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A Introduction

In the main text we demonstrated some problems for Bayesian inference under misspecification and
showed that SafeBayes effectively solves them. This leaves open the questions whether there also exist
problems for Bayes with misspecification that cannot be handled by generalized or SafeBayes (short
answer: yes), and under what conditions generalized/SafeBayes can be useful at all (short answer:
sometimes even if model is well-specified) and when one needs to resort to a Gibbs likelihood. In the
first section below, we answer all these questions and more by providing an overview of all the potential
problems with both standard and generalized/SafeBayes under both well- and misspecified models
from a frequentist perspective. This list also provides an introduction to the additional sections in this
Supplementary Material, in which the issues are sorted out in much more detail. The Supplementary
Material continues with Section C which gives additional details on SafeBayes omitted in the main text;
Section D which explains in more detail how hypercompression arises, and how even with well-specified
models a weak form, spurious compression, can arise — this also motivates the differences between
I- and R-log-SafeBayes. This is followed by a section that puts SafeBayes in a general context: what
should be the goal of Bayesian modelling, if one acknowledges misspecification; and can one design a
sort of 'Bayesian misspecification theory’? Section F discusses work related to SafeBayes and existing
(in)consistency results. Finally, Section G provides more evidence that the phenomenon observed in
our experiments keeps occurring for large samples, so that we have ‘real’ rather than just ‘practical’
inconsistency. Along the way, we encounter numerous Open Problems which in each case we highlight
in italics.

B What can go wrong with standard Bayes under well- and
misspecification, and what one can do about it

In the list below, W means that the issue can sometimes be a problem for Bayes even if the model
is Well specified; M means that it can only be a problem under Misspecification. For simplicity,
we will assume throughout the following that data are i.i.d. according to some distribution P*, the
non-i.i.d. case being potentially trickier since we cannot always use Barron’s result (16). When we
write ‘generalized Bayes’ we mean raising a standard likelihood to a power n # 1, as in (8). When
we write ‘Gibbs-Bayes’ we mean the more radical step of using an exponentiated summed loss as a
cumulative pseudo-likelihood, as in (7).

1. insufficient prior mass (W /M) generalized Bayes won’t help. In all consistency theorems for
both well- and misspecified nonparametric Bayesian methods we know of, one assumes that, for
every € > 0, the prior mass of an e-KL-neighbourhoods of either the true (W) or the KL-optimal
distribution (M) P is sufficiently large, the rate at which it decreases as ¢ | 0 influencing
the achievable rate of convergence. If this so-called Kullback-Leibler property (Walker, 2004)
does not hold, then the Bayesian posterior may not concentrate on (KL or any other type of)
neighbourhoods of P. This problem underlies the well-known inconsistency results of Diaconis
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and Freedman (1986); it is a problem both for standard and 7-generalized Bayes, and can only be
solved by using a prior satisfying the KL property — which is usually no problem, many common
priors satisfying the property. Since priors with full support in parametric models automatically
satisfy the KL property, the problem only plays a role with very large parametric models (overly
large sample size needed) and nonparametric models (posterior may never converge). In terms
of Barron’s result (16), with insufficient prior mass, the term SMALL,, may actually be very large
(linear in n).

2. spurious compression (W /M) generalized Bayes can help, even if model well-specified. The
standard (well-specified) Bayesian consistency and convergence rate results for nonparametric
models (by, e.g. (Barron et al., 1999, Ghosal et al., 2000, Walker, 2004, Zhang, 2006a); see also
the many follow-up papers of Ghosal et al. (2000)) all require, next to the simple KL property,
one or more much more complicated conditions. However, results for the well-specified case by
Zhang (2006a), Griinwald and Mehta (2016) that allow n-generalized Bayes with n < 1 (taking
n = 1 — ¢ for arbitrarily small § > 0 is good enough) only need the KL property. Indeed,
Barron’s result (16) implies that the complicated additional conditions invariably serve to rule
out the possibility of spurious compression, a weak form of hypercompression that can occur even
for well-specified models. We define it in Section D. In a nutshell, under spurious compression
with well-specified models containing P*, the Bayes predictive distribution converges to P* and
is therefore o.k., but the posterior does not concentrate around P*, leading to, for example,
meaningless credible sets and various other problems; see Appendix F.2 for more discussion.
We thus conclude that even if the model is well-specified, generalized Bayes can help to achieve
consistency and good convergence rates.

3. hypercompression (M) generalized Bayes helps. If the model is misspecified and nonconvex,
then there is a potential for ‘bad’ misspecification (Section 3.1). As the examples in this paper
show, in that case standard Bayes may not converge at all and a learning rate n < 1 may
have to be chosen to get posterior concentration. Interestingly, Barron’s result (16) implies that,
both in the well- and the misspecified case, insufficient prior mass (lack of the KL property)
and spurious/hypercompression are the only two problems that can lead to inconsistency in the
sense that the posterior does not concentrate around the KL optimal model, both if the model
is well- and if it is misspecified. Thus, assuming that SafeBayes can find the right n (see below),
we only need the simple ‘sufficient prior mass’ condition for consistency. In particular, as long as
(KL-) consistency and convergence rates are our sole interest, no other modifications to Bayes
will ever be needed.

4. single inference task of interest is not KL-associated (M) Generalized Gibbs-Bayes helps.
Suppose one is interested in learning to predict Y as a linear function of X under a loss function
different from squared error loss; e.g., one may be interested in absolute loss

p
ERXY) =Y =) X, (B.1)
j=0

instead; one does not want to make strong assumptions about the noise though (here and below
we consider fixed p for simplicity). One might be inclined to use generalized Bayes with the
standard linear model, but this is not the right thing to do if one is interested in absolute loss,
since the latter is not KL-associated with the standard linear model: generalized Bayes with the
right 7 finds the KL-optimal BSQ within the linear model which must also be the squared error
optimal predictor, but might not coincide with the optimal absolute loss predictor. To see this
consider the simple case with Y independent of the X;; then the squared error optimal predictor
is the mean of Y under P* and the absolute-loss optimal predictor is the median, and they may
be quite different (Jiang and Tanner (2008) provide a beautiful example of non-KL-associated
classification loss in a classification context; Hahn et al. (2013) describe a practical case where
the task is conditional distribution estimation while the models contain joint distributions). In



P. Griinwald and T. van Ommen 3

cases like this, one can resort to using Generalized Bayes with a pseudo- (‘Gibbs’) likelihood
as in (7), plugging in S in the role of 6 and ¢y = E%bs. With the right value of  — which can

be found by SafeBayes — one can then learn the best predictor Bass that minimizes, over all 3
considered, the expected absolute loss

p
RISK*™(8) = Ezep- |[Y = ) B;X;|| - (B.2)
=0

We stress though that this approach is not as different from a purely likelihood-based approach
as one might think: just as an 1-Gibbs posterior for the squared error loss is formally equivalent
to an n-generalized posterior with a standard likelihood based on the linear model with fixed
variance 1, a Gibbs posterior for absolute loss is formally equivalent to a generalized posterior
with a standard likelihood based on a Laplace density (see, for example, Sriram et al. (2013));
one gets the same posterior on parameters but interprets it in a very different way. In the
standard likelihood interpretation, squared error and absolute error predictions, respectively,
are by construction KL-associated. We explain all this further in Section E.2 underneath (E.2).

5. multiple inference tasks of interest, not all KL-associated (M) Generalized Bayes (both Gibbs
and non-Gibbs) may help, but much more research needed Using generalized Bayes with a Gibbs-
posterior, a suitable prior and the right value of 7, we can guarantee convergence to a predictor
that is optimal for a loss function ¢y of interest. By adding an extra parameter v as described
underneath (E.2), we can additionally converge to a predictor that is reliable in the sense of
(6). Sometimes we can even learn more properties; if, for example, we are willing to assume
that M contains the correct regression function, we know that with ¢y the squared error loss
and the right n will concentrate on it even if the error distribution is misspecified; similarly, for
M containing a function giving the correct median of Y conditional on X and ¢y the absolute
loss. We can view all these prediction tasks as being KL-associated with the probability model
implicitly used when adopting a Gibbs posterior. So, we can construct likelihoods/models so
that several related inference tasks are at the same time KL-associated and we can learn to
perform them optimally using SafeBayes. On the other hand, there seem to be severe limits to
what we can do if we have several not-so-related inference tasks of interest. For example, it is not
clear how to set up a Gibbs likelihood that guarantees that generalized Bayes concentrates on
both the 3PS that is the best absolute loss predictor and the 3¢ that is the best squared error
predictor, simply because they may not be the same. In Section E we discuss several possibilities
for what might be done in such a case, but this is really future work, for which new theory needs
to be developed (Open Problem 1). A related open problem (Open Problem 1c), also further
discussed underneath (E.2), occurs if one does start out with a standard probability model, and
is interested not just in finding the KL-optimal 6, but also in credible sets around it; can one,
in general, give meaning to such intervals?

