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Appendix. This is the supplementary material to Berrett, Samworth
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A.1. Proofs of auziliary results.

PROOF OF PROPOSITION 9 IN THE MAIN TEXT. Fix 7 € (a%d, 1]. We
first claim that given any e > 0, there exists A > 0 such that a(d) < A.07°¢
for all 6 € (0,7]. To see this, observe that there exists dg € (0,~] such that
a(d) <07 for 6 < Jp. But then

sup 6°a(d) < max{1,7a(do)} < ~6; ",
6€(0,7]

which establishes the claim, with A, := v%6,“. Now choose € = %(7‘ — aLer)

and let 77 := § + 3(0[21 3 € (aiw, 1). Then, by Hélder’s inequality, and since

at'/(1—-1") > d,

/

sup / a(f(z))f(z)" do < Acd® sup / f(z)" dx
feFap J{a:f(z)<d} fe€Fa0 J{x: f(x)<d}

, 1—7/
<as o] [ aeleln #ash o
]Rd

as § \( 0, as required.
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1 d

For the second part, fix p > 0, set € := 5(7’— m) and 77 :=F + 2(%%) €

(o%rd’ 1). Then, by Holder’s inequality again,
sup / a(f(m))pf(x)T dx < A/, sup / f(l’)T, dz
fe€Fq0JX feFa0JX
, T, 1—7/
< Aty {/ (1 + o))" d:c} < o0,
Rd

as required. O

PrOOF OF LEMMA 10. (i) The lower bound is immediate from the fact
that hy(r) < Vy||flleor? for any r > 0. For the upper bound, observe that
by Markov’s inequality, for any r > 0,

(el + 1) = |

B

palf)

710[

fly)dy > / fly)dy >1—
2 ([lzl|+) Bo(r)

The result follows on substituting r = (“1%(?)1/0‘ for s € (0,1).

(ii) We first prove this result in the case 8 € (2,4], giving the stated form
of by(). Let C := 4dV,; " /(d + B), and let y := Ca(f(x))?/2s{s/ f(x)}7/".
Now, by the mean value theorem, we have for r < r,(x) that

Va
2(d+2)

It is convenient to write

< al(f @) (@) g .

T‘d+2 T

ha(r) = Var® f(z) -

SUF2/AA f(z)
2(d + 2)V; f(a)1+2/d

Then, provided s, € (0, Vard(z) f(z)], we have

"({w/)}/)

> Sgy + 5

Spy =S — +y.

Vdiz/dAf(m) slt2/d _ a(f(x))dvdiﬁ/d slt8/d
(d-+ 2 @) o(d+ B) fla)P

Now, by our hypothesis, we know that

—-2/d
sup sup sup max{ v, / s2UNf ()| y}
[EF 10 5E€ESn x€EX, 2(d + 2) f(z)1+2/d" 5

dl/QVC;Q/dCz/d
< Z 'd n
= max{ 2(d + 2)

,Coﬁ/d} —0
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EFFICIENT ENTROPY ESTIMATION 3

as n — oo. Hence there exists ny = ni(d,#) € N such that for all n > nq, all
f € Fip, s €Sy and x € X, we have

—-2/d
1 ( 916+2/d _ 81+2/d) > _31+2/d dl/ZVd / a(f(x))s* yi
2(d+2)" Y 2d 2(d + 2) f(z)2/d 5

Moreover, there exists ng = na(d,#) € N such that for all n > ng, all s € S,
r € X, and f € Fyp we have

‘Sz y‘l-i-ﬁ/d < 951 +h/d.

Finally, we can choose ng = ng(d, ) € N such that

0724—5)/61 QdI/ZCg/d d3/203/d d
max{ (4—B)jd’ 2/d’ 2/d} <7
A(d +2)V, (d+ BV 2d+2)(d+ BV, +5

and such that C, < (8d'/?)~%V,;/2 for n > ngz. It follows that for n >
max(ni,ng,n3) =: ny, for f € Fgg, s € S, and for x € X,,, we have that
Sey € (0, Varti(z) f ()] and

h(W) o

L, _alf(@)s {d“?vd‘”da(f(x))s?/d p ) dalfla)en?
2 LR s gy )
a(f(x))ﬁﬂslw/d B a(f(z))2 P2 ( s (4=p)/d
> e 4<d+2>vd4/d{f<x>}
 Ca(f(x) [ s P! ay
2d1/2vd2/d{f(x)} d+p3 ] ="

The lower bound is proved by very similar calculations, and the result for
the case 8 € (2, 4] follows. The general case can be proved using very similar
arguments, and is omitted for brevity. O

A 2. Auziliary results for the proof of Theorem 2 in the main text. Recall
the definition of V(f) given in the statement of Theorem 1.

LEMMA 1. For each d € N and 6 € © and m € N, we have

(i) subser,, Jy f(2)]log™ f(a)] d < oo;
(ii) infrer, , V(f) > 0;
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4 T. B. BERRETT, R. J. SAMWORTH AND M. YUAN

PRrROOF OF LEMMA 1. Fixd € Nand § = (o, 3,7,v,a) € O.
(i) For € € (0,1) and ¢ € (0, 1], we have

log + < Li—e.
985

@]

(1 me) __

so that £ = 2d. Then, by Holder’s inequality, for any

Let e = 7m(a‘12d),
I € Fap,

[ r@hog sl <2t [ gaytog (W) o gomtpiogm 1.

om— 1 me
S [ oy o 27 og™

IA

2m1me

= [ a5 @)™

3 1 Vo d(a+d)°‘+d
+ 2™ 1max{logm'y, amlogm< d g ,

IN

where the bound on llogm HfHoo} comes from (13) in the main text.
(ii) Now define

1 .
Agp = max{ sup |H(f)], —§log inf || flloo s 1}
f€Fan f€Fap

and the set Sy := {z € X : e7*40 < f(2) < e 2440}, For f € Fug,x €
Sag and y € B, ({8d"/2a(e=*44.0)}~1/(BAD) we have by Lemma 2 below that

15d1/2 —4A4q0\,—2A4.0 BAL
(1) 1f(y) = f@)] < ——a(e™ " 40)e™™ 40 ly — || ™.
By the continuity of f, there exists xg € Sy such that f(xo) = e 24a0(1+

e~244.6), Thus, by (1), we have that By, (r49) C Sig, where

o T(1—em2Aa0) \1/(BAD) R 1
40 = {30d1/2a(e_4‘4dﬁ9) } {8d'/2q(e~444.0)}1/(BAD)

Hence
V(f) =E¢[{log f(X1) + H(f)}] = A3 4P(X1 € Sap) > AZge *0Vyrg 4,

as required. O

The following auxiliary result provides control on deviations of the density
arising from the smoothness condition of our F;¢ classes.
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EFFICIENT ENTROPY ESTIMATION 5

LEMMA 2. For § = (o,8,7,v,a) € ©, m = [f] —1, f € Fqg and
y € By(ra(z)), we have, for multi-indices ¢ with |t| < m, that

oft

or oft 15d'/2 i)
xXr

v) — 5 @)| < —m—a(f @) f@)lly — 2"

ProoOF. If |t| = m then the result follows immediately from the definition
of Fy¢. Henceforth, therefore, assume that m > 1 and |t| < m — 1. Writing
[I]| here for the largest absolute entry of an array, we have for y € By (rq(z))
that

oft 8ft oft
AW - ‘_Hy—xHZGBﬁgx ‘vaxt )H
suy—mmﬂwﬂkmu+d“wy—mu sup || 0D (z) — pUH @)
z€ Bz (|ly—=|))
m—|t|
< > dRy g O @)
(=1
e P lrm @ = )|
ZGB IIy )
1
_ B=ItD/2)1y — ||B-1t1—1
< alf(@)f(@)ly w{l_wmw—w”+d Iy~ ] }
15d1/2
< —e—a(f @) @)y - ]

as required. O

LEMMA 3.  Under the conditions of Theorem 1 in the main text, we have
that

sup  sup Ef[{V = V()}’] = 0.
ke{k§,...ki} f€Fa0

PRrOOF. For w = (wy,... Jwp) ! € W) write supp(w) := {j : w; # 0}.
Then

BV = V(f)

k
< ij]Ef log? §G)1 — /XflOng‘ + |Ef{(ﬁff)2} - H(f)z‘
=1

< llwlly,_max )‘Ef log” §(j),1 /X f log? f' + Var Hy! + (B HyY) = H(f)?).
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6 T. B. BERRETT, R. J. SAMWORTH AND M. YUAN

Thus, by Theorem 1 in the main text, (18) in the proof of that result and
Lemma 1(i), we have that suppe(rs _ x+y Subser, , |Ef V3 =V ()| = 0. Now,

> ||wH% 2
Var;V¥ < =—= max Varrlo ;
fin = n jEsup;%w) 1708 f(J)’l

(2) +lwlf
4

)

C 1 2¢ 7] 2 .
max - |Covy(log® §5),1, 108" E(eyo)|

Let a, ;= (j — 371/21og!/? n) v 0 and a;;j = (4 35210g"?n) A (n — 1).
Mimicking arguments in the proof of Theorem 1, for any m € N, j € supp(w)
and € > 0,

E s {log™ (&)1 f(X1))}
- o (Van = Df(@h (),
= [ @ [T (P (9 dsdo

ot
= /L;j log <e\I’(j))Bj’n_j(8) ds

n—1
B/ld atd
+ O max K log™ tn, K : — 0,
nb/d ara—¢€

n o+d

uniformly for j € supp(w), k € {kj,...,ki} and f € Fq9. Moreover, by
Cauchy—Schwarz, we can now show, for example, that

Eflog! &)1 = Ef[{log(§(j),1 f(X1)) — log f(X1)}'] = Eflog f(X1)

uniformly for j € supp(w), k € {k§,..., ki } and f € F4p. The result follows
upon noting that we may use a similar approach for the covariance term
in (2) to see that suppe (g x+y SUPser, , Var V! — 0. O

A.3. Proof of Proposition 5 in the main text.

