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Carnegie Mellon University

This following contains proofs of key results in the paper “Nonparametric
Modal Regression”. For clarity, we keep the numbering for the lemmas and
theorems consistent with those in the original paper. Before we proceed, we
first recall a useful theorem.

Theorem 12. Assume (A1,K1-2). Then

‖p̂n − p‖∗∞,k = O(h2) +OP

(√
log n

nhd+1+2k

)
.

Moreover, when n is sufficiently large and logn
nhd+1+2k → 0,

(1) P
(
‖p̂n − p‖∗∞,k > ε

)
≤ (k + 1)e−Anh

d+1+2kε2

for some constant A > 0.

The first assertion can be proved by the same method as used in Einmahl
and Mason (2000); Einmahl et al. (2005); Giné and Guillou (2002) and
the second assertion is an application of Talagrand’s inequality (Talagrand,
1996; Massart, 2000; Giné and Guillou, 2002). Thus we omit the proof.
Similar results for the kernel density estimator can be found in Chen et al.
(2014b).

Proof of Theorem 3. In this proof we write elements of M(x) as yj .
It can be shown that when ‖p̂n−p‖∗∞,2 is sufficiently small, for every x, each
the local mode yj ∈ M(x) corresponds to a unique closest estimated local
mode ŷj by assumption (A3). See the proof to Theorem 4 in Chen et al.
(2014a).

Part 1: Empirical approximation. Let x be a fixed point in D. Let yj
be a local mode and ŷj be the estimator corresponding to yj . By definition,

py(x, yj) = 0, p̂y,n(x, ŷj) = 0.
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By Taylor’s Theorem,

(2)
p̂y,n(x, yj) = p̂y,n(x, yj)− p̂y,n(x, ŷj)

= (yj − ŷj)p̂yy,n(x, y∗j ),

where y∗j is a point between yj and ŷj .
Thus, after dividing p̂yy,n(x, y∗j ) on both sides,

(3)
ŷj − yj = −p̂yy,n(x, y∗j )

−1p̂y,n(x, yj)

= −pyy(x, yj)−1p̂y,n(x, yj) +OP(‖p̂− p‖∗∞,2)p̂y,n(x, yj).

Note that we use∣∣p̂yy,n(x, y∗j )
−1 − pyy(x, yj)−1

∣∣ = OP(‖p̂− p‖∗∞,2).

This is valid since both pyy, p̂yy,n are bounded away from 0 when x, y are
sufficiently close to S (the modal manifold collection) by assumption (A3).
Thus, the inverse is bounded above by (A1) and (K1).

Therefore, by taking absolute values we obtain

|ŷj − yj | − |pyy(x, yj)−1||p̂y,n(x, yj)| = OP(‖p̂− p‖∗∞,2 · |p̂y,n(x, yj)|).

Taking a maximum over all local modes, and using ∆n(x) = max |ŷj − yj |,
we have

(4) ∆n(x)−max
j

{
|pyy(x, yj)−1||p̂y,n(x, yj)|

}
= OP

(
‖p̂− p‖∗∞,2 ·max

j
{|p̂y,n(x, yj)|}

)
,

which implies

max
j
{|p̂y,n(x, yj)|}−1

∣∣∣∣∆n(x)−max
j

{
|pyy(x, yj)−1||p̂y,n(x, yj)|

}∣∣∣∣
= OP

(
‖p̂− p‖∗∞,2

)
.

Thus, ∆n(x) can be approximated by maxj
{
|pyy(x, yj)−1||p̂y,n(x, yj)

}
. We

note that |pyy(x, yj)−1| is bounded from above and below by (A1-3), so
maxj{|p̂y,n(x, yj)|} shares the rate of maxj

{
|pyy(x, yj)−1||p̂y,n(x, yj)|

}
, and

equation (4) implies

(5)
1

∆n(x)

∣∣∣∣∆n(x)−max
j

{
|pyy(x, yj)−1||p̂y,n(x, yj)|

}∣∣∣∣ = OP
(
‖p̂− p‖∗∞,2

)
.
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According to its definition, An(x) is the same as left-hand side of (5)
whenever ∆n(x) > 0, and as the right-hand side of this expression does not
depend on x, we can take the supremum over x ∈ D to establish the first
assertion in the theorem.