6. when the inference goal is “general modelling” Generalized Bayes helps — a little The above
points are all purely technical: they tell us whether (generalized or Safe-) Bayes is able to reach
a particular precise goal that we might have. But often our goal is pre-predictive and vaguer
than that — we simply want to ‘understand’ the data, to ‘model’ a phenomenon. In this case,
the use of SafeBayes is mostly diagnostic: if it tells us to use an 7 substantially different from 1,
this means that the model cannot be right as it is, and may have to be modified. We return to
this issue in Section E.1.

Summarizing, issues 2-4 can be overcome by generalized Bayes with the right 7, which depends on the
unknown ground truth and thus cannot be directly applied. Assuming that SafeBayes always leads to
adoption of such an 7, these issues can be successfully addressed by SafeBayes. Note, though, that this
‘correctness’ of SafeBayes was — up till now — only proved under somewhat restrictive conditions;
hence this latter step requires a leap of faith (establishing this correctness of SafeBayes is a major
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goal for future work — Open Problem 2); see Section C.3 for discussion. Also, other ways to set the
learning rate may of course be considered and compared (Open Problem 3) as well — see Section F.1
for a list of existing methods.

C Additional Details about Safe Bayes

Here we provide explicit formulas (all derivable using straightforward algebra) on the implementation
of SafeBayes for the linear model (Section C.1), which gives some illuminating insights as to its relation
to cross-validation with the squared error loss. We provide some further background on our choice of
priors for the experiments, and finally we recall existing theoretical results on consistency and optimal
convergence rates of SafeBayes.

C.1 Instantiating SafeBayes to the linear model

Consider first a fixed p and ¢2, i.e. a prior that puts mass 1 on this particular p and ¢2. Then the
I-log-loss is seen to become the sum, from ¢ =0 to n — 1, of

%(yzﬂrl - $i+15i,n)2a (C-l)
where f3; ,, is as in (13). Note that 3; , depends on 7 but not on o. Since the first term of (C.1) does not
depend on the data, this version of SafeBayes thus amounts to picking the 7 minimizing just the sum
of square-loss prediction errors, which does not depend on the chosen o?. It thus becomes a standard
version of ‘prequential model selection’ as based on the square-loss, which in turn is similar to (though
having different asymptotics than) leave-one-out cross validation based on the square-loss. Indeed, this
version of SafeBayes can be interpreted in two ways: first, as we did in the main text, in terms of
SafeBayes with £y in (24) set to the log-loss, i.e. as a tool for dealing with misspecification; and second,
with £y in (24) set proportionally to the square-loss, as a Gibbs posterior, i.e. a generic tool to learn
good square-loss predictors (not distributions) in a pseudo-Bayesian way. We will not experiment with
this simplest version of SafeBayes here (we do provide a number of experiments in [GvO], summarized
in Section 6) but merely include it to provide more intuition about I-log-SafeBayes.

1
Egonijzi py [—108 f(Yi1 | i1, B,0%)] = 3 log(2ma?) +

Instead, the experiments in this paper focus on the more complex case in which o2 is equipped with
the standard inverse gamma prior with support R*. Then the n-posterior on ¢? is an inverse gamma
distribution with parameters a,,, and b, , as given at the end of Section 2.5. Then the R-log-loss is
given by

E02,5~H|zi,p,n [_ IOg f(yi+1 ‘ Li+1, 57 02)]

1 1 1 (yis1 — ip1Big)? 1 T
= g Lo V) S a2 Bt
1 _ 1 (yis1 —xis1Big)? 1 )
=5 log 27‘(‘0’1‘2’” + 3 6277 UL §$i+1zimx—ir+l +r(,n), (C.2)

where 9 is the digamma function, 627] is the n-posterior expectation of o2 as given by (14) and (i, )
is a remainder function which is O(1/i) whenever Y (y; — %;f,,,)? increases linearly in n. This
final approximation follows by (14) and because we have ¥ (z) € [log(z — 1),logz]. R-log-SafeBayes
minimizes the sum of (C.2).

The corresponding in-model version of SafeBayes, I-log-SafeBayes minimizes the sum of

= 1 _ 1 (yi+1 — Tip1Bin)*
_Ing(yiJrl‘$i+175i,n701‘2,n)2510g277(7i2,n+§( as 6.2+ 1) . (C.3)
in

Comparing the two versions of SafeBayes, we see that R-log-SafeBayes has an additional term which
decreases in 1), increases in model dimensionality p (via the size of the matrix ¥;,), but becomes
negligible for n > p.
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C.2 The Within Model-Priors

The priors we used in our experiments are standard conjugate priors with specific values for hyperpri-
ors, as described in the beginning of Section 5. We used an informative prior for 3. This prior equals
the posterior we would get by starting with an improper Jeffreys’ prior on 8 and then observing, for
each coefficient 3}, one extra point z = (x,0) with z; = 1 and ; = 0 for ¢ # j. As a variation, in [GvO]
we also ran experiments with a ‘slightly informative’ ¥y, where we set ¥y = 1000-I,,, comparable to
observing points z = (z,0) with z; = 1/1/1000. As another variation, following the standard reference
Raftery et al. (1997), we also used a prior with a level of informativeness depending on the submodel,
described in more detail in [GvO]. We report on these variations in the ‘Executive Summary’ in the
main text.

As to the prior on o2: Jeffreys’ prior is obtained for the choice ag = by = 0 in (12). We do not
use this improper prior, because of the well-known issues with Bayes factors under improper priors
(O’Hagan, 1995). Moreover, to calculate the posterior’s reliability (defined in Section 5.1 and shown
in Figure 5) and also for the I-log-loss, we need to calculate the posterior expectation of the variance
02 quantity as given by (14), which is only well-defined and finite for a,, > 1. We want to make m(c?)
as uninformative as possible while ensuring that (for any positive learning rate) this variance exists
for the posterior based on at least one sample. This is accomplished by choosing ag = 1: for standard
Bayes, the posterior after one observation has a; = ag + 1/2; for generalized Bayes, a1 = ag + /2.
To set by, we use that by/ap represents the sample variance of a virtual initial data sequence (Gelman
et al., 2013, Section 14.8). We choose by = 1/40 so that bg/ag = 1/40, the true variance of the noise
in our data.

C.3 SafeBayes learns to predict as well as the optimal distribution

We first define the Cesaro-averaged posterior given data Z™ by setting, for any subset ©' C O,
1< :
ceps(©' | 2™, m) == = e |z C.4
CEb( | ) "7) " Z_Zl ( | ) 77) ( )

to be the posterior probability of ©" averaged over the n posterior distributions obtained so far. Pre-
dicting based on Cesaro-averaged posteriors was introduced independently by several authors (Barron,
1987, Helmbold and Warmuth, 1992, Yang, 2000, Catoni, 1997) and has received a lot of attention
in the machine learning literature in recent years, also under the name “on-line to batch conversion
of Bayes” or progressive mizture rule (Audibert, 2007) or mirror averaging (Juditsky et al., 2008,
Dalalyan and Tsybakov, 2012), but is of course unnatural from a Bayesian perspective.

The main result of Griinwald (2012) essentially states the following: suppose that, under P*, the
density ratios are uniformly bounded, i.e. there is a finite v such that for all 8,0 € ©, P*(fo(Y |
X)/for(Y | X) < wv) = 1. Suppose further that the prior II satisfies the KL-property (Section B).
Then Icys applied with the 7 learned by the SafeBayesian algorithm concentrates on the optimal FPj.
That is, let ©5 be the subset of all § € © with D(P*||Py) > D(P*||P;) + 6. Then for all § > 0, with
P*-probability 1, as n — oo, we have that [Ics(O5 | Z™, 1) goes to 0. Grilnwald goes on to show
that in several settings, one can design priors such that the rate at which the posterior concentrates
is minimax optimal, i.e. no algorithm can do better in general. On the negative side, the requirement
of bounded density ratio is strong, and the replacement of the standard posterior by the Cesaro one is
awkward. On the positive side, the theorem has no further conditions and can be applied to parametric
and nonparametric cases alike.

