
Statistics Surveys
Vol. 18 (2024) 82–138
ISSN: 1935-7516
https://doi.org/10.1214/24-SS147

Mixture cure model methodology in
survival analysis: Some recent results

for the one-sample case
Ross Maller1, Sidney Resnick2, Soudabeh Shemehsavar∗3,4,

and Muzhi Zhao5

1Research School of Finance, Actuarial Studies & Statistics,
The Australian National University, Canberra, Australia

e-mail: Ross.Maller@anu.edu.au
2School of Operations Research & Information Engineering,

Cornell University, Ithaca, N.Y., USA
e-mail: sir1@cornell.edu

3School of Mathematics, Murdoch University, Perth, Western Australia
4Department of Mathematics & Statistics, University of Tehran, Tehran, Iran

e-mail: Soudabeh.Shemehsavar@murdoch.edu.au
5Research School of Finance, Actuarial Studies & Statistics,

The Australian National University, Canberra, Australia
e-mail: Muzhi.Zhao@anu.edu.au

Abstract: The mixture cure model in survival analysis has received large
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1. The mixture cure model

In the analysis of time-to-event data, we often encounter survival curves which
plateau (level off) at the right hand end. This may indicate the presence of
a proportion of individuals in the population who will not suffer the event,
no matter how long they are followed up. We refer to them as “cured of” or
“immune to” the cause of the event, and methods are now well developed to
deal with this kind of data, generally known as cure model analysis. As well
as providing significant extra information beyond that of a standard survival
analysis, ignoring the presence of cures in an analysis can result in biased and
misleading conclusions, sometimes with profound consequences for diagnostic
prognostications and evaluations. Cure models have received large and growing
attention in the last few decades and it seems timely now to provide a review of
their development leading up to present day applications. Various types of cure
models have been formulated but here we concentrate on mixture cure models.

The first recognition of the need for and implementation of a cure model
seems to have been by Boag (1949). He collected data from a number of centres
in England, for various sites of the disease and treatment methods, and observed
that the distributions of life-lengths (measured from the beginning of treatment)
of those dying appeared to follow quite well a lognormal distribution. But, he
wrote “if (a) sample consisted mainly of patients treated while the disease was
still in an early and localized form, an analysis made ten years later would yield
a distribution of survival times... similar in form to that of the foregoing sample
[i.e., to those dying of the disease]... together with a large group of patients who
were still alive and symptom-free... In this instance we should conclude that a
proportion of the patients was permanently cured by the treatment.”

Accordingly, he proposed a model in which “A proportion . . . of all patients
treated is permanently cured. Patients in the remaining fraction . . . are liable
to die of cancer if they do not previously die from other causes and the survival
times of patients in this group follow a lognormal distribution.” He went on
to fit by maximum likelihood a lognormal distribution with mass at infinity –
a mixture cure model – to followup data on 121 women with breast cancer,
finding a significant “cured” proportion in the data.1 We revisit Boag’s data
and analysis in later sections.

Since the prospect of a cure is surely the hope of many or most medical pro-
cedures, the importance of Boag’s insight can hardly be overstated. Following
his groundbreaking paper a number of researchers, including Berkson and Gage
(1952), Haybittle (1965), Farewell (1977a,b, 1982, 1986), Pocock et al. (1982),
Goldman (1984, 1991), Rutquist and Wallgren (1984, 1985), Larson and Dinse
(1985), Halpern and Brown (1987), Struthers and Farewell (1989), Sposto et al.
(1992), followed up with various aspects and analyses of the model, but the first
systematic treatment of what is now called the long term survivor or cure mix-

1The lognormal was not in fact the best fitting model for this data – Boag found that an
exponential mixture distribution was slightly better – but he favoured the lognormal because
it also described well the suite of other cancer data types he considered. We fitted the Weibull
as being more general than the exponential; see Subsection 7.7.
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ture model seems to have been in Maller and Zhou (1996). That book combines
nonparametric and parametric theoretical formulations and proofs with many
practical applications and examples of the model.

There has been an upsurge in interest in the model since the 1990s, with many
applications areas explored, especially in medical statistics, and some substantial
theoretical advances made. Correspondingly, computational facilities have im-
proved tremendously, and with modern capabilities a wide variety of parametric
or semi-parametric models of censored data with long term survivors can now be
fitted routinely with the statistical package R; see for example Cai et al. (2012),
Jackson (2016), Nui et al. (2018), Amdahl (2020) and López-Cheda et al. (2021).
There have also been a number of review/overview and methodological articles,
for example, Morbiduccia et al. (2003), Amica and Van Keilegom (2018), Patilea
and Van Keilegom (2020), Musta et al. (2021), and the book by Peng and Yu
(2021), summarising some of these aspects. A special issue of Statistical Methods
in Medical Research is devoted to cure rate modelling, with an introduction by
Balakrishnan (2017).

It seems appropriate now to present an overview drawing together earlier
and some more recent developments as well as pointing out areas where further
work is needed. The literature has grown too large and diverse to summarise
completely here, and we confine ourselves to a selection reflecting our own main
interests. In particular, we restrict our discussion to the mixture cure model
in this survey. A number of papers deal with non-mixture cure models, for
example Yin and Ibrahim (2005), Koutras and Milienos (2017), Leão et al.
(2020), Milienos (2022) and Wang and Pal (2022). But the mixture model is easy
to formulate and easy for practitioners to interpret, and it generalises naturally
to competing risks setups; see Maller and Zhou (2002) and Subsection 4.5 herein.

Before leaving this introduction we mention variants of the mixture model
for cure discussed in McLachlan and Peel (2000), Lee et al. (2017), McLachlan
et al. (2019), Tawiah et al. (2020a) and Lee et al. (2021). The use of the EM
algorithm in the mixture cure model is discussed in Sy and Taylor (2000), Yu
et al. (2004b), McLachlan and Krishnan (2008) and Lee et al. (2021). Bayesian
methods are considered in Morbiduccia et al. (2003) (classification of individuals
into diagnostic classes), and in Gupta et al. (2016). Non-parametric cure models
are considered in Peng and Dear (2000), Peng and Carriere (2002) and Peng
(2003). Balakrishnan and his coworkers have analysed a large class of general-
isations based on the mixture cure model; see Balakrishnan and Barui (2023)
and their references.

1.1. Notation, assumptions and distributions

This subsection introduces the notation to be used throughout. We adopt the
notation in Maller et al. (2022, 2023) and postulate an independent and iden-
tically distributed (iid) censoring model with right censoring. Thus a sample of
size n consists of observations on the sequence of iid 2-vectors

(
Ti = T ∗

i ∧Ui, Ci =
1(T ∗

i ≤ Ui); 1 ≤ i ≤ n
)
. The T ∗

i with continuous cumulative distribution func-
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tion (cdf) F ∗ on [0,∞) represent the times of occurrence of an event under
study, such as the death of a person, or the onset of a disease, etc. The Ui,
iid with continuous2 cdf G on [0,∞), are censoring random variables, indepen-
dent3 of the T ∗

i . In a sample from a population containing long-term survivors
we observe the censored random variables Ti = T ∗

i ∧ Ui with censor indicators
Ci = 1(T ∗

i ≤ Ui).
In the general mixture cure model, the censoring distribution G of the Ui is

always assumed proper (total mass 1), but the distribution F ∗ of the T ∗
i may

be improper, of the form

F ∗(t) = pF (t), t ≥ 0, (1.1)

where 0 < p ≤ 1 and F is a proper distribution (has total mass 1). F is the
distribution of the lifetimes of susceptible individuals in the population; only
these can experience the event of interest and have a potentially uncensored
failure time. The remainder are immune to the event of interest or cured of it.
The presence of cured subjects is signalled by a value of 1−p > 0, where 1−p is
the proportion of the population that is cured. In this case the distribution F ∗

is improper, with total mass p. Observations on cured or immune individuals
are always censored; those on susceptibles may or may not be according as
the corresponding T ∗

i > Ui or not. We deal with the usual situation when we
do not know which individuals in the sample may be cured or immune; we
only have the survival times and censor indicators to work with.4 The notation
F

∗(t) = 1 − F ∗(t), t ≥ 0, is used for the survival function (tail function) of F ∗,
and similarly F (t) = 1 − F (t) and G(t) = 1 − G(t). Let H(t) := P (T1 ≤ t) be
the distribution of the observed survival times Ti = T ∗

i ∧ Ui, with tail H(t) =
1 −H(t) = P (T ∗

i ∧ Ui > t) = F
∗(t)G(t), t ≥ 0.

1.2. Data display: the Kaplan-Meier Estimator

We take a practical point of view whereby the data has prominence and the
methodological developments flow from the inferences to be drawn from it. So
suppose we have at hand a single sample of survival data which is to be anal-
ysed statistically. For visual display of the data the Kaplan and Meier (1958)
empirical distribution function estimator (KME) of the lifetimes is commonly
used, and we briefly review its properties here.5

2The assumption of continuity of F ∗ and G can be dropped; see Subsection 9.2.
3We discuss “informative censoring” (when the Ui and T ∗

i are dependent) in Subsections 3.3
and 4.3.

4In some applications, some subjects surviving after a specified finite time threshold are
considered cured. Safari et al. (2022, 2023) consider models in which cure status is only
partially observed. We deal only with cases where survival times are either censored, or not.

5Also in use is the hazard function estimator of Nelson (1972), but the KME is most
evocative for our purposes. A modified version of the KME was suggested by Beran (1981),
but we use the original form. The importance of making preliminary visual assessments of the
data is stressed in Yu et al. (2013): “We recommend that, regardless of the model used, the
underlying assumptions for cure and model fit should always be graphically assessed”.
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The KME is a highly informative data display which shows clearly in vi-
sual form the features we want to investigate. To define it, order the lifetimes
(Ti)1≤i≤n as T

(1)
n < T

(2)
n < · · · < T

(n)
n , with associated censor indicators

C
(1)
n , C

(2)
n , . . . , C

(n)
n . Let M(n) = T

(n)
n = max1≤i≤n Ti be the largest survival

time and let Mu(n) = max1≤i≤n CiTi be the largest observed uncensored sur-
vival time. An explicit definition of the KME is

F̂n(t) := 1 −
n∏

1≤i≤n:T (i)
n ≤t

(
1 − C

(i)
n

n− i + 1
)
, for 0 < t ≤ M(n), (1.2)

with F̂n(0) := 0 and F̂n(t) := F̂n(M(n)) for t > M(n). In (1.2), n− i+ 1 is the
number of subjects “at risk” at a time just prior to T

(i)
n . Recall we assume F ∗

and G are continuous so with probability 1 there are no tied survival times in
the data. Let

p̂n := F̂n(M(n)) (1.3)
be the value of the KME at its right extreme. Equivalently, we can take p̂n :=
F̂n(Mu(n)), since the KME stays constant in (Mu(n),M(n)).

As an example, Fig. 1 shows the KME of the survival distribution (lifetime
measured from the time of first diagnosis of the disease), with 95% confidence
intervals, for Boag’s 121 breast cancer patients.6 The KME jumps only at the
(uncensored) death times in the data, remaining constant at censored times,
as indicated on the figure. In Fig. 1 it appears to level off at a value less than
1, consistent with Boag’s observation of a possible cured component. This is
very typical of the kind of KME plot that can be seen in much of the medical
literature.

Fig 1. KME for Boag data with 95% confidence intervals.

The first step in a statistical analysis of survival data with possible cures is to
assess and test for their existence in the population. A nonparametric estimate of

6The KME is usually displayed as the tail of the survival distribution, but we will use the
term KME to describe the cumulative distribution function (cdf) of the lifetimes.
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the population proportion p susceptible to dying from the disease is given by the
maximum value of the KME, that is, p̂n as defined by (1.3), and its complement
is the estimated cure proportion. As can be seen in Fig. 1, an estimate of the
cure proportion for Boag’s data is 0.30, with a 95% confidence interval (CI)
of [0.19, 0.48] calculated using the Greenwood and Irwin (1939) estimate. This
interval excludes 0, in general agreement with Boag’s observation of a possible
cured component. This confidence interval assessment though indicative is only
approximate, however, as the fact that p̂n is calculated from the KME at a
random (not deterministic) time should be taken into account. Rigorous tests
using p̂n are considered in Section 3.

The KME contains further evidence about the existence of a cured com-
ponent. The length of the level stretch at the righthand end of the KME is
indicative of the amount of followup in the data. We see in Fig. 1 a tendency
for the KME to remain constant at lifetimes greater than 90 months, except
for one late death at 120.6 months. So we might be inclined to pronounce a
patient as “cured” of the disease if she survives more than about 90 months
from first being diagnosed with it. But again an estimate like this comes with
associated variability which should be included in any recommendation. One
way to approach this is to estimate the probability a patient is cured having
been followed up for a nominated event-free amount of time. We show how to
estimate such an individual probability and assess its reliability in Section 8,
and discuss a parametric approach to it using Boag’s data in Subsection 8.3.

We emphasise that an “improper” sample KME, that is, one having right
extreme less than 1, is suggestive but not definitive evidence of the presence of
cured individuals in the population. Even in the absence of cures, it’s possible
for the right extreme of the KME to be less than 1 just by chance; Maller and
Zhou (1993) calculate the probability of this event under the assumption of iid
censoring. So we need rigorous tests for whether the right extreme of the KME
is significantly less than 1, and for how this is related to the length of the level
stretch at the righthand end of the KME.

Important information is also contained in the magnitudes of the largest
survival time, M(n), and the largest uncensored survival time, Mu(n), and the
numbers of observations (censored and uncensored) in the two time intervals
[0,Mu(n)] and (Mu(n),M(n)]. Much of the methodology is set out in Maller
and Zhou (1996), which can be read as background to the present paper. Some
important issues are left unresolved in that book, which we address here.

1.3. The role of the right extremes

The right extremes of the survival and censoring distributions play a special role
in our analysis. Let τF∗ = inf{t > 0 : F ∗(t) = 1} (with the inf of the empty set
equal to ∞) be the right extreme of the survival distribution F ∗, and similarly
τF , τG and τH are the right extremes of F , G and H. The quantity τF∗ represents
the largest possible survival time of an individual in the population, but in a
sample we can only observe times up to a maximum of τH := min(τF∗ , τG), due
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to the censoring. We always have H(τH) = 1, G(τG) = 1 and F (τF ) = 1. When
p = 1, so that F ∗ ≡ F , then F ∗ has total mass 1 and τF∗ = τF ; when p < 1 we
have τF∗ = ∞, and τF ≤ τF∗ , with the possibility that τF < τF∗ .