Part 2: Rate of convergence. For each j, we focus on p̂y,n(x, yj) since
pyy(x, yj)

−1 is bounded:

|p̂y,n(x, yj)| = |p̂y,n(x, yj)− py(x, yj)|
≤ |p̂y,n(x, yj)− E (p̂y,n(x, yj))|+ |E (p̂y,n(x, yj))− py(x, yj)|

= OP

(√
1

nhd+3

)
+O(h2).

The last step follows from the usual bias-variance tradeoff for the kernel
density estimator. By repeating the above argument, the rate holds for every
local mode. Since there are at most K(x) <∞ local modes for fixed x, the
rate is the same as we take the maximum over all local modes. Thus, we
have proved the second assertion.

Proof of Theorem 4. By Theorem 3,

∆n(x) = max
j

{
|pyy(x, yj)−1||p̂y,n(x, yj)|

}
+ oP(1)

= max
j

{
|pyy(x, yj)−1| (|p̂y,n(x, yj)− E (p̂y,n(x, yj))|+B(x, yj))

}
+ oP(1),

where B(x, yj) = |E (p̂y,n(x, yj))− py(x, yj)| = O(h2) denotes the bias, and
the oP(1) term is from OP(‖p̂− p‖∗∞,2∆n(x)).

Since |pyy(x, yj)−1| is bounded, the above implies

∆n(x) = max
j

{
|pyy(x, yj)−1| |p̂y,n(x, yj)− E (p̂y,n(x, yj))|

}
+O(h2) + oP(1).

Note the big O term involves the bias and is independent of x. Thus, taking
supremum over x ∈ D yields

(6) ∆n = Z +O(h2) + oP(1),

where

Z = sup
x∈D

max
j

{
|pyy(x, yj)−1| |p̂y,n(x, yj)− E (p̂y,n(x, yj))|

}
,
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the maximum over a stochastic process. Now let

F0 =

{
(u, v) 7→ fx,y(u, v) : fx,y(u, v) = p−1

yy (x, y) ·

K

(
‖x− u‖

h

)
K(1)

(
y − v
h

)
, y ∈M(x), x ∈ R

}

be a function space similar to the function space defined in (15) of the
original paper (the original function space also appears in (8)). Recall that
K(α) denotes the α-th order derivative of K. We define the empirical process
Gn to be

(7) Gn(f) =
1√
n

(
n∑
i=1

f(Zi)− E(f(Zi))

)
, f ∈ F0,

where Zi = (Xi, Yi) is the observed data. Thus,

Z = sup
x∈D

max
j

{
|pyy(x, yj)−1| |p̂y,n(x, yj)− E (p̂y,n(x, yj))|

}
=

1√
nhd+3

sup
f∈F0

|Gn(f)|.

By assumption (A1) and (K1–2), F0 is a VC-type class with constant enve-
lope C2

K/λ2. Thus, applying Theorem 2.3 in Giné and Guillou (2002) gives

Z = sup
x∈D

max
j

{
|pyy(x, yj)−1| |p̂y,n(x, yj)− E (p̂y,n(x, yj))|

}
| = OP

(√
log n

nhd+3

)
.

Now by equation (6), the result follows.

Proof of Theorem 5. By applying to Theorem 3, the expected square
of the local error can be written as

E
(
∆2
n(x)

)
= O(h4) +O

(
1

nhd+3

)
= Bias2(x) + Variance(x).

Using arguments in Chacón et al. (2011); Chacón and Duong (2013), the
integrated bias and variance over x yields the same rate of convergence.

Proof of Theorem 7. We follow a strategy similar to that used in the
proof of Theorem 6 of Chen et al. (2014b). Let F be the function space
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defined in (15) of the original paper:

(8) F =

{
(u, v) 7→ fx,y(u, v) : fx,y(u, v) = p̃−1

yy (x, y) ·

K

(
‖x− u‖

h

)
K(1)

(
y − v
h

)
, x ∈ D, y ∈ M̃(x)

}
.

Recall the definition of Gn in (7), and the definition of B in (17) of the
original paper. Denote

Gn =
1√
hd+3

sup
f∈F
|Gn(f)|, B =

1√
hd+3

sup
f∈F
|B(f)|.

Our proof consists of three steps:

1. establish a coupling between
√
nhd+3∆̃n and Gn;

2. establish a coupling between Gn and B;
3. apply Gaussian anti-concentration Chernozhukov et al. (2014a, 2012)

to obtain a Berry-Esseen bound between
√
nhd+3∆̃n and B.