PROOF OF PROPOSITION 5 IN THE MAIN TEXT. In each of the three ex-
amples, we provide § = (a, 5,7,v,a) € O such that f € Fy4. In fact, 5 >0
may be chosen arbitrarily in each case.

(i) We may choose any a > 0, and then set v = 2’1/2F(% + 4)/1(d/2).
We may also set v = (2r)~%2. It remains to find a € A such that (6) in the
main text holds. Write H,(y) := (—1)"63’2/2%6*92/2 for the rth Hermite
polynomial, and note that |H,(y)| < p.(|ly|), where p, is a polynomial of de-
gree r with non-negative coefficients. Using multi-index notation for partial
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EFFICIENT ENTROPY ESTIMATION 7
derivatives, if t = (t1,...,tq) € {0,1,...,}% with |t| :== t; +... 4 t4, we have

of'(x)
‘ Ozt

d

d
= f(@) [ ] 1H, (2] < f(a H (=) < f(@)qpy ([]]),

7=1

for some polynomial ¢, of degree r, with non-negative coefficients. It follows
that if y € B3(1), then for any 8 > 0 with m =[] — 1,

£ @) = @) dm/? - '3ft(l') B aft(y)‘
f@)|ly =z~ = f(@)|ly — z||F~ tjtj=m| Ot ot
dmrr2 of'(z +w)

max  sup

= f(z) tft=me wEBo(1) Ozt
< dm D2 g f(@ 4+ w)gms (|7 + wl])
w€Bp(1) f(z)
< d(m+1)/2eHz”qm+1(Hm|| +1).
Similarly,
r;?%?me <d™? max g (]).

Write g(0) := {—210g(6(27r)d/2)}1/2 and define a € A by setting a(d) :=
max{1,a(d)}, where

o(0) = sy max{ i g (lel), 4 g lel +1)

z:||z||<g(d

= /2 max{ max g, (9(8)) , d/%e9D g1 (g(6) + 1) }
Then sup,. r(zy>5 Myas(z) < a(d) and a(d) = o(67°) for every e > 0, so (6)
in the main text holds.

(ii) We may choose any « < p, and set

v = 2&/2F(% +9) (p/2)*/°T(252)
(%) (2
r(s+s)

0 /2) g7 2n T2 To verify (6) in the main text for suitable

a € A, we note by induction, that if ¢t = (t1,...,tq) € {0,1,...,}¢ with
[t| :=t1 + ...+ tgq, then

We may also set v =

f@aq )
= W+ TP/
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8 T. B. BERRETT, R. J. SAMWORTH AND M. YUAN

where ¢, is a polynomial of degree r with non-negative coefficients. Thus,
similarly to the Gaussian example, for any 8 > 0 with m = [§] — 1,

1F) () — £ ()l

sup sup i
cerdyene(n) f(@)|ly —z||f~m
+ w)gm+1([|lz + wl]) (1)
< d™2 gun sup flz A0
reR4 weBy(1) f(l’)(l + ||$”2/p)m+l d,m,p
say, where Aﬁllzn , € [0,00). Similarly,
(r)
Sup  Imax 177 @) <d™? sup max Lﬂ:!) =: Aff% )
seRd T=1m f x) xeRdT:lww"l(1'+'”$H /p)r M, p

say, where A?

dmp € [0,00). Now defining a € A to be the constant function

a(0) := max{1, Ag?n’p, A&?zn’p},

we again have that sup,.f)>5 Mfras(z) < a(d), so (6) in the main text
holds.

(iii) We may take any a > 0 and v = 1, v = 3. To verify (6) in the main
text, fix B > 0, set m := [S] — 1, and define a € A by

a(0) = An, max{l , log2(m+1) (%) },

for some A, > 1 depending only on m. Then, by induction, we find that for
some constants A/ Bl > 0 depending only on m, and z € (—1,1)

Al A f(y)
sy o] Ayt
f.a.B r=tiom (1= a2)2 oo o (1 — y2)200 D f(2)

By,
< ijjzﬁjg%;gﬁ'f a(f($)%

provided A,, in the definition of a is chosen sufficiently large. Hence (6) in
the main text again holds. O

A.4. Proof of Proposition 6 in the main text.
PROOF OF PROPOSITION 6 IN THE MAIN TEXT. To deal with the inte-

grals over X, we first observe that by (13) in the main text there exists a
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EFFICIENT ENTROPY ESTIMATION 9

constant Cy y > 0, depending only on d and f, such that

1
/ f(a:)/ Bin—k(s)loguy s ds dx
Xg 0

n

(3)

< Cuy [ s {ogn+rog(1+ LY bt = Omartantogn.at).
’ c /o
A e (f)
for every € > 0. Moreover,
W | J@)og f(z) dz| = O(a,™),

for every € > 0. Now, a slightly simpler argument than that used in the
proof of Lemma 10(ii) in the main text gives that for r € (0, 73], we have

elr) = Vaf @] < SC, p(aptt.

We deduce, again using a slightly simplified version of the argument in
Lemma 10(ii) in the main text, that there exists ng € N such that for

n>ng, s € [0, -] and x € A, we have

—B/d B
2dv,; "/ Sl+A/d C, 5@

B Vaf@h o) =l < <

s
< -
-2

It follows from (3), (4), (5) and an almost identical argument to that leading
to (15) in the main text that for every n > ng and € > 0,

| osw [ T B (s) log<W) ds da

Xn 0 y
+O(max{gy ™, gnlogn,n"'})

< 2/Xn f(gc)/on1 Bk (s)

Vaf(x)h;'(s)? — s
_ A4V By 51k / C,5(®)
< .

’Ef(ﬁn) - H| <

ds dx

+0 (max{q,lfe, gnlogn, nil})

S
_ " dz + O(max{q. ™, g, logn,n"1}),
IR T (max{g,*, gn log )

as required. O
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10 T. B. BERRETT, R. J. SAMWORTH AND M. YUAN

A.5. Completion of the proof of Lemma 7 in the main text. To prove
Lemma 7 in the main text, it remains to bound several error terms arising
from arguments that approximate the variance of the unweighted Kozachenko—
Leonenko estimator H,, and then to show how these arguments may be
adapted to yield the desired asymptotic expansion for Var(flﬁ’ ).

A.5.1. Bounds on S1,...,S5. To bound Si: By similar methods to those
used to bound R; in the proof of Lemma 3 in the main text, it is straight-
forward to show that for every e > 0, we have

1 ) foata €
Sy —/ f(x)/ B n—k(s)log” uy dsdx-O( a_ﬁ).
X 0

n

To bound Sz : For every € > 0, we have that
1
Sy = / f(l‘)/ Brn—k(s) log? Uy s dsdx = o(n*(?ﬁe))’
" s

by very similar arguments to those used to bound Rj in the proof of Lemma 3
in the main text.

To bound S3: We have
-1
log? Ug,s — log? ((n)s>

= {2 log<€(g(mfle()i%3fj—xl)og<W) } log<W> .

