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Abstract: Quantifying the similarity between datasets has widespread ap-
plications in statistics and machine learning. The performance of a predic-
tive model on novel datasets, referred to as generalizability, depends on
how similar the training and evaluation datasets are. Exploiting or trans-
ferring insights between similar datasets is a key aspect of meta-learning
and transfer-learning. In simulation studies, the similarity between distri-
butions of simulated datasets and real datasets, for which the performance
of methods is assessed, is crucial. In two- or k-sample testing, it is checked,
whether the underlying distributions of two or more datasets coincide.

Extremely many approaches for quantifying dataset similarity have been
proposed in the literature. We examine more than 100 methods and provide
a taxonomy, classifying them into ten classes. In an extensive review of
these methods the main underlying ideas, formal definitions, and important
properties are introduced.

We compare the 118 methods in terms of their applicability, inter-
pretability, and theoretical properties, in order to provide recommendations
for selecting an appropriate dataset similarity measure based on the spe-
cific goal of the dataset comparison and on the properties of the datasets
at hand. An online tool facilitates the choice of the appropriate dataset
similarity measure.
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1. Introduction

Quantifying how similar or different two or more datasets are is a crucial subtask
in various applications of statistics and machine learning. Examples of applica-
tions include but are not limited to (i) the assessment of the generalizability
of a predictive model to a broader context, (ii) the transfer of knowledge from
one task to another task in transfer-learning or meta-learning, (iii) the compar-
ison of distributions of simulated data and data from the true data-generating
process when planning and implementing simulation studies, and (iv) checking
whether the underlying distributions of two or more datasets coincide via two-
or k-sample testing.

In statistics and machine learning, generalizability is a measure of a model’s
performance for a broader context, compared to the data on which it was fitted.
Generalizability is a useful property since conclusions drawn from the present
study can be transferred to a more general set of study objects. The performance
of the model on a new or unseen dataset depends on the similarity between the
dataset that was used for fitting the model and the new dataset. Quantifying
this similarity with a univariate measure thus can help to assess whether gen-
eralizability is given without fitting the model on the new dataset.

In meta-learning and transfer-learning, a central component is to exploit or
transfer insights between different datasets. For example, some meta-learning
models try to find the most suitable datasets to train specific models. Like-
wise, in transfer-learning, a common approach is to pre-train a model on a large
(source) dataset and then fine-tune the model on the (target) dataset of inter-
est. Also in this situation, it is crucial to understand and measure similarities
between datasets in order to select appropriate source datasets for the first step
of the process.

Further, when transferring insights of simulation studies to given data, the
similarity between distributions of simulated datasets and the distribution of a
(target) dataset, for which the performance of methods is assessed, is critical.
If assumptions are made about the underlying distribution, such as that it is a
normal distribution, and if these assumptions are not met, the conclusions from
the simulation study for the target dataset may be fundamentally flawed.

In the statistical learning and machine learning literature, a vast number of
approaches for quantifying dataset similarity have been proposed. However, to
the best of our knowledge, there is no comprehensive comparison between many
of these different approaches. In the following, we refer to some publications in
which at least comparisons of subsets of the methods have been carried out.

In Thas (2010), many methods for comparing distributions for univariate
data, including graphical methods as well as hypothesis tests, are explained
and discussed, but the multivariate case is not covered. In Rachev (1991) and
in Liese and Vajda (1987), properties of several probability metrics and diver-
gences, respectively, are discussed, i.e. distance measures between probability
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distributions.
In general, many articles that present new methods for measuring dataset

similarity include brief summaries of competing methods (e.g. Rosenbaum, 2005;
Biswas and Ghosh, 2014; Chen and Friedman, 2017; Sarkar, Biswas and Ghosh,
2020; Deb and Sen, 2021; Kim et al., 2021; Li, Hu and Zhang, 2022; Huang
and Sen, 2023). Most of these include only a small number of competing meth-
ods and, in most cases, only methods based on the same principle. Further,
some articles provide comprehensive reviews of single methodological classes
(e.g. Muandet et al. (2017) for kernel mean embeddings or Székely and Rizzo
(2017) for the energy distance).

Simulation studies comparing the new method with some previous methods
are often presented additionally (e.g. Biswas and Ghosh, 2014; Chwialkowski
et al., 2015; Mondal, Biswas and Ghosh, 2015; Jitkrittum et al., 2016; Petrie,
2016; Chen and Friedman, 2017; Lopez-Paz and Oquab, 2017; Liu, Li and Póc-
zos, 2018; Liu et al., 2020; Sarkar, Biswas and Ghosh, 2020).

We do not know of any comparison of methods belonging to many of the
different approaches, in particular methods based on different principles. In this
paper, we give an extensive review providing characterization and classification
of dataset similarity methods and their properties. In total, we examine more
than 100 methods for quantifying dataset similarity and provide a taxonomy
dividing the methods into ten classes, based on the underlying principles we
identified. The methods were selected from an extensive literature search by
using the following criteria:

• The method is applicable for multivariate data. This excludes the vast
literature on methods for comparing univariate distributions. For example,
a comprehensive overview of methods for one-dimensional data can be
found in Thas (2010).

• The method requires no specific parametric or distributional assumptions
on the underlying distributions of the datasets (e.g. normal distribution).
The general assumptions of discrete or continuous data are allowed since
they can be easily verified in practice.

• The method does not focus on a particular property of the data (e.g.
means), but on the entire dataset or its entire distribution. This particu-
larly excludes tests based solely on location or scale differences.

The classes into which the methods are divided are (i) comparison of cumulative
distribution functions, density functions, or characteristic functions; (ii) meth-
ods based on multivariate ranks; (iii) discrepancy measures for distributions;
(iv) graph-based methods; (v) methods based on inter-point distances; (vi)
kernel-based methods; (vii) methods based on binary classification; (viii) dis-
tance and similarity measures for datasets; (ix) comparison based on summary
statistics; and (x) testing approaches. The division is based on the fundamen-
tal underlying ideas that we identified in the set of analyzed dataset similarity
methods. This taxonomy is not strict, but helpful for structuring the set of
methods. Some methods could be classified into several classes. In those cases,
we put them into the class matching their main idea.
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Moreover, we present a comprehensive comparison of the methods. We in-
troduce 22 criteria to judge the applicability, interpretability, and theoretical
properties of dataset similarity measures. For each method, we check which of
these criteria are fulfilled to provide guidance for the choice of a suitable method
for quantifying the similarity of given datasets. To further facilitate the com-
parison of methods we implement an online tool that allows for interactive fil-
tering and sorting of the methods (https://shiny.statistik.tu-dortmund.
de/data-similarity).

In Section 2, we present the notation and assumptions that are used through-
out the article. In Section 3, a detailed description of all methods can be found.
The methods of each class are presented in a separate subsection. Within each
class, methods are ordered chronologically. An overview of all methods is given
in Section 3.1. In Section 4, we present a summary of the methods in the ten
classes. For each group of methods, we describe its general concept and explain
some prototypical example methods. This summary points out the main ideas
of each class and can be understood without reading the detailed method de-
scriptions. In Section 5, we introduce the list of criteria for rating the dataset
similarity measures. These criteria are organized according to three main cate-
gories: applicability, interpretability, and theoretical properties. In Section 6, we
provide the results of the method comparison based on the criteria presented
before. In Section 7, a brief summary of the review and comparison and an
outlook are given.

2. Notation and general assumptions

In general, a dataset can be viewed in two different ways, which impacts the
approach to measure similarity. First, a dataset can be viewed simply as a
collection of points in space. Second, and this is the more common view in
the methods we examined, a dataset can be viewed as a sample of random
variables that follow a true underlying distribution. In the second case, it is
often of interest to estimate the similarity of these underlying distributions
rather than the similarity of the datasets themselves. Therefore, many of the
methods presented below focus on comparing multivariate distributions rather
than directly comparing datasets.

In the following, we assume at least two different datasets D1 and D2 consist-
ing of n1 and n2, respectively, samples X1, . . . , Xn1 „ F1 and Y1, . . . , Yn2 „ F2.
We assume Xi, Yj P Rp @i P t1, . . . , n1u, j P t1, . . . , n2u and call the p compo-
nents of each sample features. We denote the pooled sample as tZ1, . . . , ZNu “

tX1, . . . , Xn1 , Y1, . . . , Yn2u, where N “ n1 `n2 is the total sample size. For most
of the methods, we assume that all Zi are distributed independently. For asymp-
totics, it is assumed that N Ñ 8 such that n1

N Ñ const P p0, 1q if not explicitly
stated otherwise. We define the two-sample problem as the testing problem

H0 : F1 “ F2 vs. H1 : F1 ‰ F2. (1)

This testing problem is sometimes also called testing for homogeneity of the two
distributions.

https://shiny.statistik.tu-dortmund.de/data-similarity
https://shiny.statistik.tu-dortmund.de/data-similarity
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In some cases, we also assume that there are ni observations of a target
variable in each dataset, but most methods only require the feature variables
and cannot deal with a target variable in a meaningful way. Analogously to
the two-sample problem, we define the k-sample problem for k ě 2 datasets
D1, . . . ,Dk with sample sizes ni, i “ 1, . . . , k as

H0 : F1 “ F2 “ ¨ ¨ ¨ “ Fk vs. H1 : Di ‰ j P t1, . . . , ku : Fi ‰ Fj ,

where Fi denotes the distribution of each sample in the ith dataset. We use
the notation Fi to denote the distribution as well as its cumulative distribution
function. By fi we denote the corresponding density functions if they exist. If
not explicitly stated otherwise we refer to the special case of the two-sample
problem (1).

In general, we denote random variables in uppercase letters and the corre-
sponding observations in lowercase letters. We use the hat symbol to denote
estimators. F̂i and f̂i denote the empirical distribution and density functions,
respectively. We use T as the symbol for (test) statistics and dp¨, ¨q to denote
distance measures.

3. Detailed description of data similarity methods

In the following, we describe all selected dataset similarity methods. The meth-
ods are sorted according to the classes we identified. The first subsection gives
an overview of all methods. In Subsections 3.2 to 3.13, the methods belonging
to each class are described.

3.1. Overview of all methods

Table 1 gives an overview of the dataset similarity methods included in this re-
view. The first column gives the name of the method, if available, and otherwise,
the reference where the method is defined. In all cases, the reference is linked.
If the article defining the method is published online, the online publication can
be accessed by clicking on the link that is given in parentheses after the method
name. The classes to which the methods are assigned are given in subheadings
within the body of the table. The subclasses are listed in the second column.
The third column shows the section and page where the method is described
within this article.

Table 1: List of all dataset similarity methods

Method/ Article Subclass Section,
Page

Comparison of CDFs, density or characteristic functions
Bickel (1969) (link) Comparison of CDFs 3.2, p. 174

https://www.jstor.org/stable/2239194
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Table 1: List of all dataset similarity methods

Method/ Article Subclass Section,
Page

Biau and Gyorfi (2005) (link) Comparison of CDFs 3.2, p. 175
Boeckel, Spokoiny and Su-
vorikova (2018) (link)

Comparison of CDFs 3.2, p. 175

Ntoutsi, Kalousis and Theodor-
idis (2008) (link)

Comparison of density
functions

3.3.1, p. 179

Ganti et al. (1999) (link) Comparison of density
functions

3.3.1, p. 176

Roederer et al. (2001) (link) Comparison of density
functions

3.3.1, p. 178

Wang and Pei (2005) (link) Comparison of density
functions

3.3.1, p. 178

Ahmad and Cerrito (1993)
(link)

Comparison of density
functions

3.3.2, p. 180

Anderson, Hall and Tittering-
ton (1994) (link)

Comparison of density
functions

3.3.2, p. 180

Cao and van Keilegom (2006)
(link)

Comparison of density
functions

3.3.2, p. 180

Alba-Fernández, Ibáñez-Pérez
and Jiménez-Gamero (2004)
(link)

Comparison of character-
istic functions

3.4, p. 181

Alba Fernández,
Jiménez Gamero and
Muñoz García (2008) (link)

Comparison of character-
istic functions

3.4, p. 181

Liu, Xia and Zhou (2015) (link) Comparison of character-
istic functions

3.4, p. 181

Li, Hu and Zhang (2022) (link) Comparison of character-
istic functions

3.4, p. 182

Rank-based methods
Ghosh and Biswas (2016) (link) Rank-based 3.5, p. 183
Ghosal and Sen (2021) (link) Rank-based 3.5, p. 184
Deb, Bhattacharya and Sen
(2021) (link)

Rank-based 3.5, p. 184

Zhou and Chen (2023) (link) Rank-based 3.5, p. 185
Discrepancy measure for distributions
Engineer metric (Rachev, 1991) Probability metric 3.6.1, p. 187
Zolotarev’s semimetric
(Rachev, 1991)

Probability metric 3.6.1, p. 187

Ky Fan metric (Rachev, 1991) Probability metric 3.6.1, p. 187

https://doi.org/10.1109/TIT.2005.856979
http://arxiv.org/abs/1809.04090
https://doi.org/10.1137/1.9781611972788.73
https://doi.org/10.1006/jcss.2001.1808
https://doi.org/10.1002/1097-0320(20010901)45:1%3C47::AID-CYTO1143%3E3.0.CO;2-A
https://doi.org/10.1007/11564126_73
https://doi.org/10.1080/10485259308832550
https://doi.org/10.1006/jmva.1994.1033
https://doi.org/10.1002/cjs.5550340106
https://doi.org/10.1016/S1007-5704(03)00117-5
https://doi.org/10.1016/j.csda.2007.12.013
https://doi.org/10.1016/j.csda.2015.06.004
https://doi.org/10.1007/s00362-022-01327-7
https://doi.org/10.1007/s11749-015-0467-x
https://doi.org/10.48550/arXiv.1905.05340
http://arxiv.org/abs/2104.01986
https://proceedings.mlr.press/v195/zhou23a.html
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Table 1: List of all dataset similarity methods

Method/ Article Subclass Section,
Page

Prokhorov metric (Rachev,
1991)

Probability metric 3.6.1, p. 187

Dudley metric Probability metric 3.6.1, p. 187
Total variation metric
(Zolotarev, 1984)

Probability metric 3.6.1, p. 187

Kantorovich-Rubinstein metric
(Zolotarev, 1984; Dudley, 1989)
(link)

Probability metric 3.6.1, p. 187

Lq metrics Probability metric 3.6.1, p. 187
Wasserstein metrics Probability metric 3.11, p. 245
(Squared) Hellinger distance Divergence 3.6.2, p. 193
Vincze Le Cam distance
(Vincze, 1981; Le Cam, 1986)

Divergence 3.6.2, p. 193

KL divergence (Kullback and
Leibler, 1951) (link)

Divergence 3.6.2, p. 193

Jeffrey’s divergence Divergence 3.6.2, p. 193
Extended φα divergence Divergence 3.6.2, p. 193
Jensen Shannon divergence Divergence 3.6.2, p. 193
Pearson divergence (Pearson,
1900) (link)

Divergence 3.6.2, p. 193

Relative Pearson divergence
(Yamada et al., 2013) (link)

Divergence 3.6.2, p. 193

f -dissimilarity (Györfi and
Nemetz, 1975; García-García
and Williamson, 2012) (link)

Divergence 3.6.2, p. 193

Rényi divergence (Rényi, 1961)
(link)

Divergence 3.6.2, p. 199

Relative information of type s
(Taneja and Kumar, 2004)
(link)

Divergence 3.6.2, p. 200

H-divergence (Zhao et al., 2021)
(link)

Divergence 3.6.2, p. 200

Muñoz et al. (2012) (link) Divergence 3.6.2, p. 202
Muñoz, Martos and González
(2013) (link)

Divergence 3.6.2, p. 203

Graph-based methods
Friedman and Rafsky (1979)
(link)

Graph-based 3.7.1, p. 204

Rosenbaum (2005) (link) Graph-based 3.7.1, p. 205
Chen and Zhang (2013) (link) Graph-based 3.7.1, p. 206

https://doi.org/10.1017/CBO9780511755347
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1080/14786440009463897
https://doi.org/10.1162/NECO_a_00442
https://proceedings.mlr.press/v23/garcia12.html
https://projecteuclid.org/ebooks/berkeley-symposium-on-mathematical-statistics-and-probability/Proceedings-of-the-Fourth-Berkeley-Symposium-on-Mathematical-Statistics-and/chapter/On-Measures-of-Entropy-and-Information/bsmsp/1200512181
https://doi.org/10.1016/j.ins.2003.11.002
https://openreview.net/forum?id=KB5onONJIAU
https://doi.org/10.1007/978-3-642-33266-1_34
https://doi.org/10.1007/978-3-642-41822-8_28
https://www.jstor.org/stable/2958919
https://www.jstor.org/stable/3647642
https://www.jstor.org/stable/24310808
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Table 1: List of all dataset similarity methods

Method/ Article Subclass Section,
Page

Biswas, Mukhopadhyay and
Ghosh (2014) (link)

Graph-based 3.7.1, p. 206

Petrie (2016) (link) Graph-based 3.7.1, p. 207
Chen and Friedman (2017)
(link)

Graph-based 3.7.1, p. 207

Chen, Chen and Su (2018)
(link)

Graph-based 3.7.1, p. 208

Zhang and Chen (2019) (link) Graph-based 3.7.1, p. 208
Sarkar, Biswas and Ghosh
(2020) (link)

Graph-based 3.7.1, p. 208

Mukhopadhyay and Wang
(2020a) (link)

Graph-based 3.7.1, p. 209

Mukherjee et al. (2022) (link) Graph-based 3.7.1, p. 209
Weiss (1960) (link) Nearest Neighbor 3.7.2, p. 211
Friedman and Steppel (1973) Nearest Neighbor 3.7.2, p. 211
Schilling (1986); Henze (1988)
(link)

Nearest Neighbor 3.7.2, p. 212

Barakat, Quade and Salama
(1996) (link)

Nearest Neighbor 3.7.2, p. 213

Nettleton and Banerjee (2001)
(link)

Nearest Neighbor 3.7.2, p. 213

Hall and Tajvidi (2002) (link) Nearest Neighbor 3.7.2, p. 213
Chen, Dou and Qiao (2013)
(link)

Nearest Neighbor 3.7.2, p. 214

Mondal, Biswas and Ghosh
(2015) (link)

Nearest Neighbor 3.7.2, p. 214

Comparison based on inter-point distances
Energy statistic (Zech and
Aslan, 2003) (link)

Comparison based on
inter-point distances

3.8.1, p. 215

Generalized energy statistic
(Sejdinovic et al., 2013) (link)

Comparison based on
inter-point distances

3.8.1, p. 215

Chakraborty and Zhang (2021)
(link)

Comparison based on
inter-point distances

3.8.1, p. 215

DISCO (Rizzo and Székely,
2010) (link)

Comparison based on
inter-point distances

3.8.1, p. 215

Huang and Huo (2017) (link) Comparison based on
inter-point distances

3.8.1, p. 215

Deb and Sen (2021) (link) Comparison based on
inter-point distances

3.8.1, p. 215

https://doi.org/10.1093/biomet/asu045
https://doi.org/10.1016/j.csda.2015.11.003
https://doi.org/10.1080/01621459.2016.1147356
https://doi.org/10.1080/01621459.2017.1307757
https://doi.org/10.48550/arXiv.1711.04349
https://doi.org/10.1007/s10994-019-05857-4
https://doi.org/10.1093/biomet/asaa015
https://doi.org/10.1080/01621459.2020.1791131
https://doi.org/10.1214/aoms/1177705995
https://doi.org/10.2307/2289012
https://doi.org/10.1002/bimj.4710380509
https://doi.org/10.1016/S0167-9473(01)00015-9
https://www.jstor.org/stable/4140582
https://doi.org/10.1080/01621459.2013.800763
https://doi.org/10.1016/j.jmva.2015.07.002
https://doi.org/10.48550/arXiv.math/0309164
https://www.jstor.org/stable/23566550
https://doi.org/10.1214/21-EJS1889
https://doi.org/10.1214/09-AOAS245
https://doi.org/10.48550/arXiv.1707.04602
https://doi.org/10.1080/01621459.2021.1923508


172 M. Stolte et al.

Table 1: List of all dataset similarity methods

Method/ Article Subclass Section,
Page

Al-Labadi, Asl and Saberi
(2022) (link)

Comparison based on
inter-point distances

3.8.1, p. 215

Baringhaus and Franz (2010)
(link)

Comparison based on
inter-point distances

3.8.2, p. 219

Liu and Modarres (2011) (link) Comparison based on
inter-point distances

3.8.2, p. 220

Biswas and Ghosh (2014) (link) Comparison based on
inter-point distances

3.8.2, p. 220

Sarkar and Ghosh (2018) (link) Comparison based on
inter-point distances

3.8.2, p. 220

Montero-Manso and Vilar
(2019) (link)

Comparison based on
inter-point distances

3.8.2, p. 221

Tsukada (2019) (link) Comparison based on
inter-point distances

3.8.2, p. 221

Kernel-based methods
(Linear) MMD2 (Gretton
et al., 2009; Muandet et al.,
2017; Gretton et al., 2012a)
(link)