Step 1. Our goal is to show that

(9) P
(∣∣∣√nhd+3∆̃n −Gn

∣∣∣ > ε
)
≤ D1e

−D2nhd+5ε2 ,

for some constants D1, D2. Recall Corollary 6, which shows that∣∣∣√nhd+3∆̃n −Gn

∣∣∣ = O(εn,2) = O

(
sup
x,y
|p̂yy,n(x, y)− E (p̂yy,n(x, y)) |

)
.

Thus, there exists a constant D0 > 0 such that∣∣∣√nhd+3∆̃n −Gn

∣∣∣ ≤ D0 sup
x,y
|p̂yy,n(x, y)− E (p̂yy,n(x, y)) |.

By Talagrand’s inequality (equation (1) in Theorem 12),

(10)

P
(∣∣∣√nhd+3∆̃n −Gn

∣∣∣ > ε
)

≤ P
(

sup
x,y
|p̂yy,n(x, y)− E (p̂yy,n(x, y)) | > ε/D0

)
≤ D1e

−D2nhd+5ε2 ,

for some constants D1, D2 > 0. This gives the desired result.
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Step 2. We will show that

(11) P

(
|Gn −B| > A1

b0 log2/3 n

γ1/3(nhd+3)1/6

)
≤ A2γ,

for some constants A1, A2. We first recall a useful Gaussian approximation
result from Chernozhukov et al. (2014a) and Chernozhukov et al. (2014b).

Theorem 13 (Corollary 2.2 in Chernozhukov et al. (2014b); Theorem A.1
in Chernozhukov et al. (2014a)). Let G be a collection of functions that is a
VC-type class (see condition (K2)) with a constant envelope function b. Let
σ2 be a constant such that supg∈G E[g(Xi)

2] ≤ σ2 ≤ b2. Let B be a centered,
tight Gaussian process defined on G with covariance function

Cov(B(g1),B(g2)) = E[g1(Xi)g2(Xi)]− E[g1(Xi)]E[g2(Xi)],

where g1, g2 ∈ G. Then for any γ ∈ (0, 1) as n is sufficiently large, there
exists a random variable B′

d
= supf∈G |B(g)| such that

P

(∣∣∣∣∣sup
f∈G
|Gn(g)| −B′

∣∣∣∣∣ > A1
b1/3σ2/3 log2/3 n

γ1/3n1/6

)
≤ A2γ,

where A1, A2 are two universal constants. Note that A
d
= B for random

variables A,B means that A and B have the same distribution.

To apply Theorem 13, we need to verify the conditions. By assumptions
(K2) and (A2), F is a VC-type class with constant envelope b0 = C2

K λ̃2 <∞.
Note that 1/λ̃2 is the bound on the inverse second derivative of p̃yy(x, y),
for y close to a local mode. As for σ2, by definition,

sup
f∈F

E[f(Xi)
2] ≤ hd+3b20.

Thus, we can pick σ2 = hd+3b20 ≤ b20 if h ≤ 1. Hence, applying Theorem 13
gives

P

(∣∣∣∣∣sup
f∈F
|Gn(f)| −B′

∣∣∣∣∣ > A1
b0h

2/3h2 log2/3 n

γ1/3n1/6

)
≤ A2γ,

for some constants A1, A2 and γ < 1 and B′
d
= supf∈F |B(f)|, where B is a

tight Gaussian process defined on F .
Now multiplying both sides of the above expression by

√
h−d−3, and using

the definition of Gn and the fact that 1√
hd+3

B′ = B, we have

(12) P

(
|Gn −B| > A1

b0 log2/3 n

γ1/3(nhd+3)1/6

)
≤ A2γ,
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which gives the desired result. Note that if we instead consider the function
space F1 = { 1√

hd+3
f : f ∈ F}, then

B =
1√
hd+3

B′
d
=

1√
hd+3

sup
f∈F
|B(f)| d= sup

f∈F1

|B(f)|,

so B is the maximum of a Gaussian process. We have E(B) = O(
√

log n)
by Dudley’s inequality for Gaussian processes (Van Der Vaart and Wellner,
1996) so that B is not tight; however, this is not a problem since (12) bounds
the difference between Gn and B.