The inequality τF ≤ τG quantifies “sufficient followup” in the sense that
it allows the largest possible susceptible survival times to be observed; in the
contrary situation, τG < τF , censoring is so heavy that the data is truncated
at a level below the maximum possible survival time. Besides expressing that
followup is “sufficient” in this sense, the condition τF ≤ τG arises in a number
of theoretical results. For example, the KME is biased downwards, but the bias
tends to 0 in large samples, if and only if τF ≤ τG; and this is also necessary
and sufficient for the KME F̂n to be consistent for F ∗ on the whole line, that
is, for supt≥0 |F̂n − F ∗(t)| P−→ 0 as n → ∞ (Maller and Zhou, 1996, Thms. 3.8,
3.13 and 4.2). These are true for all 0 < p ≤ 1.

The convergence of the integral∫
{0<t<τH}

dF (t)
1 −G(t) (1.4)

is a required assumption in Thm. 4.2.3, p.82, of Gill (1980), which gives a func-
tional limit theorem for the KME, from which its asymptotic normality at each
t > 0 can be deduced. The “sufficient followup” condition τF ≤ τG is necessary
for the integral in (1.4) to be finite, and subsequently plays an important role
in many of the large-sample results in Gill (1980) and in the literature. For
example, (1.4) is also assumed in Thm. 4.3 of Maller and Zhou (1996) which
gives the asymptotic normality of p̂n in the case p < 1 (see Subsection 3.1).

These considerations highlight the need for information on, or assumptions
about, the right hand endpoints of F ∗, F and G, and, especially, whether they
are finite or not. Most realistic is to assume τG < ∞ since observation must
always cease at some finite point. In many cases the assumption τF < ∞ may
also be natural. Certainly in real survival data no individual lives forever, but
we would set τF = ∞ for example when studying the occurrence of an infectious
disease where an immune individual would never contract the disease no matter
how long the follow-up. This can certainly be the case in epidemics such as the
COVID virus pandemic, for example; and in Cairns et al. (2013) an analysis
with children immune to malaria is given.

In practice, it is not uncommon to use a distribution with infinite right end-
point as the lifetime distribution; exponential, Weibull, lognormal, or Gumbel
distributions are often used, for example in engineering reliability studies. In
doing this we accept that the probability of seeing an extremely long lifetime
under the assumed model is negligible, so the theoretical approximation is good
enough for practical purposes. Alternatively, we could truncate the survival dis-
tribution at a (large) finite value, thus creating a distribution with τF < ∞,
as is often done in simulations. The truncation value is usually chosen so that
the probability in the tail of the original distribution is negligible, say, less than
0.01.
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2. Basic methodology

In this section we review some of the methodological advances of recent years.
Subsection 2.1 gives a “splitting” result for the iid censoring model which is an
intuitively attractive way of looking at the sample and furthermore facilitates
the calculation of exact distributions of statistics such as M(n) and Mu(n) in
Subsection 2.1 and Qn, a statistic for assessing sufficiency of followup, in Sub-
section 4.2. Calculation of exact distributions allows for a rigorous investigation
of their properties and makes unnecessary the need for simulations of percent-
age points. Having formulae for exact distributions also provides the basis for
the asymptotic analyses we summarise in Sections 4, 5 and 8. Again the right
extremes of the relevant distributions play an important role.

2.1. Splitting the sample at the largest uncensored observation

A key structural result obtained in Maller et al. (2022), Thm. 2.1, is that,
conditional on the value of the largest uncensored survival time, and knowing the
number of censored observations that exceed the largest uncensored lifetime, the
sample partitions into two independent subsamples, each having the distribution
of an iid sample of censored survival times, of reduced size, from the distribution
of truncated random variables.

Recall the notation in Section 1.1. We keep n ≥ 3. The splitting theorem tells
us that the sample Sn := {Ti, 1 ≤ i ≤ n} partitions into disjoint random sets:

Sn = S<
n ∪ {Mu(n)} ∪ S>

n , (2.1)

where the component sets are

S<
n = {Ti : i ≤ n and Ti < Mu(n)} and S>

n = {Ti : i ≤ n and Ti > Mu(n)}.

On {Mu(n) > 0}, let

N>
c (Mu(n)) = |S>

n | = number of censored observations exceeding Mu(n),
(2.2)

and

{N>
c (Mu(n)) = 0} = {Mu(n) = M(n)} = {largest observation uncensored}

and {N>
c (Mu(n)) = n} = {all n observations censored}. On {N>

c (Mu(n)) = n},
set Mu(n) = 0. Then, conditional on {Mu(n) = t > 0} and {N>

c (Mu(n)) = r},
S<
n consists of n − r − 1 iid variables with distribution that of T1, conditional

on T1 < t; and S>
n consists of r iid variables with tail function

P (T>,c
1 (t) > x) :=

∫∞
x

F
∗(s)G(ds)∫∞

t
F

∗(s)G(ds)
, x ≥ t,

which is the distribution tail of a censored observation conditional on being
bigger than t. Furthermore, S<

n and S>
n are conditionally independent given
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Mu(n) = t and N>
c (Mu(n)) = r. Note that observed lifetimes less than Mu(n)

may be either censored or uncensored but observed lifetimes greater than Mu(n),
i.e., those in S>

n , are necessarily censored.
The splitting result remains true if conditioning is done on the 3-vector

(Mu(n),M(n), N>
c (n)) rather than just on (Mu(n), N>

c (n)). That result is used
in Maller et al. (2022) to derive the finite sample joint distribution of M(n) and
Mu(n), as in the next theorem.

2.2. Distributions of the largest censored and uncensored lifetimes

Theorem 2.1. (i) The joint distribution of Mu(n) and M(n) is given by

P
(
0 ≤Mu(n) ≤ t, 0 ≤ M(n) ≤ x

)
=

⎧⎪⎨⎪⎩
(∫ x

z=0 F
∗(z)dG(z)

)n
, if t = 0, 0 ≤ x ≤ τH ;

Hn(x), if 0 ≤ t ≤ τH ; 0 ≤ x ≤ t;( ∫ x

z=t
F

∗(z)dG(z) + H(t)
)n

, if 0 ≤ t < x ≤ τH .

(2.3)

(ii) The distribution of Mu(n) is given by

P
(
Mu(n) ≤ t

)
= Jn(t), t ≥ 0, (2.4)

where J(t) is the distribution of an uncensored lifetime:

J(t) =
{

1 −
∫ τH
z=0 G(z)dF ∗(z) =

∫ τH
z=0 F

∗(z)dG(z), t = 0;
1 −

∫ τH
z=t

G(z)dF ∗(z) =
∫ τH
z=t

F
∗(z)dG(z) + H(t), 0 ≤ t ≤ τH .

(2.5)
(iii) The distribution of M(n) is given by

P (M(n) ≤ x) = Hn(x), x ≥ 0. (2.6)

Remarks. Note that (2.3) is consistent with the fact that 0 ≤ Mu(n) ≤ M(n) ≤
τH . There is no probability mass outside the region [0, τH ] × [0, τH ] so the dis-
tribution in (2.3) equals 1 for t > τH , x > τH . Likewise the distribution in (2.5)
equals 1 for t > τH .

Note also that Lines 2 and 3 on the RHS of (2.3) include the value for
t = 0; there is mass on the interval {t = 0} × [0 ≤ x ≤ τH ], as given by the
first line on the RHS of (2.3). Mu(n) has the distribution of the maximum of
n iid copies of a rv with distribution J on [0,∞). This distribution has mass( ∫ τH

z=0 F
∗(z)dG(z)

)n at 0 corresponding to all observations being censored. (It
may seem pedantic to include these degenerate cases but they are important
for checking that distributions are proper.) Recall that τH is the right endpoint
of the support of the distribution H. The right extreme τJ of the distribution
J may be strictly less than τG; in fact, we have τJ = τF ∧ τG. In general,
τJ 	= τH = τF∗ ∧ τG.
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Fig 2. The cdf of M(n) −Mu(n) from (2.7) with F = U [0, a], G = U [0, 10], p = 0.3. Left to
right: a = 5, 10, 15.

Illustrative plots of the distributions of M(n) and Mu(n) are in the Sup-
plementary Material to the paper, and asymptotic distributions of M(n) and
Mu(n) are in Section 5.

Also important are the length of the time interval between the largest uncen-
sored survival time and the largest survival time, and the ratio of those times.
For them we have the following distributions.

Theorem 2.2. We have for 0 ≤ u ≤ τH ≤ ∞

P
(
M(n) −Mu(n) ≤ u

)
=

n

∫ τH

t=0

(∫ (t+u)∧τH

z=t

F
∗(z)dG(z) + H(t)

)n−1
G(t)dF ∗(t)

+
(∫ u

z=0
F

∗(z)dG(z)
)n

, (2.7)

with P
(
M(n) −Mu(n) ≤ u

)
= 1 for u > τH . We have for v ≥ 1

P
(
M(n) ≤ vMu(n)|Mu(n) > 0

)
=

∫ τH
t=0

( ∫ (tv)∧τH
z=t

F
∗(z)dG(z) + H(t)

)n−1
G(t)dF ∗(t)∫ τH

t=0

( ∫ τH
z=t

F
∗(z)dG(z) + H(t)

)n−1
G(t)dF ∗(t)

,

with P
(
M(n) ≤ vMu(n)|Mu(n) > 0

)
= 0 for 0 ≤ v < 1.

Remarks. Setting u = 0 in (2.7) we see that the distribution of the difference
M(n) −Mu(n) has mass at 0 of

P
(
M(n) −Mu(n) = 0

)
= P

(
M(n) = Mu(n)

)
= n

∫ τH

t=0
Hn−1(t)G(t)dF ∗(t).

(2.8)
This is the probability that the largest observation is uncensored (Maller and
Zhou (1993)).

Figures 2 and 3 illustrate the distribution of the difference M(n) − Mu(n)
for F = U [0, a] and G = U [0, 10], with p = 0.3, 0.7 and a = 5, 10, 15. In this
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Fig 3. The cdf of M(n) −Mu(n) from (2.7) with F = U [0, a], G = U [0, 10], p = 0.7. Left to
right: a = 5, 10, 15.

scenario, a = 5 represents sufficient follow-up, in which case the distribution
concentrates closely around 10 − 5 = 5, whereas for a = 10 (a marginal case),
and a = 15 (insufficient follow-up) the distributions are much more spread out,
representing more uncertainty in the length of the plateau. We note that not all
of the plots show an atom at 0. Plots were done using the statistical package R.

2.3. Conditional multinomial distribution of numbers

Besides the definition of N>
c (Mu(n)) in (2.2), we need notation for the numbers

of censored observations smaller or greater than Mu(n). Let Nu(n) be the total
number of uncensored observations in the sample, and, when Nu(n) > 1, define

N<
u (Mu(n)) = Nu(n) − 1

= number of uncensored observations strictly less than Mu(n)

and

N<
c (Mu(n)) = number of censored observations less than Mu(n).

On {Nu(n) = 1}, set N<
u (Mu(n)) = 0. When Nu(n) = 0, we do not define

N<
u (Mu(n)) or N<

c (Mu(n)). Let

Nc(n) = total number of censored observations in the sample.

We also use the notation Nn := {1, 2, . . . , n}, n = 1, 2, . . . ,.
With these definitions and conventions, on {Nu(n) ≥ 1} the N<

u (Mu(n)),
N<

c (Mu(n)) and N>
c (Mu(n)) take values in Nn−1∪{0}, satisfying N<

u (Mu(n))+
N<

c (Mu(n))+N>
c (Mu(n)) = n−1 and Nc(n) = N>

c (Mu(n))+N<
c (Mu(n)). We

also have

{Nu(n) = 0} = {all n observations censored} = {Mu(n) = 0}.

The next result concerns the vector (N>
c (Mu(n)), N<

c (Mu(n)), N<
u (Mu(n))).

This vector is not as might be thought at first multinomially distributed, but



94 R. Maller et al.

it is, conditional on the value of Mu(n). We proved it as another application of
the splitting property. We need more notation. Define the functions

p>c (t) =
∫ τH
y=t

F
∗(y)dG(y)∫ τH

y=t
F

∗(y)dG(y) + H(t)
,

p<c (t) =
∫ t

y=0 F
∗(y)dG(y)∫ τH

y=t
F

∗(y)dG(y) + H(t)
, and

p<u (t) =
∫ t

y=0 G(y)dF ∗(y)∫ τH
y=t

F
∗(y)dG(y) + H(t)

,

which are non-negative and add to 1 for each t ∈ (0, τH).

Theorem 2.3. (i) We have for t > 0, 0 ≤ r, s, k ≤ n − 1, r + s + k = n − 1,
the multinomial probability

P
(
N>

c (Mu(n)) = r, N<
c (Mu(n)) = s, N<

u (Mu(n)) = k
∣∣Mu(n) = t

)
= (n− 1)!

r! s! k! × (p>c (t))r(p<c (t))s(p<u (t))k.

(ii) Consequently, conditional on Mu(n) = t, the marginal rvs N>
c (Mu(n)),

N<
c (Mu(n)) and N<

u (Mu(n)) are trinomial with n − 1 as the number of trials
and success probabilities p>c (t), p<c (t) and p<u (t) respectively.

(iii) Conditional on Mu(n) = t > 0, the number of censored observations
Nc(n) = N>

c (Mu(n)) + N<
c (Mu(n)) is Binomial (n − 1, pc(t)), where pc(t) =

p<c (t) + p>c (t).
(iv) Conditional on Nc(n) = � and Mu(n) = t, the number N>

c (Mu(n)) is
Binomial (�, p+

c (t)), where

p+
c (t) :=

∫ τH
y=t

F
∗(y)dG(y)∫ τH

y=0 F
∗(y)dG(y)

.

Remarks. Since t > 0 in Theorem 2.3, the conditioning on Mu(n) = t implies
Mu(n) > 0, thus Nu(n) ≥ 1, and there is at least one uncensored observation.
Thus N<

u (Mu(n)) + N<
c (Mu(n)) + N>

c (Mu(n)) = n− 1.
An application of Theorem 2.3 is to derive in Section 4 the finite sample

distribution of the statistic Qn, used as a test for sufficient followup. But first
we want to test for the presence of cures in the population.

3. Testing for the presence of cures using p̂n

The KME was of course not available to Boag in 1949 and he used a parametric
approach, inferring the existence of cures in his population from his sample esti-
mate of the proportion cured and its standard error, obtained from a lognormal
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mixture fit to the data. This confidence interval assessment and the implied one-
sided hypothesis test of H0 : p = 1 applied to a parameter estimate overlooks
the restriction of p to [0, 1]. Section 5.3 of Maller and Zhou (1996) contains a
discussion of this issue as it relates to a parametric analysis of the cure model.

The advent of the KME in 1958 was a major advance in the visualisation and
analysis of survival data, and especially with reference to assessing the presence
or otherwise of cures. But how do we formalise conclusions drawn from the
visual information displayed in the KME graph?