In recent work, Griilnwald and Mehta (2016) give bounds for the convergence rates of n-generalized
posteriors that also hold for unbounded density ratios, under some further, very weak conditions (in
the regression setting considered here, it is sufficient to assume that the third moment of P* exists).
These results strongly suggest that the SafeBayes method for picking 7 also still works for unbounded
density ratios. We also suspect that the need to use the Cesaro-averaged 7n-generalized posterior in the
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results of Griinwald (2012) is an artefact of the proof technique. Establishing these results formally is
a major open problem (Open Problem 2). To see whether there is any practical difference, in the ridge
regression experiment in the main text (Section 5.4) we included experimental results both for the
Cesaro-averaged n-generalized posterior Iogs(- | Z™,7) and for the standard n-generalized posterior
II(- | Z™, 7). Briefly, the curves look as follows: Cesaroified standard Bayes performs significantly
better than standard Bayes in all three quality measures in the wrong-model experiments, but is still
not competitive with the two SafeBayes versions. When Cesaroified, the SafeBayes methods become
a bit smoother but not necessarily better. We also considered the performance of these three Cesaro-
averaged posteriors in the main experiment of Section 5.2, but for lack of space in the graphs, we did
not show the corresponding curves. The behaviour we observed was qualitatively identical as in the
ridge case: Cesaro makes bad methods significantly better but still not competitive, and good methods
smoother, sometimes a bit worse and sometimes a bit better.

Finally, we note one major disadvantage of SafeBayes: even if the data do not have a natural
ordering, the 7) selected by SafeBayes will, in general, be order-dependent. Griinwald (2011) suggested
a very different (and in fact, the first) method to learn 7}, that does not have this problem. However, it
is only applicable to countable models, and has no obvious computationally efficient implementation,
so we do not know whether it has a future. One might also try to simply use leave-one-out cross-
validation with either the R-log or the I-log loss functions; this gave very similar performance to
SafeBayes in additional experiments reported in [GvO]; however, the currently used theory is not at
all suitable to deal with (i.e. prove results about) cross-validation like procedures. Finding a general,
order-independent version of SafeBayes is thus a main avenue for future work (Open Problem 4).

D Hypercompression and SafeBayes explained in more detail

In this section we explain in more detail how anomalous behaviour of the Bayesian posterior arises;
for simplicity, we focus on generalized Bayes with a standard (non-Gibbs) likelihood. First we recall
Figure 3 in Section 3.1, the essential picture to understand the phenomenon. If the KL property
(Section B) holds, then inconsistency can only arise under a ‘bad’ form of misspecification, depicted by
the figure, which allows for hypercompression, the phenomenon that the Bayes predictive distribution
P(-| Z%) performs, at many i, as well in terms of logarithmic score as or even better than the ‘best’ P,
even though it is a mixture of distributions most of which have much larger KL divergence from P*
than P. This can happen because the Bayes predictive distribution — a mixture of elements of M —
may be substantially different from any of the elements of M. Somewhat paradoxically, Bayes’ overly
good log-loss behaviour (hypercompression) is exactly what causes it to perform badly for the KL-
associated inference tasks (squared error prediction and reliability, in our case). If one is interested in
log-loss prediction, standard Bayes is just fine; the SafeBayesian algorithm should be used if one wants
to optimize behaviour against the associated tasks. In contrast to the main text, in which we only
spoke of ‘hypercompression’, we will now make a more fine-grained distinction: from now on we reserve
the term spurious compression for the phenomenon that the Bayes predictive distribution converges
to P (in the sense that its predictions become indistinguishable from that of P for all KL-associated
prediction tasks), even though it is a mixture of distributions that are much worse than P in terms of
KL divergence to P*; and hypercompression for the case that the Bayes predictive distribution even
performs noticeably better than P. Spurious compression can even occur if the model is well-specified
and can be avoided by choosing 7 close to, but smaller than 1, as advocated (for different reasons) by
e.g. Walker and Hjort (2002), Martin et al. (2017) — see Section F.

D.1 Hypercompression

Barron (1998) showed that sequential Bayesian prediction under a logarithmic score function shows
excellent behaviour in a cumulative risk sense; for a related result see (Barron et al., 1999, Lemma
4). Although Barron (1998) focuses on the well-specified case, this assumption is not required for the
proof and the result still holds even if the model M is completely wrong. For a precise description
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and proof of this result emphasizing that it holds under misspecification, see (Griinwald, 2007, Section
15.2). We now repeat the reasoning of Section 3.1 in the main text in more detail, focusing on Barron’s
result (15)—(16). Here, as in the remainder of this subsection, we look at the standard Bayes predictive
density, i.e. 7 = 1. SMALL,, in (16) is the so-called relative expected stochastic complexity or redundancy
(Griinwald, 2007), also known as information complexity (Zhang, 2006a, Griinwald and Mehta, 2016),
which depends on the prior and for ‘reasonable’ priors is typically small — the more prior mass in
neighbourhoods of P, i.e. the stronger the KL-property that holds, the smaller. The result thus means
that, when sequentially predicting using the standard predictive distribution under a log-scoring rule,
one does not lose much compared to when predicting with the log-risk optimal 6.

When M is a union of a finite or countably infinite number of parametric exponential families and
p < oo is well-defined, then, under some further regularity conditions, which hold in our regression
example (Griinwald, 2007), the redundancy is, up to O(1), equal to the BIC term (15/2) log n, where k is
the dimensionality of the smallest model containing 6. In the regression case, M has p+2 parameters
(Bos - -+, Bp, %), so in the two experiments of Section 5, k = 6. Thus, in our regression example, when
sequentially predicting with the standard Bayes predictive f(- | Z~1), the cumulative log-risk is at
most n - RISKIOg(é) which is linear in n, plus a logarithmic term that becomes comparatively negligible
as n increases. This is confirmed by Figure 7 in Section 5.3. Now, for each individual § = (p, 3,0?)
we know from Section 2.3 that, if its log-risk is close to that of 6, then its square-risk must also be
close to that of 6; and 6 itself has the smallest square-risk among all 8 € ©. Hence, one would expect
the reasoning for log-risk to transfer to square-risk: it seems that when sequentially predicting with
the standard Bayes predictive f(- | Z'~1), the cumulative square-risk should at most be n times the
instantaneous square-risk of 6 plus a term that hardly grows with n; in other words, the cumulative
square-risk from time 1 to n, averaged over time by dividing by n, should rapidly converge to the
constant instantaneous risk of 6. Yet the experiments of Section 5 clearly show that this is not the case:
Figure 5 shows that, until n = 100, it is about 3 times as large. As outlined in the main text, the reason
is that the Bayesian predictive density f(- | Z'~1) is a mizture of various fy, and not necessarily similar
to fp for any individual 8 — the link between log-risk and square-risk (5) only holds for individual
0 = (p,B3,0?), not for mixtures of them. Indeed, if at each point in time i, f(- | Z%) would be very
similar (in terms of e.g. Hellinger distance) to some particular fy, with 8; € ©, then there would really
be a contradiction. Thus, the discrepancy between the good log-risk and bad square-risk results in
fact implies that at a substantial fraction of sample sizes i, f(- | Z°) must be substantially different
from every 0 € ©. In other words, the posterior is not concentrated at such i. A cartoon picture of this
situation was given in Figure 3 in Section 3.1: the Bayes predictive achieves small log-risk because it
mixes together several distributions into a single predictive distribution which is very different from
any particular single Py € M. As shown in Section 5.3, this indeed happens in our example, to such
an extent that we actually get hypercompression until about n = 100.

D.2 [I-log-SafeBayes avoids hypercompression; R-log-SafeBayes avoids
spurious compression

Taking 1 smaller than 1 has the effect of additional regularization. As indicated by earlier works such
as Audibert (2004), Barron and Cover (1991), Zhang (2006b), and as shown in great generality by
Grinwald and Mehta (2016), there usually exists a critical 77 such that, for any n < 7, the n-generalized
posterior concentrates on P as sample size increases, often even at the best possible (minimax) rate.
This 7 coincides with the 7 at which the generalized posterior has a second interpretation as a standard
posterior for a reweighted model with densities (17), as explained in the main text. However, none of
the just mentioned papers says anything about how to find such an 7. Dawid’s prequential point of

view suggests to take the 17 minimizing

ZLOSS(xiayi;H | Ziilﬂ])a (Dl)

i=1
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for some loss function which measures, at each i, how well the posterior based on data z'~! predicts
y; given z;. The idea is that the best 1 on the data so far will also lead to good predictions in the
future.

The most obvious choice to fill in for LOss would be —log Egryj.i-1 »[f(vi | 2i,0)] as in (22); as
explained above (22), that would make inference of 7 be very similar to empirical Bayes. If we want to
use our posterior, in the end, to make predictions scored by log-loss (as we would if we were to use it for
data compression or sequential gambling), this would be perfectly fine. However, as already indicated
in the main text, as log-loss is not the primary interest, this will not work due to the hypercompression
phenomenon, which, as we confirmed in separate experiments [GvO, Figure 13] is at its strongest at
n = 1 in our model-wrong setting: the predictive Egry.i-1,[f(Y: | z4,0)] will have smaller log-loss,
but larger squared loss as 7 increases to 1, and if we use (22), we will tend to select n = 1 (as an aside,
this also means that if we are only interested in sequential log-loss prediction, there is nothing wrong
with using 7 = 1, i.e. standard Bayes works fine for log-loss prediction under misspecification).