Step 3. We first show a coupling between
√
nhd+3∆̃n and B. We pick ε =

(nhd+5)−1/4 in (9) so that

P
(∣∣∣√nhd+3∆̃n −Gn

∣∣∣ > (nhd+5)−1/4
)
≤ D1e

−D2

√
nhd+5

.

For n sufficiently large, by the triangle inequality along with (11),

P

(∣∣∣√nhd+3∆̃n −B
∣∣∣ > A3

log2/3 n

γ1/3(nhd+3)1/6

)
≤ A4γ,

for some constants A3, A4 > 0. Note that we absorbed the rate (nhd+5)−1/4

into A3 log2/3 n/(γ1/3(nhd+3)1/6). This is valid since (nhd+5)−1/4 converges
faster. Also, we absorbed D1e

−D2

√
nhd+5

into A4γ. We allow γ → 0 as long
as γ converges at rate slower than (nhd+5)−1/4.

Lastly, to obtain the desired Berry-Esseen bound, we apply a Gaussian
approximation result in Kolmogorov distance, which is given in Lemma 2.3
Chernozhukov et al. (2014b) (this is an application of the anti-concentration
inequality in Chernozhukov et al. (2014a)).

Lemma 14 (Modification of Lemma 2.3 in Chernozhukov et al. (2014b)).
Let B be defined as the above. Assume (K1-2) and that there exists a random
variable Y such that P(|Y −B| > η) < δ(η). Then

sup
t
|P(Y < t)− P (B < t)| ≤ A5E(B)η + δ(η),

for some constant A5.

This modification follows from Remark 2.5 and Remark 3.2 of Cher-
nozhukov et al. (2014b); in these remarks, they discuss how to obtain the
desired bound for kernel density estimators under similar assumptions to



8 Y.-C. CHEN ET AL.

(K1–2). Note that in Lemma 2.3 of Chernozhukov et al. (2014b), E(B)
should be replaced by E(B) + log η. We can ignore log η since it is small
compared to E(B).

By Lemma 14, we conclude that

sup
t

∣∣∣P(√nhd+3∆̃n < t
)
− P (B < t)

∣∣∣ ≤ A5E(B)

(
A3

log2/3 n

γ1/3(nhd+3)1/6

)
+A4γ

= A6

(
A3

log7/6 n

γ1/3(nhd+3)1/6

)
+A4γ,

for some A6 > 0. Taking γ =
(

log7 n
nhd+3

)1/8
, we have established the theorem.

Proof of Theorem 8. This proof is essentially the same as proof to
Theorem 7 in Chen et al. (2014b), following from Theorem 7 of the current
paper. We state the basic ideas and omit the details. Note that the function
space (8) depends on the probability measure P and bandwidth h,

F = F(P, h) =

{
(u, v) 7→ fx,y(u, v) : fx,y(u, v) = p̃−1

yy (x, y) ·

K

(
‖x− u‖

h

)
K(1)

(
y − v
h

)
, x ∈ D, y ∈ M̃(x)

}
,

since the index y is defined over the smoothed local mode M̃(x), and both
M̃(x) and p̃(x, y) depend on P and h. For the bootstrap estimate, Theorem 7
implies that ∆̂∗n can be approximated by the maximum of a certain Gaussian
process

sup
f∈F(Pn,h)

|B(f)|,

where the function space above now depends on Pn and h, i.e., the role of
P is completely replaced by Pn. For the function space, the index y takes
values at the estimated local modes M̂n(x), and p̃yy(x, y) will be replaced by
the second derivative of KDE p̂n(x, y). Both quantities now are determined
by the empirical measure Pn and the smoothing parameter h.

By Lemmas 17, 19, and 20 in Chen et al. (2014b), the maxima of the
Gaussian processes defined over the function spaces F(P, h) and F(Pn, h)
will agree asymptotically. Putting this together, the result follows from the
approximation

∆̂∗n ≈ sup
f∈F(Pn,h)

|B(f)| ≈ sup
f∈F(P,h)

|B(f)| ≈ ∆̃n.
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Before we prove Theorem 10, we first prove the following useful lemma
on Gaussian mixtures and corresponding local modes.

Lemma 15 (Gaussian mixture and local modes). Consider a Gaussian
mixture density p(y) =

∑K
j=1 πjφ(y;µj , σ

2
j ), with µ1 < . . . < µK and y ∈ R.