Maximum Mean Discrep-
ancy

3.9.1, p. 222

Block MMD (Zaremba, Gretton
and Blaschko, 2013) (link)

Maximum Mean Discrep-
ancy

3.9.1, p. 225

fastMMD (Zhao and Meng,
2015) (link)

Maximum Mean Discrep-
ancy

3.9.1, p. 225

ME (Chwialkowski et al., 2015;
Jitkrittum et al., 2016) (link)

Maximum Mean Discrep-
ancy

3.9.1, p. 226

SCF (Chwialkowski et al., 2015;
Jitkrittum et al., 2016) (link)

Maximum Mean Discrep-
ancy

3.9.1, p. 226

Regularized MMD (Danafar
et al., 2014) (link)

Maximum Mean Discrep-
ancy

3.9.1, p. 228

Anisotropic kernel MMD
(Cheng, Cloninger and Coif-
man, 2020) (link)

Maximum Mean Discrep-
ancy

3.9.1, p. 228

DMMD/ DFDA (Kirchler et al.,
2020) (link)

Maximum Mean Discrep-
ancy

3.9.1, p. 228

GPK (Song and Chen, 2023)
(link)

Maximum Mean Discrep-
ancy

3.9.1, p. 229

Kernel FDA (Moulines, Bach
and Harchaoui, 2007) (link)

Kernel-based 3.9.2, p. 232

Fromont et al. (2012) (link) Kernel-based 3.9.2, p. 232

https://doi.org/10.1007/s10182-021-00419-3
https://www.jstor.org/stable/24309507
https://doi.org/10.1080/10485252.2010.485644
https://doi.org/10.1016/j.jmva.2013.09.004
https://doi.org/10.1002/sta4.187
https://doi.org/10.1002/sam.11417
https://doi.org/10.1007/s00180-017-0777-4
https://doi.org/10.1561/2200000060
https://proceedings.neurips.cc/paper/2013/hash/a49e9411d64ff53eccfdd09ad10a15b3-Abstract.html
https://doi.org/10.1162/NECO_a_00732
https://proceedings.neurips.cc/paper/2015/hash/b571ecea16a9824023ee1af16897a582-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/b571ecea16a9824023ee1af16897a582-Abstract.html
https://doi.org/10.48550/arXiv.1305.0423
https://doi.org/10.1093/imaiai/iaz018
https://proceedings.mlr.press/v108/kirchler20a.html
https://doi.org/10.48550/arXiv.2011.06127
https://proceedings.neurips.cc/paper/2007/hash/4ca82782c5372a547c104929f03fe7a9-Abstract.html
https://proceedings.mlr.press/v23/fromont12.html
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Table 1: List of all dataset similarity methods

Method/ Article Subclass Section,
Page

Scetbon and Varoquaux (2019)
(link)

Kernel-based 3.9.2, p. 232

Kernel-based quadratic dis-
tance (Chen and Markatou,
2020) (link)

Kernel-based 3.9.2, p. 233

Bayesian kernel test (Zhang
et al., 2022) (link)

Kernel-based 3.9.2, p. 234

Kernel Measure of Multi-
Sample Dissimilarity (Huang
and Sen, 2023) (link)

Kernel-based 3.9.2, p. 234

Methods based on binary classification
Friedman (2004) Method based on binary

classification
3.10, p. 235

C2ST Lopez-Paz and Oquab
(2017) (link)

Method based on binary
classification

3.10, p. 236

Regression based test (Kim, Lee
and Lei, 2019) (link)

Method based on binary
classification

3.10, p. 237

Cheng and Cloninger (2022)
(link)

Method based on binary
classification

3.10, p. 238

Yu et al. (2007) (link) Method based on binary
classification

3.10, p. 239

DiProPerm test (Wei et al.,
2016) (link)

Method based on binary
classification

3.10, p. 239

Classifier Probability Test (Cai,
Goggin and Jiang, 2020) (link)

Method based on binary
classification

3.10, p. 240

Kim et al. (2021) (link) Method based on binary
classification

3.10, p. 240

Hediger, Michel and Näf (2022)
(link)

Method based on binary
classification

3.10, p. 241

Distance/ similarity measure for datasets
Feurer, Springenberg and Hut-
ter (2015) (link)

Distance measure for
datasets

3.11, p. 241

Gromov-Hausdoff distance (Mé-
moli, 2017) (link)

Distance measure for
datasets

3.11, p. 242

Leite, Brazdil and Vanschoren
(2012); Leite and Brazdil (2021)
(link)

Similarity measure for
datasets

3.11, p. 243

DeDiMs (Calderon Ramirez
et al., 2022) (link)

Distance measure for
datasets

3.11, p. 244

https://doi.org/arXiv:1909.09264
https://doi.org/10.1007/978-3-030-33416-1_14
https://doi.org/10.48550/arXiv.2002.05550
https://doi.org/10.48550/arXiv.2210.00634
https://openreview.net/forum?id=SJkXfE5xx
https://doi.org/10.1214/19-EJS1648
https://doi.org/10.1109/TIT.2022.3175691
https://doi.org/10.1111/j.1469-1809.2006.00306.x
https://doi.org/10.1080/10618600.2015.1027773
https://doi.org/10.1002/sam.11438
https://doi.org/10.1214/19-AOS1936
https://doi.org/10.48550/arXiv.1903.06287
https://doi.org/10.1609/aaai.v29i1.9354
https://doi.org/10.1007/978-3-319-58002-9_3
https://doi.org/10.1007/978-3-642-31537-4_103
https://doi.org/10.1109/TAI.2022.3168804
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Table 1: List of all dataset similarity methods

Method/ Article Subclass Section,
Page

Alvarez-Melis and Fusi (2020)
(link)

Distance measure for
datasets

3.11, p. 245

Comparison based on summary statistics
DataSpheres (Johnson and
Dasu, 1998) (link)

Comparison based on
summary statistics

3.12, p. 247

Constrained minimum distance
(Tatti, 2007)

Comparison based on
summary statistics

3.12, p. 248

Testing approaches
Romano (1989) (link) Testing approach 3.13, p. 250
Burke (2000) (link) Testing approach 3.13, p. 250
Ping (2000) (link) Testing approach 3.13, p. 250
Chen and Hanson (2014) (link) Testing approach 3.13, p. 251
Zhou, Zheng and Zhang (2017)
(link)

Testing approach 3.13, p. 251

Pan et al. (2018) (link) Testing approach 3.13, p. 252
Wan, Liu and Deng (2018)
(link)

Testing approach 3.13, p. 253

Kim, Balakrishnan and Wasser-
man (2020) (link)

Testing approach 3.13, p. 253

Li and Zhang (2020) (link) Testing approach 3.13, p. 255
Liu et al. (2022) (link) Testing approach 3.13, p. 255
Paul, De and Ghosh (2022a)
(link)

Testing approach 3.13, p. 255

3.2. Comparison of cumulative distribution functions

In this subsection, methods based on the comparison of cumulative distribution
functions (cdf) will be presented. Comparing distributions by their cumulative
distribution functions is an intuitive approach since a distribution is fully char-
acterized by its cumulative distribution function. In the one-dimensional case,
methods of the Kolmogorov-Smirnov (KS) type that compare the maximal abso-
lute difference of the (empirical) cumulative distribution functions are particu-
larly popular. Still, their extension to the multivariate case is not straightforward
(Ramdas, Trillos and Cuturi, 2017).

Extension of the Kolmogorov-Smirnov test via permutation Bickel
(1969) gives a generalization of the Kolmogorov-Smirnov test to multivariate
data based on applying a permutation procedure to the classical Kolmogorov-
Smirnov test. It is distribution-free for continuous distributions and consistent

https://proceedings.neurips.cc/paper/2020/hash/f52a7b2610fb4d3f74b4106fb80b233d-Abstract.html
https://dl.acm.org/doi/abs/10.5555/3000292.3000333
https://www.jstor.org/stable/2241507
https://doi.org/10.1016/S0167-7152(99)00082-6
https://doi.org/10.1007/BF03012197
https://doi.org/10.1016/j.csda.2012.11.003
https://doi.org/10.3150/15-BEJ766
https://doi.org/10.1214/17-AOS1579
https://doi.org/10.1080/02331888.2018.1520855
https://doi.org/10.1214/19-AOS1936
https://proceedings.mlr.press/v119/li20s.html
https://doi.org/10.1080/10618600.2022.2051530
https://doi.org/10.1016/j.jmva.2021.104897
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against all alternatives. Bickel (1969) states that the asymptotic value of the
cut-off point depends on the distribution F if F is not continuous. No details
are given on the practical implementation of the test. Chen and Friedman (2017)
claim that the required sample size is exponential in the dimension p and Mon-
dal, Biswas and Ghosh (2015) note that the test cannot be used for p ą ni.

Extension of the Kolmogorov-Smirnov test via partitioning Biau and
Gyorfi (2005) design a test using the L1 distance between empirical distribu-
tions restricted to a finite partition of the support of the two distributions. For
this test, n1 “ n2 is required and a finite partition of Rp is needed. The authors
themselves state that the “choice of the partition in [the test statistic] is a diffi-
cult one”. Biau and Gyorfi (2005) assume for this partition that for N Ñ 8 the
maximum of measures over each part goes to zero. A rectangle partition is said to
be a good choice if cell probabilities are approximately equal. The resulting test
is distribution-free and strongly consistent. In addition, an asymptotic version
of the test is given, which is not distribution-free but is consistent. According
to Gretton et al. (2006) performing the test becomes difficult or impossible for
high-dimensional problems due to the partitioning that becomes increasingly
difficult in higher dimensions.

Multivariate distribution functions based on measure transportation
Boeckel, Spokoiny and Suvorikova (2018) define a new generalization of distribu-
tion functions to the multivariate case, called ν-Brenier Distribution Functions
(BDF), and their empirical counterparts. The ν-BDF of a distribution is defined
as the push-forward (measure-preserving transformation) of a continuous mea-
sure to a reference measure ν that has compact, convex support. To be more
precise, the push forward of the mixture tμX ` p1 ´ tqμY , t P r0, 1s to a uniform
distribution in the unit ball, where t is the asymptotic ratio of sample sizes n1{N .
Boeckel, Spokoiny and Suvorikova (2018) assume that both measures belong to
the family of absolutely continuous measures with finite second moments and
compact support. They show that an analog of the Glivenko-Cantelli theorem
holds for the empirical ν-BDF. For their testing procedure, Boeckel, Spokoiny
and Suvorikova (2018) choose ν as the uniform measure on the unit sphere in
Rp. The test statistic is the 2-Wasserstein distance (11) between image measures
of the distributions of X and Y generated by the push-forward of the mixture
distribution of X and Y to ν. In practice, the empirical counterparts are used.
The procedure works by generating a uniform partition of the unit ball into N
parts, then calculating the optimal transport of both samples to this partition
and taking the 2-Wasserstein distance of the empirical distributions of these
optimal transports. The critical value is obtained by using the (1-α)-quantile of
the empirical distribution of 2-Wasserstein distances of empirical distributions
of M random permutations of a uniform partition of the unit ball into N parts.
An asymptotic upper bound for the type II error is derived. According to Deb
and Sen (2021), this test is one of two tests for the multivariate two-sample
problem that is exactly distribution-free, computationally feasible, and consis-
tent against all alternatives. However, they criticize that the test statistic is
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random given the data due to external randomization in the construction of the
test statistic, that strong assumptions on underlying distributions are needed,
such as that the data generating distribution is compactly supported and ab-
solutely continuous, and that there is no asymptotic null distribution theory.
The method of Boeckel, Spokoiny and Suvorikova (2018) could also be seen as
a method based on multivariate ranks or as a test based on the Wasserstein
distance.

3.3. Comparison of density functions

The comparison of density functions follows a similar idea as the comparison of
cumulative distribution functions. Different approaches are presented below.

3.3.1. Comparison of probability densities based on partitions

Partitions based on decision trees I Ganti et al. (1999) propose measur-
ing the deviation between datasets based on criteria derived from decision tree
models. Let D1 and D2 denote two datasets that include a categorical target
variable each.

Ganti et al. (1999) calculate a decision tree model for each dataset D1 and D2
and calculate the greatest common refinement (GCR) induced by these trees.
That is the intersection of the partitions of the sample space induced by each
tree. They then compare the distribution of both datasets over this GCR. Let nr

denote the number of segments of the GCR, pi the proportion of observations of
D1 that map to the i-th segment, and qi the respective proportion of observations
of D2 mapping to the i-th segment. Then Ganti et al. (1999) compare the vector
p and q by a difference function f : Rnr Ñ Rnr and aggregate the results from
that by an aggregate function g : Rnr Ñ R to obtain a measure of distance
between the two datasets

GAN1 “ gpfpp, qqq.

Large values then indicate differences between the datasets. They propose the
absolute difference function

fapp, qqi “ |pi ´ qi|,

and the scaled difference function

fspp, qqi “

#

|pi´qi|

ppi`qiq{2 , if ppi ` qiq ą 0
0, otherwise

.

For the aggregate function, they propose the sum or maximum of the values from
the difference function. For using the sum as the aggregate function together
with either fa or fs, it can be shown that the GCR is optimal in the sense that it
gives the lowest value over all common refinements. For using the maximum, this
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property is not fulfilled. As in general, for different combinations of difference
and aggregate functions, there might not be an upper bound for the difference
given by the proposed measure GAN1, Ganti et al. (1999) propose using a
Bootstrap test procedure for assessing whether or not the two datasets are
generated by the same data-generating process. The lower bound for GAN1 for
all proposed difference and aggregate functions is 0.

Typical measures for monitoring change and assessing how much a new tree
model differs can be seen as a special case of the measure proposed by Ganti
et al. (1999). For these, they calculate a decision tree model for dataset D1.

Then, for the first measure of change between models, they use this model
fit on the first dataset to make predictions pY for the target variable in dataset
D2. Finally, they calculate the misclassification rate

GAN2 “
|ti : pYi ‰ Yiu|

|D2|
,

which is the proportion of observations in D2 whose target value is predicted
incorrectly by the model fitted on D1.

For the second measure of change between models, they consider the par-
tition of the feature space induced by the decision tree calculated on D1. Let
nr again denote the number of segments of this partition, pi the proportion of
observations of D1 that map to the i-th segment, and qi the respective propor-
tion of observations of D2 mapping to the i-th segment. If the datasets D1 and
D2 come from the same data generating process, the number of observations of
D2 that are expected to map to the i-th segment can be estimated by |D2| ¨ pi.
The number of observations mapping to the i-th segment equals |D2| ¨ qi. Let
c P R denote a small positive constant, for example c “ 0.5. Ganti et al. (1999)
propose calculating the χ2-statistic

GAN3 “

nr
ÿ

i“1
χppi, qiq

with

χppi, qiq “

#

p|D2|¨pi´|D2|¨qiq
2

|D2|¨pi
, if pi ą 0,

c, otherwise.

For both measures, low values indicate similar datasets. With respect to
bounds, 0 ď GAN1 ď 1 holds because GAN1 is a proportion. Also, 0 ď GAN2
holds because it is a sum of squared values. A dataset-independent upper bound
cannot be specified for GAN2 because χ can attain higher values with more
observations in D2. Again, a Bootstrap test is proposed to assess the significance
of the χ2 value since usual asymptotics for the classical χ2 test typically will
not apply here due to low expected counts.

Ganti et al. (1999) do not address the choice of hyperparameters for creating
the decision tree model. As discussed in the previous paragraph, this can have
a non-negligible impact on the resulting data similarity measures.
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Partitions based on probability binning I Roederer et al. (2001) sug-
gest probability binning for comparing the multivariate distributions of two
datasets. Their method only considers the feature space X and is only appli-
cable to numeric features. First, one dataset is chosen to define a partition of
the feature space. To do so, for each feature, the median value and the variance
are computed. Two bins (segments) are created by splitting the feature space
at the median value of the feature with the largest variance. Then, the calcula-
tion of median and variance as well as the splitting is continued recursively for
both subspaces, until a predefined minimum number of observations per bin is
reached.

Having obtained the partition, the proportions of observations falling into
each bin are calculated for both datasets. Let p1,i denote the proportion of
observations of the first dataset that fall into the i-th bin, and let p2,i denote
the respective proportion for the second dataset. Then, Roederer et al. (2001)
propose the measure

ROE “

nb
ÿ

i“1

pp1,i ´ p2,iq
2

p1,i ` p2,i

with nb denoting the number of bins to quantify the difference between the
two datasets. As stated in Roederer et al. (2001), the measure is bounded by
0 ď ROE ď 2 with low values corresponding to high similarity.

Roederer et al. (2001) explain that the minimum number of observations per
bin should not be smaller than 10. Also, it should be chosen appropriately by
the user, such that good coverage of a potentially high-dimensional space can
be achieved. With a predefined minimum number of observations per bin, the
number of observations in the first dataset determines the number of bins. This
might lead to problems when the number of observations is very different for
the two datasets.

Partitions based on probability binning II Wang and Pei (2005) propose
a measure to quantify changes between two datasets with class labels for the
application of fraud and intrusion detection. Their dataset distance measure
quantifies concept drifts. It uses a universal model that has minimal learning
cost. Wang and Pei (2005) aim to use a quantification of change to improve the
current prediction model directly instead of refitting the model after change gets
detected. They note that their approach of using arbitrary partition structures
instead of learning a tree structure on one of the datasets as a simple alternative
serves the same purpose but eliminates the cost of learning the structure. They
propose to calculate the class distribution for each dataset for a certain parti-
tion of the feature space, which they call the signature of the data, by randomly
partitioning the multi-dimensional space into a set of bins. This partition can
be achieved either by recursive partitioning (random decision tree) or by itera-
tively creating new bins (random histogram). Wang and Pei (2005) give explicit
recommendations on how to create the partition. They recommend the use of
random histograms over random decision trees. If nx,j,K and ny,j,K denote the
number of observations of the jth part for the Kth class for the first and sec-
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ond dataset, respectively, and nc is the total number of classes and nr the total
number of parts in the partition, the distance function between the signatures
of both datasets is defined as

DistspX,Y q “
1
2

nr
ÿ

j“1

nc
ÿ

K“1

ˇ

ˇ

ˇ

ˇ

nx,j,K

n1
´

ny,j,K

n2

ˇ

ˇ

ˇ

ˇ

P r0, 1s.

The distance can be calculated efficiently and can be used to make predictions.
The calculation is repeated to create B random structures resulting in B random
signatures. Then, the distance measure as above is calculated for each random
structure and the mean over the values is taken as the final distance between
the two datasets. The random signatures can be used for classification as well.

Partitions based on decision trees II Ntoutsi, Kalousis and Theodoridis
(2008) propose measuring dataset similarity based on probability density esti-
mates derived from decision trees. Consider two classification datasets D1 and
D2. For each of them, construct a decision tree for the target variable Y . Then,
derive a partition of the feature space X based on the split rules such that each
leaf node corresponds to one segment in the partition. Next, overlay the two
partitions resulting in smaller hyper rectangles.

Based on the joint partition, the probability densities PDpX q and PDpY,X q

are estimated for D P tD1,D2,D1 YD2u. Let nr denote the number of segments
in the joint partition and nc the number of classes in D1 and D2. To estimate
PDpX q, assess the proportion of observations in D that fall into each segment
of the joint partition, P̂DpX q P Rnr . For the estimation of the joint density
PDpY,X q, determine the proportion of observations that fall into each segment
of the joint partition and belong to each class, P̂DpY,X q P Rnrˆnc . Estimate
the conditional density PDpY |X q by calculating the proportion of observations
belonging to each class separately for each segment, P̂DpY |X q P Rnrˆnc .

Ntoutsi, Kalousis and Theodoridis (2008) consider the similarity index

spp, qq “
ÿ

i

?
pi ¨ qi

for vectors p and q. If p and q are pnr ˆ ncq-matrices, they are interpreted
as pnr ¨ ncq-dimensional vectors. For the conditional distribution, the similarity
vector SpY |X q P Rnr is computed with SpY |X qi “ spP̂D1pY |X qi‚, P̂D2pY |X qi‚q

and index i‚ denoting the i-th row. Three similarity measures for datasets are
suggested:

1. NTO1 “ spP̂D1pX q, P̂D2pX qq

2. NTO2 “ spP̂D1pY,X q, P̂D2pY,X qq

3. NTO3 “ SpY |X qT P̂D1YD2pX q.

For probability estimates p and q, spp, qq is bounded by 0 ď spp, qq ď 1.
Therefore, measures NTO1 and NTO2 are bounded by 0 ď NTO1, NTO2 ď 1.
Measure NTO3 is bounded by 0 ď NTO3 ď 1 because SpY |X qi ď 1 for all
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i P t1, . . . , nru and
řnr

i“1pP̂D1YD2pX qqi “ 1. For the three measures, high values
correspond to high similarity.