That the medical literature did and still does wrestle with this problem is
illustrated for example by the “mini-review” paper of Damuzzo et al. (2019),
from which we quote: Some anti-cancer treatments (e.g., immunotherapies) de-
termine, on the long term, a durable survival in a small percentage of treated
patients; in graphical terms, long-term survivors typically give rise to a plateau
in the right tail of the survival curve. . . . To capture the presence of a survival
plateau by quantitative methods, two approaches have thus far been proposed: the
milestone method and the area-under-the-curve (AUC) method. . . .

The problem is that with cures (possibly) present, the KME is improper and
theoretical quantities such as the mean survival time or expected “area-under-
the-curve” are, formally, infinite. A remedy is to restrict the calculation of such
properties to the (proper) survival distribution of the susceptibles, but then we
must estimate this distribution.

We can start by estimating the proportion of cured subjects in the popula-
tion. This proportion is the complement of the susceptible proportion, of which
perhaps the simplest and most intuitive estimate is p̂n, the maximum value of
the KME. The properties of p̂n are explored in Ghitany et al. (1995) and more
extensively in Maller and Zhou (1996), though there are still unknown features;
we discuss one such in Subsection 3.2. With an estimate of the proportion of
cured subjects, we can rescale the KME or a fitted parametric distribution to
estimate the survival distribution of the susceptibles.

As foreshadowed in Section 1.3, the sufficient followup condition τF ≤ τG
plays an important role. Under our present assumptions (continuity of F and
G), p̂n is consistent for p if and only if τF ≤ τG, see Theorem 4.1 of Maller
and Zhou (1996), and when 0 < p < 1 and the integral in (1.4) is finite: p̂n is
asymptotically normally distributed, as stated in the next subsection.

3.1. Asymptotic distribution of p̂n, cured present

We keep p < 1 throughout this subsection. This means that τF∗ = ∞ and
consequently τH = τF∗ ∧ τG = τG. When the integral in (1.4) is finite, the
sufficient followup condition τF ≤ τG holds, as well as the finiteness of the
function

v(t) :=
∫

[0,t]

dF ∗(s)
(1 − F ∗(s))2(1 −G(s)) (3.1)

for all t < τH = τG. The largest uncensored survival time Mu(n) < τF with
probability 1, so v(t) in (3.1) can be evaluated at time Mu(n).
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The next theorem, Theorem 4.3 of Maller and Zhou (1996), is based on The-
orem 4.2.3 of Gill (1980), which is stated for convenience in the Supplementary
Material to the paper.

Theorem 3.1. Assume p < 1 and the integral in (1.4) is finite. Then
√
n
(
p̂n − p

) D−→ N
(
0, (1 − p)2v(τG)

)
, as n → ∞. (3.2)

To apply Theorem 3.1 in practice, we need a sample estimate for the pop-
ulation quantity v(τG) in (3.2). A consistent estimator of v(t) is, under our
assumptions,

vn(t) :=
∑

i:Ti>t

nC
(i)
n

(n− i + 1)(n− i + 1 − C
(i)
n )

, t ≥ 0 (3.3)

(see Theorem 4.4, p.73, and the discussion following it in Maller and Zhou
(1996)), and correspondingly a consistent estimator of v(τG) is

vn :=
n−1∑
i=1

nC
(i)
n

(n− i + 1)(n− i + 1 − C
(i)
n )

. (3.4)

3.2. Asymptotic distribution of p̂n, cured not present

In the case p = 1, where there are no immunes in the population, the asymptotic
distribution of p̂n is currently unknown in complete generality, and finding it
still remains a challenge. Here we give a partial but enlightening result.

From (1.2) we can write the complement of p̂n as

1 − p̂n = 1 − F̂n(T (n)
n ) =

n∏
i=1

(
1 − C

(i)
n

n− i + 1

)
=

n∏
i=1

(
1 − C

(n−i+1)
n

i

)
, (3.5)

where, recall that T
(1)
n < T

(2)
n < · · · < T

(n)
n are the ordered lifetimes with

associated censor indicators C(1)
n , C

(2)
n , . . . , C

(n)
n . Now, we are only interested in

data for which the largest observation is censored, i.e., C(n)
n = 0, and in this

case we can take logs and turn the product into a sum. Thus from (3.5), on the
event {C(n)

n = 0}, we get

| log(1 − p̂n)| =
n∑

i=2

∣∣∣ log
(
1 − C

(n−i+1)
n

i

)∣∣∣ =
n∑

i=2
aiC

(n−i+1)
n , (3.6)

where ai := | log(1 − 1/i)|, i ≥ 2. Since p = 1 we have p̂n
P−→ 1, so | log(1 −

p̂n)| P−→ ∞ as n → ∞, and we need to determine the rate of this divergence.
Despite its simple representation, it seems hard to analyse (3.6) in full generality.
So we turn to a special case to get some intuition.
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3.3. The Koziol-Green model

The model, also known as the proportional hazards model (not to be confused
with Cox’s proportional hazards model), assumes the iid censoring model of
Subsection 1.1 but with the distributions F ∗ and G functionally related by

G(t) = (F ∗(t))β (3.7)

for some β > 0 (Koziol and Green (1976)).7 Kirmani and Dauxois (2004) give
real-data examples where the model appears to apply and some where it does
not. There is also a substantial literature in which the model is used to gain
theoretical insight into the behaviour of survival models (e.g., Cheng and Lin
(1987), Chang (1996)). We use it here similarly to get some valuable insight.
Applied in the next lemma, the Koziol-Green property greatly simplifies the
analysis of p̂n when p = 1. Allen (1963) showed that Ti and Ci are independent
for each i in this model (see also Chen et al. (1982)), and this transfers easily
to the ordered values.

Lemma 3.1. In the Koziol-Green model (3.7), with iid censoring, (C(i)
n )1≤i≤n

are iid, each having the same distribution as C1, namely, a Bernoulli (1/(β+1))
distribution.

The proof of Lemma 3.1 is omitted. As a corollary we get from (3.6), on the
event {C(n)

n = 0},

| log(1 − p̂n)| D=
n∑

i=2
aiC

(n−i+1)
n , (3.8)

where ai = | log(1 − 1/i)| and the C
(n−i+1)
n are iid, 2 ≤ i ≤ n, for each n > 1.

Using Lemma 3.1, we can give a quite explicit representation for the limiting
distribution of p̂n in the Koziol-Green model, when p = 1. Note that this implies
F ∗ ≡ F . Recall that, even in the absence of cures, it’s possible for the right
extreme of the KME to be less than 1 just by chance; using (2.8) and (3.7) we
can calculate the complementary probability as

P(p̂n = 1) = P(C(n)
n = 1) = n

∫ τH

t=0
Hn−1(t)G(t)dF ∗(t) = β

β + 1 . (3.9)

So in the Koziol-Green model the distribution of p̂n has mass of β/(β + 1) at 1
(for all n ∈ N). Alternatively, conditional on the event {p̂n < 1} = {C(n)

n = 0},
we have the following limit distribution.

Theorem 3.2. In the Koziol-Green model, with iid censoring and p = 1,

lim
n→∞

P
(
n1/(β+1)(1 − p̂n) ≤ x|C(n)

n = 0
)

= P (e−Y ≤ x), for x > 0, (3.10)

7Koziol and Green (1976) attribute the model formulation to Breslow and Crowley (1974),
but it seems to have first appeared in Armitage (1959); see aso Cox (1959).
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where Y is a random variable defined by

Y =
∑
i≥2

ai
(
Yi −E(Yi)

)
. (3.11)

Here the Yi are iid as Bernoulli (1/(β + 1)) and ai = | log(1− 1/i)|, i ≥ 2. The
rv Y is infinitely divisible with E(Y ) = 0 and Var(Y ) =

∑
i≥2 a

2
i /(β + 1).

Proof of Theorem 3.2: From (3.8) we can calculate (with (Ci)2≤i≤n iid)

E
(
| log(1 − p̂n)|; C(n)

n = 0
)

=
n∑

i=2
aiE(Ci) = 1

β + 1

n∑
i=2

ai

= − 1
β + 1

n∑
i=2

log(1 − 1/i) = 1
β + 1

n∑
i=2

(
log i− log(i− 1)

)
= 1

β + 1 logn = logn1/(β+1).

Then argue as follows: for x > 0,

P
(
n1/(β+1)(1 − p̂n) ≤ x|C(n)

n = 0
)

= P
(
n1/(β+1)(1 − p̂n) ≤ x, p̂n < 1|C(n)

n = 0
)

= P
(
| log(1 − p̂n)| − 1

β + 1 logn ≥ − log x|C(n)
n = 0

)
= P

( n∑
i=2

ai(Ci −E(Ci)) ≥ − log x|C1 = 0
)

= P
( n∑
i=2

ai(Ci −E(Ci)) ≥ − log x
)
. (3.12)

Now use the Kolmogorov convergence criterion (e.g., Lemma 3.16, p.47, of
Kallenberg (2021)), which gives that a sum

∑
i≥2 ξi of independent random

variables (ξi)i≥2 having mean 0 and satisfying
∑

i≥2 E(ξ2
i ) < ∞, converges a.s.

to a finite rv. Apply this to (3.12) with Yi = Ci and ξi := ai(Yi −E(Yi)), i ≥ 2.
Then the Yi are iid Bernoulli and since ai ≤ 2/(i− 1) for i ≥ 2, the convergence
of the series

∑
i≥2 E

(
ai(Yi − E(Yi)

)2 is clear and we deduce that the rv Y
in (3.11) is finite a.s. and has the specified variance. Thus the RHS of (3.12)
converges to P

(
Y ≥ − log x

)
= P

(
e−Y ≤ x

)
, as required in (3.10). The infinite

divisibility of Y follows from Corollary 13.7, p.251, of Kallenberg (2021), since
the sequence (ξi)1≤i≤n forms a null array (Kallenberg (2021), p.249). �
Remarks. (i) (3.9) and Theorem 3.2 show that the limiting distribution of p̂n,
centered at 1 and normalised by n1/(β+1), is a mixture of the distribution of e−Y

and a point mass at 0 in proportions 1/(β + 1) and β/(β + 1). Consequently it
depends strongly on the parameter β in (3.7), and so it seems we cannot expect
any sort of universal limiting result for p̂n, in general, when p = 1. We do get√
n convergence to e−Y in (3.9) when β = 1 (the symmetric case).
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Fig 4. Distribution of Y for various β.

(ii) Varying β in the model covers a range of possible censoring scenarios.
When β = 0, (3.10) gives n(1− p̂n) D−→ e−Y , as n → ∞, and since Var (Y ) = 0
in this case, Y degenerates at 0, and we get n(1− p̂n) P−→ 1. When β = 0, (3.7)
gives G ≡ 1, thus G degenerates at ∞, indicating that there is no censoring at all.
Since we conditioned on seeing p̂n < 1, the result n(1 − p̂n) P−→ 1 is consistent
with the fact that in this case the KME is simply the empirical distribution
function estimator of F , which jumps 1/n at each sample point, and at the
right extreme jumps from 1 − 1/n to 1.

Formally setting β = ∞, we again get Var (Y ) = 0, and again Y degenerates
at 0. In this case, (3.7) gives G ≡ 0, thus G degenerates at 0, indicating that all
observations are censored. Since there are then no susceptibles present, (3.10)
correctly signals 1 − p̂n

P−→ 1, that is, p̂n
P−→ 0.

(iii) Fig. 4 shows sample pdfs of the distribution of Y for various β. The
distribution of Y is skewed to the left for β < 1, skewed to the right for β > 1,
symmetrical for β = 1, and degenerates to 0 when β ↓ 0 or β → ∞.

(iv) Centering | log(1− p̂n)| at its expectation as we do in Theorem 3.2 gives
the right order of magnitude in some other situations, too, and we conjecture
that this is so very generally. With uniform censoring and exponential survival
(a uniform distribution for G and an exponential distribution for F ), for exam-
ple, we can show with some calculations (details omitted) that, conditional on
{C(n)

n = 0}, | log(1− p̂n)| −E| log(1− p̂n)| = OP (1) (is bounded in probability),
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as n → ∞. The same result holds if we assume the pairwise independence of
the C

(i)
n , i.e., that P (C(i)

n = 1, C(j)
n = 1) = P (C(i)

n = 1)P (C(j)
n = 1), j > i. But

this pairwise independence is not true in general for the iid censoring model.

4. Testing for sufficient followup using Qn

In Section 1.3 we quantified the idea of “sufficient followup” as the condition
τF ≤ τG. In this section we formalize a test for this condition based on the
statistic Qn proposed in Maller and Zhou (1994) (some alternatives are discussed
in Section 10). Recall the notations in Section 2 of M(n) for the largest and
Mu(n) for the largest uncensored survival time in a sample of size n. To calculate
Qn, take the length of the interval [Mu(n),M(n)], measure back this distance
from Mu(n), and count the number of uncensored observations seen (omitting
Mu(n)). A heuristic rationale for this procedure is in Maller and Zhou (1996),
p.84. To formulate it, set Δn := 2Mu(n) −M(n) and define8

Qn = 1
n

#{uncensored observations in [Δn,Mu(n))}

= 1
n

#{uncensored observations exceeding 2Mu(n) −M(n)}. (4.1)

Assume the hypothesis H0 : τG < τF , that followup is insufficient. Under this
assumption it follows from the results in Subsection 5.4 that Qn

P−→ 0 as n → ∞,
so the probability of seeing a large value of Qn is small. Consequently we reject
H0 and conclude that follow-up is sufficient if the observed value of the test
statistic exceeds a nominated quantile of its distribution under H0. When H0
is not true a test based on large values of Qn will reject the hypothesis of
insufficient follow-up with probability approaching 1 as n → ∞.

Using the splitting theorem we can give a formula for the exact distribution
of Qn under the iid censoring model from which the asymptotic distribution is
derived in Section 5 under appropriate conditions.

4.1. Understanding the sample properties of Qn

The value of Qn depends in a complicated way on the numbers of censored and
uncensored observations, the way they happen to occur below or above Mu(n),
and on the relative magnitudes of Mu(n) and M(n). In order to calculate its
distribution under the iid censoring model we need to understand how it varies
with these things. For this we consider hypothetical sample situations, vary
the mentioned quantities and see how the value of Qn changes. Recall that
Nu(n) is the number of uncensored survival times, necessarily in [0,Mu(n)],

8Note that we exclude Mu(n) when counting the number of uncensored observations
greater than Δn; after all Mu(n) is an uncensored observation (the largest one). Exclud-
ing it as we do simplifies formulae by allowing Qn to take minimum value 0 rather than 1/n
as would be the case if we counted Mu(n) in Qn. So we also have the case k = 0 in (4.2). The
distinction is minor in practice and disappears as n → ∞.
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Fig 5. Schematic KME diagrams.

N<
c (n) is the number of censored survival times in [0,Mu(n)), and N>

c (n) is
the number of censored survival times in (Mu(n),M(n)]. Thus there is a total
of Nc(n) = N<

c (n)+N>
c (n) = n−Nu(n) censored survival times in the sample.