Least ambitious goal: Good squared error performance Now consider the case that we are solely
interested in squared loss predictions. Then a straightforward alternative would be to take LOSS in
(D.1) as (y; — xi@_lm)z with Bz‘—l,n as in (13). In fact, this is exactly what the I-version of SafeBayes
does if we put a point prior on an arbitrary but fixed 02 (Eq. (C.1)), and as shown in [GvO], we do get
a competitive method for learning the regression function; however, the method can obviously not be
used for reliable estimation of its own prediction error, since the ‘true’ variance may be very different

from o2.

Intermediate ambition: Good performance for all KL-associated prediction tasks by avoiding hy-
percompression If we are interested in good prediction for all associated prediction tasks as listed in
Section 2.3, then it makes sense to set LOSS in (D.1) as —log f(y; | i, Bgryjzi-1,5[0]), i.e. to minimize
(25), which is just I-log-SafeBayes. With this choice, we prefer n’s such that the n-posterior mean
rather than the predictive has small log-loss. Small log-loss of the posterior mean implies that it is
likely to have small log risk. Because, unlike the posterior predictive, the posterior mean is a member
of the model M (here we assume the model is parameterized in such a way that the parameter set is
convex, as is the case for our regression problem), small log risk implies good performance in terms
of all associated prediction tasks, i.e. small squared error risk and good reliability. This motivates the
use of I-log-SafeBayes.

Strongest ambition: Posterior concentration on distributions close to § by avoiding spurious com-
pression Focusing on the posterior mean as in I-log-SafeBayes still allows for the milder form of
hypercompression which we have called spurious compression above, and to which we get back in
Section F.2: it may be that the posterior mean is almost optimal because the posterior predictive is
almost equal to P, yet this posterior predictive is still constituted as a weighted average of distribu-
tions all of which are very far from 6. If we want a posterior with, e.g., meaningful credible sets, then
this is highly undesirable. We may thus try to be even more ambitious and require finding an 7 such
that the posterior is not just close to 6 ‘on average’ but rather puts most if its mass on distributions
which are close to the KL-optimal 6. We can achieve this by using the prequential approach with a
loss function that only gets small if we achieve small log-loss by predicting using a random draw from
our posterior, rather than plugging in the posterior mean. And this is exactly what is achieved by
setting LOSS in (D.1) to be the Gibbs loss Eg.yy.i-1, [~ 1og f(y; | 24,0)], i.e. minimizing n as in (23)
which is just R-log-SafeBayes. This motivates R-log-SafeBayes as the version with the most ambitious
goal. .. at least in this paper. In the next section we describe an initial idea, based on a modification
of the likelihood as in (E.2), which might be used if we, even more ambitiously, aim to get good
predictions for tasks that are not KL-associated.

Summarizing, the goals of R-log-SafeBayes are more ambitious, but for some applications, they may
be overkill — we notice in our experiments that we need more data before getting good results than
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with I-log-SafeBayes. I-log-SafeBayes needs less data, but, in addition to being less ambitious, has
some other weaknesses: in contrast to R-log-SafeBayes, it is dependent on the chosen parameterization,
and cannot even be applied whenever parameterizations are not convex. R-log-SafeBayes can be used
whatever the model, and is fully parameterization independent.

Remark on hypercompression and concentration The above suggests that the R-versions of Safe-
Bayes select an 1 at which the posterior will be more concentrated than at n» = 1. Upon closer
inspection, things are more subtle though — for simplicity we illustrate this only for the posterior in
ridge regression (single high-dimensional model) with a degenerate prior on a fixed 0. As can be seen
from the definition of the covariance matrix 02, , underneath (13), as one decreases 7, the deter-
minant of the posterior covariance matrix based on data Z™ will grow, indicating less concentration.
However, the posterior mean Bn’n will change as well. When 7 goes below some critical value, then
Bnm becomes approximately B . At that point the posterior, although not very concentrated, will lead
to good predictions. At n = 1, at sample sizes smaller than n = 300, Bnm has a ridiculous value leading
to bad predictions, yet the posterior is more concentrated than at small n. Still, it is not concentrated
enough to avoid hypercompression — the Bayes predictive can have substantially smaller log-loss than
the posterior mean . If we allowed 1 > 1, we would actually even get more concentration, with 1 = co
corresponding to a posterior concentrated in one point — but note that, as soon as 1 > 1, Barron’s
bound is not valid any more, so this would not lead to any contradiction.

So, roughly speaking, one might say that standard Bayes can perform badly if the standard pos-
terior is centred at, but not too much concentrated at, some ‘bad’ énnﬁ whereas with the n < 1
selected by R-log-SafeBayes, generalized Bayes will perform better because the n-posterior is centred
at, yet even less concentrated at, a much better én,n. Because énm has such small KL-risk, the set
of densities around it that now receive substantial posterior mass all perform quite well in terms of
KL-risk, so even though we have less concentration (larger posterior variance) than at n = 1, we are

still able to say that ‘the posterior is now concentrated on good densities’.

E Discussion

In this section, we discuss the place of SafeBayes in Bayesian methodology, and we speculate what,
on top of SafeBayes, may be needed for a general Bayesian ‘theory of misspecification’.

E.1 SafeBayes and the Data-Analysis Cycle

“If a subjective distribution II attaches probability zero to a non-ignorable event, and if this event
happens, then IT must be treated with suspicion, and modified or replaced” (emphasis added)
— A.P. Dawid (1982).

Following the well-known Bayesian statisticians Box (1980), Good (1983), Dawid (1982, 2004) and
Gelman (2004) (see also Gelman and Shalizi, 2012), we take the stance that model checking is a crucial
part of successful Bayesian practice. When there is a large discrepancy between a model’s predictions
and actual observations, it is not merely sufficient to keep gathering data and update one’s posterior:
something more radical is needed. In many such cases, the right thing to do is to either expand or
adjust the model (in directions inspired by the observed discrepancies), or sometimes even to go back
to the drawing board and try to devise a more realistic model from scratch. This is definitely the
situation we are in if we are mainly interested in understanding the phenomena underlying the data.

However, we think this story is incomplete: in machine learning and pattern recognition, one often
encounters situations in which the model employed is obviously wrong in some respects, yet there is
a model instantiation (parameter vector) that is pretty adequate for the specific prediction task one
is interested in. Examples of such obviously-wrong-yet-pretty-adequate models are, like in this paper,
assuming homoskedasticity (and unimodality) in linear regression when the goal is to approximate
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the true regression function and the true noise is heteroskedastic (and/or perhaps multimodal), but
also the use of N-grams in language modelling (is the probability of a word given the previous three
words really independent of everything that was said earlier?), and independence in text modelling as
used in Bayesian topic models (Blei, 2012), logistic regression in e.g. spam filtering, and every single
successful data compression method that we know of (see Bayes and Gzip (Grinwald, 2007, Chapter
17, page 537)). The difference with the more standard statistical (be it Bayesian or frequentist) mode
of reasoning is eloquently described in Breiman’s (2001) the two cultures.! Bayesian inference is among
the most successful methods currently used in the obviously-wrong-yet-pretty-adequate-situation (to
witness, state-of-the-art data compression methods such as Context-Tree-Weighting (Willems et al.,
1995) have a Bayesian interpretation). Yet the present paper shows that there is a danger: even if the
employed model is pretty adequate (in the sense of containing a pretty good predictor), the Bayesian
machinery might not be able to find it. The SafeBayesian algorithm can thus be viewed as an attempt
to provide an alternative for the data-analysis cycle (Gelman and Shalizi, 2012) to this, in some sense,
less ambitious setting: just like in the standard cycle, we do a model check, albeit a very specific one:
we check whether one can outperform Bayesian predictions by a different, pseudo-Bayesian method
(i.e. n-generalized Bayes); this should be impossible if model and prior are adequate for the data at
hand. If one can, then we know that we may not be learning to predict as well as the best predictor
in our model, so we modify our posterior. Not in the strong sense of ‘expanding the model’ or even
‘going back to the drawing board’, but in the much weaker sense of making the learning rate smaller
— we cannot hope that our model of reality has improved, because we still employ the same model —
but we can now guarantee that we are doing the best we can with our given model, something which
may be enough for the task at hand and which, as our experiments show, cannot always be achieved
with standard Bayes.