It therefore follows from Lemma 10(ii) in the main text that for every e > 0,

an

_ not 2 of (n—1)s
53 = /nf(x) . Bkml_k(s){log ’U/z75 —log <6\P(k3)f(l-) d8d$
LB/ fata
:O{maX(nﬁ/dlogn, W)}

To bound Sy: A simplified version of the argument used to bound Ry in
Lemma 3 of the main text shows that for every ¢ > 0,

Sy = /n f(x) /1 By.n_k(s) log? <m> ds dz = o(n~379).

an
—
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EFFICIENT ENTROPY ESTIMATION 11

To bound S5: Very similar arguments to those used to bound Ry in Lemma 3
in the main text show that for every ¢ > 0,

) fata €
f(x)log® f(x)dx = O — |
xe notd
A. 5 2. Bounds on Ty, Ty and T3. To bound Ty: Let B ~ Beta(k — 1,n —
k —1). By (13) in the main text, for every ¢ > 0,
T = ] / Do () [ os(uf @) d(Fya — Fyp)(u)dy d
C><XC Un,z,y

n—2

< 2 /X - S g )

/ l0g (1o f (2)) | B 1.0k 1<>1—(’;_ 5| ds dy da
</ S Ilos ) £{ (1og 10w 15 )1 - (”k‘_QfB\}

+ {logn+|logf(x)| +log(1 + 1')2” )}E‘l — MSH dy dx

pa " (f) k=1
k™27 ard €
)
na+a ¢

where we used the Cauchy—Schwarz inequality and elementary properties of
beta random variables to obtain the final bound.

Now let
. Va(n — Dhy ' (7)1
un(x) = Uga,/(n—1) = oV (k) ’

and consider

[ ] t@iwoss) [ tostus@) d - Fr)wdyds).
cJ Xy U

n,T,y

Tho =

If Gy, 5y > w) (), then by very similar arguments to those used to bound Ry
and Ry (cf. (13) and (14) in the main text), together with Cauchy—Schwarz,

/ ‘log uf(x ’d nw—Fn_I)(u)
Un,x,y

1
< /an |log(ux,sf(m))|{Bk_17n_k(5) + Bk,n—k—l(s)} ds

n—

logn + |log f(z)| + log<1 + ului‘(‘f))

il

(6) S

n3—e
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12 T. B. BERRETT, R. J. SAMWORTH AND M. YUAN

for every € > 0. On the other hand, if @,y < uj(z), then ||z — y| <
Tt (z) F Tngus (y), Where we have added the ry, ,x () term to aid a calculation
later in the proof. Define the sequence

pn = [cn log!/?(n — 1)]_1.

From Lemma 10(ii) in the main text,

1/d 1/d
_1( Gn klogn klogn
SUP Tpx (y) = Sup h ( ) < sup{ } < ( = o(pn).
yEXn n(y) yGXn Y n—= 1 yEXn nf(y) ndn ( )

Now suppose that x € X¢ and y € &), satisty ||y — z|| < p,. Choose ng € N
large enough that 7, .,y < pn/2 for all y € A&, and that log(n — 1) >
max{(3/2)4(8d*/2)4/5 12V 124} for all n > ng and k € {kf, ..., k}}. Then
when 5 € (0,1] and n > ng, using the fact that B, (pn/2) C By(3pn/2), we
have

/ flw)dw > Vaf(y)(pn/2)* = Vaa(f () f () (pn/2)"Bpn/2)”
Ba(pn/2)

a

™ > Vaf (5)(pn/ 21 — (Benpn/2)°) = L Valpn/2)50 > -2

Hence, for alln > ng, z € XS, y € X, with ||[y—z|| < p, and k € {k{, ..., k}},

(8) T (z) T Tnus(y) < Pn-

On other hand, suppose instead that z € X and p}, := infycx, [|[y—z| > pn.
Since &, is a closed subset of R, we can find y* € X}, such that ||y*—z|| = p,
and set ¥ := Lrx + (1-— 'Z—f)y*. Then ||Z — y*|| = pn, so from (7), we
have 7, = (3) < :;)n/Z for n > ng and k € {k§, ..., kT}. Since Bz(pn/2) C
B (p; — pn/2), we deduce that 7, ,« () < py — pn/2 and

(9) {y € X, Hx - y” < Tnu*(z) + Tn,uib(y)} =0
for n > ng and k € {k{,...,kj}. But for n > nog,

1/2
1) = )] £ P (o) <

)

N

(10) sup sup —
zeXS yeXn:||ly—2||<pn f(y)

so that if z € XS, y € &), and ||z — y|| < pp, then f(y) < 24, for n > ng and
ke {ki,... ki,
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EFFICIENT ENTROPY ESTIMATION 13

It therefore follows from (6), (8), (9), (10) and the argument used to
bound 7177 that for each € > 0 and n > ny,

T2 < /C v f(x)f(y” log f(y)|]l{Hx—y||<rnﬂumz)+rn’ui(y)}
/0 " og(uf @) d(Fng — Firy)(u) dy dz + o(n™?)

< /X / oy TP W08 W)
/0 | log(uf (@))] d(Fyx — Firy)(u) dy ez + o(n™?)

1 2
k2 Ta+ad ¢
=0 20 _ :
no+d

[oo log (uf () d(Fyp — Fipp)(u) dy da|.

By Lemma 10(ii) in the main text, we can find n; € N such that for n > n,
ke {ky,...,ki}, » € X, and s < a,/(n — 1), we have Vyf(z)h;1(s)? < 2s.

Thus, for n > ny, k € {k§,.... ki}, v € X, and y € Bg(;’(’;ﬁfyd),

. >2410gn> 2an, > (z)
Un,z,y = f(ﬂ?) = f(aj‘)e‘ll(k) Z Uy \T).

Thus, from (6), T13 = O(n~2logn). We conclude that for every e > 0,

1 2
kL 2tata €
Ty < Ty +The+ Tz = 0<2a>-

n o+d —€

To bound Ty: Fix x € X, and z € By(d,). Choosing ng € N large enough

that r:;’ll/‘i” < (8dY/%)~YBc 1 for n > ngy, we have by Lemma 2 that

Wy

1
() 2

sup

yEB, (rzyi:/f;" )
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14 T. B. BERRETT, R. J. SAMWORTH AND M. YUAN

for n > no, k € {kg,..., ki}. Also, for all n > ng, k € {k§, ..., kT}, we have
‘f(yxx)log.f(yxg)‘* f(x)logtf(x)‘
< f(Y,2) | 10g(f(Yo,2) / f (@))] + [log f (@) f (ya,2) — [(@)]
< a(f(2) f(@)|[ya,. — 2|7{|log f(z)| + 4}.

Moreover, by arguments used to bound 771,

[ touus @) dlFs ~ P ()| S Bjoe) (1- AR )
211/ £ ) k=1
—2)B
+ {logn + |log f(x)] —|—log<1 + 1|/|Zj” )}E‘l — (nk:l) ,
(f) -
where B ~ Beta(k — 1,n — k — 1). It follows that for every e > 0,

T - Vdn_l //B F(0e.2) 108 £ (4 2) — F(x)log £ ()}

/OO log(uf(z)) d(ﬁ‘mm — F,jx)(u) dz dzx
24/ f(x)

1/2 ara—€ EB/d
=0 K max K : , i log2+ﬁ/dn .
n nata—¢ nb/d

To bound T3: Note that by Fubini’s theorem,

/f ) log f(x /Bon/'d guf(x)) d(Fyn — F,,)(u) dzda

v, /X F(@)log (@ /O minuf (2), di} log(uf (2)) d(Fn g — Fiop)(u) da

uy, () -
Vi [ f)og f(a) / wf () log(uf (x)) d(Fn g — Fyy)(u) da
Xn 0

+0(n~679),

for all € > 0, where the order of the error term follows from a similar argu-
ment to that used to obtain (6) and Lemma 10(i). Thus, for every € > 0,

. / £ () log f(a / 1{W10g<uz,sf(m>>

S

log(m)}lgkn e ){1 <r;—_21)s}dsdﬁ0(n_<3_e>)

E1/2 kata—€ [B/d
:O(nmax{naidg nﬁ/dlogn}>
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EFFICIENT ENTROPY ESTIMATION 15

A.5.3. Bounds on Uy and Uy. To bound Uy: Using Lemma 10(i) and (13)
in the main text as in our bounds on 771 we have that for every € > 0,

uj, ()
Uy = /C f(:v)/o log(uf(g;)) d(Fy, — Fpa)(u) do
o B o
%Jrﬁfe
(11) _ 0< :H(ﬁd_ )

Moreover, using arguments similar to those used to bound Rj in the proof
of Lemma 3 in the main text, for every € > 0,

@ [ ronus@) i, By ds
From (11), and (12), we have for every € > 0 that

1 [
]{72+()¢<H16>

nl—i—%_‘_d—e

(12) Urg = = o(n~3-9).