We begin by considering possible values of Δn, noting that we always have
Δn = 2Mu(n) − M(n) ≤ 2Mu(n) − Mu(n) = Mu(n). Possible values of Δn

range from Δn = −M(n) if Mu(n) = 0, that is, if all observations are censored,
to Δn = Mu(n) = M(n) if Mu(n) = M(n), that is, if the largest observation is
uncensored. We have Δn = 0 if it happens that Mu(n) = M(n)/2. Thus we may
have Δn < 0, Δn = 0, or Δn > 0. When Δn ≤ 0 then [Δn,Mu(n)) ⊇ [0,Mu(n))
and (4.1) gives nQn = Nu(n) − 1, as 1 less than the number of uncensored
observations in the sample. At the other extreme, the interval [Δn,Mu(n)) may
be empty, and this is certainly so when Δn = Mu(n). Whenever this occurs we
set Qn = 0.

Now think of the way Qn changes if we rearrange the conformation of the
censored observations less than or greater than Mu(n), by keeping M(n) and
Nu(n) > 0 fixed and varying N<

c (n) and N>
c (n), thus moving Mu(n) between

0 and M(n). It helps to visualise the various situations with schematic KME
diagrams in the different cases, as in Figure 5.
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We start with an extreme case.
Case 1: N<

c (n) = 0, N>
c (n) > 0 (see Fig. 5(a)). In this conformation all the

censored observations in the sample form a level stretch of the KME between
Mu(n) and M(n). In this case Mu(n) takes the minimum possible value for the
sample under this kind of rearrangement, M(n) − Mu(n) takes the maximum
possible value, Δn = 2Mu(n) − M(n) = Mu(n) − (M(n) − Mu(n)) takes the
minimum possible value, and Qn takes the maximum possible value under this
kind of rearrangement for the sample. We reject H0 : τG < τF and conclude
there is sufficient follow-up if we observe large values of Qn, so this arrangement
accords with our intuition that a (long) level stretch on the KME between Mu(n)
and M(n) indicates there is sufficient follow-up.
Case 2: N<

c (n) > 0, N>
c (n) > 0 (see Fig. 5(b)). As censored observations are

moved to the left of Mu(n), Mu(n) tends to increase and M(n) −Mu(n) tends
to decrease (it cannot increase). So Δn will tend to increase and consequently
Qn will tend to decrease. This accords with our intuition that a decrease in the
number of censored observations above Mu(n) and in the length of the level
stretch of the KME between Mu(n) and M(n) makes it less likely to reject H0,
the hypothesis of insufficient follow-up.

Ultimately, continuing this process, we reach:
Case 3: N<

c (n) > 0, N>
c (n) = 1 (see Fig. 5(c)). The one censored observation

above Mu(n) is M(n) itself and Δn = 2Mu(n)−M(n) will be close to or equal
to Mu(n). The interval [Δn,Mu(n)) is small and Qn is small, possibly equal to
0 (this certainly occurs when Δn = Mu(n)). This accords with our intuition
that a short level stretch of the KME between Mu(n) and M(n) indicates via a
small value of Qn that there is insufficient follow-up.

In these scenarios, Qn decreases monotonically from a sufficient follow-up
situation to one with insufficient follow-up.

The actual values taken on by Qn in these scenarios depend on the relative
magnitudes of Mu(n) and M(n). The possibilities are as follows. Note that since
Nu(n) > 0, we have Mu(n) > 0.

(a) When 0 < Mu(n) ≤ 1
2M(n), then Δn ≤ 0 and [Δn,Mu(n)) ⊇ [0,Mu(n)).

In this case

Qn = 1
n

#{uncensored observations other than Mu(n)} = Nu(n) − 1
n

.

This is the largest value Qn can take for a given sample.
(b) When 1

2M(n) < Mu(n) < M(n), then Δn > 0 and the interval [Δn,Mu(n))
contains, say, k observations. We have k ≥ 0 and k ≤ n − 1 since there is at
least one censored observation greater than Mu(n), namely, M(n). So we can
write

Qn = k

n
= 1

n
#{uncensored observations in [Δn,Mu(n))}, (4.2)

where k decreases from its maximum value when Mu(n) is near 1
2M(n), reaching

0 when Mu(n) is near M(n).
There are also two other extreme cases to consider.
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Fig 6. Possible Values for Qn.

(c) When N>
c (n) = 0, then Mu(n) = M(n), and the largest observation

is uncensored (see Fig. 5(d)). Then Δn = Mu(n), the interval [Δn,Mu(n)) is
empty, and Qn = 0. Here the level stretch has length 0 and the low value of
Qn correctly reflects sufficient follow-up. (This case includes also the possibility
that all observations are uncensored, corresponding to Nu(n) = n, and k = n.)
But this Case (c) means there is no evidence of immunes and hence no issue of
sufficient or insufficient follow-up. We condition on the non-occurrence of this
event when calculating the distribution of Qn.

(d) When Nu(n) = 0, all observations are censored, and, formally, Qn = 0.
This anomalous or ambiguous case is of no interest and we condition on its
non-occurrence also, when calculating the distribution of Qn.

In this thought experiment let

Wn := max{Mu(n) : Qn > 0}.

Then 1
2M(n) < Wn < M(n), and we may have Wn = M(n) if the largest

observation is uncensored. Possible scenarios for values of Qn are illustrated
schematically in Fig. 6. We see that Qn decreases monotonically as Mu(n) moves
between 1

2M(n) and M(n) but remains constant on [0, 1
2M(n)].

4.2. Finite sample distribution of Qn

Theorem 4.1 gives a formula for the finite sample distribution of Qn assuming
the iid censoring model. The formula and the associated Lemma 4.1 are derived
in Maller et al. (2023) as an application of the splitting result outlined in Sec-
tion 2.1. We keep n > 2, 0 < t < x ≤ τH and 1 ≤ r ≤ n − 1, condition on the
event {Mu(n) = t,M(n) = x,N>

c (Mu(n)) = r}, and consider separately the
cases 2t− x ≤ 0 (Case A) and 0 < 2t− x ≤ τH (Case B). For Case A define

πA(t) := P (0 < T ∗
1 ≤ t, T ∗

1 ≤ U1)
P (T ∗

1 ∧ U1 ≤ t) =
∫ t

0 G(y)dF ∗(y)
H(t)
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and for Case B define

πB(t, x) := P (2t− x < T ∗
1 ≤ t, T ∗

1 ≤ U1)
P (T ∗

1 ∧ U1 ≤ t) =
∫ t

2t−x
G(y)dF ∗(y)
H(t) .

Define also the probability

p>c (t, x) =
∫ x

y=t
F

∗(y)dG(y)∫ x

y=t
F

∗(y)dG(y) + H(t)
,

and let

ρA(t, x) := (1 − p>c (t, x))πA(t) and ρB(t, x) := (1 − p>c (t, x))πB(t, x). (4.3)

Let Bin(n, ρ) denote a binomial random variable with parameters n ∈ N and
ρ ∈ (0, 1).

Lemma 4.1. Part (i): We have for 1 ≤ r ≤ n− 1, 0 < t < x ≤ τH ,

P
(
N>

c (Mu(n)) = r
∣∣Mu(n) = t,M(n) = x

)
= P

(
Bin(n− 2, p>c (t, x)) = r − 1

)
(with the lefthand side taken as 0 when r = 0).
Part (ii): For 0 ≤ k ≤ n− 2,

P
(
nQn = k

∣∣Mu(n) = t,M(n) = x
)

= P
(
Bin(n− 2, ρ(t, x)) = k

)
, (4.4)

where ρ(t, x) = ρA(t, x) in Case A and ρ(t, x) = ρB(t, x) in Case B (see (4.3)).

We need one more formula: from (2.3) we have

Pn(dt,dx) := P
(
Mu(n) ∈ dt,M(n) ∈ dx

)
= n(n− 1)

(∫ x

y=t

F
∗(y)dG(y) + H(t)

)n−2
G(t)dF ∗(t)F ∗(x)dG(x). (4.5)

Theorem 4.1. Assume the iid censoring model in Subsection 1.1. Then for
n > 2, k = 0, 1, 2, . . . , n− 2,

P
(
nQn = k

∣∣0 < Mu(n) < M(n)
)

= An(k) + Bn(k)
Dn

, (4.6)

where

An(k) =
∫ τH/2

t=0

∫ τH

x=2t
P
(
Bin(n− 2, ρA(t, x)) = k

)
Pn(dt,dx)

and

Bn(k) =
[ ∫ τH/2

t=0

∫ 2t

x=t

+
∫ τH

t=τH/2

∫ τH

x=t

]
P
(
Bin(n− 2, ρB(t, x)) = k

)
Pn(dt,dx).

The denominator in (4.6) is

Dn = P
(
0 < Mu(n) < M(n)

)
= 1 −

(∫ τH

t=0
F

∗(t)dG(t)
)n

− n

∫ τH

t=0
Hn−1(t)G(t)dF ∗(t).
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Fig 7. Probability mass functions for nQn. F = exp(1), p = 0.8. Left column: G = U [0, 3];
Right column: G = U [0, 6]. Top, middle, bottom row: n = 50, 100, 150.

Figure 7 shows graphs of the probability mass functions (pmfs) of nQn cal-
culated from (4.6) for various scenarios with F exponential, G uniform, and
n = 50, 100, 150. For small n the pmfs are bimodal, reflecting the two compo-
nents on the RHS of (4.6). The bimodality is least prominent when censoring
is heavy and disappears altogether as n → ∞.

4.3. Dependent censoring

The independence assumptions inherent in the iid censoring model may not be
tenable in some situations and there have been a number of studies where it
has been relaxed. See for example the competing dependent risks of leukaemia
relapse and graft versus host disease analysed in Kalbfleisch and Prentice (2003)
and Kovar et al. (2018) and the approaches in Tawiah et al. (2020a,b). To assess
the effect of departures from independence we consider the distribution of Qn

in a model where there is dependence between survival and censoring.
As in Subsection 1.1 we assume a sample consists of observations on the 2-

vectors
(
Ti = T ∗

i ∧ Ui, Ci = 1(T ∗
i ≤ Ui); 1 ≤ i ≤ n

)
, where now the T ∗

i and Ui

are dependent with a joint continuous distribution having marginal distributions
F ∗ and G on [0,∞). We considered a kind of functional dependence between F ∗

and G in the Koziol-Green model of Subsection 3.3. In the present subsection
we model actual dependence between T ∗

i and Ui using a copula to connect the
marginal distributions with the joint distribution.9

9For other discussions on the independence of survival and censoring, see Peterson (1976),
Lagakos and Williams (1978), Lagakos (1979), Leung et al. (1997), Rufibach et al. (2023).
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Fig 8. Probability mass functions for nQn with Frank copula for dependence. F = exp(1),
p = 0.8, G = U [0, 6]. Top, middle, bottom panel: n = 50, 100, 150. Left to right: θ =
300, 6, 0,−6,−300.

Numerous copulas are defined and described in Nelsen (2006), to which we
refer for background. By virtue of Sklar’s theorem (Sklar (1959)), the bivariate
distribution of (T ∗

i , Ui) with specified continuous marginals F ∗ and G can be
expressed in a unique way via a 2-copula J

J(w1, w2, θ) := P (W1 ≤ w1,W2 ≤ w2),

for two uniform random variables W1,W2 and a copula parameter θ which quan-
tifies the dependence between them. We restrict our discussion to the class of
Archimedean copulas, considering one such, the Frank (Frank (1979)) copula.
The corresponding copula function is

JFrank(w1, w2) = −1
θ

log
(
1 + (e−θw1 − 1)(e−θw2 − 1)

e−θ − 1

)
.

In order to simulate an observation on (T ∗
i , Ui), it is sufficient to simulate a

vector (W1,W2) ∼ J with values w1 and w2, where the rvs W1 and W2 are
independent Uniform [0, 1]. Then

t∗ = F ∗,←(w1), u = G←(w2),

is an observation on (T ∗, U) having the required joint distribution (see Salvadori
et al. (2007), Appendix A).

We simulated samples of size n = 50, 100, 150, from the function J for the
Frank copula for various values of θ, taking F ∗ = pF , where F is exponential
with parameter 1, G = U [0, 6] and p = 0.8. In each sample we calculated
the value of Qn and repeated this 10000 times to draw up the pmfs of Qn in
Fig. 8. In the figure the pmf for θ = 0 corresponds to independence. Viewing
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from the centre panel left we see that introducing high positive dependence
tends to concentrate the mass near small values of Qn and the bimodality of
the distribution becomes less; introducing negative dependence also tends to
decrease the bimodality but shifts the pmfs closer to normal as sample size
increases. This intuition can be useful in practice to assess how dependence
between T ∗ and U affects percentage points of the distribution of Qn.

4.4. Sufficient followup and identifiability

Cure models suffer from identifiability issues when F ∗ is estimated nonpara-
metrically. Laska and Meisner (1992) note that the KME is the generalized
maximum likelihood estimator (GMLE) of F ∗, and its maximum value, p̂n (in
our notation), which is the GMLE of p in (1.1), is uniquely defined when the
largest survival time is uncensored – but not when it is censored. Of course this
is just the situation we are in when investigating the possibility of cures. The
convention according to Laska and Meisner (1992) is then to take the GMLE of
p to be the maximum value of the KME, which is precisely our p̂n.

Survival data in practice usually have a vector of covariates x associated
with each failure or censored time. In the mixture cure model we can allow the
susceptible proportion p = p(x) (the “incident” model) to depend on the co-
variate information. A natural and common choice is to use the well understood
and easily interpretable logistic regression formulation for this. Regarding the
cdf F (t;x) of the susceptible survival times (the “latency” model), covariates
can be introduced into most of the usual parametric models (see Section 7) in
natural ways. Vu et al. (1998) discuss some of the issues, and Zhao (2023) has
example analyses.

Li et al. (2001) discuss the identifiability of cure models when F is parametric,
possibly with covariates x. Under regularity conditions, the model is identifiable
regardless of whether a corresponding model for p = p(x) is parametric or not.
With a logistic regression for the incident model, and some structure (e.g. pro-
portional hazards or a parametric distribution) assumed for the latency model,
identifiability is not a problem in practice provided follow-up is sufficient.