Let W = ∆min/σmax and ∆min = min{|µj−µi| : i 6= j} and σmax = maxj σj.
If

W ≥

√
2 log

(
4(K ∨ 3− 1)

πmax

πmin

)
,

then

max
j=1,...K

|µj −mj | ≤ σmax × 4
πmax

πmin

1

W
e−

W2

2 .

Proof. Given any set of parameters {πj , µj , σ2
j : j = 1, . . . ,K}, we con-

sider another mixture (but not necessarily a density)

h(y) = πminφ(y;µ1, σ
2
max) +

K∑
j=2

φ(y;µ1 + (j − 1)∆min, σ
2
max).

We assume

(MK) h(y) has K distinct local modes.

Note that this implies p(y) has K distinct local modes. Later we will derive
a sufficient condition for this assumption. Let the ordered local modes of
h(y) be m′1 < . . . < m′K . Then

|m′1 − µ1| ≥ max
j=1,...K

|mj − µj |.

We define s1 such that

h(µ1 + s1) = h(µ1), h(s) ≥ h(µ1), ∀s ∈ [µ1, µ1 + s1].

It is easy to see that m′1 ≤ s1 + µ1 since m′1 is the smallest (in terms of
location) local mode of h. Thus, if we can bound s1, we bound the difference
|m′1 − µ1|. Note that s1 must be very small (at least smaller than σmax)
otherwise we will not obtain K local modes.
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Now by the definition of h, we can find s1 such that

h(µ1) = πminφ(µ1;µ1, σ
2
max) + πmax

K∑
j=2

φ(µ1;µ1 + (j − 1)∆min, σ
2
max)

=
1√

2πσ2
max

πmin +
1√

2πσ2
max

πmax

K∑
j=2

e−
1
2

(
(j−1)∆min
σmax

)2

= h(µ1 + s1)

=
1√

2πσ2
max

πmine
− 1

2
(
s1

σmax
)2

+
1√

2πσ2
max

πmax

K∑
j=2

e−
1
2

(
(j−1)∆min−s1

σmax
)2

.

Therefore, s1 can be obtained by solving
(13)

πmin

(
1− e−

1
2

(
s1

σmax
)2
)

= πmax

K∑
j=2

e−
1
2

(
(j−1)∆min
σmax

)2

(e
(j−1)∆min
σmax

s1
σmax

− s21
2σ2

max − 1)

Note that ex < 1 + 2x if x < 1. Thus, when

(14)
(j − 1)∆min

σmax

s1

σmax
< 1,

we have

(15) e
(j−1)∆min
σmax

s1
σmax

− s21
2σ2

max − 1 < 2
(j − 1)∆min

σmax

s1

σmax
= 2(j − 1)W

s1

σmax
,

where W = ∆min
σmax

. Also note that

(16) 1− e−
1
2

(
s1

σmax
)2

>
1

2

(
s1

σmax

)2

,

since s1 < σmax. Let s2 be a small number satisfying

1

2
(
s2

σmax
)2 = 2

πmax

πmin
W

s2

σmax

∫ ∞
1

xe−
W2

2
x2
dx

=
s2

σmax

πmax

πmin

2

W
e−

W2

2

≥W πmax

πmin

s2

σmax

K∑
j=1

e−
1
2
j2W 2

j2

= πmax

K∑
j=2

e−
1
2

(
(j−1)∆min
σmax

)2

2(j − 1)Ws2
πmax

πmin
,
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where we have used (13), (15) and (16). The above result gives

(17) s2 = σmax ×
πmax

πmin

4

W
e−W

2/2 > s1 ≥ max
j
|mj − µj |,

which is the desired result.
Note that the above method requires (14), which requires

1

K − 1

1

W
>

s2

σmax
=
πmax

πmin

4

W
e−W

2/2.

This is true whenever

(18) W >

√
2 log

(
4(K − 1)

πmax

πmin

)
,

which gives one part of the condition in this Lemma.
Finally, recall that we assume (MK) at the beginning. We now prove that

when W is sufficiently large, (MK) holds. It is easy to see that

|µi − µj | > ∆min

⇒ |mi −mj | > ∆min − 2 max
i
|mi − µi|.

Thus, as long as ∆min − 2 maxi |mi − µi| > 0, there exists K distinct local
modes for p(y).