Uil <Un + Uiz = 0(

To bound Us: By Lemma 10(ii) and letting B ~ Beta(k+ /d,n—k —1), we
have that for every ¢ > 0,

% —1 d _ _
T D e
kB4 ~1)B -k
= nﬁ/dE< e D / alf(@) (@) da
|1/ kB/d farae
- (n maX{TLB/W naofrdﬁ})

n—k—1
Moreover, we can use similar arguments to those used to bound R, in the
proof of Lemma 3 in the main text to show that for every ¢ > 0,

/n i@ /;”1 10g<W>Bkvnkl(s){m} ds dx

= o(n*(?’*e)).

Usy =

We deduce that for every e > 0,

E1/2 EB/d  faga€
|Us| §U21+U22:O<max{ +}>

n nﬁ/d’ 7‘[/(1(-);(1_6
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16 T. B. BERRETT, R. J. SAMWORTH AND M. YUAN

A.5.4. Bounds on Wh,...,Wy. To bound Wy: We partition the region
([lz,vz] x [y, vy])¢ into eight rectangles as follows:

([ls va] X [Lysvy]) = ([0, 1) X [0, 1)) U([0, ) X [y, 0] ) U ([0, L) X (wy, 00))
U ([lay va] % [0,1)) U ([la, va] X (vy, 00)) U ((vg, 00) x [0,1))
U ((vg,00) X [ly, vy]) U ((va, 00) X (vy, 00)).
Recall our shorthand h(u,v) = log(uf(x))log(vf(y)). By Lemma 10(i) in
the main text and the Cauchy—Schwarz inequality, as well as very similar
arguments to those used to bound Rs in the proof of Lemma 3 in the main

text, we can bound the contributions from each rectangle individually, to
obtain that for every € > 0,

Wy — / F@)f () / Bty 0) d(Fr gy — Fox Frny) (1 0) dir dy
XxX ([l:cyvm]x[lymy])c

= o(n_(g/z_G)).

To bound Wy: We have

Vg ’Uy 1
Wy = /X » f(@)f(y) /l /l W, v) d(Gnay = FopFoy) (u,0) dody + —.

We write By p . := %, and, for s,t > 0 with s +¢ < 1, let
Sa_ltb_l 1—g—1¢ c—1
(13) Bupe(s,t) = ( )

Ba,b,c

denote the density of a Dirichlet(a, b, ¢) random vector at (s,t). For a,b >
—1, writing I, :==[a,, /(n — 1),a;} /(n — 1)], let

Bg—?a,n—k = /I 3k+a_1(1 - S)n_k_l ds,

kta— ke
BY () i= M 1= B
ngr)a,k%’n_%_l _ /I I ghta-Lhtb=1(q _ o _ pm-2k-2 g gy
’I’LX n

[ n—2k—1(87 t) — Sk+a71tk+b71(1 s t)n72k72/B(n)

k+a,k+bn—2k—1"
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EFFICIENT ENTROPY ESTIMATION 17

Then by the triangle and Pinsker’s inequalities, and Beta tail bounds similar
to those used previously, we have that

/ ’Bk+a,k+b,n—2k—1 (57 t) - Bk+a,n—k($)Bk+b,n—k(t) ’ ds dt
I, %Iy

(n)
Bk+a,k+b,n—2k—1

ktan—k—"k+bn—k 1
Brtaktrbn—2k—1

< —1f+
Brtan—kBrion—k
(n)

B (s,1) 1/2
(n) k+a,k+bn—2k—1\">
+ {2/ Bk+a,k+b,n72k—1(5, t) log< o) ) ) ds dt}
LyxIn, Bk+a,n—k(S)Bk+b,n—k(t)

1 pl—t 1/2
Bitak+bn—2k—1(5,1) ) }
=42 B _or—1(s,t) 1o = dsdt
{ /o /0 ke tbin=2k-1(5,1) g(Bk+a,nk<s>Bk+b,nk<t>

+ o(n=?)

— 9l/2 [lo ( 'n+a+b—1)I'(n— k)2
F'(n—2k—1)T'(n+a)l'(n+b)

—(n—k-1D{y(n+b—k—-1)+¢(n+a—k—1)}

) + (= 2k = 2)b(n — 2% — 1)

1/2
+nY(n+a+b— 1)] +0(n_2)
(14)
_ %{1 +o(1)}.

As a first step towards bounding W5 note that
Vg Vy
Wy = / f(l‘)f(y) / / h(u, U) d(Gn,x,y - Fn,an,y)(uv ’U) dx dy
Xy X Xy L. Jly

— [ 5@ [ sl (@) sy fw)
X X Xn

InX1In
{Bk,k,n—Zk—l (S, t) — Bk,n—k(S)Bk’,n—k(t)} dsdtdz dy

AR o ey

{Brsn—2k-1(5,t) = Bpn—r()Brni(t)} dsdt du dy + Wary

(15)
1 kata €
= ——+ O<+) + O(nfz) + W211,

[e]
mn n1+oc+d7€

for every € > 0. But, by Lemma 10(ii) in the main text and (14), for every
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18 T. B. BERRETT, R. J. SAMWORTH AND M. YUAN

e>0

+ log<W) log <thy_l(t)df<y)> }

t

{Brson—2k-1(5,t) = Bpn—r()Brn—i(t)} dsdt dx dy‘

/an% f(@)f(y) /In 10g<W>

[{mg(n —1) = U(n—k—1)+log(1—5)}Brnk_1(s)

<2

— {log(n — 1) — \P(n)}Bkn_k(s)] ds dx dy‘
P e
+0 <max{ 55 o })
n1+7 nH_oT—d_e
k1/2 KBld  parae
(16) :O(nmax{nﬁ/d, W}).

Moreover, by Lemma 10(i) and (ii) in the main text and very similar argu-
ments, for every € > 0,

W22 = / f('x)f(y)/ / | h(u, U) d(Gn,:p,y - Fn,an,y)(uv U) dx dy
X X X5 le ly

o i tarae kara ¢ gA/d 1
U\ e M e Bl 2
Vy
Y

Was := /chxxﬁ f(x)f(y) /lx !
k,H-afo:d—E
(17) =o<>.

2a
nl—&—m—e

h(u,v) d(Grzy — FnaFny)(u,v)dedy

Incorporating our restrictions on k, we conclude from (15), (16) and (17)
that for every e > 0,

1 1/2 kBld  pata—c
|W2| < ‘W21+n’+2|W22|+|W23|:O<nmax{ })

nﬁ/d ’ naid_€

To bound Ws3: We write hy, hy, and hy, for the partial derivatives of h(u,v)
and write, for example, (hy, F')(u,v) = hy(u, v)F(u,v). We find on integrating
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EFFICIENT ENTROPY ESTIMATION 19

by parts that, writing F' = F}, , y — Gy 2y,

/[z%%}x[ly,vy}(hdF)(“’”)_ /l /l (huwF(u,v)) du dv
_ / [(haF) (1) — (o F) (u, v,)] du + / [(hoF)(la, v) — (hoF) (vg, v)] do

Lo ly
(18)
+ (WF)(v5,0,) + (hF) (Lo 1) — (hF)(0g, 1) — (hF) (Lo, v,).

Using standard binomial tail bounds as used to bound W together with (13)
in the main text we therefore see that for every € > 0,

Vz Uy Vg vy
Wiy = // (h dF)(u, v) // (huw F) (11, 0 dudv}da:dy
XXX Iy Iy

=— f(a;)f(y){/l (hoF)(u, vy)du+/ (ho F) (vg, )dv} dzx dy

XXX z ly
(19)
+ o(n~ /279,

Now, uniformly for u € [l,,v,] and (z,y) € X x X and for every € > 0,
n—2 ke (0/9e
F(’LL, Uy) - :H'{”IfyHSrn’u} (]C o 1>pr ;plu(]- - png:,u) k-l + O(Tl (9/2 ))

Bk,n—k(pn,a:,u) —(9/2—¢
= H{Hx_yHS"'n,u}— + 0(n ( / ))

n—1
1 - —€
(20) < ﬂ{llr—y\\ﬁn,vm}w{l +o(1)} + o(n= 0279,

By (10) and the arguments leading up to it, we have

‘M

(21) sup sup o)

— 1‘ — 0.
TEXL yEXnNB (Tn vy +7n,vy)

We therefore have by (13) in the main text that, for every € > 0,

Vz _5+a27fd_6
(22) / f(m)f(y)/ (huF)(u, vy) du dy dz = O<kza_>-
XTCLXX I no+d €

Now, using Lemma 10(ii) in the main text, for z € A,

k Bld log1/2n
nf(z) k1/2
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20 T. B. BERRETT, R. J. SAMWORTH AND M. YUAN

We also need some control over vf(y). By (10) and the work leading up to
it, for n > max(ng,5),z € &, and ||y — x| < rpp, + T,y s

15d%/2

) 2 {1 = 2 (enpn)’ o0 = 60/2 2 k/(n = 1).