When follow-up is insufficient, however, cure models do suffer from identi-
fiability issues. If the KME is improper but still tending to increase near its
right hand endpoint, it’s understandable that the model has difficulty distin-
guishing between a possible presence of cures and a situation in which failures
will continue beyond the range of the data to the extent that all subjects even-
tually fail. In other words, difficulty in distinguishing between the cases p = 1
and p < 1. Yu et al. (2004a) and Peng and Taylor (2014) refer to this as a
“near non-identifiability problem”, suggesting that it manifests as a relatively
flat likelihood surface. A consequence is that parameters will tend to be impre-
cisely estimated. Examples illustrating this are in Zhao (2023). See also Parsa
and Van Keilegom (2023). In Section 6 we discuss a way of adjusting estimates
when follow-up is insufficient.
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4.5. Sufficient followup with competing risks

With competing risks data, failure is classified into more than one cause, e.g.,
death from cancer, or heart attack, etc., and there may be subjects with long
followup not having died, thus, suggesting the possibility of immune or cured
individuals in the population besides those susceptible to the risks of dying.
The cumulative incidence function (CIF) plays the role of the Kaplan Meier
estimator in this arena: Choi and Zhou (2002), Kalbfleisch and Prentice (2003),
and a natural generalisation of the mixture model can be used: Larson and
Dinse (1985), Maller and Zhou (2002), Jeong and Fine (2006). It’s clear that a
consideration of sufficient followup is important here, but to our knowledge no
rigorous study has been done.

Identifiability issues are also important and have been addressed by Tsiatis
(1975) and Lemdani and Pons (1997, 2003). The latter obtain consistency and
asymptotic normality of the estimators in a parametric setup under some strin-
gent assumptions, including identifiability assumptions, treating the boundary
value case when individuals are “totally susceptible” to death, among other re-
sults. They also address the problem of the elimination of a cause, providing an
ingenious approach to it in their context. This question goes back a long way.
D’Alembert in 1761 and Daniel Bernoulli in 1766 gave formulae for the gain
in lifetime to be expected after elimination of smallpox as a cause of death –
hypothetical at that time, but since become a reality: Fenner et al. (1988).

5. Asymptotics of largest censored/uncensored lifetimes, and Qn

In practice, samples of survival data are often large enough that asymptotic
methods are appropriate. In this section we list some recently obtained results
for M(n), Mu(n) and Qn. Equations (2.4) and (2.6) suggest the use of extreme
value methods to find limiting distributions of M(n) and Mu(n) after rescaling
by nonstochastic sequences, and this turns out to be appropriate for Qn too.

The case when G has a finite right endpoint is particularly important, be-
cause, as explained in Section 4, when testing for sufficient followup we proceed
by assuming H0 : τG < τF , that followup is insufficient, and this implies a finite
τG. But for theoretical as well as modelling purposes we want to allow infinite
endpoints for F and G, so we consider all cases. We refer to Embrechts et al.
(1997), de Haan and Ferreira (2006) and Resnick (2008) for general background,
and for the domain of attraction results we use.

5.1. Maximum domains of attraction

A distribution F belongs to the maximum domain of attraction of an extreme
value distribution if the maximum of a sample of n from F converges in distri-
bution as n → ∞ to a finite nondegenerate random variable, after appropriate
centering and norming. There are three possible limiting types: Fréchet, Gumbel
and reverse Weibull. A condition for being in one of these domains specifies in
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some way the rate at which the tail F (t) of F approaches 0 as t ↑ τF . Each of
the three domains is relevant to some aspect of the large sample behaviour of
M(n), Mu(n) or Qn, as we outline in what follows.

The standard Fréchet cdf is Φγ(x) = exp(−x−γ), where γ, x > 0. A distri-
bution F belongs to the maximum domain of attraction of Φγ if and only if
F (t) > 0 for all large t > 0 and F (t) is regularly varying with index −γ as
t → ∞; thus,

lim
t→∞

F (λt)
F (t)

= λ−γ for each λ > 0 (5.1)

(Resnick (2008), p.54, de Haan and Ferreira (2006), p.10). For the Fréchet do-
main, necessarily τF = ∞. Subsection 6.1 employs this type of convergence.

The standard Gumbel cdf is Λ(x) = exp(−e−x), x ∈ R. The necessary and
sufficient condition for F to belong to the Gumbel maximum domain of attrac-
tion becomes

lim
t↑τF

F (t + yf(t))
F (t)

= e−y, (5.2)

for y ∈ R and a positive auxiliary function f(t). In the Gumbel case, τF can be
finite or infinite.

A slightly more stringent condition than (5.2) is to assume F is a von Mises
distribution; i.e., F is absolutely continuous with tail function satisfying

F (x) = 1 − F (x) = k1 exp
{
−
∫ x

x0

1
f(u)du

}
, x0 < x < τF , (5.3)

for some k1 > 0 and x0 ∈ (0, τF ), where f is a positive differentiable function
on [x0, τF ) with derivative f ′ satisfying limx↑τF f ′(x) = 0. The difference be-
tween (5.3) and (5.2) is that in (5.2) we replace the k1 of (5.3) with a function
c(x) → c0 ∈ (0,∞). Differentiation of (5.3) shows that, in this formulation, f is
the reciprocal hazard function of F on [x0, τF ). A possible choice of f is

f(t) = 1
F (t)

∫ τF

t

F (x)dx, 0 < t < τF . (5.4)

Equivalent to (5.3) is that F has a finite negative second derivative F ′′ for all t
in some left neighbourhood of τF satisfying

lim
t↑τF

F ′′(t)F (t)
(F ′(t))2

= −1. (5.5)

See Resnick (2008), p.46, or de Haan and Ferreira (2006), Thm. 1.2.1, p.19.
Subsections 5.3 and 6.2 employ this type of convergence.

The standard reverse Weibull cdf is Ψγ(x) = exp(−|x|γ), x < 0, γ > 0, with
Ψγ(x) = 1 when x ≥ 0. Rewriting Prop. 1.1.3 of Resnick (2008), p.59, we have
that F belongs to the maximum domain of attraction of Ψγ if and only τF < ∞
and F (τF − t) is regularly varying with index γ as t ↓ 0, t < τF . We then have
the convergence

lim
n→∞

P
(
an(τF − max

1≤i≤n
Xi) ≤ x

)
=

(
1 − exp(−xγ)

)
1{x≥0} (5.6)
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for a sample (Xi)1≤i≤n from F , with a norming sequence an → ∞. Subsec-
tions 5.2 and 5.4 employ this type of convergence.

5.2. Asymptotics of extremes, right extreme of G finite

In this subsection we present the joint asymptotic distributions of M(n) and
Mu(n) when τG < ∞, for various values of p and τF , derived using the formulae
in Theorem 2.1 and the ideas in Subsection 5.1. We consider scenarios of suf-
ficient or insufficient followup, and assume appropriate extreme value domain
of attraction conditions on F and G. The rescaled M(n) and Mu(n) are then
asymptotically independent with asymptotic Weibull distributions. Recall that
τJ is the right extreme of the distribution J in (2.4).

Theorem 5.1. Case 1: Assume τF < τG < ∞ and 0 < p < 1, and in addition,
as z ↓ 0, 0 < z < τG,

G(τG−z) = aG(1+o(1))zγLG(z) and F (τF −z) = aF (1+o(1))zβLF (z), (5.7)

where aG, aF , γ, β are positive constants and LG(z) and LF (z) are slowly varying
as z ↓ 0. Then for some deterministic norming sequences an, bn → ∞,

lim
n→∞

P
(
an(τG −M(n)) ≤ u, bn(τF −Mu(n)) ≤ v

)
=

(
1 − e−(1−p)uγ)(

1 − e−pG(τF )vβ)
, for u, v ≥ 0. (5.8)

Case 2: Assume τF < τG < ∞ and p = 1, and in addition, as z ↓ 0, 0 < z < τG,

G(τG − z) = a(1 + o(1))zβL(z) and F (τF − z) = a(1 + o(1))zβL(z), (5.9)

where a and β are positive constants and L(z) is slowly varying as z ↓ 0. Then
there exists a deterministic sequence an → ∞ such that

lim
n→∞

P
(
an(τF −M(n)) ≤ u, an(τF −Mu(n)) ≤ v

)
= 1−e−G(τF )uβ

, for u, v ≥ 0.
(5.10)

Case 3: Assume τG < τF < ∞ and 0 < p < 1, and assume the first relation
in (5.7) holds. Suppose in addition that, in a neighbourhood of τG, F has a
density f which is positive and continuous at τG. Then there exist deterministic
sequences an → ∞ and bn → ∞ such that

lim
n→∞

P
(
an(τG −M(n)) ≤ u, bn(τG −Mu(n)) ≤ v

)
=

(
1 − e−(1−pF (τG))uγ)(

1 − e−pf(τG)v1+γ/(1+γ)), for u, v ≥ 0. (5.11)

Further, this result remains true under the same assumptions when p = 1,
and/or when τF = ∞.

In any of Cases 1–3 we have M(n) P−→ τH and Mu(n) P−→ τJ as n → ∞.
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Remarks. (i) Theorem 5.1 is proved in Maller et al. (2022). Possible choices
of an and bn are specified there. Note that in Case 2, F and G are required to
have the same order of magnitude in neighbourhoods of their right extremes.

(ii) A common assumption is of an exponential distribution for lifetime sur-
vival: F (t) = 1− e−λt, λ > 0, t ≥ 0, and the uniform distribution for censoring,
G = U [A,B] (e.g., Goldman (1984, 1991)). These distributions for F and G
constitute very good baseline reference distributions for assessing the practical-
ity of theoretical results, and this situation, or a close approximation to it, is
often the case in practice.

(iii) When G = U [0, τG], τG > 0, we have G(τG − z) = (z/τG)1{0≤z≤τG}.
Thus G satisfies (5.7) with aG = 1/τG, γ = 1 and LG ≡ 1, while τF = ∞ when
F is exponential (λ). Case 3 of Theorem 5.1 applies.

5.3. Asymptotics of extremes, right extreme of G infinite

In this subsection we assume F and G are in the domain of maximal attraction
of the Gumbel and have infinite endpoints. In addition to Mu(n) and M(n) as
previously defined, denote the largest censored lifetime by Mc(n). Theorem 5.2
deals with the joint asymptotic distribution of Mu(n) and Mc(n). An additional
Theorem 5.3 shows that the number of censored observations bigger than the
largest uncensored lifetime is asymptotically geometric.

The analysis here is based on Maller and Resnick (2022). Throughout we
assume both F and G are absolutely continuous and satisfy the von Mises con-
dition (5.3) and an analogous condition for G. Then the product F ×G also has
the form of the tail of a von Mises distribution, as shown in Maller and Resnick
(2022), namely, If F and G are von Mises distribution tails satisfying (5.3) and
the analogous condition for G with auxiliary function g, then H = F × G is a
von Mises distribution tail with auxiliary function h := fg/(f + g).

It follows that H is in the domain of attraction of the Gumbel, and we have

lim
t→∞

H(t + xh(t))
H(t)

= e−x, x ∈ R. (5.12)

The positive sequences a(n) and b(n) satisfying

lim
n→∞

nH(b(n)) = 1 and a(n) = h(b(n)) (5.13)

provide the correct centering and norming for maxima of samples drawn from H
to converge in distribution to a Gumbel distribution; see Resnick (2008), p.40.
Analogous sequences aG(n) and bG(n) are appropriate centering and norming
sequences for maxima of samples from G.

Mu(n) and Mc(n) properly normalized have limit distributions which are
products ((Maller and Resnick, 2022)) and therefore can reasonably be analyzed
separately in large samples. The limits involve two independent Gumbel rvs, Gu

and Gc which may depend on parameters νu, νc such that

P (Gu(νu) ≤ x) = exp{−νue
−x}, x ∈ R,
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and similarly for Gc. We add a third condition comparing the magnitudes of f
and g:

lim
x→∞

f(x)
g(x) = κ, 0 ≤ κ ≤ ∞. (5.14)

Theorem 5.2. Assume (5.3), the analogous condition for G, and (5.14). Sup-
pose 0 < p ≤ 1.
(a) Assume p = 1 and a(n) and b(n) satisfy (5.13).

(i) Suppose κ ∈ (0,∞). Then, as n → ∞,(Mu(n) − b(n)
a(n) ,

Mc(n) − b(n)
a(n)

)
D−→

(
Gu

( 1
1 + κ

)
, Gc

( κ

1 + κ

))
,

and consequently

M(n) − b(n)
a(n)

D−→ Gu

( 1
1 + κ

)
∨Gc

( κ

1 + κ

)
.

(ii) Suppose κ = 0 or κ = ∞. Then

M(n) − b(n)
a(n)

D−→ G(1),

where G(1) is a Gompertz rv with cdf exp{−e−x}, x ∈ R.
(b) Suppose κ ∈ [0,∞) and p < 1. Then(Mu(n) − b(n)

a(n) ,
Mc(n) − bG(n)

aG(n)

)
D−→

(
Gu

( p

1 + κ

)
, Gc(1 − p)

)
.

A corollary to Theorem 5.2 gives an asymptotic distribution for the difference
of M(n) and Mu(n) when p = 1.

Corollary 5.1. Assume the same conditions as in Theorem 5.2, and suppose
p = 1. When κ ∈ (0,∞) the normed difference D(n) := (M(n) −Mu(n))/a(n)
converges in distribution to the random variable D having cdf

P [D ≤ x] = 1
1 + κe−x

, x ≥ 0,

with mass P [D = 0] = 1/(1 + κ) at 0. When κ = 0, D(n) P−→ 0, and when
κ = ∞, D(n) P−→ ∞.

Finally, we consider the number of censored observations that are bigger than
the largest uncensored lifetime, denoted by N>

c (Mu(n)).

Theorem 5.3. Assume (5.3), the analogous condition for G, (5.14) with 0 <
κ < ∞, and p = 1. Then N>

c (Mu(n)) is asymptotically a geometric rv with
success probability

pκ := κ

1 + κ
.
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5.4. Asymptotic distribution of Qn

In this section we give the large sample distribution of Qn in situations both
of insufficient (the main case of interest) and sufficient follow-up. The result-
ing formulae are used to illustrate some calculations for the power of the Qn

test. The proof (in Maller et al. (2023)) is an application of Theorem 5.1 and
we impose similar conditions as there. Under these conditions, the asymptotic
distribution of nQn is geometric when τG < τF and that of Qn is normal when
τF < τG. We need the parameters

νA :=
p
∫ τF
0 G(y) dF (y)
1 − pG(τF )

and νB :=
p
∫ τF
2τF−τG

G(y) dF (y)
1 − pG(τF )

.

Theorem 5.4. Case 1: Assume 0 < p ≤ 1 and τG < τF ≤ ∞, and also

G(τG − x) = aG(1 + o(1))xγ , as x ↓ 0, (5.15)

where aG and γ are positive constants. In addition, assume F has a density f
in a neighbourhood of τG which is positive and continuous at τG. Then

lim
n→∞

P
(
nQn = k

)
= 1

2γ+1

(
1 − 1

2γ+1

)k

, k = 0, 1, 2, . . . , (5.16)

so nQn is asymptotically geometric with parameter 1/2γ+1, equal to 1/4 when
γ = 1.
Case 2a: Assume 0 < p < 1, (5.15) holds, τF < τG < 2τF < ∞, and in addition

F (τF − x) = aF (1 + o(1))xβ , as x ↓ 0, (5.17)

where aF and β are positive constants, Then
√
n(Qn − νB)√
νB(1 − νB)

D−→ N(0, 1), as n → ∞. (5.18)

Case 2b: Assume 0 < p < 1, (5.15) and (5.17) hold, and 2τF < τG < ∞.
Then (5.18) holds provided νB is replaced by νA.
Case 3: Assume p = 1 and (5.15) and (5.17) hold with aG = aF and γ = β.