By equation (17), a sufficient condition to ∆min− 2 maxi |mi−µi| > 0 is

(19) ∆min > 2σmax ×
πmax

πmin

4

W
e−W

2/2,

which is equivalent to

W 2eW
2/2 > 8

πmax

πmin
.

When W > 1 (which is satisfied by (20)), we see that

eW
2/2 > 8

πmax

πmin

implies (19), so that a sufficient condition for p(y) having K distinct local
modes is

(20) W >

√
2 log

(
8
πmax

πmin

)
.

Combining this condition and equation (18) completes the proof.
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Proof of Theorem 10. The proof consists of four steps. The first three
steps consider pointwise prediction sets, and the last uniform prediction sets.
In summary, the four steps are as follows:

1. we prove that

ε1−α(x) ≤ z1−α/2σmax(x) + max
i
|ui(x)−mi(x)|,

where m1(x) < m2(x) < . . . < mK(x)(x) are the ordered local modes;

2. we prove that η1−α(x) ≥ 1
2K(x)∆min(x);

3. we apply Lemma 15 to bound maxi |ui(x) − mi(x)| by ∆min(x) and
use the first two steps to conclude the desired pointwise result;

4. we extend the first three steps to the uniform case.

Step 1. By assumption (GP), the set

A =

K(x)⋃
j=1

µj(x)⊕
(
z1−α/2σj(x)

)
is a level (1 − α) prediction set. Let m1(x) < m2(x) < . . . < mK(x)(x) be
the ordered local modes of p(y|x). Then we have
(21)
µj(x)⊕

(
z1−α/2σj(x)

)
⊆ mj(x)⊕

(
z1−α/2σj(x) + |µj(x)−mj(x)|

)
⊆ mj(x)⊕

(
z1−α/2σmax(x) + max

j
|µj(x)−mj(x)|

)
.

This holds for all j. Tthe regression mode set isM(x) = {m1(x), . . . ,mK(x)(x)},
so that

A ⊆M(x)⊕
(
z1−α/2σmax(x) + max

j
|µj(x)−mj(x)|

)
,

which implies

(22) ε1−α(x) ≤ z1−α/2σmax(x) + max
j
|µj(x)−mj(x)|,

since ε1−α(x) is the smallest size to construct a pointwise prediction set with
with 1− α prediction accuracy.

Step 2. We pick α such that α < π1(x), πK(x)(x). The prediction set from
the regression function must contain all the mixture centers. Thus,

2η1−α(x) ≥ µK(x)(x)− µ1(x) ≥ (K(x)− 1)∆min(x).



PROOFS FOR “NONPARAMETRIC MODAL REGRESSION” 13

Step 3. The length of prediction set P1−α = M(x)⊕ε1−α(x) is 2K(x)ε1−α(x)
and the length of prediction set R1−α = m(x)⊕ η1−α(x) is 2η1−α(x). Thus,
we need to show that

(23) η1−α(x) > K(x)ε1−α(x).

By (22) and Step 2, a sufficient condition for (23) is

(K(x)− 1)∆min(x) > K(x)

(
z1−α/2σmax(x) + max

j
|µj(x)−mj(x)|

)
.

The last term can be bounded by Lemma 15, which shows that

(24) max
j
|µj(x)−mj(x)| ≤ σmax(x)× 4

πmax(x)

πmin(x)

1

W (x)
e−

W (x)2

2 ,

whenever

(25) W (x) ≥

√
2 log

(
4(K(x) ∨ 3− 1)

πmax(x)

πmin(x)

)
,

where W (x) = ∆min(x)/σmax(x). For convenience, we assume that α < 0.1.
This implies that z1−α/2 > 1.64. To simplify matters, we wish to bound
maxj |µj(x)−mj(x)| by 0.1×z1−α/2σmax(x) so that we can have a reference
rule that only depends on z1−α/2. To attain this, we use (24) so that what
we need is

(26)

4
πmax(x)

πmin(x)

1

W (x)
e−

W (x)2

2 ≤ 4
πmax(x)

πmin(x)
e−

W (x)2

2

≤ 0.1× z1−α/2

< 0.1× 1.64.

Thus, a sufficient condition is

(27)

W (x) >

√
2 log

(
40

1.64

πmax(x)

πmin(x)

)

=

√
6.4 + 2 log

(
πmax(x)

πmin(x)

)
.