Summarizing, if the main goal of inference is to provide specific, KL-associated predictions, then
SafeBayes can be used to select 7. If the main goal is simply to understand the data, then SafeBayes can
still be employed, not to use a different 7 but mostly as a (prior) predictive check, itself suggesting other
(prior or posterior) predictive checks: if n < 1 leads to better predictions, this means that something
is inherently wrong and an inspection of the full posterior or the posterior predictive can suggest useful
model expansions and modifications.” A case in point of a posterior predictive check/diagnostic tool
is Figure 4, which shows that the predictive distribution is very different from any of the distributions
in the model, clearly indicating a need for model revision or expansion.

But what if one has an imperfect model at hand and the inference task of interest is not KL
associated? Or if the goal of inference is ‘somewhere inbetween’ doing specific predictions/inferences
and ‘simply understanding the data’? These are the points we now turn to.

E.2 Towards a general theory of statistical inference under misspecification

The standard Bayesian approach is very ambitious: it can be used to solve every conceivable type of
prediction or inference task. Every such task can be encoded as a loss or utility function, and, given the
data and the prior, one merely has to calculate the posterior, and then make an optimal decision by
taking the act that minimizes expected loss or maximizes expected utility according to the posterior.
Crucially, one uses the same posterior, independently of the utility function at hand, implying that
one believes that one’s own beliefs are correct in every possible respect. We envision a more modest
approach, in which one acknowledges that one’s beliefs are only adequate in some respects, not in
others; how one proceeds then depends on how one’s model and inference task(s) of interest interact.

IThe ‘two cultures’ does not refer to the Bayesian-frequentist divide, but to the modelling vs. prediction-divide.
We certainly do not take the extreme view that statisticians should only be interested in prediction tasks such as
classification and square-error prediction rather than density estimation and testing; our point is merely that in some
cases, the goal of inference is clearly defined (it could be classification, but it could also be determination whether some
random variables are (conditionally) (in)dependent), whereas part of our model is unavoidably misspecified; and in such
cases, one may want to use a generalized form of Bayesian inference.

2We are using ‘prior/posterior predictive checks’ in a loose, nonformal sense here. We are thankful for one of the
referees for bringing this point to our attention.
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In this paper, we mostly looked at cases in which the main inference tasks were simply to predict well
for a given loss function such as squared error, and to get a reliable estimate of one’s own prediction
error. Often times, though, one may be interested in more general tasks such as ‘assessment of every
random variable in some large class of random variables I/ should be reliable,” in the sense that the
posterior concentrates on a distribution P satisfying, for every random variable U : Z — R with
Uel,

Ez.p-[U =E,_ (U], (E.1)

i.e. with respect to U, the world behaves as if P were correct even though in reality P is not correct.
Well-known probabilistic notions such as distributions which may be incorrect yet still calibrated
can be understood as specifying a set U for which (E.1) holds. A first step towards such a general
theory of misspecification is given by the paper Safe Probability (Griinwald, 2017). The upshot is that,
(a), if one thinks one’s model may be misspecified, one always explicitly states for which random
variables/inference tasks it is still safe; and that (b), one can, for some types of models, guarantee
safety relative to some tasks, since (essentially) these are KL associated.

(Griinwald, 2017) focuses on reliability for general random variables, and does not consider the
particular case of data-dependent prediction for given loss functions, which is the focus of this paper
and which we consider to be a crucial part of a future theory of misspecification. Here, a main open
question is what to do if one has a probability model at hand which one does believe captures some
aspects of the domain reasonably well, yet one does not necessarily think that the predictions, based
on the KL optimal distribution in the model, are necessarily also the best in terms of one or more other
loss functions of interest that are not KL-associated. In that case, one can either modify the model to
make the prediction task of interest KL associated, or otherwise one can expand the model to make it
behave better in terms of the desired prediction task. The latter then has a dual interpretation, as a
pragmatic improvement for just a task of interest but also as an improvement of the model in terms
of the data-analysis cycle referred to above.

Modifying the Model Suppose the inference task at hand is simply prediction under some loss
function £ : Y x Y — R. In this case, if the (-risk is not KL-associated this simply means that the log
risk is not a monotonic function of the risk in terms of the loss ¢. To get the desired association, we
may associate each conditional distribution Py(Y | X) in the model with its associated Bayes act dp:
dg(x) is defined as the act § € ) which minimizes Py | X = z-expected loss Ey p,|x—[¢(y,7)]. We
can then define a new set of densities

NEW

TR e
0,y (y ‘ JJ) - Z("}/)e ) (Ez)
and perform (generalized) Bayesian inference based on these. Note that this effectively replaces, for
each 6, the full likelihood by a ‘likelihood’ in which some information has been lost, and is thus
reminiscent of what is done in pseudo-likelihood (Besag, 1975), substitution likelihood (Jeffreys, 1961,
Dunson and Taylor, 2005), or rank-based likelihood (Gu and Ghosal, 2009) approaches (as a Bayesian,
one may not want to lose information, but whether this still applies in nonparametric problems (Robins
and Wasserman, 2000) let alone under misspecification (Griinwald and Halpern, 2004) is up to debate).

(E.2) can be made precise in two ways: either one just sets v and Z(y) to 1, and allows the fy™"
to be pseudo-densities, not necessarily integrating to 1 for each x. This is now effectively equivalent
to adopting Gibbs-type pseudo-likelihood approach, the posterior based on (E.2) coinciding with the
Gibbs likelihood (7); setting up a likelihood in this way is a standard approach in learning theory
(Zhang, 2006b, Catoni, 2007). One could then learn 1 by, e.g., the basic SafeBayes algorithm with
lo(x,y) = L(y, dg(x)) instead of log-loss. For example, if, as in the main text, we start with a linear
model but we are interested in predicting not with squared error but rather with absolute loss as
in (B.1), then following the procedure above, we will associate each linear predictor 0 = (p,f,0)
with &, 5,») == B, where predictor 3 incurs loss [y; — > Bjzi;| at time i. The reason why f3 is not
modified is that, according to the linear model, the noise is Gaussian, which is symmetric, so that for
every symmetric loss function, including the absolute loss, the optimal predictions according to any
0 = (p, B, 0) are given by predicting Y using the conditional mean Ep, [Y|X].
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Modifying and/or Expanding the Model There is, however, an alternative way to deal with and in-
terpret (E.2): one could define Z(7) so that the densities normalize (how to achieve this if fy e~ v W:96(2)) gy
depends on x is nontrivial but possible, as explained by Griinwald (2008)) and putting a prior on =
as well (for the squared error loss, this is akin to putting a prior on the variance). This will make the
loss ¢ KL-associated and the #-component of the KL-optimal (6, %) optimal in the sense of minimizing
Lo-risk. If one uses a degenerate prior on a single value of 7, then the resulting procedure will be
formally identical to the Gibbs posterior, showing that the Gibbs likelihood can also be interpreted
as a standard likelihood with a special probability model for which the loss function of interest is KL
associated.

If we put a nondegenerate prior on ~y, we achieve more: we will also have the reliability property,
7 playing a role analogous to & in the squared error case; see again (Griinwald, 2008) for details. In
this case we will get, with z; = (x4, 4:), Lo(2;) = £(yi, 09(x;)), and using a prior on © and the scaling
parameter v, that the n-generalized posterior becomes

w(@,y | 2" n) o e M iz ) (g, ). (E.3)

Z(y)m
The idea of adding v was, in essence, already suggested by (Griinwald, 1998, Example 5.4) (see also
Griinwald (1999)) under the name of entropification (however, Grinwald’s papers wrongly suggest
that, by introducing the scale parameter ~, it would be sufficient to only consider n = 1); for related

ideas see also (Lacoste-Julien et al., 2011) and (Friel and Stoehr, 2015).

But now we started adding parameters to the model, we could even go one step further. If we start
out with the probability model {fy : 0 € ©} but are interested in non-KL-associated loss £y, then
another proposal, briefly alluded to by Griinwald (2016) (in response to Watson and Holmes (2016)),
is to use, instead of (E.2),

NEW 1

oY | 2) = mewlz(y’ée(m)) - folylz)™, (E.4)

where fp is the density of Py and Z(1,72) now normalizes over both factors; then the KL-optimal
(0,71, %2) will still be reliable, and, no information about the data is lost in this new likelihood; but
it is not clear whether 0 will still be optimal for the ¢-risk — whether in practice to use (E.3) or (E.4)
or something else is just one of many open questions (Open Problem 1a) in what we would like to call
‘misspecification theory’: a to-be-developed theory about how to adjust models such that guarantees
for desired inference tasks can be achieved even if the model is (and stays) wrong ((general) Open

Problem 1).