(a) If τF < τG < 2τF < ∞, then (5.18) holds as stated;
(b) If 2τF < τG < ∞, then (5.18) holds with νB replaced by νA.

Remarks. (i) Case 1 with τG < τF is a situation of insufficient follow-up, and in
it nQn has asymptotically a finite nondegenerate limit (a geometric rv). Hence
in this situation Qn

P−→ 0 as n → ∞, showing that the hypothesis of insufficient
follow-up will be accepted in large samples with probability approaching 1 as
n → ∞ when it is true. When follow-up is sufficient, i.e, in Cases 2 and 3,
Qn is ultimately normally distributed around positive levels νA or νB in large
samples, and, depending on sample size, the hypothesis of insufficient follow-up
will be rejected, as it should be.
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(ii) The conditions in Case 1 allow for a broad range of commonly used sur-
vival and censoring distributions. The density condition on F holds for survival
distributions such as the exponential, Weibull, log-logistic, log-normal, gamma,
and generalised gamma. The censoring distribution G is required to have a finite
right extreme in Theorem 5.4 but this is inherently satisfied in the important
Case 1 and will usually be the case in practice. (5.15) holds with γ = 1 if G has a
finite positive lefthand derivative at τG. A simple but important case is when G
is uniform on an interval [0, τG]. More generally, a generalised Pareto distribu-
tion with finite endpoint τG has tail function of the form G(τG−x) = 1−e−aGxγ

for 0 < x < τG (see Embrechts et al. (1997), p.152; set γ = −1/ξ = τG and
aG = τγG in their formula). So G satisfies (5.15), precisely. See Section 10 for
further discussion on the right extremes. Note that there are no restrictions on
F and G in Theorem 4.1.

(iii) The specific formulae for the distributions in (5.16) and (5.18) enable
calculations of the power of the Qn test. In view of (5.16), it is more convenient
to use nQn than Qn. The 95-th quantile K0.95 of the asymptotic distribution of
nQn from (5.16), assuming the hypothesis H0 : τG < τF (insufficient follow-up)
is true, is K0.95 = K0.95(p, τG) = log(0.05)/ log(3/4) − 1 = 9.41. Thus, under
H0, we have P (nQn > K0.95) ≈ 0.05, for large n. Then we successively increase
τG above τF , hence in the region of the alternate hypothesis, and use (5.18) in
the two cases to calculate the corresponding values of P (nQn > K0.95).

Thus, using ν to denote νA or νB as appropriate, we take the function of τG
defined by

P (τG; ν) := P

(
N(0, 1) > min

(
K0.95 − nν√
nν(1 − ν)

, 1.58
))

(5.19)

as an approximation to the power of the test. Keep τG > τF , and, at first,
τF < τG < 2τF . As τG increases above τF , νB increases and P (τG; νB) increases.
When νB = K0.95/n then P (τG; νB) reaches 0.50, and once τG reaches 2τF
then νB = p

∫ τF
0 G(y) dF (y)/(1 − pG(τF )). For τG values greater than this νB

is replaced in (5.19) by νA = p
∫ τF
0 G(y) dF (y)/(1 − pG(τF )) and we note that

νA = νB at the transition. For larger values of τG, P (τG : νA) stays constant at
a value which approaches 1 as n → ∞.

Assume for illustration a sample size of n = 100, for G a Uniform [0, τG]
distribution, and for F a unit exponential distribution truncated at a finite
value τF = 5. Since the probability in the tail of F above 5 is less than 0.01, this
is effectively assuming a unit exponential distribution for susceptible lifetimes.
A graph of P (τG : ν) for these parameter values is in Fig. 9.

6. Adjusting for insufficient follow-up

For slowly proliferating cancers, such as early breast and thyroid cancers, cure
rates are difficult to compute due to the large number of years required for follow-
up. Tai et al. (2005) perused data in the 1973-1999 edition of the SEER (2019)
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Fig 9. Power as a function of τG for Qn, with F ∼ exp(1), truncated at τF = 5; G ∼ [0, τG];
n = 100.

database and wrote: The present commonly used five-year survival rates are not
adequate to represent . . . statistical cure . . . the cancer-specific survival times
of cancer patients who died of their disease from 42 cancer sites out of 49 sites
were verified to follow different lognormal distributions. The threshold years (i.e.,
leaving less than 2.25% uncovered) validated for statistical cure varied . . . from
2.6 years for pancreas cancer to 25.2 years for cancer of salivary gland. At the
threshold year, the statistical cure rates estimated for 40 cancer sites were found
to match the actuarial long-term survival rates estimated by the Kaplan-Meier
method within six percentage points. For two cancer sites: breast and thyroid, the
threshold years were so long that the cancer-specific survival rates could yet not
be obtained because the SEER data do not provide sufficiently long follow-up.
They concluded that the minimum follow-up time required for a patient having
a breast tumour with Grade II is around 26.3 years. Most patient records in the
SEER data base are less extensive than that, indicating insufficient followup for
many of them.

In general we may have sample data for which the KME is improper, so its
right extreme value is less than 1, but it has not levelled enough to convince us
that followup is sufficient. In such situations we would expect the nonparametric
estimator p̂n to underestimate the true p.

In fact we have p̂n = F̂n(M(n)) P−→ pF (τH) as n → ∞ (Maller and Zhou,
1996, Theorems 3.4 and 4.1), and when τG < τF , as we assume throughout this
section, F ∗(τH) = pF (τG) is less than p, so the estimate p̂n of p is likely to be
too low. We can attempt to adjust for the deficiency by adding a compensating
component to p̂n to offset the bias.

This was done in Escobar-Bach and Van Keilegom (2019, 2023). They em-
ployed extrapolation techniques borrowed from extreme value theory, assuming
that F belongs to the Fréchet maximum domain of attraction, to derive an es-
timator of the susceptible proportion which performs well for a broad range of
censoring regimes and parameter values.
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6.1. Adjustment in the Fréchet domain

Escobar-Bach and Van Keilegom (2019) rewrite (5.1) in the form10

lim
t→∞

F
(
(1 + yγ)t

)
F (t)

= (1 + yγ)−γ , (6.1)

where γ > 0 and y ∈ (0, 1). Their adjusted estimator is defined by

p̂y = p̂n + F̂n(M(n)) − F̂n(yM(n))
ŷγ − 1 (6.2)

with

ŷγ := F̂n(y2M(n)) − F̂n(yM(n))
F̂n(yM(n)) − F̂n(M(n))

. (6.3)

Under the assumption of insufficient follow-up, that is, τG < τF = ∞, they
showed: for any y ∈ (0, 1), p̂y is asymptotically normally distributed around a
quantity py(τG) with a variance which depends on y and τG, and as τG → ∞,
py(τG) → p. An optimal choice of y ∈ (0, 1) is taken as the value for which p̂y is
the closest to the average of a bootstrap experiment carried out using the data.

This method for the Fréchet domain was later extended by Escobar-Bach
et al. (2022) to distributions in the domain of attraction of the Gumbel, as we
discuss next.

6.2. Adjustment in the Gumbel domain

To carry the Escobar-Bach and Van Keilegom (2019) analysis over to the Gum-
bel situation an analogous bias adjustment is required. (5.1) has to be replaced
with the more complicated (5.2), and the auxiliary function f(t) in (5.4) has to
be estimated. A modification of (6.2) which turns out to work well is to set

p̂G(n, ε) = F̂n(M(n) − ε) +
(
F̂n(M(n) − ε/2) − F̂n(M(n) − ε)

)2
2F̂n (M(n) − ε/2) − F̂n(M(n) − ε) − F̂n(M(n))

(with p̂G(n, ε) replaced by p̂n if p̂G(n, ε) ≤ p̂n). Here ε is a free parameter which
can be chosen to optimize the performance of the estimator. For consistent
estimation of p by p̂G(n, ε), limits as n → ∞ and ε ↓ 0 are required, so ε
needs to be chosen “small” in some data-dependent way. Escobar-Bach et al.
(2022) use a quadratic errors criterion to choose ε in a neighbourhood where
the estimator stabilises near its limiting value.

For their asymptotic analysis, Escobar-Bach et al. (2022) work within the von
Mises class, assuming (5.5). Then, also assuming insufficient followup, the esti-
mator p̂G(n, ε) is consistent in a certain sense for p and asymptotically normally
distributed.

10We write γ where Escobar-Bach and Van Keilegom (2019) write 1/γ.
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Theorem 6.1 (Consistency and Asymptotic Normality of p̂G(n, ε)). As-
sume the iid censoring model holds with τG < τF , and F satisfies (5.5). Then
for each ε > 0 the estimator p̂G(n, ε) converges in probability as n → ∞ to a
quantity F (τG) + C(τG, ε), and C(τG, ε) → C(τG) as ε → 0, where

C(τG) = −p
F ′(τG)2

F ′′(τG) ;

and, further,
lim

τG↑τF
F (τG) + C(τG) = p. (6.4)

Assume in addition that limn→∞ nG(τG − δ/
√
n) = ∞ for each δ > 0 and

that the integral in (1.4) is finite. Then, as n → ∞,
√
n
(
p̂G(n, ε)− p

)
is asymp-

totically distributed as N
(
0, σ2(ε)

)
for each ε > 0, with a variance σ2(ε) which

depends on ε. Further, σ2(ε) has a finite positive limit as ε → 0.

Remarks. (i) As outlined in Subsection 5.3, (5.5) implies the von Mises condi-
tion, sufficient for F to belong to the Gumbel maximum domain of attraction.
The condition limn→∞ nG(τG − δ/

√
n) = ∞ is satisfied in most realistic situa-

tions; for example, if G is uniform on [0, τG]. Theorem 4.2.3, p.82, of Gill (1980)
is an important tool in the proof of Theorem 6.1.

(ii) Most of the common survival distributions are in the Gumbel domain of
attraction, contained as submodels of the generalised F distribution discussed
in Section 7. In particular, the generalised gamma distribution is a submodel
of the generalised F for certain choices of parameters. Sub-models of the gen-
eralised gamma in the Gumbel domain of attraction include the exponential,
gamma, Weibull, log-normal and Rayleigh distributions. The heavy-tailed dis-
tributions in the Fréchet domain of attraction are less common but include
Pareto, log-gamma and log-logistic. Formulae for these distributions and the re-
lations between them are in Section 7 and in more detail in Zhao (2023). Table 1
lists them and which domain of attraction, Fréchet or Gumbel, each is in.

There are lifetime distributions satisfying von Mises’ condition that are not
in the generalized F distribution classes, for example, the Gompertz distribution
(but this is also discussed in Section 7).

Simulations in Escobar-Bach and Van Keilegom (2019) and Escobar-Bach
et al. (2022) showed that both estimators p̂y and p̂G(n, ε) behaved well (were
close to the true p and approximately normally distributed around it, for rea-
sonable values of n and ε) for data with insufficient follow-up, and, further,
p̂G(n, ε) even behaved well for data with sufficient follow-up, in the sense that
very little adjustment to p was made in this situation, as should be the case.

7. Some parametric survival models for cure

This section gives an overview of a variety of survival distributions, with empha-
sis on those that can be fitted using R with a cured component allowed for, and
consequently, when combined with the ideas outlined above, allow some very
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sophisticated analyses of survival data. Examples of doing this, selecting be-
tween models, and fitting covariates, are in Zhao (2023). Relevant to Sections 5
and 6, we check which domains of maximal attraction the distributions are in
(Table 1).

7.1. The generalised gamma distribution

The three-parameter generalised gamma distribution (GGD, Stacy (1962)) con-
tains as sub-models the exponential, gamma, Weibull, log-normal, and Rayleigh
distributions. Its density function is

fgg(t) = α

Γ(γ) t
αγ−1λαγ exp

(
− (λt)α

)
, t > 0, (7.1)

with parameters (α, λ, γ), all positive. To counter computational problems, Pren-
tice (1974) proposed the log-gamma and extended generalised gamma distribu-
tions (EGGD), obtained by the following reparameterisation of (7.1):

μe := 1
α

log γ − log λ, σe := 1
α
√
γ
, β := 1

√
γ
. (7.2)

When T has the pdf in (7.1) and Z = (α log(λT ) − log γ)√γ, the pdf of Z is

fZ(z; γ) = γγ−1/2

Γ(γ) exp
(√

γz − γ exp(z/√γ)
)
. (7.3)

Using Stirling’s approximation, we can see that this converges to the standard
normal density as γ → ∞. So the pdf of T can be written as fT (t) =

|β|
tσeβ2β−2Γ(β−2)

exp
(
β−2

(
β

log t− μe

σe
− exp

(
β

log t− μe

σe

)))
, (7.4)

where now the cases β ≤ 0 are allowed. In this formulation β > 0 indicates that
Z has the pdf fZ(z; γ) in (7.3), β = 0 indicates that Z has a standard normal
distribution, and β < 0 indicates that −Z has the pdf fZ(z; γ) in (7.3).

Lifetime distributions that are not sub-models of the generalised gamma in-
clude the log-logistic, Gompertz, inverse Gaussian, and the truncated (on the
left of 0) normal distribution. The log-logistic is a sub-model of the generalised-F
distribution, which is discussed next.

7.2. The generalised F distribution

Consider a location and scale model with the errors ε following the log F-
distribution, i.e., being the logarithm of a random variable with Fisher’s F-
distribution F (2s1, 2s2), having degrees of freedom 2s1 > 0 and 2s2 > 0. Thus
exp(ε) ∼ F (2s1, 2s2). Introduce parameters μ and σ > 0 and set

log T ∗ = μ + σε. (7.5)
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Then T ∗ has the four-parameter generalised F-distribution (GFD) with pdf
fGF (t;μ, σ, s1, s2) =

Γ(s1 + s2)
tσΓ(s1)Γ(s2)

(
s1

s2
exp

(
log t− μ

σ

))s1 (
1 + s1

s2
exp

(
log t− μ

σ

))−s1−s2

.