Ntoutsi, Kalousis and Theodoridis (2008) do not specify how to choose the
hyperparameters for the decision tree computation. Especially for decision trees
with many leaf nodes, it is likely that the joint partition contains empty or very
sparse segments.

3.3.2. Comparison of probability densities based on kernel density estimation

Comparison of kernel density estimates in L2-norm I Ahmad and Cer-
rito (1993) define a test statistic based on the L2-norm of the difference between
kernel density estimates. It has to be assumed that densities exist and are dif-
ferentiable up to second order with bounded derivatives. Also, assumptions on
the kernel function are needed. Under these assumptions, an asymptotic test is
proposed. The test statistic has an asymptotic normal distribution under both
null and alternative hypothesis, with less restrictive assumptions than in re-
lated articles. Different sequences of weights have to be chosen to calculate the
estimators of the test statistic and its variance.

Comparison of kernel density estimates in L2-norm II Anderson, Hall
and Titterington (1994) present a test based on the integrated square distance
between kernel-based density estimates as well as asymptotic distributional re-
sults and power calculations for this test. For the calculation, a kernel and the
bandwidth for kernel density estimation must be chosen. Anderson, Hall and
Titterington (1994) use a bandwidth of h “ 1 in their derivation of theoretical
results. They show that the minimum distance at which the statistic can dis-
criminate between f1 and f2 can be expressed by f2 “ f1 `N´1{2h´p{2 ¨g under
the condition that h Ñ 0 as n1, n2 Ñ 8, where n1 and n2 are assumed to be
of the same order of magnitude. For this, they use the assumption that f1 “ f2
has two continuous, square-integrable derivatives. Additionally, regularity con-
ditions on the kernel are made: it has to be bounded, absolutely integrable,
and its Fourier transform must not vanish on any interval. These conditions
are e.g. fulfilled for p-variate uniform, standard normal densities, and p-variate
forms of Epanechnikovs kernel. The test statistic is not asymptotically normally
distributed. The resulting test is consistent.

Comparison of kernel density estimates based on empirical likelihood
Cao and van Keilegom (2006) propose a test based on comparing kernel esti-
mators of the two density functions for continuous distributions based on an
empirical likelihood criterion. They state that “for high-dimensional distribu-
tions, the curse of dimensionality implies that the method will not be applicable
in practice”. An alternative presented is to use a model-based approach that
only concentrates on elliptically contoured distributions.
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3.4. Comparison of characteristic functions

The idea of comparing characteristic functions is that they fully characterize the
distribution. Meintanis (2016) reviews tests based on empirical characteristic
functions, including tests for the two- and k-sample problem and an interpreta-
tion in terms of moments of a general test statistic, which is based on integrating
over the weighted squared difference of empirical characteristic functions. Dif-
ferent tests can be derived from this general test statistic via different weight
functions (e.g. Alba Fernández, Jiménez Gamero and Muñoz García (2008),
Lindsay, Markatou and Ray (2014), Hušková and Meintanis (2008)).

Comparison of empirical characteristic functions in L2-norm Alba-
Fernández, Ibáñez-Pérez and Jiménez-Gamero (2004) consider the L2-norm of
the difference between empirical characteristic functions (ecf). Their test statis-
tic is the integral of the weighted absolute difference between the ecfs of the two
samples. They use a trigonometric Hermite interpolant to obtain a numerical
integration formula to approximate the test statistic. The p-value of the test
is estimated by a Bootstrap algorithm similar to Alba, Barrera and Jiménez
(2001). The test can be applied to continuous and discrete data. The assump-
tion of existing second moments is made for all theoretic results and additional
assumptions on the approximation of the test statistic are required to show
consistency against a wide range of fixed alternatives.

Comparison of empirical characteristic functions based on weighted
integrals Alba Fernández, Jiménez Gamero and Muñoz García (2008) pro-
pose a class of tests based on the weighted integral of empirical characteristic
functions. The tests are not asymptotically distribution-free and neither the null
distribution nor the asymptotic null distribution of the test statistic are known.
Instead, a permutation or Bootstrap procedure yields asymptotically consistent
approximations of the null distribution. The weight function must be chosen,
but a choice of the weight function that is not very restrictive already yields
consistency against any fixed alternative. Specifically, if the weight function is
chosen such that the distance between populations is larger than zero for any
F1 ‰ F2, the test is consistent against any fixed alternative. This is for example
fulfilled for weight functions with positive density for almost all points in Rp.
The weight function also influences the computing time. There are no conditions
assumed on the populations. The method can be applied to continuous as well
as discrete data of any arbitrary fixed dimension. The test is a generalization
of tests in Alba, Barrera and Jiménez (2001) and Alba-Fernández, Ibáñez-Pérez
and Jiménez-Gamero (2004). According to Li, Hu and Zhang (2022), the choice
of the weight function is a difficult problem.

Comparison of empirical characteristic functions based on jackknife
empirical likelihood Liu, Xia and Zhou (2015) develop a jackknife empirical
likelihood (JEL) test by incorporating characteristic functions. The test statistic
reduces to a two-sample U-statistic, which simplifies the estimation. For fixed
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dimension, the authors derive a nonparametric Wilks’s theorem. For p Ñ 8,
p “ opN1{3q, under some mild conditions the normalized JEL ratio statistic has
a standard normal limit. For p ą N an alternative version of the JEL test is
proposed that has an asymptotical χ2

2 distribution under the null. For computing
the test statistic, a range over which the statistic is calculated has to be chosen.
According to Li, Hu and Zhang (2022), the choice of the weight function is a
difficult problem. Liu, Liu and Zhou (2019) claim that the test works well in
the case of small samples and also for asymmetric data.

Comparison of empirical characteristic functions based on character-
istic distance Li, Hu and Zhang (2022) introduce the characteristic distance,
which does not need any assumptions on moments and parameters and fully
characterizes the homogeneity of two distributions since it is nonnegative and
equal to zero if and only if the distributions are equal. The characteristic dis-
tance relies on the equivalence of almost surely equal characteristic functions
and the equality

E
`

exp
`

ixX,X 1
y
˘

|X 1
˘

“ E
`

exp
`

ixY,X 1
y
˘

|X 1
˘

, a.s.,

where i denotes the imaginary unit. Let X 1, X2 and Y 1, Y 2 denote independent
copies of X and Y , respectively. Then the characteristic distance is defined as

CDpX,Y q “ E
“

}E
`

exp
`

ixX2, X ´ X 1
y
˘

|X ´ X 1
˘

´ E
`

exp
`

ixY,X ´ X 1
y
˘

|X ´ X 1
˘

}
2‰

` E
“

}E
`

exp
`

ixX,Y ´ Y 1
y
˘

|Y ´ Y 1
˘

´ E
`

exp
`

ixY 2, Y ´ Y 1
y
˘

|Y ´ Y 1
˘

}
2‰ .

An empirical version is obtained by replacing the conditional expectations with
empirical means. Li, Hu and Zhang (2022) derive the distribution of the char-
acteristic distance under the null and alternative hypotheses. They call the
resulting test distribution-free, but the asymptotic distribution depends on an
unknown true distribution, so a permutation test is used instead. According to
Li, Hu and Zhang (2022), the test has a clear and intuitive probabilistic in-
terpretation and its estimator is easy to calculate. They derive the asymptotic
distribution and show that the test is consistent against any generic alternative.
The test is robust since no moment assumptions are needed and it is free of any
tuning parameters.

3.5. Methods based on multivariate ranks

For the univariate two-sample problem, tests based on ranks are popular meth-
ods. Since Rp has no natural ordering, the generalization of these methods to
the multivariate case is not straightforward. Different approaches to multivariate
rank procedures are presented below.
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Ranks based on projections obtained by binary classification The first
procedures based on multivariate ranks, which are often only applicable to the
location or scale problem instead of the general two-sample problem, were pro-
posed by Puri et al. (1971), Randles and Peters (1990) (only location problem),
Hettmansperger and Oja (1994) (also only for location problem), Choi and Mar-
den (1997) (theory only for location problem), Hettmansperger, Möttönen and
Oja (1998) (also only for location problem). According to Ghosh and Biswas
(2016), these procedures usually yield poor results for high-dimensional data,
none of them can be used for p ą N , and none is distribution-free in finite sam-
ple situations, and although some of them are asymptotically distribution-free
and for some one can implement conditional versions using permutation type
techniques. The test from Liu and Singh (1993) (can only detect location and/or
additional dispersion differences) is based on a quality index based on ranks. The
test is distribution-free but computationally infeasible in high dimensions and
also cannot be used when p ą N . Ghosh and Biswas (2016) instead present a
general procedure for multivariate generalizations of univariate distribution-free
tests based on ranks of real-valued linear functions of multivariate observations.
The linear function is obtained by solving a classification problem between the
two distributions. The procedure is exactly distribution-free in finite samples
under very general conditions and applicable even when the dimension exceeds
the sample size.
The idea behind the test procedure is that H0 : F1 “ F2 can be expressed as
Fβ,1 “ Fβ,2@β P Rp, where βTX „ Fβ,i if X „ Fi. This means, that if the
distributions differ, it is expected that for some β values Fβ,1 differs from Fβ,2.
Ghosh and Biswas (2016) choose a projection such that the separation between
observations of different samples is maximized by using the direction vector of
a linear classifier that discriminates between the samples. They train a sup-
port vector machine (SVM) or distance-weighted discrimination (Marron, Todd
and Ahn, 2007) on a training set. Then projections are calculated on a test set
and a one-sided KS test or Wilcoxon test is performed on these projections.
This procedure is repeated for several train/test splits and the test statistics
are averaged. Then either a randomized test is used or tests with Bonferroni
correction/control of FDR for each split are performed, and H0 is rejected if
any of the tests reject. Ghosh and Biswas (2016) derive asymptotic results for
p Ñ 8 under the assumption of uniformly bounded fourth moments, weak de-
pendence among component variables, and convergence of variances and the
squared differences between expectations (the last two hold automatically for
i.i.d. components with bounded second moments). These assumptions ensure
that under H1 the amount of information for discrimination grows to infinity
as the dimension increases. Under these assumptions, consistency is shown. The
same holds even if p Ñ 8 and N Ñ 8 such that N{p2 Ñ 0 and also for general
one-sided linear rank statistics that are linear combinations of a monotonically
increasing function applied to the ranks. The test remains distribution-free if
data is transformed by a real-valued measurable function chosen on the train-
ing set (instead of linear transformation as before). Power is maximized if this
transformation is chosen as the likelihood ratio (LR), but this is hard to esti-
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mate due to the curse of dimensionality. An alternative is to use a nonlinear
SVM with a suitable kernel choice. The method can also be seen as a method
based on binary classification.

Ranks based on optimal transport I Ghosal and Sen (2021) propose mul-
tivariate nonparametric tests free of tuning parameters based on a new notion
of multivariate quantiles/ranks, which were introduced by Chernozhukov et al.
(2017) and use optimal transport theory (see 3.11). The idea behind this ap-
proach is based on the insight that in the univariate case, ranks can be un-
derstood as the solution of transporting the data distribution to the uniform
distribution. Therefore, the multivariate ranks are defined as the solution to
the corresponding multivariate optimal transport problem. The test statistic
then consists of the integral (w.r.t. a reference distribution) over the squared
distance of the rank map of the pooled sample applied to the quantile maps of
the individual samples. The authors show asymptotic consistency under fixed
alternatives and derive rates of convergence of the test statistics under null and
alternative hypotheses. Ghosal and Sen (2021) make the assumption of abso-
lutely continuous distributions. It is not known if the test is (asymptotically)
distribution-free. Instead, a permutation test is performed. The test statistic
tends to zero under H0 for n1, n2 Ñ 8 such that n1{N Ñ const. The test is
implemented in the R (R Core Team, 2021) package testOTM (Xu, 2019).

Ranks based on optimal transport II Deb, Bhattacharya and Sen (2021)
propose distribution-free analogs of Hotelling’s T 2 test based on optimal trans-
port. The test statistic is the squared difference of the mean of multivariate
ranks between two samples. Here, ranks are assigned for the pooled sample
based on optimal transport. They claim consistency for general alternatives and
efficiency under location shift alternatives. Deb, Bhattacharya and Sen (2021)
aim to design multivariate nonparametric distribution-free tests that attain sim-
ilar asymptotic relative efficiency (ARE) values compared to Hotelling’s T 2 test.
The resulting test statistic follows a limiting χ2

p distribution under the null and a
non-central χ2 distribution under contiguous alternatives. The test is consistent
against large classes of natural alternatives including a location shift model and
a contamination model. Deb, Bhattacharya and Sen (2021) present numerous
lower bounds on the ARE for multiple subfamilies of multivariate probability
distributions, e.g. distributions with independent components (for multiple sub-
families there is no loss of efficiency). Their test is exactly distribution-free and
generalizes the two-sided Wilcoxon rank-sum test and the van der Waerden
score test for p ą 1. The test can be further generalized by calculating scores
from ranks. Then assumptions on the score function and its covariance matrix
are required. A reference distribution is needed to define the ranks. The choice
of this reference distribution affects the ARE of the resulting test. Throughout,
the assumption of Lebesgue absolutely continuous probability measures is used.
Under this assumption, weak convergence of the rank distribution to a reference
distribution is shown. No moment assumptions are made for the distributions
that are compared, only for the reference distribution and the score function.
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The moment assumptions are for example always satisfied for the identity as
score function and U r0, 1sp as reference distribution. A basic version of the
statistic is presented in Hallin, Hlubinka and Hudecová (2022) for the special
case that the reference distribution is spherical uniform and for a specific choice
of rank set but the authors did not study theoretical properties as consistency
and asymptotic efficiency of the resulting test. The results of Deb, Bhattacharya
and Sen (2021) prove consistency and can be used to derive ARE for this special
case as well.

Ranks based on similarity graphs Zhou and Chen (2023) define ranks
based on similarity graphs and use these for constructing a two-sample test.
They define a sequence of simple similarity graphs tGlu

K
l“0 on the pooled sample

via
Gl`1 “ Gl Y G˚

l`1

with
G˚

l`1 “ arg max
G1PGl`1

ÿ

pi,jqPG1

SpZi, Zjq,

where G0 has no edges, Gl`1 “ tG1 P G : G1 XGl “ Hu with G the set of graphs
that fulfill specific user-defined constraints, and Sp¨, ¨q a similarity measure, e.g.
the negative Euclidean distance for Euclidean data, and Z1, . . . , ZN denoting the
pooled sample. This construction scheme includes as special cases the K-nearest
neighbor graph, the K-minimum spanning tree, the K-minimum distance non-
bipartite pairing, and the K-shortest Hamiltonian path. Based on the sequence
of similarity graphs, Zhou and Chen (2023) define the following two graph-based
rank matrices R “ pRijqNi,j“1. The graph-induced ranks are defined as

Rij “

K
ÿ

l“1
1 ppi, jq P Glq

and the overall ranks are defined as

Rij “ rank pS pZi, Zjq , GKq ,

where rank pS pZi, Zjq , GKq denotes the rank of S pZi, Zjq among the values
tS pZu, Zvqupu,vqPGK

if pi, jq P Gk and zero otherwise. The graph-induced rank
Rij can be interpreted as the number of graphs that contain the edge pi, jq in
the sequence of graphs. The overall rank can be interpreted as the rank of the
similarity of edges in the graph GK . Both depend on the choice of K. For the
test, the symmetrized rank matrix 1{2pR ` RT q is used. For convenience, it is
also denoted by R.

For the test statistic, the within-sample rank sums of the first and second
samples are defined as

Ux “

n1
ÿ

i,j“1
Rij , Uy “

N
ÿ

i,j“n1`1
Rij .
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Using these, the Rank In Similarity graph Edge-count two-sample test (RISE)
statistic is defined as

TR “ pUx ´ μx, Uy ´ μyqΣ´1
pUx ´ μx, Uy ´ μyq

T ,

where μx “ EpUxq, μy “ EpUyq, and Σ “ CovppUx, UyqT q. The quantities μx,
μy, and Σ are explicitly calculated under the permutation null hypothesis, and
sufficient conditions under which Σ is invertible and therefore TR is well-defined
are given. The test statistic can be decomposed into two quantities Zw and Zdiff,
which can be related to the graph-based tests of Chen and Friedman (2017),
Chen, Chen and Su (2018), and Zhang and Chen (2019). For small samples, the
exact permutation null distribution can be used for testing. For large samples
and under several assumptions on the similarity graphs, the asymptotic χ2

2-
distribution of TR can be used for testing. For continuous distributions and the
K-MST or K-NN graph based on the Euclidean distance and with K “ Op1q,
the test is consistent for n1, n2 Ñ 8 and n1{N Ñ π P p0, 1q. Under several other
assumptions, consistency of the test using the graph-induced ranks for the K-NN
graph or for using the overall ranks for the K-minimum distance non-bipartite
pairing is shown. Extensions of the RISE test using kernel functions for the
similarity measure and using another graph-based rank definition are briefly
presented. The RISE test can also be classified as a graph-based approach.

3.6. Discrepancy measures for distributions

There are two main classes of discrepancy measures for distributions: probabil-
ity metrics and divergences. The best-known subclasses are Integral Probability
Metrics (IPM, also called probability metrics with a ξ-structure (Zolotarev,
1976, 1984)) as introduced by Müller (1997) and f -Divergences (sometimes also
called Ali-Silvey distances, going back to Ali and Silvey (1966), or Csiszár’s Φ-
divergences, going back to Csiszár (1963)). The latter were introduced in the
two aforementioned articles. These two classes of Integral Probability Metrics
and f -divergences only intersect at the total variation distance as shown by
Sriperumbudur et al. (2012).
For probability metrics, Zolotarev (1984) distinguishes between probability met-
rics with a Λ-structure, probability metrics with a ξ-structure (“ IPMs), metrics
with a Hausdorff structure, and metrics with an Integral structure. He also notes
that there are other metrics that do not have any of these structures, e.g. the
Hellinger metric. Other classes of divergences are Bregman-divergences (Breg-
man, 1967) and the Burbea-Rao divergences (Burbea and Rao, 1982), which
will not be discussed here since they require a parametric model of the distri-
butions. Another class is formed by H-divergences, which overlap with both
f -divergences and IPMs and were recently introduced by Zhao et al. (2021).
A detailed overview of the theory on probability metrics as well as a comprehen-
sive list of examples can be found in Rachev (1991). A more applied description
is given in Rachev, Stoyanov and Fabozzi (2008, 2011). An overview of in-
equalities specifying the relationships between different f -divergences is given in
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Sason and Verdú (2016). In the following, we will focus on the main ideas and
important examples. We will again only look at discrepancy measures for com-
paring two distributions. There are often versions of the measures discussed here
for the case of comparing an empirical distribution to a known distribution in a
goodness-of-fit context. This case is for example discussed in Basu, Shioya and
Park (2011) in more detail.
Note that many of the methods presented below can also be seen as meth-
ods based on inter-point distances or methods based on cumulative distribution
functions or density functions, e.g. all f -divergences are based on density func-
tions.

3.6.1. Probability (semi-)metrics

Zolotarev (1984) reviews probability metrics and identifies four classes, which
are defined via a functional μpX,Y q on the space of bivariate distributions. This
functional takes values on r0,8s, with the following three properties:

1. PpX “ Y q “ 1 ñ μpX,Y q “ 0
2. μpX,Y q “ μpY,Xq

3. μpX,Y q ď μpX,Zq ` μpZ, Y q

Note that Zolotarev (1984) argues to use the term probability metric although
the first condition is only analogous to conditions from functional analysis that
characterizes a semimetric and not a metric.

In contrast, Müller (1997) defines a probability metric d with the following
properties:

1. dpF1, F2q “ 0 ô F1 “ F2 (positive definite)
2. dpF1, F2q “ dpF2, F2q (symmetry)
3. dpF1, F3q ď dpF1, F2q ` dpF2, F3q (triangle inequality).

If the first property is replaced by

dpF, F q “ 0 for all distributions F,

d is called a probability semimetric.
The latter way to distinguish between probability metric and semimetric is more
common in the literature (e.g. Rachev, 1991) and more precise and is therefore
used in the following.
Zolotarev (1984) propose a distinction between simple and compound metrics,
Rachev (1991) also distinguishes primary metrics from the former. He defines
three types as follows: Let P be the joint distribution of F1 and F2 and let Q
be the joint distribution of two distributions G1, G2 defined on the same sample
spaces as F1 and F2. Denote the space of joint distributions to which P and Q
belong by P. A (semi)metric d : P Ñ r0,8q is called primary (semi)metric, if
it is a probability (semi)metric and there exists a function h : P1 Ñ RJ , J P N,
such that

phpF1q “ hpG1q ^ hpF2q “ hpG2qq ô dpP q “ dpQq.
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P1 denotes the set of Borel probability measures for some separable metric space.
Examples of primary metrics are distances between moments of distributions as
well as the Lq-Engineer metric

ENpX,Y ; qq “

«

p
ÿ

i“1
|E pXiq ´ E pYiq|q

ffminpq,1{qq

with q ą 0,

where Xi, Yi denote the ith component of the p-dimensional random vectors
X „ F1 and Y „ F2.
A probability (semi)metric d : P Ñ r0,8q is called a simple semimetric, if for
each P P P with marginals F1, F2:

F1 “ F2 ñ dpP q “ 0

and a simple metric if the converse implication also holds. Simple metrics as well
as primary metrics only depend on the marginals F1, F2 instead of their joint
distribution and can therefore also be denoted by dpF1, F2q instead of dpP q.
Examples of simple (semi)metrics are the Kantorovich metric (Kantorovich,
1960), Prokhorov metric (Prokhorov, 1956), Birnbaum-Orlicz metric (Birnbaum
and Orlicz, 1931), and Zolotarev’s semimetric (Zolotarev, 1984).
In the sense of Rachev (1991), every probability metric is a compound metric.
In other papers, the term compound metric is used only for metrics that are not
simple (Rachev, 1991). Examples of compound metrics are the Ky Fan metrics
Fan, 1943.