Thus a(f(y)) < ¢ and using (21) we may apply Lemma 10(ii) in the main
text to the set

X/l =X, U{y:|ly—z| <rpp, + Tnw, for some z € Xnt

From this and (21), for any = € &, and y € By (rnv, + Tnyw,),

k >6/d+log1/2n

(24)  max([lyf(y) — 1], [vy f(y) —1]) S a(f(y)) (nf(x) k1/2

Using (21) again, we have that a(f(yz,.)) S f(z) € for each € > 0, uniformly
for x € X, and ||z]| < {vef(2)}Y¢ + {v, f(x)}/9. From (20), (23) and (24)
we therefore have that

[ s [ " (haF) (u, v,) dudy da
Xy x X Iy

< k;‘l/Q/X Xf(iv)f(y)]l{||x—y\|<rn,vm}|log(“yf(ymlog(v"”/lz)dydx

1y a o
(25) = O(max K220/ logn kETar
N nlt28/d 7 pp1/20 14 S

for every € > 0. By (19), (22) and (25), it follows that

k1/2+25/d logn ]{3_1/24_0‘27&_6
(26) Ws1 = O(max{ nlt26/d 7 pgl/2’ Zo—e })

Finally, by (13) in the main text and (21), we have since F' = 0 when
|z —y|| > rpu+ rne that

(27)

Vg Uy kaz—fd—g
Wso = /Xﬁxé\f f(@)f(y) /lz /ly (huw F)(u,v) du dv dz dy = O<2a>

n a+d —€

Combining (26) and (27) we have that

k1/2+25/d logn k:(fifd—ﬁ })

nlt28/d 7 pgl/27 2.

W3 = Ws1 + W3 = O (max{
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EFFICIENT ENTROPY ESTIMATION 21

To bound Wy: Let pn := fBz(m By () f(w) dw and let (N1, N2, N3, Ny) ~
Mlﬂti(n =2, Pnau — Py Pryw — Py Py L — Pnau — Py +pﬁ)' Further, let

FY (u,v) := P(Ny 4+ N3 >k, Ny + N3 > k),

n7x’y

so that

(Fn7x7y—FT(L}%’y)(u,v) = IP(N1 4+ N3 =k—1,Ny+ N3 > k)]l{lleyllﬁrn,u}

+P(N2+ Ny =k — LN + N3 2 B)Ljo—y|<r,,.}
+ P(Nl =+ N3 =k — 1,N2 + N3 =k — 1)]1{\\5C—y||§7“n,u/\7’n,v}'
Now P(N1+N3 = k—1) = (Z:%)pﬁ;}u(l—pn@,u)”*k*l < (2mk)~ Y2 {1+0(1)}

and Fy, py(u,v) = Gpay(u,v) if [z — y|| > rpu + e, and so, by (23)
and (24), we have that

Vz Uy (Fn,:r,y — Gnyx,y)(uv U)
/X @) /l /l v

uv
v o (Fiy — Gy) (u,)
= /. Xf(x)f(y) ), — dudv dz dy
n X T Y
1,28 1, o _
logn k2t k2tarae

We can now approximate Frg}%,y(u,v) by ®x (k2 {uf(x) — 1}, Y {vf(z) —
1}) and Gypy(u,v) by ®(EY2{uf(x) — 11)@(kY?{vf(z) — 1}). To avoid
repetition, we focus on the former of these terms. To this end, for i =

3,...,m, let
Y, = (ﬂ{xieBz(m,u)}> 7
LixieBy(rm0)}

so that Y ;" . V; = (JNV; ixg) We also define

=B = ()

pn,y,v

V = COV(Y;) — (pn,x,u(l _pn,x,u) Pn — pn,x,upn,y,v) ,
Pn — pn,m,upn,y,v pn,y,v(l - pn,y,v)

When z € &, and y € BJ(rnu, + Tnwp,) we have that, writing A for the
symmetric difference and using (21), P(X1 € By (7n,u)ABy(rn,w)) > 0 and so
V is invertible for such z and y. We may therefore set Z; := V 1/ 2(Y; — ).
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22 T. B. BERRETT, R. J. SAMWORTH AND M. YUAN

Then by the Berry—Esseen bound of Gotze (1991), writing C for the set of
closed, convex subsets of R? and letting Z ~ N(0, I), there exists a universal
constant Cy > 0 such that

" 3
(29) sup P(M;ZEC) —IP’(ZGC)'SC(Q;EEH;?’IUZ).

cec

The distribution of Z3 depends on z,y, u and v, but, recalling the substitu-
tion y = y, . as defined in (22) in the main text, we claim that for x € A,
Y=1UYp: € Bp(rnu~+Tno), u € [lg,vy] and v € [Iy,v,],

n )1/2

(30) E012%0°) 5 (15

To establish this, note that for z € &}, and ||y — || < 7.0, + Tn,v,, We have
by (21), (23) and (24) that ||y — z| < (nfk(z))l/d. Thus, for v € [l,,v,], and
using Lemma 2, we also have that

[vf () = 1] <max(foy f(y) = 1], 1y f(y) = 1) + vy [f(y) — f(2)]

k B/d log1/2 n
1 < — .
(31) Satf@n 1) () +
Now, by the definition of I, and v,
1/21001/2
(32)  max{lpmss— b/~ D], [pnye — k/(n— D]} < BN

for all z,y € X and u € [ly, vg), v € [ly,v,]. Next, we bound |“2pn — | for
r € X, and y = y,, with ||z]| < {v.f(2)}¥¢ + {v, f(z)}/% First suppose
that u > v. We may write

By (rn,u)NBy(rn,w) = {Bx(rn,0) By (1n,0) FU[{ By (rn,u) \ Bz (rn,0) }N By (Tn,0)]

where this is a disjoint union. Writing I, ;(z) := [, Bas(s)ds for the reg-
ularised incomplete beta function and recalling that pg denotes Lebesgue
measure on R%, we have

2
o
0 (Belrn) 1 Bylran) = Vil 3 (1= 2200
VT dr o

ve’® =1
= Tog11(1— ——————
n—1 "2 2 of(z)}2/d
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EFFICIENT ENTROPY ESTIMATION 23

_ 1]
ot (1 1),

d 7,,2 (1 _ 7'2/4)% 1
—Jap (1= — )= < '
dr 53 4 Baty/21/2 — Bavny/2,/2

and

Now,

Hence by the mean value inequality,

e¥(k) o,
a(Ba(rmo) O By(rne)) = =y
V™) Tollzllll = {vf (@)} Y9 | e }
= n—1 [ Bat1)/2,1/2 i f(z) L=l

It follows that for all x € X, y € Bx(Tnw, + Tnw,) and v € [ly,v,],

RIOPS

n—1

f(w)dw —

/B;v (’I’n,v)ﬂBy (Tn,v)

1 >5/d K/210g"/2
n

nf(z)
using (31) and Lemma 2. We also have by (32) that

< Fats) 100

/ f(w) dw < Pn,zu — Pnaxv
{Be(rn,u)\Bae(rn,w) }NBy(Tn,v)

<

~

3| =

k >6/d k1/21ogt/? n
nf(x) '

Thus, when 2 € X, ¥y = Yz > € Be(Tnpw, + 7w, ), U € [z, ve], v € [ly,vy] and
U > v,

Mﬂ@Af@D(

n

n—2
Tpﬂ_az

k B/d+log1/2n
nf(x) k12

We can prove the same bound when v > wu similarly, using (23), (31) and
Lemma 2. We will also require a lower bound on p, 44 + Pnyo — 2pn in the
region where By (rpn.y) N By(rny) # 0, e, ||2]] < {uf(@)}V/? + {vf(z)} /e
By the mean value theorem,

(33)

SMﬂ@Af@D(

2 1/2 279/
(1—-0%)>27"dmaxq — , 1 — Tapx
(d+1)/2,1/2 27

/)

1—Tan
‘27

N
N
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24 T. B. BERRETT, R. J. SAMWORTH AND M. YUAN

for all § € [0,1]. Thus, for v > v, with v € [l,, vy}, x € &), and y = y, . with
|z < 2{vf(z)}"/%, by (31) we have,

Hd (Bm(rn,u) N By(rn,v)c) > Hd (Bx(rn,v) N By(rn,v)c)

= — ylI? kll=|
:Vd’l"gm{l—lli;Fl’%(l—M ZW
n,v

When ||z]| > 2{vf(z)}'/¢ we simply have pq (Ba(rnw) N By(rnw)) = Vdrg’v
and the same overall bound applies. Moreover, the same lower bound for
ud(By(rm}) N Bx(rn,u)c) holds when u < v, u € [ly,v,], z € &y, and y =
Yz,2 € Be(Tnw, +7n0,). We deduce that for all z € Xy, y = yp,» € Be(rpw, +
Tryy ) U € [le, Vo] and v € [l v,],

k
(34) Pn,zu +pn,y,v - 2pﬂ > max{pn,x,u — PNy Py — Pm} Z EHZH

We are now in a position to bound E(||Z3||?) above for x € X, y = y.» €
Be(rnw, +7nw,) U € [z, 0], v € [y, vy]. We write
V—1/2 (1 - pn,m,u)
_p"»yﬂ)