(7.6)
(The logF distribution itself is also known as the two-parameter GFD.) Refer-
ring to (7.2), the relationship between the parameters of the EGGD and those
of the 4-parameter GFD is: μe = μ; σe = σ/

√
s1; β = 1/√s1. Of course s1

is strictly positive, and β > 0 here. However, the EGGD with pdf in (7.4) can
be viewed as a special case of the GFD (Peng et al. (1998)). The relations
are as follows. When s1 → ∞, the GFD reduces to the EGGD with β < 0;
when s2 → ∞, it reduces to the EGGD with β > 0; when both s1 and s2
approach infinity (in either order), it reduces to the log-normal distribution.
Specifically, when s2 → ∞, we obtain from (7.6) the pdf (7.1) with parameters
α = σ−1, λ = sσ1 e

−μ and γ = s1. Alternatively, defining σe = σ/
√
s2 and letting

s1 → ∞, (7.6) gives lims1→∞ fGF (t) =

s
s2−1/2
2

tσeΓ(s2)
exp

(
−s

1/2
2

log t− μ

σe
− s2 exp

(
−s

−1/2
2

log t− μ

σe

))
. (7.7)

Letting μe = μ and β = −s
−1/2
2 , this is an EGGD with pdf (7.4).

A summary of the relationships between the GFD and the sub-models dis-
cussed so far is in Table 1. The table contains two other sub-models of the GFD,
the log-logistic and members of the Burr families, discussed in Subsections 7.4
and 7.5. The notation is as in (7.6) and (7.7). The final column of the table
indicates which domain of maximal attraction (DoA) the distribution is in.

Table 1

Generalised F submodels with their maximum domain of attraction (DoA); F=Fréchet,
G=Gumbel.

Lifetime Distribution s1 s2 μ σ DoA
Generalised F (s1, s2, μ, σ) s1 s2 μ σ F
Generalised Gamma (α, λ, γ) γ ∞ log(γ1/α/λ) α−1 G
Weibull (α, λ) 1 ∞ − log λ α−1 G
Exponential (λ) 1 ∞ − log λ 1 G
Rayleigh (λ) 1 ∞ − log λ 0.5 G
Gamma (λ, γ) γ ∞ log(γ/λ) 1 G
Generalised Gamma (β > 0, μe, σe) β−2 ∞ μe σeβ−1 G
Log-Normal (μe, σe) ∞ ∞ μe σe

√
s1 G

Generalised Gamma (β < 0, μe, σe) ∞ β−2 μe σe|β|−1 G
Inverse Weibull (αw, λw) ∞ 1 log λw α−1

w F
Type III Gen. Log-Logistic (s, μ, σ) s s μ σ F
Type II Gen. Log-Logistic (a, μ1, σ1) 1 a log(eμ1a−σ1) σ1 F
Log-Logistic (μ, σ) 1 1 μ σ F
(Log) Type XII Burr (k, c, μb, σb) 1 k log(eμbk−σb ) cσb F
(Log) Type III Burr (k, c, μb3, σb3) k 1 log(eμb3kσb3 cσb3 F
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7.3. Reparameterisation of the generalised F

Parameter estimation for the GFD can be unstable when the parameters are
near the boundary points, s1 or s2 → ∞. Prentice (1975) reparameterised the
model, replacing s1 and s2 with PF and β, where PF ≥ 0, β ∈ R,

s1 = 2
(
β2 + 2PF + βcF

)−1
, s2 = 2

(
β2 + 2PF − βcF

)−1
, (7.8)

and cF =
(
β2 + 2PF

)1/2. Recall that if ε = (log T ∗ − μ)/σ follows a two-
parameter GFD with parameters s1 and s2, then T ∗ has pdf of the form (7.6)
with parameters s1, s2, μ, σ. After the reparameterisation, the convention is to
redefine the two-parameter generalised F random variable as ε = (log T ∗ −
μ)/c−1

F σ, and hence log T ∗ = μ + c−1
F σε := μe + σe, where μe = μ and σe =(

β2 + 2PF

)−1/2
σ.

This further reparameterisation of the scale parameter is consistent with the
parameters in an EGGD. The relationships between the sub-models of the GFD
and this reparameterised GFD are in Table 2.

Table 2

Reparameterised generalised F submodels.
Lifetime Distribution β PF μe σe

Generalised F (β, P, μ, σ) β PF μe σe

Generalised Gamma (β, μe, σe) β 0 μe σe

Weibull (α, λ) 1 0 − log λ α−1

Exponential (λ) 1 0 − log λ 1
Rayleigh (λ) 1 0 − log λ 0.5

Gamma (λ, γ) γ−1/2 0 log(γ/λ) γ1/2

Log-Normal (μe, σe) 0 0 μe σe

Inverse Weibull (αw, λw) −1 0 log λw α−1
w

Type III General Log-Logistic (s, μ, σ) 0 s−1 μ
√

σ2s
2

Type II General Log-Logistic (a, μ1, σ1) a−1√
a2+a

2
a+1 log(eμ1a−σ1 ) aσ1

a+1
Log-Logistic (μ, σ) 0 1 μ σ√

2
(Log) Type XII Burr (k, c, μb, σb) k−1√

k2+k

2
k+1 log(eμbk−σb) ckσb

k+1

(Log) Type III Burr (k, c, μb3, σb3) 1−k√
k2+k

2
k+1 log(eμb3kσb3 ckσb3

k+1

7.4. The generalised logistic family

The Type IV generalised logistic distribution (GLD) contains Types I, II, III,
defined by Johnson et al. (1995), as special cases. Johnson et al. (1995) and
Nassar and Elmasry (2012) write its pdf as

fgl(x) = Γ(s1 + s2)
Γ(s1)Γ(s2)

e−s1x

(1 + e−x)s1+s2
, x > 0, (7.9)

with s1, s2 > 0. The Type IV GLD is a special case of the two-parameter GFD.
Specifically, the density function for X := −ε − log(s1/s2), where exp(ε) ∼
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F (2s1, 2s2), is that in (7.9). Therefore, a GFD with parameters s1, s2, μ and σ
is the distribution of −X, where X follows a Type IV generalised log-logistic
distribution (GLLD) with parameters s1, s2, μ1 = μ − σ log s1 + σ log s2 and
σ1 = σ.

When s1 = s2 = s, the Type IV generalisation (7.9) reduces to the Type III
generalisation with pdf

fgl3(x; s) = Γ(2s)
Γ2(s)

e−sx

(1 + e−x)2s
, x > 0. (7.10)

In that case, since (7.10) is an even function, X = −(log T − μ)/σ follows
the same Type III GLD as the random variable −X = (log T − μ)/σ. Thus a
GFD with parameters μ, σ, s1, s2 reduces to the Type III GLD with parameters
μ1 = μ, σ1 = σ and s when s1 = s2 = s, whose pdf is fgll3(t;μ, σ, s) =

Γ(2s)
tσΓ2(s) exp

(
−s

log t− μ

σ

)(
1 + exp

(
− log t− μ

σ

))−2s

. (7.11)

Furthermore, when s = 1, (7.11) reduces to the standard LLD with pdf

fll(t) = 1
tσ

exp
(

log t− μ

σ

)(
1 + exp

(
log t− μ

σ

))−2

. (7.12)

Setting s1 = 1 in (7.9) we get the pdf

fgl(x; s1 = 1) = s2e
−x

(1 + e−x)1+s2
. (7.13)

which is the pdf of the Type I GLD with a = s2. Thus, when s1 = 1, the GFD
with parameters s1, s2, μ and σ reduces to the Type II GLLD with parameters
a = s2, μ1 = μ + σ log s2 and σ1 = σ, whose pdf satisfies

fgll2(t) = 1
tσ

exp
(

log t− μ

σ

)(
1 + 1

s2
exp

(
log t− μ

σ

))−1−s2

. (7.14)

If we further let s2 → ∞, this converges to the Weibull pdf.
Gupta and Kundu (2010) noted that the Type I generalised logistic distri-

bution can be regarded as a family of proportional reverse hazard distribution
functions with the baseline distribution as the logistic distribution. In propor-
tional reversed hazard models, instead of assuming the hazard functions are
proportional, it is assumed that the “reversed hazard” functions, defined by
“density/cdf”, are proportional. However, like Type IV, the Type I generalised
logistic distribution is not contained in the GFD family.

The Gumbel and Gompertz distributions are also closely related to the gen-
eralised log-logistic family. To see this, define X1 = Y − log a, with Y following
a Type I GLD with parameter a. Let a → ∞ in the pdf for X1 to get

lim
a→∞

fX1(x1) = exp(−x1 − exp(−x1)),
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which is the kernel for the standard Gumbel distribution. It can be expanded
with location and scale parameters as usual.

We note next that the Gompertz distribution is not a sub-model of the
generalised F-distribution, but they are related as follows. Recall that if ε =
(log T ∗ − μ)/σ follows a two-parameter GFD then X = −ε− log(s1/s2) follows
a two-parameter Type IV GLD. X reduces to the Type I GLD with parameter
a when s1 = 1 and s2 = a, that is, X = −ε + log a has the distribution of Y
in (7.13). Hence if we write

X2 = log(1/T ∗) + μ2

σ2
,

where μ2 = (μ + ση + σ log(η)), σ2 = bσ, and T ∗ follows a GFD with parameters
s1, s2, μ and σ, then X2 follows a Gompertz distribution with shape parameter
η and scale parameter b when s1 = 1 and s2 → ∞.

7.5. Burr distributions

Consider a random variable ε following a GFD with s1 = k > 0 and s2 = 1, and
make the transform Y1 = (keε)1/c, c > 0. The pdf for Y1 is

fB1(y) = kc
yck−1

(1 + yc)k+1 , (7.15)

which is the pdf of the Burr Type III distribution (Burr (1942)). The relationship
between T ∗ in (7.5) and Y1 is log T ∗ = μb3 + σb3 log Y1, where μb3 = μ− σ log k
and σb3 = cσ. So the GFD reduces to the log of a Type III Burr distribution
when s2 = 1.

If instead ε follows a two-parameter GFD and we let s1 = 1, s2 = k > 0 and
make the transformation Y = (eε/k)

1
c , then Y has pdf

fY (y) = kc
yc−1

(1 + yc)k+1 ,

which is the pdf of a Type XII Burr distribution. Let logT ∗ = μb + σb log Y
where μb = μ + σ log k and σb = cσ. Then T ∗ has a four-parameter GFD with
pdf

fb(t) = 1
tσ

exp
(

log t− μ

σ

)(
1 + 1

k
exp

(
log t− μ

σ

))−k−1

,

which is the pdf of the Type II GLLD (7.14) with k = s2. Therefore the GFD
reduces to the log of a Type XII Burr distribution, rather than to the Type XII
Burr distribution, as sometimes claimed. For an application, see Ghitany et al.
(2004) and associated papers.
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7.6. Other distributions

We mentioned that the GGD reduces to the Weibull distribution when γ = 1,
and hence the GFD reduces to the Weibull distribution when s1 = 1 and s2 →
∞. On the other hand, when s1 → ∞, the GFD reduces to the EGGD with
β < 0, with pdf in (7.7). If we then further take s2 = 1, the distribution is, not,
however, a Weibull distribution. We get

lim
s1→∞

fGF (t; s2 = 1) = t−αw−1αwλ
αw
w exp

(
−
(
t−1λw

)αw
)
,

which is the pdf of an inverse Weibull with parameters αw = σ−1 and λw = eμ.
For ε following a two-parameter GFD let s1 = 1 and s2 = 1/ξ, and set

X := μp + eσpε. The density function for X is:

fX(x) = 1
σp

(
1 + ξ(x− μp)

σp

)− 1
ξ−1

,

which is the pdf of a generalised Pareto distribution (GPD) with positive pa-
rameter. The GPD with zero parameter (ξ = μp = 0) is a limiting case, taken to
be the exponential distribution, and hence is a GFD. However, the generalised
F model cannot contain the GPD with negative parameter.

7.7. A Weibull model for Boag’s data

Boag used a parametric approach, inferring the existence of cures in his popu-
lation from his sample estimate of the proportion cured and its standard error,
obtained from a lognormal mixture model fitted to the data by maximum likeli-
hood. We observed in Section 1 that Boag in fact found an exponential mixture
distribution to be a slightly better fit. Using the R package flexsurvcure (Amdahl
(2020)) we fitted a Weibull mixture distribution to his data, thus producing an
estimator of F ∗. Fig. 10 shows that the Weibull is a good fit to the lifetime data
(goodness of fit tests for parametric model fits are in Maller and Zhou (1996),
Sect. 5.4, p.115, Geerdens et al. (2019) and Müller and Van Keilegom (2019))
and (with an estimated shape parameter of 0.88, not significantly different from
1) accords well with Boag’s best fitting exponential model.

The sample also contains useful information about the censoring distribution.
Fig. 10 shows the corresponding censoring KME for Boag’s data, also with a
Weibull distribution fitted. Censoring appears fairly uniform up to about 30
months but after that conforms better to the Weibull. Reasons for this could
rest with the way the data was gathered.

We close this subsection by mentioning that papers continue to appear reg-
ularly with suggestions and evaluations of new models for lifetime data, often
derived by adding to or modifying the parameters of existing models – too many
to list here.
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Fig 10. KMEs for Boag Breast Cancer Data with Fitted Weibull Mixture Distributions. (a)
Survival Distribution. (b) Censoring Distribution.

8. The probability that an individual is cured

For diagnostic and prognostic purposes an important aspect of the cure model
in survival analysis is the probability that an individual, having survived till
a designated time t, is cured, that is, belongs to the cured component of the
population. Given followup data on the individual, that is, knowing their current
lifetime, we can estimate this nonparametrically or parametrically.

A formula for this probability is

p(t) := 1 − p

1 − F ∗(t) , t ≥ 0, (8.1)

and it can be estimated from sample data using the estimator

p̂n(t) := 1 − p̂n

1 − F̂n(t)
, t ≥ 0. (8.2)

Recall that F̂n(0) = 0 and we set F̂n(t) := F̂n(M(n)) for t > M(n); see Sec-
tion 1.2.

The formulae (8.1) and (8.2) are derived in Maller and Zhou (1996), Section
9.3, using a simple conditional probability argument. In this section we restrict
ourselves to the case p < 1, since, in the alternative case, p = 1, there is no
cured component in the population and hence no prospect of an individual’s
long-term cure; and we will only attempt to estimate p(t) when F̂n(M(n)) < 1,
i.e., when the largest sample observation is censored. Recall from (1.3) that
p̂n = F̂n(Mu(n)) = F̂n(M(n)), so (8.2) assigns a value of 1 to p̂n(t) for t in
[Mu(n),M(n)]; but as we show in the next theorem, p̂n(t) can only be guaran-
teed a consistent estimator of p(t) when followup is sufficient.