Probability metrics can also be classified based on their structure, according
to Zolotarev (1984). The different structures are presented below, mainly fol-
lowing the overview of Rachev (1991). We will denote the sample space by S
and assume that it is a metric space with a corresponding metric that we denote
by d1 to avoid confusion with the probability metrics denoted by d.

Hausdorff structure Following Rachev (1991), a probability semimetric d is
said to have a Hausdoff structure or a h-structure if it can be represented in the
following form:

dpX,Y q “ hλ,φ,B0pX,Y q :“ max
�

h1
λ,φ,B0

pX,Y q, h1
λ,φ,B0

pY,Xq
(

,

where

h1
λ,φ,B0

pX,Y q “ sup
APB0

inf
BPB0

max
"

1
λ
rpA,Bq, φpX,Y ;A,Bq

*

and
rpA,Bq “ inftε ą 0 : Aε

Ě B,Bε
Ě Au

is the Hausdorff semimetric in the Borel σ-algebra BpSq with Aε denoting the
open ε-neighborhood of A, λ ą 0, B0 Ď BpSq and φ such that

1. PpX “ Y q “ 1 ñ φpX,Y ;A,Bq “ 0 @A,B P B0, and
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2. D constant Kφ ě 1 : @A,B,C P B0 and random variables X,Y, Z

φpX,Z;A,Bq ď KφrφpX,Y ;A,Cq ` φpY,Z;C,Bqs.

Examples are the Lévy metric for univariate distributions

LpX,Y q “ LpF1, F2q “ inftε ą 0 : F1px´ εq ´ ε ď F2pxq ď F1px` εq ` ε, x P Ru

and the Prokhorov metric πλ, λ ą 0

πλpF1, F2q :“ inftε ą 0 : P1pCq ď P2pCλε
q ` ε for any C P Cu,

where C denotes the set of all nonempty closed subsets of S. Every semimetric
has the trivial Hausdorff representation hλ,φ,B0 “ μ with B0 a singleton, e.g.
B0 ” A0 for some set A0, and φpX,Y ;A0, A0q “ dpX,Y q (Rachev, 1991, pp.
51-68). The original definition of Zolotarev (1984) explicitly excludes the trivial
representation.

Λ-structure A semimetric d has a Λ-structure if there exists a non-negative
function ν that satisfies the conditions

1. PpX “ Y q “ 1 ñ νpX,Y ; tq “ 0 @t ě 0
2. νpX,Y ; tq “ νpY,X; tq @t ě 0
3. 0 ď t1 ă t2 ñ νpX,Y ; t1q ě νpX,Y ; t2q

4. νpX,Z; t1 ` t2q ď νpX,Y ; t1q ` νpY,Z; t2q @t1, t2 ě 0

such that d can be represented as

dpX,Y q “ Λλ,νpX,Y q :“ inftε ą 0 : νpX,Y ;λεq ă εu

for some λ ą 0.
It can be shown that each semimetric has a trivial Λ-structure (Rachev, 1991,
pp. 68-69). Again, this trivial representation is excluded in the original defini-
tion by Zolotarev (1984). Examples of (semi-)metrics with a Λ-structure in the
strong sense are the Ky Fan metric and the generalized Lévy-Prokhorov met-
rics. In general, each semimetric with a Hausdoff structure also has a Λ-structure
(Rachev, 1991, p. 69).

Integral structure Zolotarev (1984) additionally defines (semi)metrics with
an integral structure that comprise those (semi)metrics that can be represented
as

dpX,Y q “ ψpEpφphpX,Y qqqq,

where h is a metric in pS, d1q which is a measurable function, φ is a strictly
increasing convex function on p0,8q vanishing at zero and ψ is the superposition
of a non-decreasing concave function vanishing at zero and the inverse function
of φ. All metrics with an integral structure are compound metrics. An example
are metrics of the form

γqpX,Y q “
“

E
`

pd1
q
q
pX,Y q

˘‰minp1,1{qq
, q ą 0.
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Integral probability metrics / probability metrics with a ξ-structure
Probability Metrics with a ξ-structure are better known as Integral probability
metrics, going back to Müller (1997). They are based on the idea that if two
distributions are identical, any function should have the same expectation under
both distributions. Let F be a set of functions f : X Ñ R. Then an integral
probability metric is given by

IPMF pF1, F2q “ sup
fPF

ˇ

ˇ

ˇ

ˇ

ż

f dF1 ´

ż

f dF2

ˇ

ˇ

ˇ

ˇ

.

All IPMs are probability metrics.
An example for an IPM is the Dudley metric β, which is generated by Fβ “

tf : }f}8 ď 1, }f}L ď 1u, where } ¨ }L denotes the Lipschitz-norm defined on a
metric space pS, d1q as

}f}L :“ sup
x‰yPS

|fpxq ´ fpyq|

d1px, yq

and } ¨ }8 denotes the supremum norm. Another special case is the Total Vari-
ation Metric (Zolotarev, 1984)

σpF1, F2q :“ |F1 ´ F2|pSq,

where
}μ} :“ |μ|pSq (2)

denotes the total variation norm on the set of all signed measures on an arbitrary
measure space pS,Sq with total variation

|μ| “ μ´
` μ`.

Here μ´ and μ` denote the negative and positive parts of μ, respectively. The
total variation metric has the generator Fσ :“ t2 ¨ 1B : B P Su since

}μ} “ 2 sup
APS

|μpAq| for all signed measures μ with μpSq “ 0.

It also fulfills the property

dpF1 ˚ G,F2 ˚ Gq ď dpF1, F2q for all probability measures G. (3)

The stop-loss metric

dSLpF1, F2q “ sup
tPR

|EF1pX ´ tq`
´ EF2pX ´ tq`

|

is motivated by risk-theoretic considerations (Gerber, 1979; Rachev and Rüschen-
dorf, 1990) and has the generator FSL “ ts Ñ Φtpsq “ ps´ tq`, t P Ru. It fulfills
the condition (3) and additionally, it holds

dF pδa, δbq “ d1
pa, bq, (4)
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where δx denotes the Dirac measure on x. More properties for the univari-
ate case are given in Rachev and Rüschendorf (1990). The last example in-
troduced by Müller (1997) is the Kantorovich-Rubinstein metric ξ1 (Zolotarev,
1984; Dudley, 1989), which is generated by the set of Lipschitz functions L1 “

tLipschitz functions f : }f}L ď 1u. For S “ R it reduces to

ξ1pF1, F2q “ �1pF1, F2q :“
ż

|F1ptq ´ F2ptq| dt.

Additional to the conditions (3) and (4), it fulfills the condition

dF paF1, aF2q “ a dF pF1, F2q. (5)

If S is separable, the Kantorovich-Rubinstein metric is the dual representation
of the L1-Wasserstein distance

W1pF1, F2q “ inf
πPΠpF1,F2q

ż

dpx, yq dπpx, yq,

where ΠpF1, F2q is the set of joint distributions with marginal distributions F1
and F2 (for general Wasserstein distance, see (11)). There is a connection be-
tween the Kantorovich-Rubinstein metric and optimal transport (see 3.5, 3.11)
via the Kantorovich–Rubinstein duality. For details see, e.g. Rachev and Rüschen-
dorf (1998). Other examples are all Lq-metrics

θppF1, F2q :“ }F1 ´ F2}q,

where q P r1,8s, as well as the engineer metric (Rachev, 1991, p. 73).
Sriperumbudur et al. (2012) define empirical estimates for the Kantorovich

metric, Fortet-Mourier metric, dual-bounded Lipschitz distance (Dudley met-
ric), total-variation distance and kernel distance (Mean Maximum Discrepancy,
MMD, see Section 3.9.1) that are easily computable and strongly consistent,
except for the total variation distance. They are motivated by their observation
that homogeneity tests as an important application are often based on estimates
of distances as test statistics. Further, while the MMD and the total variation
metric are already successfully applied in this context, most other IPMs are not,
due to the lack of good estimates for continuous random variables, especially in
the multivariate case. For the application, it is crucial that the statistics have
a consistent estimator exhibiting fast convergence behavior and low computa-
tional complexity. They show that the estimate for the kernel distance (MMD)
in comparison is computationally cheaper, converges at a faster rate to the pop-
ulation value, and its rate of convergence is independent of the dimension p of
the space. The additional IPMs considered by Sriperumbudur et al. (2012) are
defined as follows. The Fortet-Mourier metric is a generalization of the Kan-
torovich metric with F “ }f}c ď 1, where

}f}c :“ supt
|fpxq ´ fpyq|

cpx, yq
: x ‰ y P Su
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and cpx, yq “ d1px, yq maxp1, d1px, aqq´1, d1py, aqq´1q for q ě 1 and for some
a P S. For q “ 1, this yields the definition of the Kantorovich metric. The kernel
(MMD) distance γF is defined by setting F “ tf : }f}H ď 1u, where } ¨ }H
denotes the norm on the reproducing kernel Hilbert space (RKHS) H induced
by the kernel function. For details see Section 3.9.1.
The general empirical estimator for an IPM given samples

tX1, . . . Xn1u „ F1 and tY1, . . . Yn2u „ F2

is defined as

γF pF1,n1 , F2,n2q “ sup
fPF

ˇ

ˇ

ˇ

ˇ

ˇ

N
ÿ

i“1
Z̃ifpZiq

ˇ

ˇ

ˇ

ˇ

ˇ

, (6)

where F1,n1 :“ 1
n1

řn1
i“1 δXi and F2,n2 :“ 1

n2

řn2
j“1 δYj denote the empirical dis-

tributions of F1 and F2, N “ n1 ` n2, with

Z “ tZ1, . . . , ZNu “ tX1 . . . , Xn1 , Y1, . . . Yn2u

denoting the pooled sample and Z̃i “
1
n1

when Zi “ Xi for i “ 1, . . . , n1

and Z̃i “ ´
1
n2

when Zi “ Yi´n1`1 for i “ n1 ` 1, . . . , N . The computation is
not straightforward for arbitrary F , so Sriperumbudur et al. (2012) define the
empirical estimators for special cases and show how to calculate them by solving
linear programs or using a closed-form expression.

The resulting estimator of the kernel distance can be given as a closed-
form expression and therefore is easy to implement compared to the other
estimators. Moreover, it is the only presented estimator for which (6) has a
unique solution. For the estimators for the Kantorovich and total variation
metric, strong consistency is shown under the assumption that pS, d1q is a to-
tally bounded metric space. To show strong consistency of the estimator for
the kernel distance, the following assumptions are made: For any r ě 1 and
probability measure F , define the Lr-norm }f}F,r :“

`ş

|f |r dF
˘1{r and let

LrpF q denote the metric space induced by this norm. The covering number
N pε,F , LrpF qq is the minimal number of LrpF q balls of radius ε needed to cover
F . Hpε,F , LrpF qq :“ logN pε,F , LrpF qq is called the entropy of F using the
LrpF q metric. Define the minimal envelope function as Gpxq :“ supfPF |fpxq|.
Under the assumptions

1.
ş

S
GdF1 ă 8,

2.
ş

S
GdF2 ă 8,

3. @ε ą 0, 1
n1

Hpε,F , LrpF qq
F1
Ñ 0 as n1 Ñ 8,

4. @ε ą 0, 1
n2

Hpε,F , LrpF qq
F2
Ñ 0 as n2 Ñ 8,

strong consistency can be shown for the kernel distance estimator.
Sriperumbudur et al. (2012) also derive convergence rates of the estimators
to their population values. For the estimators for the Kantorovich and total
variation metric, these convergence rates depend on the dimension p, and thus
in large dimensions, more samples are needed to obtain useful estimates. The



Methods for quantifying dataset similarity 193

rate for the kernel distance is independent of the dimension p. The authors
also show how these convergence rates can be used to derive critical values for
tests for H0 : F1 “ F2 vs. H1 : F1 ‰ F2. Moreover, the theoretical results
on convergence and dependence on p are confirmed by simulations for cases in
which the measures can be computed exactly.
For the total variation distance, it is shown that the estimator resulting from
(6) is not consistent.

Tests based on Wasserstein distances Ramdas, Trillos and Cuturi (2017)
present an overview of tests based on Wasserstein distance (11) and their re-
lationships with each other, as well as with the energy and MMD test (see
Section 3.9.1) in the multivariate case and the Kolmogorov-Smirnov (KS) test,
probability-probability (PP) and quantile-quantile (QQ) plots, and receiver op-
erating (ROC) or ordinal dominance (ODC) curves in the univariate case. They
show a connection between the Wasserstein distance and the energy distance
via entropic smoothing and then use the connection between energy distance
and MMD noted by Sejdinovic et al. (2013). The tests presented are derived
only for one-dimensional data and are therefore not discussed further here.

Wang, Gao and Xie (2021) propose a test based on the Wasserstein distance
(11) for an optimal linear projection of the data. The idea behind this is to
circumvent the curse of dimensionality for the Wasserstein distance through a
projection of data into a lower-dimensional space. Wang, Gao and Xie (2022)
build on this idea but try to improve the test by using non-linear projections,
based on their observation that the original test of Wang, Gao and Xie (2021)
cannot efficiently capture features from data with non-linear patterns. They
compare the new test to the MMD (Gretton et al. (2006); Section 3.9.1) and
ME (Chwialkowski et al. (2015); Section 3.9) test as well as to the old version.
Both tests of Wang, Gao and Xie (2021) and Wang, Gao and Xie (2022) rely
on a train/test split of the data since an optimal projection of the data needs
to be learned before performing the test. The projection of Wang, Gao and Xie
(2021) also relies on a kernel and the choice of the kernel is crucial for the test
to perform well. No explicit guidelines for the choice of the kernel are given.
Moreover, there is no theoretical guarantee of finding the global optimum for
the projection in the nonlinear case.

3.6.2. Divergences

There are different definitions of divergences in the literature. Most have in com-
mon that a divergence is a discrepancy measure that does not fulfill all criteria
for distances or metrics. It is usually required to be a non-negative function.
E.g. Sugiyama et al. (2013a) define a divergence d as a pseudo-distance, i.e. it
acts like a distance but may violate some of the conditions

1. Non-negativity: @X,Y : dpX,Y q ě 0
2. Non-degeneracy: dpX,Y q “ 0 ô X “ Y
3. Symmetry: dpX,Y q “ dpY,Xq
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4. Triangle inequality: @X,Y, Z : dpX,Zq ď dpX,Y q ` dpY,Zq.

In Zhao et al. (2021), given a finite set or finite-dimensional vector space X
and a set PpX q of probability distributions on X with density, a probability
divergence is defined as a function D : PpX q ˆ PpX q Ñ R that satisfies

DpF1, F2q ě 0
DpF1, F1q “ 0 @F1, F2 P PpX q.

D is called strict if DpF1, F2q ą 0 @F1 ‰ F2 and non-strict otherwise.

f-Divergences f -divergences use the idea that two identical distributions
assign the same likelihood to every point and thus measure how far the likelihood
ratio is from one (Zhao et al., 2021). Given a convex continuous function f :
R` Ñ R such that fp1q “ 0, an f -divergence is defined as

Df pF1, F2q “ EF1 rfpf1pXq{f2pXqqs ,

where f1, f2 are the density functions of distributions F1 and F2 (Csiszár, 1963;
Ali and Silvey, 1966).
In the following, we will discuss the most important properties and exam-
ples of f -divergences. There is extensive literature on f -divergences in general
and also on more details for special f -divergences. For a general discussion of
f -divergences see e.g. Liese and Vajda (1987). For a discussion of special f -
divergences see the literature cited below and the references therein.

Vajda (2009) discusses metric properties of f -divergences. In general, f -
divergences do not fulfill the conditions of a metric. Especially the triangle
inequality is violated for all f -divergences except for the total variation metric
(or multiples of it). On the other hand, positive powers of f -divergences are
probability metrics, if the f -divergence itself is symmetric and bounded. For a
general f -divergence Df , it holds

0 ď Df pF1, F2q ď fp0q ` f˚
p0q,

where

fp0q “ lim
tÓ0

fptq,

f˚
p0q “ lim

tÓ0
, f˚

ptq

f˚
ptq “ tf

ˆ

1
t

˙

, t ą 0.

It holds Df pF1, F2q “ 0 if and only if F1 “ F2. If F1 K F2 (orthogonal, i.e. dis-
joint supports), then it holds Df pF1, F2q “ fp0q`f˚p0q. The reverse conclusion
holds if the right-hand is finite. An f -divergence is symmetric if and only if

Dc P R : f˚
ptq “ fptq ` cpt ´ 1q.
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For symmetric f -divergences, the finiteness of f implies the finiteness of f˚. For
any f -divergence, the relation

Df pF1, F2q “ Df˚ pF2, F1q

holds for any two distributions F1, F2. The f -divergence between the restrictions
of two distributions to a sub-σ-algebra is always smaller or equal to the f -
divergence of the unrestricted distributions, with equality if this sub-σ-algebra
is sufficient. In the case of a strictly convex function f and a corresponding finite
f -divergence, the equality is equivalent to sufficiency of the sub-σ-algebra. There
exist representations of each f -divergence based on finite, measurable partitions
of the sample space for the general case, and in case of a σ-algebra that is
generated by an at most countable partition, it exists a representation in terms
of a measurable partition of the sample space.

Vajda (2009) also gives examples of f -divergences and checks if they fulfill
the above properties.
The squared Hellinger distance is defined as

H2
pF1, F2q “ 2

ż

´

a

f1 ´
a

f2

¯2
dμ,

where μ is a σ-finite measure dominating F1 and F2 w.r.t which the densities f1
and f2 exist. It satisfies all metric conditions in the power 1{2. The same holds
for the squared Le Cam distance (Vincze-Le Cam distance) (Vincze, 1981; Le
Cam, 1986)

LC2
pF1, F2q “

1
2

ż

pf1 ´ f2q2

f1 ` f2
dμ.

In contrast, no power of the Kullback-Leibler divergence (information diver-
gence) (Kullback and Leibler, 1951)

KLpF1, F2q :“
ż

log
ˆ

f1pxq

f2pxq

˙

f1pxq dx,

where f1, f2 denote the density functions of F1 and F2, is a metric since sym-
metry is never fulfilled. In addition, powers of the symmetrized Kullback-Leibler
divergence, which is also known as Jeffrey’s divergence

JpF1, F2q “ KLpF1, F2q ` KLpF2, F1q,

also do not fulfill the triangle inequality.
Vajda (2009) introduces the extended φα-divergences DφαpF1, F2q with

φαptq “

$

’

’

&

’

’

%

α
|α|p1´αq

”

`

t1{α ` 1
˘α

´ 2α´1 pt ` 1q

ı

if αp1 ´ αq ‰ 0,

t logptq ` pt ` 1q log
´

2
t`1

¯

if α “ 1,
|t´1|

2 if α “ 0.
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These are symmetric f -divergences with f “ φα strict convex on p0,8q unless
α “ 0. Powers DpF1, F2q “ DφαpF1, F2qπpαq for

πpαq “

#

1
2 if ´ 8 ă α ď 2,
1
α if α ą 2,

fulfill all metric properties. Special cases include the total variation, the Hellinger
distance, the Le Cam distance, and the Jensen-Shannon divergence (Lin, 1991)
(or scaled versions of them).
Liese and Vajda (1987) define a different class of f -divergences, called Iα-
divergences. They are generated by the functions

Iαpxq “

$

’

&

’

%

´ logpxq ` x ´ 1 if α “ 0,
xα

´αx`α´1
αpα´1q

if α ‰ 0, α ‰ 1,
x logpxq ´ x ` 1, if α “ 1,

with ´ logp0q :“ 8 and 0 logp0q :“ 0. A special case is the KL-divergence for
α “ 1. Moreover, the Iα-divergence is equal to the Rényi divergence of or-
der α for α P t0, 1u and DαpF1, F2q “

1
αpα´1q

log p1 ` αpα ´ 1qDIαpF1, F2qq for
α ą 0, α ‰ 1, where DαpF1, F2q denotes the Rényi divergence of order α (see
definition below).
Sugiyama et al. (2013a) provide a review of recent advances in direct divergence
approximation for some f -divergences. They define a divergence d as a pseudo-
distance, i.e. it acts like a distance but may violate some of the conditions.
The first divergence considered is the Kullback-Leibler (KL) divergence. It is
almost positive definite and is additive for independent random events, i.e. the
divergence for the joint distributions equals the sum of the divergences for the
marginal distributions of both variables. Moreover, the KL divergence is invari-
ant for non-singular transformations (Kullback and Leibler, 1951). Advantages
of the KL divergence according to Sugiyama et al. (2013a) are that it is compat-
ible with Maximum Likelihood (ML) estimation, invariant under input metric
change, that its Riemannian geometric structure is well studied, and that it can
be approximated accurately via direct density ratio estimation. However, it is
not symmetric, does not fulfill the triangle inequality, its approximation is com-
putationally expensive due to the log function, it is sensitive to outliers, and it
is numerically unstable because of the strong non-linearity of the log function
and the possible unboundedness of the density-ratio function.
The Pearson (PE) divergence (Pearson, 1900), also known as χ2 divergence

PEpF1, F2q :“
ż

f2pxq

ˆ

f1pxq

f2pxq
´ 1

˙2

dx

is a squared-loss variant of the KL divergence. Since it is also an f -divergence
like the KL divergence, both share similar theoretical properties. Advantages
of the PE divergence according to Sugiyama et al. (2013a) are again invari-
ance under input metric change, that it can be accurately estimated via direct
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density-ratio estimation, that its estimator can be obtained analytically, so it is
computationally much more efficient due to the compatibility of the quadratic
function with least squares (LS) estimation. Also, it is more robust against out-
liers. But it is still not symmetric, also violates the triangle inequality, and the
density ratio is possibly unbounded.
One way to overcome the possible unboundedness is to use the Relative Pearson
(rPE) divergence (Yamada et al., 2013)

rPEpF1, F2q :“ PEpF1, Fαq “

ż

fαpxq

ˆ

fpxq

fαpxq
´ 1

˙2
dx,

where for α P r0, 1q, fα is defined as the density function of the α-mixture

Fα “ αF1 ` p1 ´ αqF2

of F1 and F2. For α “ 0 this yields the Pearson divergence. The ratio fpxq

fαpxq
is

called the relative density-ratio and is always upper-bounded by 1
α for α ą 0.