3
V—1/2 <1 - pn,x,u)
1 - pn7y7U
‘3

+ (pn,x,u - pﬂ)

3
E(Zs°) = pn

3

V71/2 < —Pnzu )
1 - pn,y,v
V71/2 <pn,x,u>
p’l’L,y,U
and bound each of these terms in turn. First,
_ 1-»p
74 1/2 < n,:v,u)
pﬂH 1- Pn,yv
= pﬁ’V|_3/2{(1 - pn,x,u)(l - pn,y,v)(pn,x,u + Pnyo — 2pﬂ)}3/2
3/2
_ { (1= Pra) (1= Pryo) }
= Pn )
Pn

+ (pn,y,v - pﬂ)

(35) + (1 — Pnzu — Pnyw +pﬁ)

3

(pn,z,u 7pl"l)(pn,y,v —Pn

= Pn,azuPnyw + I w—
3/2
1
(36) < Pn min{pn’x’u il Pryw } <nl? /K2,
|V| Pn = Pn,xuPnyv

using (32) and (33), and where we derive the final bound from the left hand
side of the minimum if ||z|| > 1 and the right hand side if ||z|| < 1. Similarly,
(37)

3
_ 1-— _ n \1/2
(pn,m,u_pﬁ) ’V 1/2 < pn,x,u) H S (pn,m,u_pﬁ)pfz{y%v‘vl 3/2 S ( ) )

—Pnyv kHz”
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EFFICIENT ENTROPY ESTIMATION 25

where we have used (34) for the final bound. By symmetry, the same bound
holds for the third term on the right-hand side of (35). Finally, very similar
arguments yield

3
(38) (1= puas — P + )|V 12 (p) H < (b/m)2.

Pn,yv

Combining (36), (37) and (38) gives (30).

Writing @ 4(+) for the measure associated with the No(0, A) distribution
for invertible A, and ¢ 4 for the corresponding density, we have by Pinsker’s
inequality and a Taylor expansion of the log-determinant function that

2 5up [B4(C) — Bp(C)2 < / 1log A
cec R2 B

= {log|B| — log |4 + (B~ (A~ B))} < |B2(4~ B)B~??,

provided |[B=1/2(A — BYB~"/2|| < 1/2. Hence

sup |®4(C) — ®5(C)| < min{1,2||B~%(A - B)B~'/?|)}.
ceC

We now take A = (n —2)V/k, B = ¥ and use the submultiplicativity of

the Frobenius norm along with (32) and (33) and the fact that |X~1/2| =
{(14a.)"' + (1 — o) 1}/2 to deduce that

1 k Bld logl/Qn}
39) sup |[®A(C)—Pp(C)| < —1a(f(zx)A +
39) sup[2a(€)-22(0)] S T{atr@nson () +
for x € X, y € By(Tnw, + Tnw,), 4 € [lz,ve], v € [ly,vy]. Now let u =
f(2)"'(1+k"2s) and v = f(x)~1(1+k~/?t). By the mean value theorem,
(23) and (3

1),
- ())) -
P

(n = 2)pnou—Fk (n = 2)pnyo — k
(27r)1/2 { k1/2 B ‘ k1/2 B t‘}
(40) < V270 A 1) )B/d L p
~ nf(x)

It follows by (29), (30), (39) and (40) that for z € X, and y € By (rp v, +
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26 T. B. BERRETT, R. J. SAMWORTH AND M. YUAN

Tn,vy)a
sup \Fr(ngZy(“W) — &x(s,1)|
’U,E[lszzL'Ue[lyvvy]
. logl/Qn < k )ﬁ/d !
Smin< 1, ——— 4+ a(f(z) A [ k1/2—|—— }

Therefore, by (23) and (24), and since f(y) > f(x)/2 for z € X,, y €
B (rnw, + Tnw,) and n > ng, we conclude that for each € > 0 and n > ng

Vg U (1)
z Y F U ’U @Z( )
/ / L le—yl|<rn.utrno} dudody dz
XnXX /.

<t/ nf<x>{1°§1/2 e >/2><n’“(x))ﬁ/d}2

/ sup | nxy“( u,v) — ®x(s,t)|dzdz
Bo(3) u€g|

lz’v-’ﬂ]fve[lyx,z ’vyac z]

log®/2 Latata—e —1/2+8/d og y  f1/2+268/d
{ k320 atae nBld © T 2B/d })

k
(41) =0 < ma
n
By similar (in fact, rather simpler) means we can establish the same bound
for the approximation of Gy, ., by ®(kY/?{uf(z) — 1@ (kY2 {vf(z) — 1}).
To conclude the proof for the unweighted case, we write &, = Xél) U Xf),

where

d

Do o flz) > k%06,), XD = {z:8, < f(z) < k?6,),

and deal with these two regions separately. We have by Slepian’s inequality
that ®x(s,t) > ®(s)®(¢) for all s and t. Hence, recalling that s = s,,, =
V2 {uf(x) — 1} and t = t,, = k/?{vf(z) — 1}, by (21), (23) and (31), for
every € > (),

[ Ps(s, ) (s)i>(t)
/XmXX / / L{{|z—yl|<rn,utrn,, }du dv dy dz
¥ (k)

/ iy ﬂ{ux—yz,z||§rn,%+rn,,,yz,z}
Valn — Dk J3@ Jga Yaz) f(2)2ly,

/ / {Px(s,t) — P(s)P(t)} dsdtdz dx

1 k(1+%)aid_e
42 < - flx a,dzdr = ol ———5— ),
1+-—==
n X?’(L2) Bo(2) n +a+d —€
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EFFICIENT ENTROPY ESTIMATION 27

where to obtain the final error term, we have used the fact that |’ Bo(2) Y= dz =
Vi. By (23) and (24) we have, for each € > 0,

Vg Uy (I)E S t ( )(I)(t)
/(1) / / L)z —yl|<rp utrn,} dudvdy dz
Xp XX 1

ly

1
6 {”x_y:c,zHSTn,U;L»“FTn,vyz z}
< — - ,
B Vd(” - 1)k /Xfll) R flvs.e) f(z)2ly, .
e?® logl/2 n kP fata €
:m Xél)f(iﬂ)d:v—l-O(maX{ nk1/2 ) ’I’L1+B/d, n1+a(jrd_€}>

(43)

oY (k) o log'/2n KB/ Lt+35)aga—e
= — X 5 .
(n—1)k nkl/2 7 plth/d’ gty —e

o, dz dx

By applying Lemma 10(ii) in the main text as for (31) we have, for z € )

and y € By(Tnw, + Tnw,), that
(44)
k \B/d

max vfm—1—3k_1/210g1/2n <a(f(z)Nf(y :ok_1/2,
nax [of () | Sal@N W) (7a5) =00
with similar bounds holding for [, and [,. A corresponding lower bound of
the same order for the left-hand side of (43) follows from (44) and the fact
that

Nl
/ / (Bss(s,1) — D(s)B(t)} ds dt = an + O(n~2)

2y/logn 2y/logn

uniformly for z € RZ. It now follows from (28), (41), (42) and (43) that for
each € > 0,

- O( a{10g5/2n Eaters  p3/2tes/d (45585 k§+§logn}>
4 = max ) ) ) )

nkl/2 n1+g;§ nlt+28/d 1+g+§

as required.

