ 0.

Moreover, for any a > 2,

E
(
‖f̂n − f0‖2∞1{‖f̂n−f0‖∞>a}

)
=

∫ ∞
0

2tP
(
‖f̂n − f0‖∞ ≥ max{a, t}

)
dt

≤ na2P(|ε1| ≥ a− 2) + n

∫ ∞
a

2tP(|ε1| ≥ t− 2) dt

≤ n
(
a2 + 2 + 2

√
2π
)
e−(a−2)2/2,

as desired.

Lemma 11. If Y is a non-negative random variable such that (EY p)1/p ≤
A1p+A2p

1/2 +A3 for all p ∈ [1,∞) and some A1, A2 > 0, A3 ≥ 0, then for
every t ≥ 0,

P(Y ≥ t+ eA3) ≤ e exp

(
−min

{
t

2eA1
,

t2

4e2A2
2

})
.

Proof. Let s := min{t/(2eA1), t2/(2eA2)2}. For values of t such that
s ≥ 1, we have by Markov’s inequality that

P(Y ≥ t+ eA3) ≤
(
A1s+A2s

1/2 +A3

t+ eA3

)s
≤ e−s ≤ e1−s.

For values of t such that s < 1, we trivially have P(Y ≥ t + eA3) ≤ P(Y ≥
t) ≤ e1−s, as desired.
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ISOTONIC REGRESSION IN GENERAL DIMENSIONS 17

Lemma 12. Let X be a non-negative random variable satisfying X ≤ b
almost surely. Then

EeX ≤ exp

{
eb − 1

b
EX
}
.

Proof. We have

EeX =
∞∑
r=0

E(Xr)

r!
≤ 1 +

∞∑
r=1

br−1EX
r!

= 1 +
EX
b

(eb− 1) ≤ exp

{
eb − 1

b
EX
}
,

as required.
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