The advantages of the relative Pearson divergence are that it overcomes the
unboundedness, is still compatible with LS estimation, and can be approximated
in almost the same way as the PE divergence via direct relative density-ratio
estimation. Its approximation can still be obtained analytically in an accurate
and computationally efficient manner and the rPE is still invariant under input
metric change. Its disadvantages are that it violates symmetry and the triangle
inequality and that the choice of α may not be straightforward.
Lastly, a divergence presented by Sugiyama et al. (2013a) is the L2-distance

L2
pF1, F2q :“

ż

pf1pxq ´ f2pxqq
2 dx

which is a standard distance measure between probability measures. It does not
belong to the class of f -divergences but rather to the class of IPMs as it is
the special case of the Lq-distances presented above (Section 3.6.1) for q “ 2.
Advantages according to Sugiyama et al. (2013a) are that it is a proper dis-
tance measure that the density difference is always bounded as long as each
density is bounded. Therefore the L2-distance is stable without the need for
tuning any control parameter. It is also compatible with LS estimation and can
be accurately and analytically approximated in a computationally efficient and
numerically stable way via direct density-difference estimation (Sugiyama et al.,
2013b). In contrast to the aforementioned divergences, the L2-distance is not
invariant under input metric changes.
Due to the advantages listed before, Sugiyama et al. (2013a) argue that Pear-
son divergence, relative Pearson divergence, and L2-distance are more useful in
practice than the “overwhelmingly popular” KL divergence.
A naive way to approximate the divergences, given samples X :“ tXiu

n1
i“1 „ F1

and Y :“ tYju
n2
j“1 „ F2, would be to first obtain estimators for the densities

f1, f2 and then compute a plug-in approximator similar to the methods for
comparing density functions. This violates Vapnik’s principle of never trying
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to solve a more general problem as an intermediate step when having a re-
stricted amount of information, so Sugiyama et al. (2013a) argue for the use of
direct density-ratio or direct density-difference estimation as an alternative. “Di-
rect divergence approximators theoretically achieve optimal convergence rates
[. . . ] and compare favorably with the naive density-estimation counterparts”
(Sugiyama et al., 2013a). They still suffer from the curse of dimensionality. The
key idea behind these techniques is to estimate f1

f2
or f1 ´ f2 without explicitly

estimating f1 and f2. Therefore, a density-ratio or density-difference model is
used. Sugiyama et al. (2013a) make use of the Gaussian density-ratio model

rpxq “

n
ÿ

l“1
θl exp

ˆ

´
}x ´ Xl}

2

2σ2

˙

with parameters θ1, . . . , θn, or of the Gaussian density-difference model

fpxq “

N
ÿ

l“1
ξl exp

ˆ

´
}x ´ cl}

2

2σ2

˙

,

where pc1, . . . , cn, cn`1, . . . , cN q “ pX1, . . . , Xn1 , Y1, . . . , Yn2q are Gaussian cen-
ters and ξ1, . . . , ξN parameters of the model.

There have been different proposals for f -divergence estimation before.
Wang, Kulkarni and Verdu (2005) give an estimator for f -divergences for contin-
uous distributions under certain regularity conditions that is based on estimat-
ing the density functions using a data-dependent partition of the observation
space. Later, Wang, Kulkarni and Verdu (2006) improved on this method by
using nearest neighbor distances instead. This method again only works for con-
tinuous distributions. It is shown that the bias and variance of the estimator
converge to zero for n1, n2 Ñ 8.
Nguyen, Wainwright and Jordan (2010) define M -estimators for f -divergences
and likelihood ratios. They make use of an equivalent reformulation of f -diver-
gences, where an f -divergence can be seen as the solution to a Bayes decision
problem which is a convex optimization problem. Nguyen, Wainwright and Jor-
dan (2010) propose a kernel-based implementation for estimation. They assume
equal sample sizes and the concrete form of the estimator is only given for the
KL-divergence, although the ideas for generalization to general f -divergences
with differentiable and strictly convex f are later also presented. Under several
assumptions, mainly on the density ratio, consistency and convergence rates can
be shown for the estimators.

Kanamori, Suzuki and Sugiyama (2012) define tests based on f -divergences
using density-ratio models for estimation. They need many assumptions for their
theory. Kanamori, Suzuki and Sugiyama (2012) derive an optimal estimator
for f -divergences (regarding asymptotic variance) based on a semiparametric
density-ratio model. They use this estimator as a test statistic. The critical
value is calculated based on the asymptotic χ2 distribution of the test statistic.
The choice of a specific f -divergence is left open, but up to first order, the local
power does not depend on the chosen f -divergence. The choice of the parametric
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model for density ratio is left open as well. Conditions on the model to obtain
optimality of the f -divergence estimator are given. Moreover, different examples
for choosing the model and f -divergence are presented that fulfill the conditions
for optimality. Under several additional assumptions, it is shown that the local
asymptotic power of the test is equal to that of the empirical likelihood score test
of Fokianos et al. (2001) (not described here due to restrictive assumptions on
distributions) if the density ratio model is correctly specified and that the power
is larger or equal under certain misspecifications of the density ratio model. To
calculate ratios of densities, implicit assumptions are required.

A generalization of f -divergences also known as f -dissimilarity for simulta-
neously comparing multiple distributions can be found in Györfi and Nemetz
(1975). This extension to the k-sample case is discussed in more detail by
García-García and Williamson (2012). It is shown to fulfill all properties as
the two-sample version, i.e. the information processing property, reflexivity, in-
variance to affine terms, uniqueness, change of order, and bounds hold as for
the two-sample case. Other extensions did not keep these properties. Define
P rks “ pP, . . . , PkqT , tj “

1
dPj

P rks and t̃j “

´

dP1
dPj

, . . . ,
dPj´1
dPj

,
dPj`1
dPj

, . . . , dPk

dPj

¯T

.
Then the multi-distribution f -divergence or f -dissimilarity is defined as

Iφ,jpP rksq “ EPj rφptjqs “ EPj rfjpt̃jqs,

where the jth distribution is chosen as a reference measure and fj P Ck´1
1 is

a convex function, Ck
1 :“ tφ : r0,8qk Ñ R, φ convex, φp1kq “ 0u such that

fjpt̃jq “ φptjq. The two expressions are equivalent. The second notation with
k´1 terms matches the usual f -divergence definition for two distributions. The
multi-distribution f -divergence can be seen as a two-step procedure. First, the
probability distributions are relativized by taking Radon-Nikodym derivatives
with respect to the chosen reference distribution. Second, the dispersion of the
resulting likelihood ratio is measured using the convex function.

Rényi divergence Properties of the Rényi divergence (of order α) (Rényi,
1961)

DαpF1, F2q “

#

1
α´1 log

`ş

fα
1 f

1´α
2 dμ

˘

α ă 1
1

α´1 log
`ş

fα
1 {fα´1

2 dμ
˘

α ą 1,

are described in van Erven and Harremoës (2014). Here, the conventions 0{0 :“ 0
and x{0 :“ 8, x ą 0 are applied. Like the Kullback-Leibler divergence, the
Rényi divergence is particularly popular in information theory since it can be
motivated by coding. The KL divergence is a special case of Rényi divergence
for order α “ 1. The Rényi divergence is only symmetric for order α “ 1{2,
and in that case, it is connected to the squared Hellinger distance. In general,
it fulfills the so-called skew symmetry: DαpF1, F2q “

α
1´αD1´αpF2, F1q for α P

p0, 1q. For α “ 2, it is a function of the χ2-divergence. The Rényi divergence
is nondecreasing in its order and it is an upper bound for α{2 times the total
variation for α P p0, 1s. For F1;1, F1;2, . . . and F2;1, F2;2, . . . and FN

1 “
ŚN

i“1 F1;i,
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FN
2 “

ŚN
i“1 F2;i it holds

N
ÿ

i“1
DαpF1;i, F2;iq “ DαpFN

1 , FN
2 q

for any α P r0,8s and any N P N as well as for any α P p0,8s and N P NY t8u

(additivity). Furthermore, the dominance of measures can be characterized by
F1 ! F2 if and only if D0pF1, F2q “ 0. On the other hand it holds that F1 K F2
if and only if DαpF1, F2q “ 8 for some α P r0, 1q or (equivalently) all α P r0,8s.
Rényi divergence is nonnegative for all α P r0,8s, but Dα is neither a metric
nor the square of a metric for any order. Similar to f -divergences, the Rényi
divergence between the restrictions of two distributions to a sub-σ-algebra is
always smaller or equal to the Rényi divergence of the unrestricted distributions.
For α ą 0, the Rényi divergence is equal to 0 if and only if the distributions are
the same. For α “ 0, DαpF1, F2q “ 0 if and only if F1 ! F2. Van Erven and
Harremoës (2014) extend the Rényi divergence to negative orders. The results
for positive orders carry over to negative orders with reversed properties in most
cases.

Relative information of type s Taneja and Kumar (2004) give a general-
ization of the KL-divergence similar to the Rényi divergence that is defined only
for discrete distributions. In addition, they present an overview of inequalities
between f -divergences as well as Rényi divergences and their class of relative
information of type s.

H-divergence In Zhao et al. (2021), given a finite set or finite-dimensional
vector space X and a set PpX q of probability distributions on X that have a
density, a probability divergence is defined as a function D : PpX q ˆPpX q Ñ R

that satisfies

DpF1, F2q ě 0
DpF1, F1q “ 0 @F1, F2 P PpX q.

D is called strict if DpF1, F2q ą 0 @F1 ‰ F2 and non-strict otherwise. Different
probability divergences are presented. The class of H-divergences is introduced
by Zhao et al. (2021). It makes use of H-entropies. The idea is that distributions
are different if the optimal decision loss is higher on their mixture than on each
individual distribution, so the generalized entropy of the mixture distribution
pF1 ` F2q{2 is compared to the generalized entropy of F1 and F2. If F1 and
F2 are different, it is more difficult to minimize the expected loss under the
mixture, hence it should have higher generalized entropy. If the distributions
are identical, the mixture is identical to F1 and to F2 and they all have the
same generalized entropy.
For an action space A and loss function � : X ˆ A Ñ R a corresponding H-
entropy

H
pF q “ inf
aPA

EF r�pX, aqs
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is the Bayes optimal loss of a decision maker who must select some action
a not for a particular x, but in expectation for a random X drawn from F .
Examples are the Shannon Entropy, where A “ PpX q is the set of probabilities
and �px, aq “ ´ log apxq, the variance with A “ X and �px, aq “ }x ´ a}2

2,
and the predictive V-entropy with A Ă PpX q some subset of distributions and
�px, aq “ ´ log apxq.
Using H-entropies, a new class of discrepancies based on optimal loss for decision
tasks can be defined. For two distributions F1 and F2 on X and a continuous
function φ : R2 Ñ R such that φpθ, λq ą 0 whenever θ ` λ ą 0 and φp0, 0q “ 0

Dφ

 pF1, F2q “ φ

ˆ

H


ˆ

F1 ` F2

2

˙

´ H
pF1q, H


ˆ

F1 ` F2

2

˙

´ H
pF2q

˙

is a H-divergence. The term H


`

F1`F2
2

˘

´ H
pFiq measures how much more
difficult it is to minimize loss on the mixture distribution than on Fi, and φ
maps the differences to a scalar divergence. Special cases of the general definition
corresponding to particular H-entropies are the H-Jensen Shannon divergence,
where φpθ, λq “

θ`λ
2 such that

DJS

 pF1, F2q “ H


ˆ

F1 ` F2

2

˙

´
1
2 pH
pF1q ` H
pF2qq ,

and the H-Min divergence, where φpθ, λq “ maxpθ, λq such that

DMin

 “ H


ˆ

F1 ` F2

2

˙

´ min pH
pF1q, H
pF2qq .

Also, all squared MMD distances (Gretton et al. (2006); see Section 3.9.1) are
H-divergences.
Each H-divergence is a probability divergence. Whether the H-divergence is
strict depends on the choice of �.
Given n i.i.d. samples tX1, . . . , Xnu drawn from F1 and tY1, . . . , Ynu drawn from
F2, an empirical estimator is given by

D̂φ

 pF̂1, F̂2q “ φ

˜

inf
a

1
n

n
ÿ

i“1
�
`

Z̃i, a
˘

´ inf
a

1
n

n
ÿ

i“1
� pXi, aq ,

inf
a

1
n

n
ÿ

i“1
�
`

Z̃i, a
˘

´ inf
a

1
n

n
ÿ

i“1
� pYi, aq

¸

,

with Z̃i “ Xibi `Yip1 ´ biq and bi i.i.d. uniformly sampled from t0, 1u such that
Z̃i is a sample from the mixture pF1 `F2q{2. This estimator is consistent under
certain regularity assumptions.
The H-divergence can be used in a permutation test for H0 : F1 “ F2. The
same holds for other divergences. A simulation study is performed by Zhao et al.
(2021) with φpθ, λq “

`

θs
`λs

2
˘1{s, s ą 1 and �px, aq the negative log-likelihood

of x under distribution a, a P A with A a certain model family (mixture of
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Gaussian distributions, Parzen density estimator, Variational Autoencoder). s
and A are tuned on a training dataset and power is evaluated on test data.
The test is compared to the ones based on the deep kernel MMD (Liu et al.,
2020), the optimized kernel MMD (Gretton et al., 2012b) as well as the ME
and SCF test (Chwialkowski et al., 2015; Jitkrittum et al., 2016) and the tests
using optimized frequencies (Lopez-Paz and Oquab, 2017; Cheng and Cloninger,
2022). The test based on H-divergence shows the highest power under the same
experimental setup that was used by Liu et al. (2020) in their experiments.

Distance for probability measures based on level sets Muñoz et al.
(2012) consider a vector space of test functions where each distribution is seen as
a continuous linear functional on this space D. In this setting, they view a prob-
ability measure as a Schwartz distribution (generalized function) F : D Ñ R by
setting F pφq “ xF, φy “

ş

φdF “
ş

φpxqfpxq dμpxq “ xφ, fy, where f is the den-
sity function w.r.t. the ambient measure μ. Then, two probability distributions
viewed as linear functionals are the same (similar) if they behave identically
(similarly) on all φ P D. Thus, the distance between two distributions can be
measured as the differences between functional evaluations for an appropriately
chosen set of test functions. Muñoz et al. (2012) use indicator functions of α-level
sets and define a distance of distributions by weighting the distances between
the integrals of these functions w.r.t. the distributions. An α-level set is defined
as Sαpfq “ tx P X |fpxq ě αu such that PpSαpfqq “ 1´ν for ν P p0, 1q. Consider
sets of the type AipF q “ SαipfqzSαi`1pfq, i “ 1, . . . , n ´ 1, for a sequence 0 ă

α1 ă ¨ ¨ ¨ ă αn ă 1. Then it holds for n Ñ 8 that AipF1q “ AipF2q @i ñ F1 “

F2. Muñoz et al. (2012) consider φ1i “ 1AipF1qzAipF2q and φ2i “ 1AipF2qzAipF1q

and dipF1, F2q “ |xF1, φ1iy ´ xF2, φ1iy| ` |xF1, φ2iy ´ xF2, φ2iy| which is approxi-
mately equal to μpAipF1q�AipF2qq, where A�B “ pAzBq Y pBzAq denotes the
symmetric difference of two sets. Then, the weighted level-set distance is defined
as

dαpF1, F2q “

n´1
ÿ

i“1
αi

μpAipF1q�AipF2qq

μpAipF1q Y AipF2qq
,

where α “ tαpiqun1 and μ is the ambient measure. An estimator for the weighted
level-set distance is given by

d̂αpF1, F2q “

n´1
ÿ

i“1
αi

#
´

ÂipF1q�SÂipF2q

¯

#
´

ÂipF1q Y ÂipF2q

¯ ,

where ÂipF q “ ŜαipfqzŜαi`1pfq are estimators of the sets Ai, #A denotes the
number of points in A and �S denotes the set estimate of the symmetric differ-
ence. dαpF1, F2q and its estimator d̂αpF1, F2q are both semimetrics. Estimation
of level sets by using a Support Neighbor Machine (Munoz and Moguerza, 2006)
and estimation of the symmetric difference between sets by using a covering of
the points with closed balls to circumvent that the intersection of the observed
sets is empty are described in Muñoz et al. (2012).
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Building up on this, Muñoz, Martos and González (2013) propose another
weighting in the weighted level-set distance.

Dataset distance based on reproducing kernel Hilbert spaces (RKHS)
Muñoz, Martos and González (2013) make use of a kernel to define a dataset
distance. Consider a set A of points generated from a distribution F with sam-
ple space X . Then a point y P 2X (power set of X ) is called indistinguishable
from x P A with respect to F in the set A, y ApF q

“ x, if dpx, yq ď rA, where
rA “ min dpxl, xsq, xl, xs P A, denotes the minimum resolution for the dataset
A. The idea is to build kernel functions for two datasets A and B from distri-
butions F1 and F2 such that the kernel takes the value one for points that are
indistinguishable w.r.t. F1 in A or w.r.t. F2 in B, and zero otherwise. This is
fulfilled for the distributional indicator kernel. Given datasets A sampled from
F1 and B sampled from F2, define KA,B : X ˆ X Ñ r0, 1s as

KA,Bpx, yq “ fx,rA,γpyq ` fy,rB ,γpxq ´ fx,rA,γpyqfy,rB ,γpxq,

where the smooth indicator functions with center x for r ą 0 and γ ą 0 is
defined as

fx,r,γpyq “

#

exp
´

´
1

p}x´y}γ´rγq2
`

1
r2γ2

¯

if }x ´ y} ă r

0 otherwise
,

rA “ min dpxl, xsq, xl, xs P A, rB “ min dpyl, ysq, yl, ys P B, and γ is a shape
parameter. With this, a kernel for datasets C and D in 2X can be defined as

KpC,Dq “
ÿ

xPC

ÿ

yPD

KA,Bpx, yq.

For C “ A and D “ B, μKA,B
pA X Bq “ KpA,Bq can be interpreted as a

measure for A X B by counting the common points. With μKA,B
pA Y Bq “

N “ #pA Y Bq, it follows that μKA,B
pA�Bq “ N ´ μKA,B

pA X Bq. In general,
μKC,D

pCXDq “ KpC,Dq can be interpreted as a measure for CXD by counting
the common points using ApF1q

“ and BpF2q
“ as equality operators, so taking the

distance between C and D is conditioned to a resolution level (rA and rB) de-
termined by A and B. Therefore the kernel distance between datasets is defined
as

dKpC,Dq “ 1 ´
KpC,Dq

N
,

where N “ #pC Y Dq. This is a semimetric. For C “ A and D “ B and the
sizes for both sets increasing, it holds μKA,B

pA X Bq
n1,n2Ñ8

Ñ μpA X Bq and
μKA,B

pA Y Bq
n1,n2Ñ8

Ñ μpA Y Bq, so the limit of the kernel distance is the
Jaccard distance for datasets, that is 1 ´

μpAXBq

μpAYBq
. This divergence can also be

interpreted as a kernel-based method.
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3.7. Graph-based methods

In the following, methods using similarity graphs are presented. First, graph-
based methods based on different similarity graphs are discussed. Then methods
based on the important case of the nearest neighbor graph are shown.