We now turn our attention to the variance of the weighted Kozachenko—
Leonenko estimator HY. We first claim that

(45)

k k
ar( » wilogge) 1) = ) wjw Cov(log(j)a,log&uy1) = o
v log & Cov(log&j)1,10g &1y 1) = V(f) 4+ o(1)

7=1 j,0=1
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28 T. B. BERRETT, R. J. SAMWORTH AND M. YUAN
By (18), (19) and Lemma 3 in the main text, for j such that w; # 0,
Varlog§j)1 = V(f) + o(1)

as n — oo. For [ > j, using similar arguments to those used in the proof of

Lemma 3 in the main text, and writing ué’“ﬁ = Uy = Vg(n—1)h; 1 (s)de V()

for clarity, we have
E(log&;,1 log &

1 s
/ f / / log u:(v],s log( :(17)s+t)Bj,l—j,n—l(5at) dtdsdx

/f // 10g — 1 j))log((nA;))ii(; t))Bj,l_jm_l(s,t)dt dsdz+o(1)

— [ 50108 1 (2) daz+o<1>
X

as n — oo, uniformly for 1 < j <[ < kf. Now (45) follows on noting that
supy>p, [lwl| < oc.
Next we claim that

k k
(46) Cov (Z wj logg(j),l,Zwl 10g§(1),2> =o(n™1)
j=1 =1

as n — oo. In view of (20) in the main text and the fact that supy, [lw]| <
00, it is sufficient to show that

Cov (log(f(X1)€(;),1), log(f(X2)Ew)2)) = o(n™")

as n — 0o, whenever w;, w; # 0. We suppose without loss of generality here
that j < [, since the j = [ case is dealt with in (27). We broadly follow

the same approach used to bound Wy, ..., Wy, though we require some new
(similar) notation. Let [}, , =~ denote the conditional distribution function

of ({U 1,81 9) given X7 = z, Xy = y and let F}f% denote the conditional
dls‘mbutlon function of ()1 given X1 = z. Let

v() ld
3 ue G) .— ()
Tn,u . {Vd(n _ 1) } ’ pn,x,u . hx(rn,u)'

Recall the definitions of afl[ ; given in the proof of Lemma 3, and let v, j :=
inf{u>0:(n— 1)p££3,u = a:{’j} and I j ;= inf{u>0:(n— 1)p£f;337u =a,;}
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EFFICIENT ENTROPY ESTIMATION 29

For pairs (u,v) with u < v, ; and v < vy, let (My, My, M3) ~ Multi(n —

j l .
2 pglj.)x ’u,7p£l)y (O8] 1 - ngj,‘)r,u - p'g,’)yﬂ)) and erte

G/ ( ) = P(Ml > j, M2 > l)

n,x,y
s 1 G/
CA\G/HEL )
where o, := Vg (Bo(1) N B.(exp(¥(1) — ¥(4))¥/?)). Writing W/ for re-

mainder terms to be bounded later, we have

Cov (log(f(X1)€(;),1): log(f(X2)E()2))
_ / f@) W) / B, 0) d(F,, ,— FOFO ) (u,0) dz dy + W]
XxX [t

y, 10y, X [l 5 vvx,.y]

Also write

2
1
— f(x)f(y)/ h(u,v) d(F,, . , =G}, . ) (w,v)dedy — =+ W]
XXX [lylvvyl X[lzj,’l)zj] v v n ;
Vg G/ 3
= fy/ / J TLCE,y TLI,y)( )dudvdxdy_l_f_ZWI/
ané\? lo,j uv n —
—1 \II(] 1 4
Dy 0] i /
n—l )Gil) 1/2/]1@/ / {Psy(s,t) — P(s)P(t)} dsdtdz n+;W’
(47)
Vdileql(j) 4 /
S et o) e w

=1

as n — oo. The final equality here follows from the fact that, for Borel
measurable sets K, L C R¢,

(48) /R na((K +2) N L) dz = pa(K)pa(L),
so that [pqal dz = Ve ¥ O—-¥0),

To bound W{: Very similar arguments to those used to bound W; show
that W/ = o(n=(9/2-9) as n — oo, for every € > 0.

imsart-aos ver. 2014/10/16 file: WKLAoSFinalSupp.tex date: January 28, 2018



30 T. B. BERRETT, R. J. SAMWORTH AND M. YUAN

To bound W4: Similar to our work used to bound W, we may show that

at . at
n n,l

n—1 n—1
/a; /; |B]+al+bn —j—l— 1(5 t) BjJra,nfj(s)Bl-i-b,n—l(t”dtds

(j1)1/2
n

<

{1+0(1)}
as n — oo, for fixed a,b > —1. Also,
n — 1 n
// log >log<u>{B],l,n j—i—1(8,t)=Bjn—;(5)Byn—i(t) }dtds
1
=~ 1+0(n?
o)

as n — o0o. Using these facts and very similar arguments to those used to
bound Wy we have for every € > 0 that

1/2 B/d 1.3%55—¢
W2’_0<kn max{’“ ket })

nﬁ/d, no+d €

To bound Wj: Similarly to (18) and the surrounding work, we can show
that for every e > 0,

1 3t fara
Wy = O max ogn ) , .
nkl2’ 1420 2

n a-+d

To bound Wy: Let (N1, N2, N3, Ny) ~ Multi(n — 2;p§3;36,u - pm,pg,)yw
' l
pm,pm,l—pﬁﬁﬂr—pégm+4ko,vﬂwrepm:==jgmwgzyu%wg%)f(w)duhFhﬂﬂwr
let
FoD .~ P(Ny + N3 > j, Noy+ Ny > 1).

n,r,y *

Then, as in (28), we have

Uyl G/
/ f@) f(y / /y nz’y nmy)( )dudvdacdy
XXX yl uv
, (1) '
wi (ol (Bppy — G o) (u,v
:/ f(a:)f(y)/ / 2y = One) ) b ey
XXX lej Jlya uv
1,28 1, o
logn k2ta k2tasrae
+O(maX{nk1/2a nl_i_% ) n1+ai+d_5 })
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We can now approximate FT;(QCI)Z/(U, v) by @5y (12 {uf (x)—1}, 1V {v f(x)—1})
and G, ,(u,v) by OV {uf(x) — 1})®(I*{vf(x) — 1}). This is rather
similar to the corresponding approximation in the bounds on Wy, so we

only present the main differences. First, let

Lixien, )

We also define

and

j) ) G 0
I n_ [ Prizu(l = Priw) Pn— Przubnyw
V7= Cov(Yy) = ( G, o0 0 g ]

pﬁ - p"»%upnyyﬂ) pnvyvv ny,v

and set Z! := V'=1/2(Y/ — y1). Our aim is to provide a bound on pn. Since
the function
(r,8) = pa(Bo(r'/?) N B.(s"%),

is Lipschitz we have for x € X,,y = = + f(x)_l/drﬁf;)lz € Bm(rff;?,z’j +

l
r%,)vy,l),u € [lej, Vo] and v € [l 1, vy,] that

n—2 ,

(49) i PN T

k Bld logl/2 n
@)
using similar equations to (23), (24) and (31). From this and similar bounds

to (32), we find that |V’| > k?/n? and ||(V')~'/2|| < (n/k)'/2. We therefore
have

< alf(@) A <f<y>>(

E|Z3|° < I(V) T 2IPENYE — W/)* S 02 /K2,

which is as in the [ = j case except with the factor of ||z||~'/? missing. Note
now that

limsup sup sup ()72 < oo
n—00  (j);j<l z€By(1+e(¥(D)—T())/d)
wj,wy

Hence, using (49), similar bounds to (32) and the same arguments as leading
up to (39),

(50)  sup [@4(C) — @p(CO)| S alf(z) A f(y))

< k )’B/d logl/gn
CceC

nf(z) Ki/z
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32 T. B. BERRETT, R. J. SAMWORTH AND M. YUAN

where B := Y/ and

—1,.(4) ) —1/27—1/2 RGN )
A= (n _ 2) < J "Pnz, U(l Pnzx u) J l (pﬂ pn,x,upn,y,v)) .

D e o s A S o A G O

— Pn,zuPny,v
Now let u := f(z)~'(1 + j~'/2s) and v := f(x)~*(1 4+ [~'/?t). Similarly
o (40), we have

(n—2)pFhu — 7 (n—2)pih, —1
@Z/( j1/2 y l1/2 )—(192/(8 t)

B/d
S0l A O (g ) A

Similarly to the arguments leading up to (41), it follows that

Vz,j [Vy,l F (I)E/(S t)
‘ Anx / / uv Loyl <r@) 40,y T dv dy dz

k log n kg ara € kfl/zw/dlogn El/2+28/d
= 0| — max , ’ ’ 7
( { k327 patae nb/d n28/d }>

where the power on the first logarithmic factor is smaller because of the
absence of the factor of the ||z||~! term in (50). The remainder of the work
required to bound W} is very similar to the work done from (42) to (43),
using also (48), so is omitted. We conclude that

- O(ma {1og3n krtera gatd p0+8)a% k%+§1ogn}>
4= X '

1 a—e 28 o — 9 B
nk2  pltera plta n'taa n'ta

The equation (47), together the bounds on W7, ..., W} just proved, establish
the claim (46). We finally conclude from (45) and (46) that

k
iy 1
Var(H)) = EVar <Z w; log 5(]-)71)

J=1

k k
1
+ (1 — n> Cov <Zl w;jlog {15 ; w; log g(l)72>
J= =
=V(f)+o(n™"),

as required.
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A. Proof of Theorem 8.