As suggested by a referee, another major open question here is whether it is possible to get inference
in which one of the tasks of interest is to derive valid credible sets around the KL-optimal parameter.
While we do not know whether this is possible in full generality, it may definitely be possible to get
meaningful substitutes for credible sets. One can, in fact, think of the reliability property in these
terms: instead of reporting a credible set such as ‘with posterior probability 0.95 the squared-error
optimal 3 lies in region £z around the posterior mean B, we report ‘in posterior expectation, the
prediction error we make by using /3 is so-and-so-large’. We can then prove that, at least for large
samples, this statement will be correct also in a frequentist sense; just as in well-specified Bayes,
under regularity conditions we have coverage: credible sets are asymptotically also confidence sets.
Using PAC-Bayesian methods (McAllester, 2003), one might even hope to prove finite sample bounds
that say that, for given n, with high probability, the estimated prediction error is not farther off
from the real future prediction error than some explicitly given €,. Like a credible-set statement, the
reliability-statement is a meta-statement about the inferred 3, telling us how much faith we can put
in it; yet the detailed meaning is, of course, very different (Open Problem 1b) — see also the discussion
of Syring and Martin (2017) in Section F.1 below.

More generally, what would one like to ideally develop here is a general theory of substitution
likelihoods so that likelihoods can be adjusted based on the inference task of interest for arbitrary sets
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of prediction tasks. Existing approaches such as pseudo-likelihood and rank-based likelihood would
also become a special case of this method (Open Problem 1d). If this can be done, we would have a
truly generalized Bayesian method.

Potential for Criticism Now both ‘pure’ subjective Bayesians and ‘pure’ frequentists might dismiss
this programme as severe ad-hockery: the strict Bayesian would claim that nothing is needed on
top of the Bayesian machinery; the strict frequentist would argue that Bayesian inference was never
designed to ‘work’ under misspecification, so in misspecified situations it might be better to avoid
Bayesian methods altogether rather than trying to ‘repair’ them. We strongly disagree with both
types of purism, the reason being the ever-increasing number of successful applications of Bayesian
methods in machine learning in situations in which models are obviously wrong. We would like to
challenge the pure subjective Bayesian to explain this success, given that the statistician is using a
priori distributions that reflect beliefs which she knows to be false, and are thus not really her beliefs.
We would like to challenge the pure frequentist to come up with better, non-Bayesian methods instead.
In summary, we would urge both purists not to throw away the Bayesian baby with the misspecified
bath water!

One variation of such criticism deserves further attention: if there is just a single loss function of
interest, such as e.g. squared loss, then why don’t we just adopt as our ‘model” a set of predictors
for that loss function, and infer a good predictor by penalized error minimization, such as, e.g., —
for squared error loss — the Lasso? The answer is threefold: first, if a single loss function is really
our only task of interest, then indeed standard penalization approaches are totally fine, but the I-log
version of SafeBayes will actually give us something very similar to such standard methods — for the
squared error loss this was explained in Section C.1. As shown by De Heide (2016), the I-log-version
of SafeBayes with a Gibbs likelihood for squared error tends to select an 7 such that 1/ is close to the
parameter selected by the standard Lasso with leave-one-out cross validation, and gives comparable
performance on real-world data sets, in some cases significantly outperforming the Bayesian Lasso.

The second part of the answer is that we are often interested in more than one inference task.
For example, even if the main goal is squared error prediction, one may want the additional meta-
property of reliability, and it is not clear how to do this using simple penalized likelihood — whereas
with SafeBayes one gets it for free by putting a prior on « (i.e. 02, in the special case of squared error).
The alternative would be to equip the Lasso with frequentist confidence guarantees, which in practice
are often too conservative to be useful.

The third part of the answer is that in practice it is often the most intuitive by far to work with
‘real’ likelihoods, probability models that may be known to be misspecified and useful at the same
time. Examples are the aforementioned topic models, but also e.g. phylogenetic tree models which
are known to be affected by misspecification issues (Yang, 2007). Here there seems no easy way to
meaningfully represent the inference problem at hand (establishing a distribution over topics given a
document or a ‘likely’ phylogenetic tree given DNA data) as a penalized loss minimization problem,
and it seems best to go with Bayesian inference with a modification or expansion of the model to
make inference reliable relative to the inference problem at hand, as well as using SafeBayes to make
sure that the posterior concentrates.

A final point here is that from a learning theory (citations see below) and Minimum Description
Length (MDL (Barron et al., 1998)) perspective, the extension from Bayes to SafeBayes is, in fact,
perfectly natural, as we now explore.

F Related work
F.1 Related Work I: Learning theory, MDL, and Finding n by Other Methods

Learning Theory From the learning theory perspective, generalized Bayesian updating as in (E.3)
with Z(7) set to 1 can be seen as the result of a simple regularized loss minimization procedure (this
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was probably first noted by Williams (1980); see in particular (Zhang, 2006b)), which means that it
continues to make sense if exp(—v¢y) as in (E.2) does not have a direct probabilistic interpretation.
Variations of such generalized Bayesian updating are known as “aggregating algorithm”, “Hedge”
or “exponential weights”, and often are provably almost-worst-case optimal in nonstochastic settings
(Vovk, 1990, Cesa-Bianchi and Lugosi, 2006) — but to get these the learning rate must often be set as
small as O(1/4/n). Similarly, PAC-Bayesian inference (Audibert, 2004, Zhang, 2006b, Catoni, 2007)
(for a variation, see (Freund et al., 2004)) is also based on a posterior of form (E.2) and can achieve
minimax optimal rates in e.g. classification problems by choosing an appropriate 7, usually also very
small. From this perspective, SafeBayes can be understood as trying to find a larger n than the worst-
case optimal one, if the data indicate that the situation is not worst-case and faster learning is possible.
The question how to choose 7 is often left open; several authors (e.g. Jiang and Tanner (2008)) suggest
cross-validation. Similarly, essentially the same algorithm as SafeBayes was proposed independently,
without convergence proofs, as a pragmatic way for determining learning rates when combining expert
predictions, by V. Mallet (Gerchinovitz et al., 2008), and was shown to work excellently in practice
by Devaine et al. (2013). Besides SafeBayes, we know of four other methods for determining n for
which convergence results have been established: Audibert’s (2004) method, which is restricted to
classification applications; the method of Griinwald (2011), which however only works for countable
models, and the LLR (learning the learning rate) (Koolen et al., 2014, De Rooij et al., 2013) and
SQUINT (Koolen and Van Erven, 2015) methods which were both designed for a sequential prediction
context. The latter is especially interesting since, pleasingly from a Bayesian perspective, it integrates
out 1. This would not work if one used the standard likelihood (our experiments suggest it would
perform similarly to determining 7 by empirical Bayes, which works very badly — see Section 5.4).
Yet, by a subtle ‘second order’ modification of the likelihood, it is possible after all.

Other Methods for Setting  The above approaches all give provable frequentist performance guar-
antees for fixed loss functions; there also exist other approaches, mostly developed within the Bayesian
statistics community (though not necessarily ‘Bayesian’) for setting n with different desiderata. We
mention Bissiri et al. (2016) who present several methods for determining 7 based on coherence-type
arguments; one of these (‘unit information loss approach’, Section 3.2) is, when ¢y is the squared
error, very similar to setting 1 equal to 1/(262), where 62 is the empirical Bayes estimate of the
variance. As we show in [GvO], this is not competitive in our setting, having the same problems as the
problems with setting n by empirical Bayes explained in Section 5.4. Other interesting techniques and
motivations are given by Miller and Dunson (2015), Holmes and Walker (2017), Syring and Martin
(2017). Especially the latter is interesting since it sets 1 so as to get frequentist coverage of Bayesian
credible intervals for misspecified models, which, as we hinted above, is an important desideratum.
Their encouraging empirical results show that this may often be possible; the price is to pay is that
they need to assume consistency for all fixed 7, something that, as our work shows, may fail in general.
Another major goal (not necessarily done by us!) for future work is Open Problem Nr. 3: to provide
a thorough comparison of all these methods for setting 7.