3.7.1. General graph-based methods

Graph-based methods to compare distributions are especially popular in testing.
Arias-Castro and Pelletier (2016) present a general framework of graph-based
tests: recall that the pooled sample is defined as

tZ1, . . . , ZNu “ tX1, . . . , Xn1 , Y1, . . . , Yn2u.

Let G be a directed graph with this pooled sample as the node set and write
Zi Ñ Zj if there is an edge from Zi to Zj in G. Reject H0 for small values of

TGpZq “ #ti ď n1, j ą n1 : Zi Ñ Zju ` #ti ď n1, j ą n1 : Zj Ñ Ziu,

that is the number of neighbors in the graph from different samples. Many of the
methods presented below fall within this framework. For the K-nearest neighbor
graph as G under the assumption of distinct values in the pooled sample, the
test by Schilling (1986) is given which is a special case of the general approach
of Friedman and Steppel (1973). The minimum spanning tree starting with the
complete graph weighted by Euclidean distances on the other hand results in
the multivariate runs test of Friedman and Rafsky (1979). A minimum distance
matching gives the test by Rosenbaum (2005).

Mukhopadhyay and Wang (2020a) also try to generalize different graph-based
tests into a single framework. They note that the tests by Weiss (1960), Friedman
and Rafsky (1979), Chen and Friedman (2017), Chen, Chen and Su (2018),
Rosenbaum (2005), and Biswas, Mukhopadhyay and Ghosh (2014) have the
following steps in common:

1. Construct a weighted undirected graph G based on pairwise Euclidean
distances on the pooled sample.

2. Compute a subgraph G˚ that contains a certain optimal subset of edges
(e.g. shortest Hamiltonian path).

3. Compute cross-match statistics by counting the number of edges between
samples from two different populations.

All of the tests mentioned will be described in more detail below.

Tests based on minimal spanning trees (Friedman-Rafsky test) One
of the first and best-known graph-based tests is the multivariate runs test by
Friedman and Rafsky (1979). It generalizes the Wald-Wolfowitz runs test to
the multivariate domain based on a minimal spanning tree of pooled sample
points. Henze and Penrose (1999) proved later that the test is asymptotically



Methods for quantifying dataset similarity 205

distribution-free and universally consistent. Chen, Dou and Qiao (2013) on the
other hand observe that power decreases with the imbalance of sample sizes in
their simulations. Chen, Chen and Su (2018) investigate this problem in more
detail. Biswas and Ghosh (2014) highlight that the test is rotation invariant
and invariant under location change and homogeneous scale transformation and
that it can be used even when the dimension of data is larger than the sample
size, but they also derive sufficient conditions for failure for p Ñ 8. Biswas,
Mukhopadhyay and Ghosh (2014) give sufficient conditions for failure where
power converges to 0 as p Ñ 8 and criticize that the test is not distribution-free
for finite samples. Sarkar, Biswas and Ghosh (2020) again show situations where
power is very low and formal conditions under which power decreases to 0 for
increasing p. Chen and Friedman (2017) observe that in practice (simulations),
the test has low or even no power for scale alternatives when the dimension is
moderate to high unless the sample size is “astronomical” due to the curse of
dimensionality.
Friedman and Rafsky (1979) propose a second test in their paper that is a
generalization of the KS test to the multivariate domain based on a minimal
spanning tree of pooled sample points. The test needs a reasonable distance
measure between points. An approximation of the null distribution is used for
testing. Friedman and Rafsky (1979) themselves show that the test has either
no power for scale-only or no power for location-only alternatives. In addition
to that, Chen and Zhang (2013) demonstrate that the test does not work well
on categorical data due to ties.
Both tests of Friedman and Rafsky (1979) are implemented in the R package
GSAR (Rahmatallah et al., 2017) and gTests (Chen and Zhang, 2017). Note
that in the GSAR implementation the test statistic is standardized by empirical
mean and standard deviation instead of the theoretical values under H0 as in
the original definition.

Tests based on optimal non-bipartite matching (Rosenbaum’s cross-
match test) Another well-known test is the cross-match test by Rosenbaum
(2005). Here, an optimal non-bipartite matching is formed in the pooled sample
based on the inter-point distances. The number of pairs containing one observa-
tion from the first distribution and one from the second is considered as a test
statistic. Consistency and the asymptotic distribution of the test statistic are
shown under the assumption of discrete distributions with finite support. The
computational cost for finding an optimal non-bipartite matching of N subjects
is OpN3q. In case of an odd pooled sample size N , one observation needs to be
discarded. The test is not applicable for partially ordered responses. Chen and
Zhang (2013) note that the test does not work well on categorical data due to
ties and show via simulation that power decreases with the imbalance of sample
sizes. In general, different distance measures can be used for the optimal non-
bipartite matching. Biswas and Ghosh (2014) note that the test can be used
even when the dimension of data is larger than the sample size if the Euclidean
distance is used. Due to the high computational cost, a greedy algorithm that
reduces the cost to OpN2q might be employed, but Huang and Huo (2017) point
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out that solving with the greedy heuristic does not guarantee finding the op-
timum. Furthermore, Sarkar, Biswas and Ghosh (2020) show situations where
power is very low. On the other hand, Deb and Sen (2021) state that the test
by Rosenbaum (2005) is one of two tests for the multivariate two-sample prob-
lem that is exactly distribution-free, computationally feasible, and consistent
against all alternatives. Consistency against all fixed alternatives is shown by
Arias-Castro and Pelletier (2016). For the consistency of the general cross-match
statistic, they need the assumptions that densities w.r.t. Lebesgue measure of
both distributions exist, that the sample sizes are comparable in the sense that
their ratio converges to a fixed constant in p0, 1q, the assumption of bounded
out- and in-degree in the graph as well as that the out-degree is essentially con-
stant and long edges are essentially absent and that the dimension is constant.
They note that the graph-based setting exhibits a typical curse of dimension-
ality although literature is silent on that topic. The required conditions cover
the minimum spanning tree used by Friedman and Rafsky (1979) (Henze and
Penrose, 1999), nearest-neighbor graphs (Schilling, 1986) and general matchings
(shown here). Additionally, Arias-Castro and Pelletier (2016) show that the null
distribution as studied by Rosenbaum (2005) and Heller et al. (2010) is avail-
able in closed form and coincides with the permutation distribution. The test
is implemented in the R package crossmatch (Heller, Small and Rosenbaum,
2012).

Extensions of Friedman-Rafsky and Rosenbaum tests Chen and Zhang
(2013) propose a graph-based test for categorical data with a large number of
categories and a sparsely populated contingency table that extends the Fried-
man-Rafsky and Rosenbaum tests to categorical data. They assume that a dis-
tance matrix is given on the set of categories and that there are not many ties
in these distances. In the presence of ties, the resulting graphs are not unique
anymore and the number of possible graphs grows fast with the number of ties.
Their tests work by either averaging over all optimal graphs for a certain graph
type (e.g. MST) or by taking the union of all optimal graphs. An analytic form
and an asymptotic form for both types of tests are proposed. The analytic form
of their first proposed test requires the enumeration of all MSTs on categories
which might not be computationally feasible but can be bypassed by assuming
that instead of the distance matrix, the similarity is directly represented by a
graph with the categories as nodes. For the asymptotic normality of the test
statistics, assumptions on cell counts and graph structure are required and the
number of categories has to go to infinity. The computational cost of the test
is OpK2q with K number of categories for the Rosenbaum version resp. OpMq

with M number of minimum spanning trees on categories for the Friedman-
Rafsky version or OpK2q for the bypassed version. The tests are implemented
in the R package gTests (Chen and Zhang, 2017).

Tests based on the shortest Hamilton path Biswas, Mukhopadhyay and
Ghosh (2014) present a multivariate generalization of two-sample run tests based
on the shortest Hamilton path using Euclidean distances that is applicable to
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high-dimensional data and small sample sizes. It is also invariant under location
change, rotation, and homogeneous scale transformations and distribution-free
in finite-sample situations. Finding the shortest Hamilton path is NP-complete
for complete graphs so instead, a heuristic search algorithm is used that does not
always yield the optimum. Under several assumptions, consistency for p Ñ 8 is
shown for the test, but Sarkar, Biswas and Ghosh (2020) show situations where
power is very low. They also note that the computational complexity is still
OpN2 logNq with the heuristic method based on Kruskal’s algorithm. Deb and
Sen (2021) therefore conclude that the test is extremely expensive to compute
and possibly not applicable even for moderate sample sizes.

Tests based on orthogonal perfect matchings, minimum spanning tree
or nearest neighbors Petrie (2016) presents tests based on new graphs using
orthogonal perfect matchings as well as on minimum spanning trees or nearest
neighbors. The construction for the new graph type works by first finding the
optimal perfect matching on the data, then finding the optimal perfect matching
without the edges from the first matching, and so on until the Kth matching is
reached. The graph is then given as the union of these matchings. K � 0.15N is
suggested as a heuristic choice. The test is intended for continuous data. It can
be used to compare multiple samples. An asymptotic normal test is proposed
that is claimed to have good HDLSS performance. Mukherjee et al. (2022) on
the other hand observe that it tends to have low power as the dimension and/ or
number of samples to be compared increase and point out that its mathematical
properties have not been investigated. The test for Euclidean data and using
the optimal non-bipartite matching as a graph is implemented in the R package
multicross (Agarwal, Bhattacharya and Zhang, 2020).

Test based on similarity graphs Chen and Friedman (2017) propose a
new test based on a similarity graph constructed over the pooled sample that
has higher power for differences in location as well as in scale in contrast to
former tests that often only have high power for one of those. Consistency is
only shown for continuous distributions that differ on a set of positive measures.
Additionally, certain conditions for the similarity graph are required that are
fulfilled by a K-MST with K “ Op1q. The new test statistic is given as the
quadratic form of the vector of the numbers of edges connecting observations
within the same sample for both samples centered with its expectation under
the permutation null distribution and the inverse covariance matrix of these
numbers under the permutation null distribution. The test statistic cannot be
determined if all nodes in the chosen graph have the same degree or if the graph
is star-shaped since in these cases the covariance matrix is singular. Chen and
Friedman (2017) recommend not to use the test if the graph is very close to one
of these cases since then the inversion of the covariance matrix is already ill-
conditioned. The test is implemented in the package gTests (Chen and Zhang,
2017)
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Extension of edge-count tests for imbalanced data Chen, Chen and Su
(2018) aim to improve edge-count tests for unequal sample sizes by weighting.
They show consistency only for continuous distributions and if the graph is
the MST based on Euclidean distance. The test is also only more powerful
than former edge-count tests under locational alternatives, not under general
alternatives. The test is implemented in the R package gTests (Chen and Zhang,
2017). Pan et al. (2018) observes that the efficiency of the test is limited by the
choice of the number of neighbors.

Extension of edge-count tests for categorical data Zhang and Chen
(2019) extend the generalized edge-count test of Chen and Friedman (2017) and
the weighted edge-count test of Chen, Chen and Su (2018) for categorical data
following the approach of Chen and Zhang (2013), i.e. using either the union of
all optimal graphs or averaging over the edge-counts of all optimal graphs. Ad-
ditionally, they propose a new group of graph-based tests for categorical data,
the extended max-type edge-count tests. These consist of two components. First,
the weighted edge-count statistic of the extension of the test of Chen, Chen
and Su (2018) standardized by its mean and variance under H0 and multiplied
with a factor κ is considered. Second, the absolute difference of the edge counts
of points within the first sample that are connected by an edge and points in
the second sample that are connected by an edge, again standardized by its
mean and variance under H0, is taken into account. The test statistic of the
extended max-type edge-count test is then given by the maximum of these two.
Again, two versions are proposed. The first version is based on the union of
all optimal graphs and the second version is based on averaging over all op-
timal graphs. The resulting tests are claimed to be effective for both location
and scale alternatives. Without prior knowledge about the difference between
the distributions, a choice of κ P t1.31, 1.14, 1u is recommended based on a
small simulation study. Asymptotic null distributions are derived for all pro-
posed statistics under several conditions on the similarity graph and the class
distributions. All asymptotic as well as permutation versions of the tests are
implemented in the R package gTests (Chen and Zhang, 2017). For numerical
data, the newly proposed max-type test is also implemented in this package.

Extensions of nearest neighbor, Rosenbaum, and Friedman-Rafsky
test Sarkar, Biswas and Ghosh (2020) modify graph-based tests to overcome
weak performance caused by distance concentration to achieve higher power for
high-dimensional data with low sample sizes (HDLSS). Under certain assump-
tions including uniformly bounded fourth moments, the order of correlations
between inter-point distances and the convergence of mean distances and traces
of covariance matrices for p Ñ 8, consistency is shown under p Ñ 8 for fixed
sample size for the modified tests of Biswas, Mukhopadhyay and Ghosh (2014)
and Rosenbaum (2005) and under additional assumptions on sample size also
for the nearest neighbor test of Henze (1988) and Schilling (1986) as well as
the MST-run test of Friedman and Rafsky (1979). Depending on the choice of
distance, the computation of distances between two points has a cost of OppNq
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compared to Oppq for Euclidean distance or other distances.

Power of tests Bhattacharya (2020) presents results regarding the limiting
distribution under general alternatives as well as power and consistency for
Friedman-Rafsky and nearest neighbor tests. The results are based on several
different assumptions.

Test based on orthonormal polynomials A new class of distribution-free
tests for the high-dimensional k-sample problem based on new nonparametric
tools and connections with spectral graph theory is proposed by Mukhopadhyay
and Wang (2020a). Their motivation is that classical multivariate rank-based k-
sample tests like Puri et al. (1971) or Oja and Randles (2004) are not applicable
for p ą N . They demand several desirable properties of tests:

1. should be robust and not unduly influenced by outliers (current methods
even perform poorly for datasets that are contaminated by only a small
percentage of outliers)

2. should allow testing beyond location-scale alternatives
3. valid for a combination of discrete and continuous covariates
4. should provide insight into why the hypothesis was rejected
5. should work for k-sample problem (all former tests only work for two-

sample).

For their test, a nonparametrically designed set of orthogonal functions (LP
polynomials) is obtained by orthonormalizing a set of functions constructed as
orthonormal polynomials of mid-distribution transforms. These are used for the
construction of a polynomial kernel of degree 2 that encodes the similarity be-
tween two p-dimensional data points in the LP-transformed domain. The values
of the kernel Gram matrix are then used as weights on a graph with the pooled
sample as vertices. The idea is to cluster points for the graph into k groups
that have higher connectivity and compare how closely related this clustering
is to the true memberships to the k distributions. Then testing for homogene-
ity becomes a problem of testing independence which can be accomplished by
determining whether all of the LP comeans are zero. The test statistic has an
asymptotic χ2

pk´1q2 distribution. It has to be explicitly chosen for which mo-
ments to test for equality. Implicitly this requires the corresponding moments
of the distributions to exist. The test is implemented in the LPKsample package
(Mukhopadhyay and Wang, 2020b) in R.

Extension of Rosenbaum test for k-sample problem Mukherjee et al.
(2022) propose a generalization of the test by Rosenbaum (2005) to the k-
sample problem that is exactly distribution-free. It can be applied if inter-point
distances are well-defined. If distributions have densities w.r.t. Lebesgue measure
on Rp, the test is universally consistent. As for the original test by Rosenbaum
(2005), the pooled sample size N has to be even, or one observation has to
be discarded. For the test, the optimal non-bipartite matching on the pooled
sample is calculated. Then a matrix of cross-match counts is constructed whose
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entries are given by the number of matches with one observation coming from
one sample and the other from another sample for each pair of samples. The test
statistic is given as the Mahalanobis distance of the observed cross-counts under
the null hypothesis. The test was implemented in the R package multicross
(Agarwal, Bhattacharya and Zhang, 2020).

Tests for the k-sample problem for high-dimensional and non-Eucli-
dean data Song and Chen (2022a) propose three new tests for the k-sample
problem, especially for high-dimensional and non-Euclidean data. Their main
idea is to use not only the between-sample edges of a similarity graph on the
pooled sample, i.e. the edges connecting points from different samples, but also
the within-sample edges, i.e. the edges connecting points from the same sample,
to use as much information as possible. Let RW denote the vector containing
the numbers of within-sample edges for each of the k samples and RB denote
the vector containing the numbers of between-sample edges for all kpk´1q pairs
of different samples. Then the first test statistic is given by

S “ SW
` SB

SW
“
`

RW
´ EpRW

q
˘T Σ´1

W

`

RW
´ EpRW

q
˘

SB
“
`

RB
´ EpRB

q
˘T Σ´1

B

`

RB
´ EpRB

q
˘

,

where E and Σ denote the expectation and covariance matrix under the permu-
tation null hypothesis. The second test statistic is based on the vector RA of
all linearly independent numbers of edges between and within samples, i.e. all
numbers of edges between all pairs of samples including the pairs of a sample
with itself except for the pair of the sample pk ´ 1q with the kth sample. The
test statistic is then defined as

SA
“
`

RA
´ EpRA

q
˘T Σ´1

A

`

RA
´ EpRA

q
˘

,

where again E and Σ denote the expectation and covariance matrix under the
permutation null hypothesis. While ΣW is shown to be always invertible, no such
proof exists for ΣB and ΣA. Therefore, Song and Chen (2022a) suggest check-
ing the invertibility numerically before applying the test and using a generalized
inverse if necessary. Formulas for the expectations and covariance matrices un-
der the permutation null are given in Theorem 2.1 of Song and Chen (2022a).
Moreover, Song and Chen (2022a) show that under some assumptions on the
similarity graph that are fulfilled by a K-MST with K “ Op1q, SW Ñ χ2

k,
SB Ñ χ2

b , SA Ñ χ2
a asymptotically, where b “ rankpΣBq and a “ rankpΣAq.

The asymptotic distribution of S is more complicated and hard to compute in
practice, therefore it is suggested to use a fast test instead. This fast test com-
bines tests using SW and SB and takes the Bonferroni-adjusted p-value of both
these tests. Alternatively, a permutation test can be performed. Consistency of
the asymptotic tests based on S and SA against all alternatives is shown in the
multivariate setting for the K-MST and under the condition that ΣA is invert-
ible. The tests are implemented in the R package gTestsMulti (Song and Chen,
2022b).
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Graph-based tests based on denser graphs Zhu and Chen (2024) present
a review of graph-based tests as well as new theoretical results based on less strict
assumptions. Their motivation is that the assumptions made on the graphs e.g.
by Friedman and Rafsky (1979), Chen and Friedman (2017), and Chen, Chen
and Su (2018) to show asymptotic distributions of the test statistics are quite
strict and often not fulfilled in practice, especially for denser graphs. However,
empirically an improved performance of tests based on denser graphs, e.g. the 5-
MST instead of the MST, was observed. Therefore, constructing tests based on
denser graphs is promising for improving the power. Zhu and Chen (2024) derive
less strict sufficient conditions under which the asymptotic null distributions
of the original, weighted, generalized, and max-type edge count statistic hold.
These allow for using much denser graphs than the conditions derived before.
Additionally, simulations on the newly derived assumptions are presented.

3.7.2. Methods based on nearest neighbors

An important subgroup of graph-based tests are nearest-neighbor type tests.
Chen and Zhang (2013) claim that they do not work well for categorical data
in general.

Weiss test based on spheres One of the first approaches for the multivari-
ate two-sample problem goes back to Weiss (1960). The procedure presented
there needs the assumption that for both distributions, piecewise continuous
and bounded densities exist. The test statistic is given by the proportion of
points from the first sample where no point of the second sample is contained in
the sphere around the respective point from the first sample with radius 1{2 of
the distance to its nearest neighbor from the first sample. This yields a multi-
variate analog of the Wald-Wolfowitz run test. The test is not distribution-free,
but the calculation of its critical value is possible under assumptions on densi-
ties under H0. The test statistic is invariant under translations and rotations
of space or under linear stretching of each of the axes by the same factor. Dis-
advantages of the procedure are that the test statistic lacks symmetry (roles of
the first and second sample not interchangeable) and as pointed out by Henze
(1988) the test lacks proof of consistency.