Hence, when W (x) >

√
6.4 + 2 log

(
πmax(x)
πmin(x)

)
, the condition

(28) (K(x)− 1)∆min(x) > 1.1×K(x)z1−α/2σmax(x)
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implies that modal regression has a smaller prediction set. Condition (28) is
equivalent to

(29) W (x) > 1.1× K(x)

K(x)− 1
z1−α/2,

after rearrangement. Now the conditions on W (x) = ∆min(x)/σmax(x) in-
volve equations (25),(27) and (29). We conclude that whenever

W (x) =
∆min(x)

σmax(x)

> max

{
1.1× K(x)

K(x)− 1
z1−α/2,√

6.4 ∨ 2 log (4(K(x) ∨ 3− 1)) + 2 log

(
πmax(x)

πmin(x)

)}
,

the prediction set P1−α(x) is smaller than R1−α(x).

Step 4. Finally, we consider the uniform case. Note that

ε1−α ≤ sup
x
ε1−α(x),

η1−α ≥ inf
x
η1−α(x).

Therefore,

(30)

ε1−α ≤ sup
x
ε1−α(x)

≤ sup
x

(
z1−α/2σmax(x) + max

j
|µj(x)−mj(x)|

)
≤ z1−α/2σmax + sup

x
max
j
|µj(x)−mj(x)|,

and similarly

(31)

η1−α ≥ inf
x
η1−α(x)

≥ inf
x

(K(x)− 1)∆min(x)

≥ (Kmin − 1)∆min.

Note that the second term in the last inequality of (30) can be bounded by

(32)

sup
x

max
j
|µj(x)−mj(x)| ≤ sup

x
σmax(x)× 4

πmax(x)

πmin(x)

1

W (x)
e−W (x)2/2

≤ σmax × 4
πmax

πmin

1

W
e−W

2/2,
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where W = ∆min/σmax ≤W (x).
Now using (26), and combining (30) and (32), we see ethat

(33) ε1−α ≤ 1.1× z1−α/2σmax

whenever
(34)

W =
∆min

σmax
> max

{√
6.4 ∨ 2 log (4(Kmax ∨ 3− 1)) + 2 log

(
πmax

πmin

)}
.

The volume of the prediction sets P1−α and R1−α is

Vol(P1−α) = 2ε1−α

∫
D
K(x)dx, Vol(R1−α) = 2η1−α

∫
D
dx.

Thus, Vol(P1−α) < Vol(R1−α) if and only if

(35) ε1−αK < η1−α.

Applying equation (33) and (32) to (35), we require that

η1−α ≥ (Kmin − 1)∆min > K × 1.1× z1−α/2σmax ≥ ε1−α

which leads to
∆min

σmax
> 1.1× K

Kmin − 1
z1−α/2.

Combining this condition and (34) completes the proof.

Proof for Lemma 11. Let the Hessian matrix of p(x, y) beH ≡ H(x, y).
The eigenvalues of H are

(36)
λ1(x, y) = tr(H)/2 +

√
tr(H)2/2− det(H)

λ2(x, y) = tr(H)/2−
√
tr(H)2/2− det(H),

and the corresponding eigenvectors are

v1(x, y) =

[
λ1(x, y)−H22

H21

]
v2(x, y) =

[
λ2(x, y)−H22

H21

]
,

where Hij is the (i, j) element of H and tr(H) is the trace of H and det(H)
is the determinant of H.

Thus, λ2(x, y) < 0 if and only if (tr(H) < 0 or det(H) < 0). Namely,

λ2(x, y) < 0⇐⇒
(
H11 +H22 < 0 or H11H22 < H2

12

)
.
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However, since y ∈ M(x), H22 < 0. This implies λ2(x, y) < 0. (since what-
ever the sign of H11 is, one of the above conditions must hold)

Thus, all we need is to show vT2 (x, y)∇p(x, y) = 0. By the formula for
eigenvectors,

vT2 (x, y)∇p(x, y) = (λ2(x, y)−H22)px(x, y) +H21py(x, y)

= (λ2(x, y)−H22)px(x, y)

since py(x, y) = 0 for y ∈M(x). Therefore, vT2 (x, y)∇p(x, y) = 0 if and only
if px(x, y) = 0 or λ2(x, y)−H22 = 0. The former case corresponds to the first
condition and by (36), λ2(x, y) = H22 if and only if H12 = 0. This completes
the proof.
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