MDL Of particular interest is the interpretation of the SafeBayesian method in terms of the MDL
principle for model selection, which views learning as data compression. When several models for
the same data are available, MDL picks the model that extracts the most ‘regularity’ from the data,
as measured by the minimum number of bits needed to code the data with the help of the model.
This is an interpretation that remains valid even if a model is completely misspecified (Griinwald,
2007). The resulting procedure (based on so-called normalized maximum likelihood codelengths) is
operationally almost identical to Bayes factor model selection. Thus, it provides a potential answer
to the question ‘what does a high posterior belief in a model really mean, since one knows all models
under consideration to be incorrect in any case?’ (asked by, e.g., Gelman and Shalizi (2012)): even
if all models are wrong, the information-theoretic MDL interpretation stands. However, our work
implies that there is a serious issue with these NML codes: note that any distribution P in a model
M can be mapped to a code (the Shannon-Fano code) that would be optimal in expectation if data
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were sampled from P. Now, our work shows that if the data are sampled from some P* ¢ M, then
the codes based on Bayesian predictive distributions can sometimes compress substantially better in
expectation than can be done based on any P € M — this is the hypercompression phenomenon of
Section 3.2. The same thing then holds for the NML codes, which tend to assign almost the same
codelengths as the Bayesian ones. Our work thus invalidates the interpretation of NML codelengths
as ‘compression with the help of (and only of!) the model’, and suggests that, similarly to in-model
SafeBayes one should design and use ‘in-model’ versions of the NML codes instead — codes that are
guaranteed not to outperform, at least in expectation, the code based on the best distribution in the
model.

F.2 Related work Il: Frequentist analysis of Bayesian behaviour with and
without misspecification

Consistency theorems The study of consistency and rate of convergence under misspecification for
likelihood-based and specifically Bayesian methods goes back at least to Berk (1966). For recent state-
of-the-art work on likelihood-based, non-Bayesian methods see e.g. Diimbgen et al. (2011) and the
very general Spokoiny (2012). Recent work on Bayesian methods includes Kleijn and Van der Vaart
(2006), De Blasi and Walker (2013) and Ramamoorthi et al. (2015) who obtained results in quite
general, i.i.d. nonparametric settings and Griinwald and Mehta (2016) who substantially generalized
Zhang’s results for the misspecification setting. For results in non-i.i.d. settings, see (Shalizi, 2009),
and for results in more specific settings, see (Sriram et al., 2013).

Yet, as explicitly remarked by De Blasi and Walker (2013), the conditions on model and prior
needed for consistency under misspecification are generally stronger than those needed when the
model is correct. Essentially, if the data are i.i.d. both according to the model and the sampling
distribution P*, then Theorem 1 (in particular its Corollary 1) of De Blasi and Walker (2013) implies
the following: if, for all € > 0, the model can be covered by a finite number of e-Hellinger balls, then
the Bayesian posterior eventually concentrates: for all §,7 > 0, the posterior mass on distributions
within Hellinger distance  of the Pj; that is closest to P* in KL divergence will become larger than
1 — v for all n larger than some n.. This implies that both in the ridge regression (finite p) and in
the model averaging experiments (finite pyax), Bayes eventually ‘recovers’ — as we indeed see in our
experimental results. However, in Appendix G.2 we formally show (which requires substantial work!)
that if pax = 0o, then the model has no finite Hellinger cover any more for small enough ¢, so that
indeed the conditions for Theorem 1 of De Blasi and Walker (2013) do not apply any more. Our results
suggest that in such a case we can indeed have inconsistency if the model is incorrect. On the other
hand, even if pyax = 00, we do have consistency and a parametric O(1/4/n) Hellinger convergence rate
in the setup of our correct-model experiment for the ‘almost’ standard Bayesian posterior, namely for
any 7 < 1, as follows from the results by Griinwald and Mehta (2016), Zhang (2006a) — see below.

Spurious compression, Rates of Convergence and the limiting 7 = 1 Like several earlier results
(Barron and Cover, 1991, Walker and Hjort, 2002), Zhang’s consistency results for correct models
hold under very weak conditions for generalized Bayes with any 1 < 1, and only under much stronger
conditions on the prior for n = 1. Zhang provides an example of inconsistency-like behaviour in the
well-specified case with 7 = 1 that automatically disappears as soon as one picks 1 < 1, leading Zhang
(2006a) to claim that in general, generalized Bayesian methods (1 < 1) are more stable than standard
Bayesian ones; the use of 7 close to but not equal to 1 is also advocated in another well-specified context
by Martin et al. (2017). Zhang’s example, and the example of Bayesian model selection inconsistency in
a well-specified model by Csiszar and Shields (2000), are closely related to ours: upon close inspection
they are both examples of spurious compression, a milder form of hypercompression that can still
occur for correct models, as described in Section D.2 and Figure 3. What happens is that the Bayes
predictive P distribution for = 1 does converge to the true distribution, but the posterior does not
concentrate on it: it spreads its mass over distributions that are all very different from the true P*, yet
their posterior-weighted average is close to P* after all. In their well-specified examples, the problem
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is resolved by taking any n < 1; in our misspecification case, to avoid spurious compression, 77 should
even be taken much smaller.

In fact, Zhang (2006a) shows that, in the well-specified case, under a very weak KL-property con-
dition stating merely that there is sufficient prior mass in KL-neighbourhoods of the true distribution,
for any n < 1, the n-posterior asymptotically concentrates in Hellinger distance around the true dis-
tribution, often at the minimax optimal frequentist rate. The result implies that spurious compression
and its associated problems cannot happen for any 1 < 1 if the model is correct. In other well-known
works on posterior convergence for well-specified models, one always imposes an additional, more
complicated condition (Assumption 2 in (Barron et al., 1999), and the ‘entropy number’ or ‘testing
condition’ (2.2) in (Ghosal et al., 2000)), which is needed to get posterior consistency for standard
(n = 1) Bayes — Zhang’s work shows that they are not needed as soon as n < 1. Grinwald and Mehta
(2016) provides a version of Zhang’s result which holds under misspecification, saying again that, un-
der a weak prior mass condition, for any n < n*, the n-posterior concentrates around the KL optimal
0. Here n* is some critical value which is 1 if the model is correct, convex or the misspecification is
‘benign’; yet, under ‘bad’ misspecification, n* can be < 1. In light of these results, one can think of
R-log-SafeBayes as finding the largest n such that spurious compression cannot occur — which may be
a useful goal even if the model is correct, for one can then get posterior concentration under Zhang’s
minimal condition.

Anomalous behaviour and modifications of Bayesian posterior under misspecification Anomal-
ous behaviour of Bayesian inference under misspecification was, of course, observed before, e.g. (less
dramatically than here) by Yang (2007), Miiller (2013) and (as dramatically, but involving a very ar-
tificial model) Griinwald and Langford (2007). Presumably also related is the ‘brittleness’ of Bayesian
inference that has been observed by Owhadi and Scovel (2013). Not surprisingly then, we are not the
first to suggest modification of likelihood-based estimators (see e.g. White, 1982, Royall and Tsou,
2003, Kotlowski et al., 2010) and posteriors (Royall and Tsou, 2003, Hoff and Wakefield, 2012, Doucet
and Shephard, 2012, Miiller, 2013) under misspecification. The latter three approaches (that extend
the first) employ the so-called sandwich posterior, in which the covariance matrix of the posterior is
changed based on a ‘sandwich formula’ involving the empirical variance; Miiller (2013) provides ex-
tensive explanation and experimentation. Compared to the sandwich approach, our proposal, besides
being applicable in fully nonparametric contexts, is substantially more radical. This can be seen from
the regression applications in Miiller (2013), which involve a noninformative Jeffreys’ prior on the
regression coefficient vector 3. With such a prior (as well as any normal prior scaled by variance o2),
the posterior mean of 8, and thus also the frequentist square-risk (which only depends on the posterior
mean) remains unaffected by the sandwich modification, so for square-risk the method would perform
like standard Bayes in our model-wrong experiments, and would therefore not ‘save’ Bayes. (Miiller
(2013, Section 2.4) demonstrates its usefulness on loss functions other than square risk.) Nevertheless,
both the sandwich and the SafeBayesian methods can be thought of as methods for measuring the
spread of a posterior, and it would be useful to compare the two in detail, both in theory and practice.
Specifically, it seems that Miller’s modification of the posterior can be used in parametric models to
adjust credible sets around a given posterior mean, thus tying in to our aforementioned Open Prob-
lem 1b, whereas our method is suited to arrive, in large, nonparametric models, at entirely different
posterior means.

G More Evidence for 'Real’ Inconsistency

Here we first provide a repetition of the main experiment from Section 5.2 in the main text with a
higher dimensional model, pyax = 100 instead of py.x = 50. This additional experiment has results
that are qualitatively very similar to that with pya.x = 50, but it is crucial to substantiate our claim
that we are really observing a form of inconsistency, because it shows that standard Bayes needs a
much larger sample size to ‘recover’ at pyax = 100 when the model is wrong — suggesting that if we
used pmax = 00 and let n — 0o, Bayes would never recover. This is further suggested (but not proved
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of course) by the fact that, with pyax = 0o, the condition for a recent, advanced consistency-under-
misspecification result does not hold, as we show in Section G.2.