Nearest neighbor test of Friedman and Steppel The idea of nearest-
neighbor type tests dates back to Friedman and Steppel (1973) and was mo-
tivated by assessing the influence of different features on a target variable by
splitting the feature dataset according to values of the target and comparing
if the subsets differ in their distributions. It is assumed that the distributions
have existing density functions. The K nearest neighbors in the pooled sam-
ple that originate from the first sample are counted and the distribution of
these frequencies is compared to that expected under the null hypothesis by a
permutation procedure. One way to do this is to compare the frequency dis-
tribution of K nearest neighbors that originate from the first sample in the
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first sample to that in the second sample. Under the null, these are expected
to be equal. Friedman and Steppel (1973) suggest performing a test based on
a t-statistic that compares the mean frequencies from both samples or alter-
natively use another test for comparison of univariate distributions. This test
may be asymptotically optimal, but in finite samples is relatively insensitive
to differences in scale between the two multivariate samples. An alternative to
fix this is to compare frequency distributions (or the distribution of summed
frequencies from both samples) directly with that expected under the null via a
χ2 goodness-of-fit test. The null distribution is in general hard to derive but can
be approximated by binomial distribution BinpK,n1{Nq. The choice of K and
of the metric to determine the nearest neighbors is left open. For consistency,
K should be a function of the total sample size N that goes to 8 for N Ñ 8

such that KpNq{N Ñ 0 for N Ñ 8. More important than the choice of K is
the choice of the metric, the features to use, and their scaling. Friedman and
Steppel (1973) recommend scaling the data by the inverse covariance matrix
if no prior knowledge is given. More features only improve the power of the
test if they contain information concerning the hypothesis under test, otherwise
adding features decreases power. Friedman and Steppel (1973) give no general
recommendation for the choice of metric (Minkowski q-metrics for q “ 1, 2,8

are considered) and list different algorithms for the nearest neighbor calculation
giving Op2pN log2 Nq, OpprKpΓpp{2q{2s1{pN2´1{pq or for brute force OppN2q

cost for the computation.

Nearest neighbor test of Schilling and Henze Schilling (1986) developed
a two-sample test based on nearest neighbor type coincidences and Henze (1988)
proved its asymptotic properties. Their test is probably the best-known nearest-
neighbor test. It is based on the ideas of Friedman and Steppel (1973) and
Rogers (1978). The test statistic is the proportion of all K nearest neighbor
comparisons based on the (Euclidean) distance in which a point and its neighbor
belong to the same sample. A scaled version of this test statistic is shown to be
asymptotically normal, which motivates an asymptotic test. The method is in
general only applicable for continuous distributions since then the probability of
ties in the calculation of the nearest neighbors is zero. Schilling (1986) originally
proposed to use randomization of the ranks if distances are tied. The test is
shown to be consistent against all alternatives. Weighted versions of the test
statistic are given by Schilling (1986). The generalization to the multisample
problem is presented by Henze (1988). The determination of the number K of
nearest neighbors to consider is left open. Biswas, Mukhopadhyay and Ghosh
(2014) state that the test is not exactly distribution-free and Sarkar, Biswas and
Ghosh (2020) show situations where its power is very low and formal conditions
under which power decreases to zero for increasing p. Chen, Dou and Qiao
(2013) show via simulation that the test’s power decreases with the imbalance
of the sample sizes. Aslan and Zech (2005a) reported that according to a private
communication with Henze, there is no recipe for how to choose the number of
neighbors. Biswas and Ghosh (2014) mention that the test statistic is rotation
invariant and invariant under location change and under homogeneous scale
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transformation and can be used even when the dimension of the data is larger
than the sample size. They also derive sufficient conditions when power decreases
to zero for p Ñ 8.
Henze and Voigt (1992) derive sufficient conditions for almost sure convergence
of a class of sequences of symmetric test statistics for the k-sample problem
that includes, e.g. the test statistics of Schilling (1986) and Henze (1988). They
assume absolutely continuous Lebesgue densities.

Barakat, Quade and Salama (1996) further generalize Schilling’s nearest
neighbor test to circumvent choosing the number of nearest neighbors. Their
test statistic is the sum of edge counts for all values of K for the K-nearest
neighbor graph. Alternatively, it can be seen as a term relying on the sam-
ple sizes and a quantity that can be interpreted as follows. First, randomly an
observation x is selected from the pooled sample, then one observation x1 is
randomly selected from the sample to which the first selected observation be-
longs, and one observation x2 from the other sample. There are n1n2pN ´ 2q

such choices, i.e. sets of such three observations. Then the number of cases for
which the first selected observation x is closer to the observation x1 from the
same sample than to the observation x2 from the other sample is calculated,
and a correction term depending on the sample sizes is added. The resulting
test is equivalent to a sum of Wilcoxon rank sums. It requires samples in the
Euclidean space Rp and it is assumed that there are no ties in ranking w.r.t. to
nearness.

Nearest neighbor test for categorical data Nettleton and Banerjee (2001)
propose a test for the two or k-sample problem with categorical components.
A function that gives the distance between any two data vectors is defined and
the number of edges in a nearest-neighbor graph that connect observations from
different samples is counted. The test works by adding up values of distance func-
tions over dimensions and calculating the number of edges that link data points
from different groups based on a nearest-neighbor graph of the pooled sample.
The p-value of the test can be determined both by permutation testing or by
an asymptotic test. The distance function that maps t0, . . . ,K ´ 1u2 with K
denoting the number of classes to R is chosen depending on the application (e.g.
Hamming distance for binary data) and there are no clear general recommenda-
tions for this choice. According to Nettleton and Banerjee (2001), the procedure
needs a “few minutes using a personal computer” to calculate an estimate of
the conditional p-value. It might therefore not be feasible if a large number of
tests needs to be performed.

Nearest neighbor test for continuous data (Hall and Tajvidi test) Hall
and Tajvidi (2002) propose a permutation test based on ranking the pairwise
distances between data points. Their test is only applicable for continuous dis-
tributions with identical support. The distance measure should be symmetric
and does not have to satisfy the triangle inequality. Similar to nearest neighbor
tests, the number of j nearest neighbors in the pooled sample that belong to the
same sample as the point under consideration are determined for both samples.
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The test statistic then is a weighted sum of powers of the absolute deviations of
these numbers from their expectations under H0 over all sample points and all
possible values of j. The choice of the power and the weight functions is left open.
Weight functions of the form wipjq “ 1, wipjq “ j, and wipjq “ ni ` 1 ´ j are
proposed. For theoretic results, a weight function is required that converges to a
non-degenerate function when viewed as a function of j{n2. The test can distin-
guish between local alternatives that are distant n´1{2

2 from the null hypothesis
if the distance is chosen as the Euclidean distance and both distributions have
continuous densities. According to Biswas, Mukhopadhyay and Ghosh (2014),
the test is not distribution-free. Biswas and Ghosh (2014) mention that the
test statistic is rotation invariant and can be used even when the dimension of
data is larger than the sample size. Montero-Manso and Vilar (2019) claim that
the test is valid for infinite dimensional Euclidean spaces since it can take any
dissimilarity function as distance.

Extension of Schilling-Henze test for unbalanced sample sizes Chen,
Dou and Qiao (2013) use a test based on the nearest neighbor method of
Schilling (1986) and subsampling to improve the unsatisfactory performance
of two-sample tests when sample sizes are unbalanced. The finite sample distri-
bution of the resulting test statistic is unknown but asymptotic and permutation
approaches are presented. Consistency is shown when the ratio of sample sizes
either goes to a finite limit or tends to infinity. For this, it is assumed that the
distributions are absolutely continuous with respect to the Lebesgue measure
and that there are no ties for the identification of nearest neighbors. The size of
the subsample from the larger of the two samples needs to be chosen to calculate
the test statistic. Based on simulations, a subsample size equal to the size of the
smaller sample is recommended.

Nearest neighbor test for high dimension low sample size setting
Mondal, Biswas and Ghosh (2015) propose a new multivariate two-sample test
based on nearest neighbor type coincidences suitable also for the high dimension
low sample size (HDLSS) regime that has higher power than the test of Schilling
(1986) and Henze (1988) in certain situations. The test statistic modifies the one
of Schilling (1986) and Henze (1988) by subtracting the expected values under
H0 from both proportions of nearest neighbors from the same sample and taking
either the absolute value of this difference or squaring it. Under similar condi-
tions as in other papers for the HDLSS regime, consistency for fixed sample size
and p Ñ 8 is shown for both variants. Also, conditions are derived under which
the tests are not consistent for increasing dimensionality. The tests are shown
to be asymptotically distribution-free for N Ñ 8, but a permutation procedure
is used in practice where H0 is rejected for large values of the test statistics.
Moreover, consistency for fixed p and N Ñ 8 is shown for distributions with
continuous densities. The choice of the number of nearest neighbors to consider
is left open. Mondal, Biswas and Ghosh (2015) consider K “ 3 neighbors in all
examples and applications.
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3.8. Methods based on inter-point distances

Many methods are based on analyzing the distributions of inter-point distances
in and between the samples. A theoretical justification for methods based on
inter-point comparisons based on a univariate function (e.g. a distance) is given
by Maa, Pearl and Bartoszyński (1996). They show that equality of distributions
of in-sample comparisons (i.e. }X ´ X 1} and }Y ´ Y 1}) together with equality
of distributions of between-sample comparisons (i.e. }X ´ Y }) between points
is equivalent to the equality of distributions of the samples. This holds in gen-
eral for discrete distributions. For the continuous case, some restrictions on the
density function are needed, including the existence of expectations and a sec-
ond condition that is for example fulfilled if one of the densities is bounded or
continuous.

The advantages of using tests based on inter-point distances according to
Montero-Manso and Vilar (2019) are that

• it reduces the dimension of the problem,
• the use is not limited to dealing with continuous data,
• tests can be conducted whenever distances are available even though the

original observations are not accessible,
• the versatility to choose a proper distance facilitates the introduction of

prior domain knowledge,
• it is intuitively expected that employing a suitable distance should increase

the test power.

3.8.1. Energy statistic

The most popular statistic based on inter-point distances is the so-called en-
ergy statistic. It was proposed by Zech and Aslan (2003) and by Aslan and
Zech (2005b), where the concept of statistical energy of statistical distributions
similar to electric charge distributions is introduced, which was later on also
proposed by Székely and Rizzo (2004). Independent from that, Baringhaus and
Franz (2004) introduced a test based on the difference of the sum of all Eu-
clidean distances between random vectors belonging to different samples and
1{2 of both sums of distances between random vectors belonging to the same
sample, which they call the Cramér test. Its test statistic is equal to the energy
statistic. The Cramér test is not distribution-free and needs the assumption that
expectations of both distributions exist. It is shown to be consistent against any
fixed alternative F1 ‰ F2 with finite expectations. Convergence of a Bootstrap
version of the test is shown as well. The test is invariant w.r.t. orthogonal lin-
ear transformations. It is implemented in the R package cramer (Franz, 2019).
According to Sarkar and Ghosh (2018), the Cramér test needs the two distri-
butions to differ in their locations or average variances to perform well in the
HDLSS setup. Biswas and Ghosh (2014) note that the test is rotation invariant
and invariant under location changes and homogeneous scale transformations, it
can be used even when the dimension of data is larger than the sample size, and
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under conditions similar to those made in Biswas and Ghosh (2014), a similar
consistency result can be shown for the Cramér test as for the test introduced
by Biswas and Ghosh (2014). On the other hand, they demonstrate situations
in which the test fails to detect differences in distributions.

A comprehensive review of the literature on the energy statistic and its ap-
plications is given in Székely and Rizzo (2017). We focus on the results for
the two-sample situation here, although applications of the energy statistic also
include for example one-sample goodness-of-fit tests, clustering, or testing for
independence (Székely and Rizzo, 2017). We extend the presentation of the two-
sample energy statistic by Székely and Rizzo (2017) using the references therein
as well as additional literature.

In the following, we present the energy statistic and its application in two-
sample testing according to Székely and Rizzo (2004). Aslan and Zech (2005b)
give a slightly more general form of the statistic since they leave the choice of the
distance function between points open (for discussion of properties, see below)
while Székely and Rizzo (2004) define the statistic using the Euclidean distance.
They propose a distribution-free test for the equality of two or more multivari-
ate distributions. The approximate permutation test uses Euclidean distances
between elements of the samples. Its computational complexity is independent
of the dimension and the number of datasets. The test is motivated by the lack
of distribution-free extensions of approaches for the two-sample problem based
on comparing EDFs (e.g. Kolmogorov-Smirnov and Cramér-von-Mises test) to
the multivariate case as well as the lack of extensions of tests for the multivariate
problem relying on ML to the general k-sample problem due to the distribu-
tional assumptions.
The test statistic of Székely and Rizzo (2004) relies on the e-distance be-
tween finite sets: The e-distance epX ,Yq between disjoint nonempty subsets
X “ tX1, . . . , Xn1u and Y “ tY1, . . . , Yn2u of Rp is defined as

epX ,Yq “
2

n1n2

n1
ÿ

i“1

n2
ÿ

j“1
}Xi ´ Yj}2

´
1
n2

1

n1
ÿ

i“1

n1
ÿ

j“1
}Xi ´ Xj}2 ´

1
n2

2

n2
ÿ

i“1

n2
ÿ

j“1
}Yi ´ Yj}2,

where } ¨ }2 is the Euclidean norm. Its population equivalent is given by

EpX,Y q “ 2Er}X ´ Y }2s ´ Er}X ´ X 1
}2s ´ Er}Y ´ Y 1

}2s,

where X 1 and Y 1 denote independent copies of X and Y , respectively.
Given X1, . . . ,Xk, k ě 2 independent random samples of random vectors in Rp

with sizes n1, . . . , nk, let N “
řk

i“1 ni. Denote the e-distance of each pair of
samples pXi,Xjq, i ‰ j, by Eni,nj pXi,Xjq “ epXi,Xjq. Then the k-sample test
statistic is given by the sum of the e-distances for all kpk´1q{2 pairs of samples:

TEnergy “
ÿ

1ďiăjďk

n1n2

n1 ` n2
Eni,nj pXi,Xjq “

ÿ

1ďiăjďk

n1n2

n1 ` n2
epXi,Xjq.
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Large values of the test statistic lead to rejection of the null hypothesis. To
obtain the (approximate) null distribution of the test statistic a permutation
test is performed by drawing B Bootstrap samples of the pooled sample and
partitioning each Bootstrap sample into sets of the same sizes as ni, i “ 1, . . . , k.
For each Bootstrap sample, the test statistic for these new sets is calculated and
the null hypothesis is rejected if the observed value of the test statistic is larger
than the p1 ´ αq-quantile of the empirical distribution of test statistics from
the Bootstrap samples. The test is implemented in the R (R Core Team, 2021)
package energy (Rizzo and Szekely, 2022).
According to Székely and Rizzo (2017), the energy distance is invariant w.r.t.
distance-preserving transformations (e.g. translation, reflection, angle-preserving
rotation of coordinate axes) of data, i.e. rigid motion invariant. Moreover, it is
scale invariant. It can be seen as a weighted L2 distance between characteristic
functions and the specific weight function is the only solution for such a weighted
L2 distance between characteristic functions so that the distance is rotation and
scale invariant (under some technical assumptions). For equal sample sizes, the
sample energy distance is the square of a metric on the sample space.

In Székely and Rizzo (2013) a discussion and illustration of the theory and
application of energy statistics are given. A generalization of the energy statistic
is given for which a continuous, monotonic decreasing function of the Euclidean
distance between points needs to be chosen. Székely and Rizzo (2013) choose
´ log such that the test is scale invariant. Moreover, they recommend standard-
izing all variables with the mean and standard deviation of the pooled sample
to avoid a single variable dominating the value of the test statistic.

Another generalization of the energy statistic is given by taking each distance
to the power of α, α P p0, 2s. For 0 ă α ă 2, it still holds that the statistic is
nonnegative with equality to zero if and only if both distributions are equal.
The latter property does not hold in the case of α “ 2 (Székely and Rizzo,
2017). When using a different metric than the Euclidean metric, non-negativity
of the resulting energy statistic is equivalent to the condition that the metric
space in which the random variables take their values has negative type while
the property that the statistic is equal to zero if and only if the distributions are
equal is equivalent to the condition that that metric space has strong negative
type. This holds e.g. for Euclidean spaces and separable Hilbert spaces (Székely
and Rizzo, 2017). A metric is said to be of negative type if there exists a mapping
f : X Ñ L2 such that dpx, yq “ }fpxq ´ fpyq}2

2 for every x, y P X .
Li (2018) derives the asymptotic null distribution of the energy statistic and

shows under some assumptions that the test is more powerful for location than
for scale differences.

Chakraborty and Zhang (2021) show that energy distance based on the usual
Euclidean distance cannot completely characterize the homogeneity of two high-
dimensional distributions, but only detects equality of means and the traces of
covariance matrices in the high-dimensional setup. They criticize the energy dis-
tance based on Euclidean distances and define a new test with complexity linear
in the dimension of the data that is capable of detecting homogeneity between
the low-dimensional marginal distributions in the high-dimensional setup. They
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generalize the energy statistic by replacing the Euclidean distances with a newly
defined semimetric

Kpx, yq :“
b

ρ1pxp1q, yp1qq ` ¨ ¨ ¨ ` ρmpxpmq, ypmqq,

where ρi are metrics or semimetrics on Rpi , i “ 1, . . . ,m, and the vectors x and
y are partitioned into m groups as x “ pxp1q, . . . , xpmqq, where xpiq P Rpi and
řm

i“1 pi “ p (analogously for y). Chakraborty and Zhang (2021) focus on the
case where each ρi is a metric of strong negative type on Rpi , i “ 1, . . . ,m. In
that case Kpx, yq is a metric of strong negative type on Rp. They define a t-test
based on their newly proposed metric. They need several moment assumptions in
their analysis and several other assumptions. The new test is shown to be able to
detect a wider range of alternatives than the energy statistic but cannot detect
differences beyond the equality of the low-dimensional marginal distributions
with non-trivial power. No resampling-based inference is needed for their test,
but a homogeneity metric as well as a grouping of samples is needed.

Rizzo and Székely (2010) show that the energy test can be seen as the treat-
ment sum of squares in an ANOVA interpretation of the k-sample problem.
They use a different measure of dispersion for univariate or multivariate re-
sponses based on all pairwise distances between-sample elements for ANOVA.
With this, they derive their so-called distance components (DISCO) decompo-
sition for powers of distances in p0, 2s that gives a partition of the total dis-
persion in the samples into components analogous to the variance components
in ANOVA. The resulting distance components determine a test for the gen-
eral hypothesis of equal distributions. For each index in p0, 2q this determines
a nonparametric test for the multi-sample problem that is statistically consis-
tent against general alternatives. For an index equal to two, it equals the usual
ANOVA F-test. Their test statistic is somewhat similar to a generalization of
the energy statistic where each of the differences is taken to the power α (given
that Ep}X}αq ă 8, Ep}Y }αq ă 8). The new test is performed via permuta-
tion testing. Its asymptotic null distribution is a quadratic form (constants not
given). The test is consistent against all alternatives with finite second moments.
The choice of the index α is difficult. In general, the computational costs for
calculating Gini means, in terms of which the test statistic can be formulated,
is OpN2q, for α “ 1 it can be linearized and computation time reduces to
OpN logNq. The simplest and most natural choice for α is one, for heavy-tailed
distributions one may want to apply a small α. The test is implemented by
permutation Bootstrap in the R package energy (Rizzo and Szekely, 2022).

Huang and Huo (2017) propose a Randomly Projected Energy Statistics test
based on random projections and energy statistics to lower the computational
costs from OpN2) to OpmN logNq, with m denoting the number of random
projections. For practical use, the number of random projections needs to be
determined. Huang and Huo (2017) derive the asymptotic distribution of usual
energy statistics and of the randomly projected one under conditions on expec-
tations and variances and show that the modified version has nearly the same
asymptotic efficiency as the usual energy statistic.
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Deb and Sen (2021) present a rank version of energy statistic. Using the
theory of measure transportation (optimal transport) a general framework for
distribution-free, nonparametric tests based on multivariate ranks is provided.
According to the authors, their test is nonparametric, exactly distribution-free,
computationally feasible, and consistent against all alternatives under absolute
continuity of the distributions. For consistency, no moment conditions are nec-
essary, which enables the usage of heavy-tailed distributions. The test statistic
is invariant under scaling and addition of a vector (a ` bZ, b P R, a P Rp).
The worst-case complexity for rank assignment is OpN3q. The calculation given
ranks takes Opn1n2pq. The resulting test is exactly equivalent to the Cramér-
von Mises test for p “ 1. An extension to the k-sample setting is possible.
R code for the test is available on GitHub (https://github.com/NabarunD/
MultiDistFree.git). The method can also be seen as a rank-based method.

Al-Labadi, Asl and Saberi (2022) propose an extension of the energy test
to a Bayesian test for the k-sample problem, based on belief ratios. Their test
is shown to be consistent. For the test, a prior has to be specified. Al-Labadi,
Asl and Saberi (2022) choose a Dirichlet prior, but the choice of its parameters
is not clear. Recommendations based on simulation are given. Additionally, a
parameter in the belief ratio needs to be chosen. No implementation of the test
is given, but a pseudocode algorithm is presented.