PROOF OF THEOREM 8. For the first part of the theorem we aim to apply
Theorem 25.21 of van der Vaart (1998), and follow the notation used there.
With P := {A(log f + H(f)) : A € R} we will first show that the entropy
functional H is differentiable at f relative to the tangent set P, with efficient
influence function ¢ ¢ = —log f — H(f). Following Example 25.16 in van der
Vaart (1998), for g € P, the paths f; , defined in (10) of the main text are
differentiable in quadratic mean at t = 0 with score function g. Note that
[y9f=0and [, ¢*°f <ocoforallge P. It is convenient to define, for t > 0,
the set A; := {z € X : 8t|g(w)| < 1}, on which we may expand e~2¥ easily
as a Taylor series. By Holder’s inequality, for € € (0,1/2),

/ fllog f| < (86)21-9 / F9l20=9)log f]
Ag X

<@0{ [ e} ([ o} ot

as t \, 0. Moreover,
flog(1+ e 2) < / (log 2 + 2t|g|) f < 16t*(4log2 + 1)/ g*f.
Ag Ag X
We also have that

07 = '/ <1+e-2t9_ _th

29 1+ 2tg +tg(e 29 — 1)
1+e 2

]f+/ 1+ tlgl) f

Af

(51) 3t2/ g2f+72t2/ ng§72t2/ g f.
Ay A¢ X

t

It follows that

]tl{H(@) ~HD + [ Qg s+ HD)g

_ H /){{(1 - ﬁ(fgtg)logf - 142rce(2t9 log(lic(fltg)—i—tg(l +log f)}f‘

1

<1 [ gt~ 129 19 - prog s

2 _
m) + tg(]. +e 2tg)‘ + 0(1)

1
S6t/g2flogf\+22t/g2f+o(1)—>0.
3 Jx X

—2log(
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34 T. B. BERRETT, R. J. SAMWORTH AND M. YUAN

The conclusion (11) in the main text therefore follows from van der Vaart
(1998, Theorem 25.21).

We now establish the second part of the theorem. First, by our previous
bound on ¢(t) in (51), for 12t < { [, g?f}~*/? we have that

2[| flloo
722 [, g?

Ifeglloc < 2e@)l| flloc < 7— = Al flloo,

and :ua(ft,g) < 4/'La(f)'

We now study the smoothness properties of f; ,. This requires some in-
volved calculations, because we first need to understand corresponding prop-
erties of g. To this end, for an m times differentiable function ¢ : R* — R,
define

(m) _ ,(m)
M () = max{ max |¢®(2)|, sup lg"™ (y) %_m(x)H }
Ehem veBs(ra(e) 1y =2l

and

SUD,. £()>5 Mo (2
D, := max{l, sup Pa:f( )27:“ g( )}
se Iy @(0)

Let J,, denote the set of multisets of elements {1,...,d} of cardinality
at most m, and for J = {j1,...,Js} € Tm, define g;(z) := ﬁ(z).

=1 Je
Moreover, for i € {1,...,s}, let P;(J) denote the set of partitions of J into
i non-empty multisets. As an illustration, if d = 2, then

j3: {@, {1}7 {2}a {17 1}? {L 2}7 {27 1}a {27 2}7
{1,1,1},{1,1,2} {1,2,1} {1,2,2},{2,1,1},{2,1,2},{2,2,1},{2, 2, 2}}

Moreover, if J = {1,1,2} € J3, then

Pa(d) = {{{1. 1}, {2}, {125 (1) {2k 1) -

Then, by induction, and writing ¢* := g; = log f + H(f), it may be shown

that
card(J)

TSP i G L A

i=1 ! {P1,.... P }ePi(J)
Now, the cardinality of P;(J) is given by a Stirling’s number of the second
kind:
1< it (T peard(J :
card (Pi(J) = ;_%(_1) @ (eard) = §(card(J),4),
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say. Thus, if card(J) < m, then

card(J)

(52) lg5(@)| < Y (i =) (card(J),d)a(f(z))' <

i=1

m™ mla(f(x))™.

N |

Moreover, if ||y — z|| < rq(z) and m > 1, then

card(J)
G0 - Y - Y el Inl)
=1 (PL,..P,}eP;(J) Y
|fP1sz(x)| fl(y) o
T | fw) 1‘}
Now, by Lemma 2,
') o lfw ) N Ty )
F(x) 1'§ ) 1‘<1+f(w) 1) <(%) |7 1"

Moreover, by induction and Lemma 2 again,
71N -
I W) = fp .. fp (@) <84V (=) — ifi — x|
frv e ) = fr - fe@)] < 802 (52) =1 }a(F @) f @) ly—a]
We deduce that (even when m = 0),
* * 1/2 71\m ] m+2 m+1 B—m
(53) lg3(y) — g3(@)] < 8d"*( 57 ) mblm + 1) 2a( f (@)™ ly — 2] F.
Comparing (52) and (53), we see that
T1\m
L < 82 (L= ! mi+2 _.
(54) Dy < 8d (41) mi(m + 1) D
Now let g(y) := (1 + e 2%)~1 so that f;4(z) = 2¢(t)q(g(x)) f(z). Similar

inductive arguments to those used above yield that when J € J,,, withm > 1
and ¢ is m times differentiable,

card(J)
(qog)s(x)= > dD(g) Y. gp...gp ),
i=1 {P1,...,P;}eP;(J)

and we now bound the derivatives of ¢q. By induction,
i (4) —2tly
() (0 i it Y€
q (y) - (Qt) Z( 1) (1 4 e_gty)g_'_l’

/=1
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where for each i € N, we have a(li) =1, a!” =il and aéi) = E(ay—l) + aéi:ll))

7

for ¢ € {2,...,i—1}. Since maxj<y<; ag) < (2i)*~! (again by induction), we
deduce that
(55) (L+eW)]gV(y)] < 221t

Writing s := card(J), it follows that

S

(g09)5(@)] < a(9(@) 3 2276 (s, i)a(f(2)) "I D]

i=1

(56) < q(g(x))s*12% max(1,1)*Bea(f (x))* "V D;,
where By := >_7 ;| S(s,i) denotes the sth Bell number. We can now apply
the multivariate Leibniz rule, so that for a multi-index w = (wy, . . .,wq) with
lw] <m, and for t <1 and m > 1,

& frg (z) w\ (9" (x)) 87" f (x)

: = |2¢(t

‘ Oxv . )U;w v Oxv Oxw—v

(57) < 27t B Dita(f (@) frg ().

Now, in order to control ‘awg;’: @ _ awgg’j @) |, we first note that by (53)

and (54), we have for ||y — x| < rq(z), i € N, J € Ty, with card(J) = s and
{Pl, ce ,B} € PZ(J),
(58)  lgby---95,u) = gb, - gb,(2)] < 2D)'a(f(x)" "V ly — a]|*~™.

Thus, by (55), (58), the mean value theorem and Lemma 2, for ¢t < 1,
|y — z|| < 74(z) and m > 1,

(g0 g")s(y) — (gog") ()|

S @) Y b gh) —gh . .ah <x>}\
=1

{P1,....Pi}ePi(J)

<

_l’_

S W) - @) Y ghoh <y>]
=1 {Pl,...,Pi}EPi(J)
< D™g(g*(x))a(f ()™ |y — z]|Fm
Bm23m+5d1/2(m + 1)m+1(1 + 62tg*(w))
X
e2tg*(z) 1 g—2tlg* (y)—g* (2]

(59)
< D™q(g" (@))a(f (@)™ ™|y — 2] P~ B 2P0 (m + 1)+ (%)%-
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Here, to obtain the final inequality, we used the fact that % < % fora,b >0
and b < 1, and the fact that

29" (4)=" @) _ max{ (%)Qt’ <§E§§>”} < {1+a(f @) ly—=P ) S 1

for ||y — || < rq(z). Using the multivariate Leibnitz rule again, together
with (56), (59) and Lemma 2, for ¢t <1, |ly — z|| < rq(x) and |w| =m > 1,

*frgr(y)  0frg (@)
oxw ozv

<2 & ()] -
" q(g*(x))[|0"fly) 9" f(x) }
ox? ox? oxv
< 2GR B (m 4+ 1) a( f ()T fy g () |y — 2P
(60) = Cp D™ a(f(x))™ " fyge (2) |y — 2P

”a(g*(y) 3”Q(g*(m))’

_l’_

This also holds in the case m = 0. Now note that if 12¢ < {fX(g*)2f}_1/2

we have X
B 1 +€—2t9 (z) S ft7g* (l’)

f(z) = T(t)ft’g* (z) = 1
Finally, define the function
(61) a(s) := d™2C!, D™a(5/4)" T

Then a € A and from (57) and (60), we have My, . as(z) < a(fig+(z)). We
conclude that for ¢t < min(l, {144fg2f}_1/2), we have that f; o« € Fypr,
where 0’ = (o, 8,47,4v,a) € O. The result follows on noting that f; 4, =

ftk,g*- O
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