8.1. The asymptotic distribution of p̂n(t)

For the next theorem, recall the function v(t) in (3.1).
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Theorem 8.1 (Asymptotic distribution of p̂n(t)). Assume the iid censoring
model with 0 < p < 1 and (1.4) holding. Then for each t ∈ [0, τG],

√
n
(
p̂n(t) −

p(t)
)

is asymptotically normal with mean 0 and finite variance

v0(t) :=
(1 − p)2

(
v(τG) − v(t)

)
(1 − F ∗(t))2 . (8.3)

Remarks. (i) The result is trivial when t = τG, because p̂n(τG) = p̂n(M(n)) = 1
then, and of course the RHS of (8.3) is 0 then. But this does emphasise that
an individual surviving to the maximum extent of followup is designated as
cured with probability 1, provided followup is sufficient. Recall that finiteness
of the integral in (1.4) implies the sufficient followup condition τF ≤ τG. If
follow-up is not sufficient, the probability of being cured will be overestimated,
and an adjustment can be made as outlined in Section 6. It would be useful to
incorporate this effect in a future study.

(ii) When t = 0, Theorem 8.1 tells us that
√
n
(
p̂n(0) − p(0)

)
=

√
n(p̂n − p)

converges in distribution to N
(
0, (1 − p)2v(τG)

)
thus recovering (3.2).

(iii) To make the results practical, we need a sample estimate for the popu-
lation quantity v0(t) in (8.3). We can obtain this from the consistent estimators
of v(t) and v(τG) in (3.3) and (3.4), together with use of the KME, F̂n(t), as a
consistent estimator of F ∗(t), for each t > 0.

(iv) Jakobsen et al. (2020) define the cure point as the time at which the
mortality risk in the sample reaches the same level as for the general population.
This introduces the concept of relative survival, that is, where a comparison
between observed and actuarial (assumed known) survival rates is made for
deciding on “cure” status. Jakobsen et al. (2020) use the cure model to estimate
the time at which the probability of cure as thus defined is sufficiently close to
one, e.g., exceeding 95%, and illustrate with simulations.

(v) The EM algorithm has a natural application to the mixture cure model
as a computational tool and also offers some theoretical insight. In this context
p(t) can be recognised as the posterior cure probability as widely used. See for
example Larson and Dinse (1985), Taylor (1995) and Yu and Tiwari (2007).

8.2. The inverse problem

For the inverse problem we ask what length of life should a subject attain to
achieve a given probability, a, say, of being cured? In other words, referring
to (8.1), we seek the lifetime T (a) such that

1 − p

1 − F ∗(T (a)) = 1 − a, (8.4)

which we expect will be estimated by the lifetime Tn(a) satisfying, by (8.2),

1 − p̂n

1 − F̂n(Tn(a))
= 1 − a ∈ [1 − p̂n, 1]. (8.5)
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We only evaluate (8.5) when p̂n ≥ a as there is no time Tn(a) for which (8.5)
can be achieved when p̂n < a. When a = p̂n we take Tn(a) = 0. We will show
that for each a < p, Tn(a) is a consistent estimator of T (a), and is normally
distributed around it.

We need some extra notation and appropriate assumptions for the inverse
relationships. Define the left-continuous inverse functions to F̂n : [0,M(n)] �→
[0, p̂n] and F ∗ : [0, τF ] �→ [0, p] by

F̂←
n (u) = inf{t > 0 : F̂n(t) ≥ u}; [0, p̂n] �→ [0,M(n)]

F ∗,←(u) = inf{t > 0 : F ∗(t) ≥ u}; [0, p] �→ [0, τF ],

so, recalling that p̂n = F̂n(M(n)), we can write, for a < p,

T (a) = F ∗,←
(p− a

1 − a

)
, Tn(a) = F̂←

n

( p̂n − a

1 − a

)
. (8.6)

Since p̂n
P−→ p, a < p implies a < p̂n on an event whose probability approaches 1

as n → ∞. We restrict our analysis to this event, on which Tn(a) is well defined
and positive. The asymptotic normality proved in the next Theorem 8.2 means
that 95% confidence intervals are accurate as claimed, in large samples.

Theorem 8.2 (Asymptotic distribution of Tn(a)). Assume the iid censoring
model with 0 < p < 1, Gill’s integral (1.4) is finite, and assume in addition
F ∗ = pF has a positive continuous density f∗ on (0, τF ]. Take 0 < a < p, so
that T (a) > 0. Then

√
n
(
Tn(a) − T (a)

)
has a limiting normal distribution with

mean 0 and variance

(1 − p)2

(1 − a)2
(
f∗(T (a))

)2 (v(τG) − v(T (a))
)
. (8.7)

Remarks. Proofs of Theorems 8.1 and 8.2 are in the Supplementary Material
to the paper. To estimate the denominator in (8.7) we can substitute Tn(a)
for T (a) and use (3.1) and (3.4) to calculate v(Tn(a)) and v(τG). We also need
to estimate the derivative f∗(T (a)). A similar problem arises when estimating
the variance of a sample quantile; see, for example, Brookmeyer and Crowley
(1982). It can be handled by using a locally smoothed estimate of F ∗, or even
a fitted distribution if a good parametric fit can be obtained.

8.3. Estimating the probability of cure for Boag’s data

In Fig. 10 we showed the KME of the survival (lifetime) distribution with 95%
confidence intervals and a Weibull mixture distribution fitted to the Boag (1949)
data. In Fig. 11 we plot the function in (8.2) together with 95% confidence inter-
vals obtained from Theorem 8.1. Rather than using the nonparametric estimates
in (8.2) we could use parametric estimates from a fitted model. Fig. 11 shows
the curve obtained in this way using the Weibull model fitted in Subsection 7.7.
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Fig 11. Boag breast cancer data: probability of being cured with 95% confidence intervals. The
step function is the estimate (8.2); the smooth function is derived from the fitted Weibull.

It can be thought of as a smoothed version of p̂n(t). Confidence intervals for it
were obtained by resampling.

To conclude this section we quote from Engels et al. (2021). In a very large
study, they also used a Weibull parametric version in the formula (8.1) to esti-
mate probabilities of cure for a sample of over 10.5 million general population
cancer cases, with 17 different types of cancer, in data from the US Transplant
Cancer Match Study. Their aim was to determine whether statistical models
that predict a patient’s probability of being cured of their cancer could inform
evaluation of patients with cancer for solid organ transplantation. Their study
concluded that it is reasonable to offer transplantation to patients who can be
predicted to have a high likelihood of being cured of their cancer. They noted the
value of the technology especially to evaluate individual patients. We note again
the importance of assessing sufficiency of followup in studies like this.

9. Some other issues

Most of our discussion has concerned the one-sample case and continuous sur-
vival time distributions. Here we consider briefly some more general situations.

9.1. Many-sample cases, and covariates

In practice, we usually have information on one or more groups (treatment
groups, or stratifying variables, etc.), and/or covariates, and want to examine
the effects of these. Much of Maller and Zhou (1996) is concerned with methods
for handling this, and the recent book by Peng and Yu (2021) focuses on general
mixture cure models with covariates. See also López-Cheda et al. (2019), Chen
et al. (2023) and López-Cheda et al. (2023).

A wide variety of models which allow for treatment effects (or, generally,
categorical variables) as well as continuous-valued covariates can be fitted rou-
tinely with the package R (R Core Team (2018)); see Cai et al. (2012), Jackson
(2016), Amdahl (2020) and López-Cheda et al. (2021). These cover a class of
generalised F models and, as a submodel, an extended generalised gamma model,
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which between them include as submodels most of the usual survival distribu-
tions. Methods of distinguishing between them in a data analysis with the cure
model are illustrated in Zhao (2023). Lambert (2007) gives a Stata program for
fitting both mixture and nonmixture cure models, also enabling the modeling
of relative survival.

When covariates are included in a model, special issues arise relating to identi-
fiability, especially regarding sufficiency of followup, as mentioned in Section 4.4.
For categorical variables, testing for sufficient followup can be done separately
for each level, and continuous variables can be discretised into convenient cate-
gories and handled similarly.

9.2. Tied failure times and grouped survival data

Tied (exactly equal) failure times can occur when the assumed failure distribu-
tion F ∗ has a jump at one or more points, or, more commonly, when observed
failure data is grouped for convenience into a smaller number of categories.
The assumption throughout this paper has been that the failure distribution is
continuous, but many of the theoretical and practical results continue to hold
without this. Formula (1.2) for the KME remains true if the convention that an
uncensored observation tied with a censored one is indexed before the censored
one; see Eq. (1.7), Section 1.2, of Maller and Zhou (1996). Many of the analyses
in that book (especially, concerning properties of the KME in Chapter 3) remain
valid with this convention.

Most parametric models in use such as the distributions discussed in Section 7
are continuous, so this is not an issue in practice, but when observations occur
in grouped form or are grouped for convenience special methods have been
developed. Yu et al. (2004a) and Yu and Tiwari (2007) derive a version of the
cure mixture model for grouped survival data which also takes into account
relative survival (see Remark (iv) in Subsection 8.1). Their methods are applied
to analyze some colorectal cancer relative survival data from the 1973–1999
edition of the SEER (2019) database using a Weibull mixture model. Cancho
et al. (2020) extend proportional hazards frailty models to allow a discrete
distribution for the frailty variable. In their model an individual having zero
frailty can be interpreted as being immune or cured.

10. Discussion

Kaplan-Meier plots provide very strong intuition. See for example the evocative
plots in Powles et al. (2021), who are expressly concerned with determin(ing)
which patients . . . are cured after surgery. A KME which levels off or plateaus
at its right hand end with total mass less than 1 because the largest or a num-
ber of the largest lifetimes are censored is often the most striking feature of a
Kaplan-Meier plot in the medical literature, and this we know may indicate the
presence of cured or immune individuals in the population. An awareness of the
importance of analysing such data properly, and the means for doing so, have
grown substantially in the last few decades or so.
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There are a number of aspects to consider. The use of the Cox proportional
hazards model is near-ubiquitous in the analysis of survival data these days,
but hazards are unlikely to be proportional if cured individuals are present.
(Hazards for susceptible individuals may be proportional; Kuk and Chen (1992)
have a method for dealing with this.) So standard analyses of survival data may
be quite misleading if the possible presence of cures is overlooked – and this is
apart from the valuable extra information that a cure model analysis can give.11
On the other hand, allowing for the possible presence of cures when none are in
fact present can do little or no harm, apart from the possibility of over-fitting
which may lead to some bias in small data sets.

In another context, in Liu et al. (2018), the times of occurrence of four
endpoints (overall survival, disease-specific survival, disease-free interval, or
progression-free interval) for 11,160 patients across 33 cancer types were ob-
tained from follow-up data files, with a view to making recommendations to
clinicians regarding their patient’s status. They used Qn and a method of Shen
(2000) to assess and measure followup.

Understanding how Qn depends on the sample properties of censored survival
time data, and the formulae for the exact and asymptotic distributions of Qn we
have obtained, opens the way to its more general use in the analysis of survival
data with immune or cured individuals. We note that under H0 : τG < τF , the
hypothesis of insufficient follow-up, with some reasonable side conditions, the
asymptotic distribution of Qn is completely non-parametric (cf. (5.16)).

Future directions of research could usefully include issues of sufficient follow-
up in competing risks analysis, and in multivariate survival analysis with cured
individuals. For the latter, see Yau and Ng (2001), Chatterjee and Shih (2001,
2003), Peng et al. (2007), Yu and Peng (2008), Niu and Peng (2013), Coelho-
Barros et al. (2016), Niu et al. (2018), Tawiah et al. (2020b), Oliveira et al.
(2022). (Think of a study on peoples’ eyes, where one or both eyes may be af-
fected by a degenerative disease.) Other recent applications of the cure model
are in Law et al. (2002) (an extension of cure models to incorporate a longi-
tudinal disease progression marker), Zhang and Shao (2018) (assessments of
prognostic utilities of biomarkers (e.g. primary tumor thickness and ulceration
status of melanoma) for predicting survival of uncured patients) and Lakhal-
Chaieb et al. (2020) (assessing the significance of the genetic variant in logistic
and survival regressions simultaneously).

It is natural also to base tests for sufficient follow-up on the length of the
interval (Mu(n),M(n)], or the number of censored survival times larger than the
largest uncensored survival time, or some combination or variant of these. So we
might use the difference between the extremes, M(n)−Mu(n), or a standardised
version of this such as Rn = 1 −Mu(n)/M(n), which is in (0, 1). Formulae for
their distributions assuming the iid censoring model are in Section 2.2. These
variables measure the absolute or relative length of the level stretch of the KME

11Hsu et al. (2021) go so far as to suggest that some of the published survival data for im-
munotherapies should be re-analyzed for potential misinterpretation. They provide a method
to convert inappropriate Cox hazard ratios to appropriate cure model treatment-effect esti-
mates.
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rather than a proportion of observations, as Qn does. At present their properties
remain to be investigated in detail. We note that they, like Qn, are very sensitive
to the occurrence of one or a few failures in the righthand end of the KME. This
is a robustness issue to be addressed as in any statistical analysis. A test for
outliers in the iid model is in Maller and Zhou (1994).

Alternative methods of assessing sufficient followup are in Shen (2000), Kle-
banov and Yakovlev (2007) and Xie et al. (2023). A more extensive investigation
is warranted.

11. Conclusions

Here we give a summary of the discussion with main points highlighted.

• It’s very common in survival analysis to encounter a KME which has levelled
off at a value less than 1. This may indicate the presence of immune or cured
individuals in the population — but not always — even in the absence of cures,
it’s possible for the right extreme of the KME to be less than 1 just by chance.

• A significance test is available for the hypothesis H0 : p = 1 when a well-
fitting parametric model has been found for the data (keeping in mind the
one-sided nature of the test).

• A nonparametric test for H0 : p = 1 is available too, using p̂n, but at present
we have to rely on simulated, tabulated, percentage points for its distribution.
Finding a general finite sample or asymptotic distribution for p̂n when p = 1
remains a challenge.

• An important point is whether the KME has levelled off sufficiently at its
right endpoint. The Qn statistic has been developed to measure and test for
this. We now understand its finite sample and asymptotic properties quite well.
The “sufficient followup” condition τF ≤ τG is necessary for the convergence of
the integral in (1.4) and plays an important role in many of the large-sample
results in Gill (1980) and in the literature.

• We’ve confined our discussion mainly to the single-sample case but methods
involving covariates are well developed. A wide variety of parametric models can
be fitted routinely with R which makes the methodology conveniently available
for practical use.

• We’ve also confined our discussion to medical data and survival analysis.
But the methodology applies to many other kinds of time-to-event data. A wide
variety of examples can be found in an internet search. Maller and Zhou (1996)
use criminological data (time to re-arrest of a released prisoner, etc.) as well
as medical data for illustration and many other examples can be found in the
literature.

• Ignoring the possible presence of cured, immune or long-term survivors in
a population not only risks losing valuable information but can result in bias
and misleading conclusions. If their presence is allowed for but found not to be
significant, no harm is done.

• The mixture cure model can be regarded as a special case of a competing
risks analysis where death or failure of an individual may be due to a number
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of possible causes. The important issue of sufficient followup is clearly relevant
in this context, but has not been addressed at all, so far.
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