G.1 More graphs from main experiment

Figures G.1 and G.2 report the results for wrong-model and correct-model experiments analogous to
those seen in Figures 5 and 6 in the main paper, but with p = 100 instead of p = 50. As mentioned
in the main paper, we see that it takes Bayes much longer to recover in the wrong-model experiment
than for p = 50, while both versions of SafeBayes are hardly affected.

G.2 M with p,,.x = oo violates the Condition of De Blasi and Walker (2013)

While we cannot experiment with pna.x = oo and therefore cannot formally establish mathematical
inconsistency, one thing we can do is show that the regularity conditions for an existing general
theorem that establishes consistency of standard Bayes under misspecification do not hold for our
model and prior. Of course, this still does not prove inconsistency but at least it shows that our claim
does not contradict a fact. We chose the theorem of De Blasi and Walker (2013) because it only
establishes consistency, and no convergence rates, allowing the authors to impose a single, general,
elegant regularity condition that, jointly with the KL property, is sufficient for consistency under
misspecification — as phrased in the Corollary 1 to their Theorem 1. As is immediate from their
result, their condition implies the following substantially weaker condition: for every a € (0,1/2),
there exists a covering of the model M by e-Hellinger balls {B; . : j = 1,2...} where ¢ < a such that,
with II denoting the prior measure defined on distributions in M,

> T(Bj)" < 0. (G.1)

We will now show that in our setting, with pya.x = 00, no such coverings exist for small enough o > 0,
as long as the prior on the model dimension p has polynomial tails, thus implying that their condition
does not hold. To match our setting to theirs, we extend each conditional distribution for Y | X in
each of our models M,,p=0,1,2,... to a joint distribution for (X,Y") by extending it with the same
(well-specified) marginal distribution Py on X as the one used to generate data in our experiments,
i.e. (beginning of Section 5) the (infinitely many) components of X are independent Gaussians with
variance 1. In this way all M,, and their union M are now sets of joint distributions on (X,Y),
extended to n outcomes by independence as before.

Consider M and a prior as defined in Section 2.5. We slightly simplify the setup and only consider
the case with a degenerate prior that puts all its mass on o2 := 1 (the experiments in [GvO] show that
with this prior, too, we get bad empirical results for standard Bayes). As in our experiments, we take
the covariance matrix 3 of the prior on 8 to be the identity matrix, making the prior a unit variance
spherical Gaussian. We use the notation IT as in the main text for the prior on parameters 6 = (p, 3)
(the variance being equal to 1 is not included as a free parameter any more). We use the notation IT

as the corresponding distribution on probability measures — note that IT uniquely determines II.

_ Let {Bj’6 =12 .} be an arbitrary cover of M with e-Hellinger balls, and, for p > 0, let
By je = Myp N Bj .. We must have that

Y T(Bj)* > sup Y T(Bp,.0)°
j>1

= p=0,1,2,... %

so for us it is sufficient to show that, for arbitrarily chosen cover, the right hand side must be infinite for
all € > 0 smaller than some fixed constant independent of a and p, for this implies that the condition
(G.1) cannot hold. We now consider II(B, ;.)* for fixed p and set d (dimension) as d :== p+ 1. Let G
be a unit variance spherical Gaussian distribution of dimension d. According to the Gaussian Annulus



18 Supplement of Repairing Bayesian Inconsistency under Misspecification

014~

—I-log-SafeBayes
---Log-SafeBayes MAP
true regression function

squared risk.

| |
002 200 250 300 350 400
100~
—Bayes
sk —R-log-SafeBayes
— I-log-SafeBayes
s0- true regression function
70+
S 60
5
@
g 50
£
g 40
=
30
20—
10—
o ; ! | | ] |
0 50 100 150 200 250 300 350 400
8

“log:-SafeBayes
og-SafeBayes MAP
o baseline

selfconfidence
IS
T

I I
0 50 100 150 200 250 300 350 400

afcBayes
2 ‘ ‘ ‘ ‘ 2 SafeBayes

0 50 100 150 200 250 300 350 400

Figure G.1: Same four graphs as in Figure 5, for the wrong-model experiment with py.x = 100



P. Griinwald and T. van Ommen

Figure G.2: Same graphs as in Figure 5 for the
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Theorem (see for example Blum et al. (2017)), there is a fixed constant ¢ > 0 such that for all d, the
G-probability mass of the Euclidean ball in R? with radius 2v/d is at least 1 — 3e=“¢. In particular,
for all large d, the mass will be at least 1/2.

Below we use that, for all 3 € RPHL p' £ p, we have 7((p, B) | p') = 0, so that TI(B,j..) | p') = 0.
We must thus have 3, 1I(B) ;) > m(p). Letting || - | denote Euclidean distance, we let 7, C N be the
set of j with for some 8 € By, ., ||8]] < 2V/d; here B, ; . represents the set of 3 € RP*! corresponding
to the set of measures B, j .. We must have for j € 7, for all B € By, j., ||B]| > 2v/d. Therefore, the

Gaussian annulus theorem above gives that for large p and hence large d, the prior mass I1(7, | M)
of the set J, given M, is at least 1/2. This gives for all large p,

;H(Bp,j,e)a = ;H(prjve) : <H(Bl)>l_a > > W(Bye) 'j'iggp <H(Bl,j',e)>l_a

PpJ€ J€Tp P

11—«
1
-m(p) - . G.2
g (SUPJ‘/EJ,, H(Bp,j',e)> (G2

Now let A C RP*! and let r = supge 4 ||8]loc. We have, for arbitrary such A and every 8, 8 € A, with
h(B3,B') denoting Hellinger distance between P, gy and Py, gy, both in M,,, and || - || denoting the
Fuclidean norm,

>

[N

18— 8l = (Bx~py[(BX — B X)) < 2.03 - supfe,r} - h(8,8") (G.3)

where the equality is straightforward by independence of the X-components and the inequality is
implied by Equation 2.6 in Birgé (2004). Fix some € > 0. We now first apply the above inequality
with the set A = {3, 8’} where 3,3’ € RPF! satisfy h(3, ") < e but otherwise are chosen arbitrarily.
A straightforward case-by-case analysis of the three possibilities for the supremum (e, || 3]s, |5 |loo)
gives, for € < 1/2.03,

2.03¢
1912 181+ sup {203ee 312086, 1812 - (@)

We will (for reasons to become clear below) take 0 < e < 1/(2.5 - v/2me) ~ 0.097. Here m = 3.14..; to
avoid clutter with our notation for prior distribution, we will henceforth use so-called T-notation with
7 = 27 = 6.28.. and reserve the symbol 7 for densities for the prior, so that 0 < e < 1/(2.5)y/7 - e.
For every j, we know that there exists a 8 € B, ;. satisfying [|3] < 2v/d. Thus for this 3, for all
p" € By j., and for € as just defined, the above further implies, using (G.4) and ||3]| < 2v/d, that
8] < 2.5v/d. This in turn implies that sup{||]|e : 8 € Bpj.c} < 2.5v/d. We can thus use (G.3)
again, with A = B,, ; ., to give, for every §', " € A,

18" — B"|| < 2.5vVd-h(B',B8") < 2.5Vde

Hence, for each j' € J,, B, j.c is contained in a Euclidean ball of radius 2.5v/de. The density of the
d-dimensional spherical unit variance 0-mean Gaussian being maximized at the origin and there equal
to (7-d)~'/2, the prior mass of such a Euclidean ball under II(- | p) is at most (7-d)~*/2V (d, 2.5v/de),
where V(d,r) denotes the volume of a d-dimensional ball with radius r. (G.2) thus becomes at least
(where we used a Stirling approximation for V(d, r) that holds for large d):

5 o T(P) VT -d e
;H(B”‘) =7y <V(d,3.2\/&e)>

) rd e m) (D) \TC
- 2 .(\/5(7—'6(2.56)2)‘1/2) 2 2 .(ﬁ<6/)(p+1)/2> :
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where ¢’ is, by our definition of ¢, a number strictly smaller than 1. Since we assume that 7(p) decreases
polynomially, i.e. there is k > 1 such that limsup,,_, 7(p)p* > 0, the supremum over p of the final
expression above is thus infinite, which is what we had to prove.

We note that the same proof also establishes that the regularity condition needed for consistency
in the well-specified case in the consistency result of Walker (2004) also does not hold for our model.
On the other hand, if the model is correct, then as soon as one takes any n < 1, the results of Zhang
(2006a), Grilnwald and Mehta (2016) can be used to establish consistency after all in the well-specified
case; and, if the sampling distribution P* is as in the main text, the same result can be used to establish
consistency of generalized Bayes for sufficiently small 7 in the misspecified case as well.
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