3.8.2. Other methods based on inter-point distances

Rigid motion invariant test Baringhaus and Franz (2010) define rigid mo-
tion (length and angle preserving transformation) invariant tests based on inter-
point distances between samples and inter-point distances within each sample.
The test is based on the Cramér test by Baringhaus and Franz (2004) which is
equivalent to the energy test and the test by Szabo et al. (2002, 2003). Therefore
it requires distributions with finite expectations. The Cramér test itself is rigid
motion invariant (rigid motion Qx ` a where Q is an orthogonal matrix and a
is a vector). The new test statistic generalizes the test statistic analogous to the
Cramér test statistic by using a continuous function φ such that φp}x ´ y}2q

is a negative definite kernel. The following conditions on the function φ are
needed for consistency against all fixed alternatives. The resulting test statis-
tic is nonnegative and zero if and only if H0 is true, and one assumes w.l.o.g.
that φp0q “ 0 and φ is nonnegative. These assumptions are e.g. fulfilled for all
distributions with finite support if and only if φp}x ´ y}2q is negative definite,
which is equivalent to φ having a completely monotone derivative on (0,8).
For the existence of the test statistic, moment assumptions on distributions are
needed that make sure that integrals over φp}X}2q exist. Different examples for
functions are given, including as special cases the Cramér test, the test by Bahr
(1996), and the test by Szabo et al. (2002). The test is not (asymptotically)
distribution-free, but its asymptotic distribution can be approximated using a
Bootstrap approach. It is shown to be consistent. Since the null distribution
of the test statistic and also the asymptotic null distribution depend on the

https://github.com/NabarunD/MultiDistFree.git
https://github.com/NabarunD/MultiDistFree.git
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common underlying distribution, the critical value needs to be approximated
by Monte Carlo samples from the empirical distribution of the pooled sample
or by bootstrapping. Efficiencies are examined under certain alternatives. Bar-
inghaus and Franz (2010) give recommendations for the choice of the function
φ based on simulations. Overall they recommend φpzq “ logp1 ` zq for general
alternatives and for the Cramér test for location alternatives. An extension to
the k-sample problem is possible. Tsukada (2019) give geometric interpretations
of the tests. The tests are implemented with the recommended choices of φ for
general use, for location alternatives, for scale alternatives, and φ corresponding
to the Bahr (1996) test in the R package cramer (Franz, 2019).

Triangle test Liu and Modarres (2011) define a triangle test. First, one point
from one of the samples and two points from the other sample are randomly
selected. Then, it is examined how often the distance between the two obser-
vations from the same distribution is the largest, the middle, or the smallest
in the triangle formed by these three observations. The test is asymptotically
distribution-free under the null hypothesis of equal, but unknown continuous
distribution functions, and it is well-defined when the number of variables p
is larger than the number of observations N . Its computational complexity is
independent of p. According to Biswas, Mukhopadhyay and Ghosh (2014), it is
not distribution-free in finite samples. Biswas and Ghosh (2014) note that the
test is rotation invariant.

Test for high dimension low sample size setting Biswas and Ghosh
(2014) propose a test based on inter-point distances for high dimension, low
sample size (HDLSS) setups, which is directly motivated by results of Maa, Pearl
and Bartoszyński (1996). The test is invariant under location change, rotation,
and homogeneous scale transformations and can be used even if the dimension
is much larger than the sample size. Biswas and Ghosh (2014) derive results
for increasing dimension and fixed sample sizes under assumptions (similar to
those of Hall, Marron and Neeman (2005)) about increasing information with
increasing dimensions, uniformly bounded fourth moments, weak dependence
among component variables, and related to sample size. Under these assump-
tions, Biswas and Ghosh (2014) show consistency of their test for p Ñ 8. If finite
second moments of both distributions exist, additionally under H0 the asymp-
totic distribution is shown to be a weighted chi-square distribution (asymptot-
ically distribution free), and consistency for N Ñ 8 and n1{n2 Ñ const is
shown. Sarkar and Ghosh (2018) show via simulations that the test has limita-
tions in the HDLSS setup. The two distributions must differ in their locations
or average variances to perform well in the HDLSS setup. Tsukada (2019) gives
a geometric interpretation of the test.

Extensions of the Cramér test and the test for the HDLSS setting
Sarkar and Ghosh (2018) aim to improve the tests based on mean inter-point
distances that use the Euclidean distance (Cramér Test by Baringhaus and
Franz (2004) and the test by Biswas and Ghosh (2014)), by using a new class
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of distance functions instead. Block variants of the new tests are given, but
the choice of the block size is left open. They show consistency under certain
assumptions on the distributions and on the sample size for p Ñ 8 for modified
tests without and with blocking.

Cramér-von Mises test on inter-point distances Montero-Manso and Vi-
lar (2019) develop a Cramér-von Mises test on inter-point distances motivated
by Maa, Pearl and Bartoszyński (1996) that compares the whole distribution of
inter-point distances instead of individual moments. Therefore, the univariate
distributions of the pairwise distances within and between samples are compared
using a Cramér-von Mises-type statistic. The resulting test statistic is called dis-
tribution of distances (DD) statistic. The test is applicable to a broad range of
both continuous and discrete distributions since only the mild regularity con-
ditions of Maa, Pearl and Bartoszyński (1996) are needed. Still, the theoretical
results are only derived for continuous distributions. The asymptotic power of
the test as p goes to infinity is not studied. For computing distances, a sym-
metric, real-valued, nonnegative function is required that fulfills mild regularity
conditions but does not have to fulfill the triangle inequality. This function d
needs to fulfill the condition dpx, yq “ 0 iff x “ y and dpax`b, ay`bq “ |a|dpx, yq.
For consistency of the test statistic also a bounded support of the distance is
required. The test becomes asymptotically distribution-free under the null hy-
pothesis and its critical value is obtained via a permutation approach. The
computational cost is OpN2 logpNqq.

Modification of rigid motion invariant and HDLSS tests Tsukada
(2019) propose new criteria based on the tests by Baringhaus and Franz (2010)
and by Biswas and Ghosh (2014). The first test statistic is the length of the dif-
ference between the vector μ̂ consisting of estimated means of }X´Y }, }X´X 1}

and }Y ´ Y 1} and the vector that projects μ̂ onto the line with direction vector
p1, 1, 1qT via the origin. The Biswas and Ghosh (2014) test is the squared sum
of p2,´1,´1qT μ̂ and p0, 1,´1qT μ̂. The second new test statistic uses a weighted
sum of non-squared terms. Under the moment assumptions of Hall, Marron and
Neeman (2005) (bounded fourth moments, ρ-mixing condition), results for fixed
sample size and increasing dimension are derived. Under additional assumptions
on the trace of the covariance matrices and the difference of the mean vectors
and under the assumption of equal sample sizes that are not too small, consis-
tency for p Ñ 8 is shown for the second test. The asymptotic null distribution
is derived for the second test under the assumption of finite second moments
and for N Ñ 8. The test is asymptotically distribution-free. Under the same
assumptions, consistency for the second test is shown. In simulations, the power
of the second test is stable for high-dimensional data and large samples. On the
other hand, Tsukada (2019) state that they “expected the power of the [first
proposed] test to be comparable to that of the [Biswas and Ghosh (2014)] test,
but its performance was disappointing”. Therefore they recommend the second
test if there is no information that the two population covariance matrices are
nearly identical, and they recommend the Baringhaus and Franz (2010) test if
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it is known that the two population covariance matrices are equal.

3.9. Methods based on kernel (mean) embeddings

The general idea of kernel mean embeddings is to extend feature maps φ as used
by other kernel methods (e.g. in the context of kernel support vector machines)
to the space of probability distributions by representing each distribution F as
a mean function

φpF q “ μF :“
ż

X
Kpx, ¨q dF pxq “ EF pKpX, ¨qq, (7)

where K : X ˆ X Ñ R is a symmetric and positive definite kernel function. A
reproducing kernel Hilbert space (RKHS) H of functions on the domain X with
kernel K is a Hilbert space of functions f : X Ñ R with dot product x¨, ¨y that
satisfies the reproducing property

xfp¨q,Kpx, ¨qy “ fpxq ñ xKpx, ¨q,Kpx1, ¨qy “ Kpx, x1
q,

such that the linear map from a function to its value at x can be viewed as an
inner product.
In the following, we always assume that the integral (7) exists. Then the kernel
mean embedding as given above is essentially a transformation of the distribu-
tion F to an element in the reproducing kernel Hilbert space (RKHS) H corre-
sponding to the kernel K (Muandet et al., 2017). For characteristic kernels, the
kernel mean representation captures all information about the distribution F ,
i.e. the map F ÞÑ μF is injective, which implies }μF1 ´ μF2}H “ 0 ô F1 “ F2
(Fukumizu, Bach and Jordan, 2004; Sriperumbudur et al., 2008, 2010). There-
fore the kernel mean embeddings can be used for comparing distributions. Con-
ditions that ensure the characteristic property are given in Sriperumbudur et al.
(2010) (e.g. by showing that integrally strictly positive definite kernels are char-
acteristic) and in Sriperumbudur, Fukumizu and Lanckriet (2011). For more
details on kernel mean embeddings and their applications refer to the compre-
hensive review of Muandet et al. (2017) and the papers cited therein. Here,
we only give a brief overview of the main aspects regarding the problem of
comparing two distributions.

3.9.1. Maximum mean discrepancy

The following section is largely based on the main points from Section 3.5 in
Muandet et al. (2017), supplemented by additional findings from the sources
cited therein as well as more recent findings.
Building on the ideas given above, a kernel mean embedding can be used to
define a metric for probability distributions, the so-called Maximum Mean Dis-
crepancy (MMD)

MMDpH, F1, F2q “ }μF1 ´ μF2}H. (8)
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It was proposed in the context of two-sample testing by Gretton et al. (2006) but
enjoys increasing popularity in different applications like data integration (Borg-
wardt et al., 2006), generative adversarial networks (Li et al., 2017; Sutherland
et al., 2017; Bińkowski et al., 2021), testing for independence (Gretton et al.,
2012a), and goodness-of-fit testing Jitkrittum et al. (2018).
The MMD can equivalently be expressed as

MMDpH, F1, F1q “ sup
fPF

ˆ
ż

fpxq dF1pxq ´

ż

fpxq dF2pxq

˙

,

with F the unit ball in a universal RKHS H, and therefore belongs to the class of
integral probability measures (Müller, 1997, cf. Section 3.6.1). MMD is bounded
by the Wasserstein distance (11) and up to a constant also by the total variation
distance (2) (Sriperumbudur et al., 2010, Theorem 2.1), so if two distributions
are close w.r.t. one of those distances, they are also close according to MMD.
The MMD can also be defined on other function spaces F , which leads to a
generalization of some further metrics like the Kolmogorov-Smirnov statistic or
the Earth Mover’s distances (Gretton et al., 2012a).

Another connection between MMD and other methods presented is that for
translation invariant kernels, MMD can be written as

MMDpH, F1, F2q “

ż

Rp

|φF1pωq ´ φF2pωq|
2 dΛpωq,

where Λ is the spectral measure appearing in Bochner’s theorem and φF1 , φF1

are the characteristic functions of F1 and F2 (Sriperumbudur et al., 2010, Corol-
lary 4). So for translation invariant kernels, it can be interpreted as the L2pΛq

distance between the characteristic functions. See Section 3.3.2 for more meth-
ods based on comparisons of characteristic functions.
Another representation of MMD in terms of the associated kernel function that
is useful for estimation is

MMD2
pH, F1, F2q “ EX,X1

“

KpX,X 1
q
‰

´ 2EX,Y rKpX,Y qs ` EY,Y 1
“

KpY, Y 1
q
‰

where X,X 1 „ F1 and Y, Y 1 „ F2 are independent copies. MMD2
pH, F1, F2q

can be estimated by the U -statistic

{MMD
2
pH, X, Y qU “

1
n1pn1 ´ 1q

n1
ÿ

i“1

n1
ÿ

j“1
j‰i

K pxi, xjq (9)

`
1

n2pn2 ´ 1q

n2
ÿ

i“1

n2
ÿ

j“1
j‰i

K pyi, yjq ´
2

n1n2

n1
ÿ

i“1

n2
ÿ

j“1
j‰i

K pxi, yjq

“
1

n1pn1 ´ 1q

n1
ÿ

i“1

n1
ÿ

j“1
j‰i

hK ppxi, yiq, pxj , yjqq , if n1 “ n2,
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where hKppx, yq, px1, y1qq “ Kpx, x1q ´ Kpx, y1q ´ Kpy, x1q ` Kpy, y1q (Smola
et al., 2007). This estimator is unbiased (Gretton et al., 2006). Sutherland (2019)
presents an unbiased estimator of the variance of the squared MMD estimator
and the difference of two correlated squared MMD estimators at essentially no
additional computational cost.
Based on the above reformulations, MMD could also be seen as an IPM, a
method based on comparing characteristic functions, or a method based on
inter-point distances.
Under H0 : F1 “ F2, if n1 “ n2 and E

“

h2
K

‰

ă 8, it holds

n1{MMD
2
pH, X, Y qU

D
Ñ

8
ÿ

l“1
λlrg

2
l ´ 2s

with gl „ Np0, 2q i.i.d., λi solutions to
ş

X K̃px, x1qψipxq dppxq “ λiψipx
1q, and

centered RKHS kernel

K̃pXi, Xjq “ KpXi, Xjq ´EXpKpXi, Xqq ´EXpKpX,Xjqq `EX,X1pKpX,X 1
qq.

Given a finite sample approximation of the p1 ´αq-quantile of the null distribu-
tion of n{MMD

2
pX,Y qU , this can be used for testing H0 against H1 : F1 ‰ F2.

The quantiles can be approximated by bootstrapping or by fitting Pearson
curves using the first four moments (Smola et al., 2007), or through a Gamma
approximation of moments and by approximating the eigenvalues in the above
expression by their empirical counterparts, which can be obtained from the
Gram matrix (Gretton et al., 2009). The methods of Gretton et al. (2009) give
a consistent estimate of the null distribution computed from the eigenspectrum
of the Gram matrix on the pooled sample. They might therefore be preferable
since Bootstrap is computationally costly and the Pearson curve fitting method
has no consistency or accuracy guarantees. According to Song and Chen (2023)
the MMD Bootstrap test performs poorly in experiments if (only) variance dif-
fers between high-dimensional distributions.
Alternatively, an asymptotic test based on the following asymptotic distribution
shown by Muandet et al. (2017) based on the work of Gretton et al. (2012a)
can be performed:

?
n1

”

{MMD
2
pH, X, Y qU ´ MMD2

pH, F1, F2q

ı

D
Ñ Np0, σ2

XY q,

where again n1 “ n2 and E
“

h2
K

‰

ă 8 is assumed and in addition it is assumed
that H1 : F1 ‰ F2 holds and σ2

XY is defined as

σ2
XY “ 4

´

EpX,Y q

”

EpX1,Y 1q

`

hK

`

pX,Y q, pX 1, Y 1
q
˘˘2

ı

´
“

EpX,Y q,pX1,Y 1q

`

hK

`

pX,Y q, pX 1, Y 1
q
˘˘‰2

¯

.

The convergence rate of 1{
?
n1 of the statistic to its population value is inde-

pendent of p (Sriperumbudur et al., 2012), but Muandet et al. (2017) warn that
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the dimension may show up in a constant term which can make the upper bound
arbitrarily large for high-dimensional data. Danafar et al. (2014) additionally
note that the distribution of MMD degenerates under the null hypothesis and
its estimator also degenerates under the null and has no consistency or accuracy
guarantee.

Linear-time statistics The cost for computing {MMD
2
pH, X, Y qU is O

`

N2˘

(Gretton et al., 2012a). To circumvent the quadratic cost, Gretton et al. (2012a)
propose an unbiased linear-time statistic

{MMD
2
pH, X, Y qU,l “

1
n1

tn1{2u
ÿ

i“1
hK ppx2i´1, y2i´1q, px2i, y2iqq , if n1 “ n2, (10)

for which the same convergence to a normal distribution can be shown with the
only difference that its variance is only half as large as that for the quadratic-
time statistic.
Another way to speed up the calculation is given by Zaremba, Gretton and

Blaschko (2013). The motivation behind their modification is manifold. The test
statistic is degenerate under the null hypothesis, and its asymptotic distribution
takes the form of an infinite weighted sum of independent χ2 variables. Further,
the methods for estimating the null distribution in a consistent way (Bootstrap
or method by Gretton et al. (2009)) are computationally demanding with costs
of OpN2q with a large constant or OpN3q with a smaller constant, and Pearson
curve fitting has no consistency guarantees. To solve these problems, they de-
fine a family of block tests for MMD. The choice of block size means a trade-off
between power and computation time. To obtain an asymptotic Gaussian null
distribution, the size of blocks B needs to be chosen such that n1{B Ñ 8 for
n1 “ n2 Ñ 8. The assumptions made are the same as for quadratic-time MMD.
Additional conditions for second moments are required for convergence of the
test statistic. Due to the asymptotic Gaussian distribution, the critical values
for testing are easy to compute. A choice for the size of blocks B is needed to
perform the test, and only a heuristic choice of t

?
n1u is proposed by Zaremba,

Gretton and Blaschko (2013). Moreover, like with the normal MMD test, the
kernel needs to be chosen.
Zhao and Meng (2015) instead use the connection between MMD and charac-
teristic functions to define an efficient test called fastMMD test. The idea is
to equivalently transform MMD with shift-invariant kernels into amplitude ex-
pectation of a linear combination of sinusoid components based on Bochner’s
theorem and the Fourier transform (Rahimi and Recht, 2007). For this, they
make use of sampling of Fourier transforms. By that, the complexity is re-
duced from OpN2pq to OpLNpq, where L is the number of basis functions for
approximating kernels, which determines the approximation accuracy. Spher-
ically invariant kernels allow for further acceleration to OpLN log pq by using
the Fastfood technique (Le, Sarlos and Smola, 2013). Zhao et al. (2021) show
convergence of their estimates.
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Two important modifications to linear-time tests are given by Jitkrittum et al.
(2016). They define two semimetrics on probability distributions using the sum
of differences in expectations of analytic functions evaluated at either spatial or
frequency locations. The goal is to choose features such that the distinguisha-
bility of distributions is maximized. Therefore, the lower bound on test power
for tests using the features is optimized. This leads to two different linear-time
tests.
The tests are based on analytic representations of probability distributions pre-
sented by Chwialkowski et al. (2015). The difference is that the features there
are chosen at random, while here the lower bound for the test power is derived,
which can be used to optimize the choice of the features.
The first test is the Mean Embedding (ME) test, which evaluates the difference
of mean embeddings at locations chosen to maximize the test power lower bound
(spatial features). The second test, the Smooth Characteristic Function (SCF)
test, uses the difference of two smoothed empirical characteristic functions, eval-
uated at points in the frequency domain, which are chosen such that the same
criterion is maximized (frequency features). The optimization of the mean em-
bedding kernel/ frequency smoothing function is performed on held-out data.
The ME and SCF test are defined in Chwialkowski et al. (2015) as follows: for
the test samples, X “ tX1, . . . , Xnu and Y “ tY1, . . . , Ynu i.i.d. according to
F1 and F2 are given. Both tests evaluate the hypotheses H0 : F1 “ F2 versus
H1 : F1 ‰ F2.
The test statistic for the ME test is given by

TME “ nZ̄T
n S

´1
n Z̄n, with

Z̄n “
1
n

n
ÿ

i“1
Zi,

Sn “
1

n ´ 1

n
ÿ

i“1
pZi ´ Z̄nqpZi ´ Z̄nq

T ,

Zi “ tKpXi, Vjq ´ KpYi, Vjqu
J
j“1 P R

J .

The test statistic depends on the positive definite kernel K : XˆX Ñ R, X Ď Rp

and the set of J test locations V “ tV1, . . . , VJu Ď Rp. It is asymptotically chi-
square distributed

TME
H0,asymp

„ χ2
J

and can be seen as a form of Hotelling’s T 2 statistic. TME is a semimetric
since it can be seen as squared normalized L2pX , VJq distance of the mean
embeddings of the empirical measures F1,n “

1
n

řn
i“1 δxi and F2,n “

1
n

řn
i“1 δYi

where VJ “
1
J

řJ
i“1 δVi , and δx is the Dirac measure concentrated at x.

The SFC test statistic TSCF is defined in the same way as TME, but uses a
modified Z:

Zi “tl̂pXiq sinpXT
i Vjq ´ l̂pYiq sinpY T

i Vjq,

l̂pXiq cospXT
i Vjq ´ l̂pYiq cospY T

i Vjqu
J
j“1 P R

2J ,
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l̂pxq “

ż

Rp

expp´iuTxqlpuq du pFourier transform of lpxqq

Here l : Rp Ñ R is an analytic translation-invariant kernel (i.e. lpx´yq defines a
positive definite kernel for x and y). The locations V “ tV1, . . . , VJu Ă Rp are in
the frequency domain. The test statistic is again asymptotically χ2 distributed

TSCF
H0,asymp

„ χ2
2J

and can be interpreted as a normalized version of the L2pX , VJq distance of the
empirical smooth characteristic functions φF1pvq and φF2pvq, where φF pvq “
ş

Rp ϕF pwqlpv ´ wq dw with ϕF pwq “ EX„F

“

exp
`

iwTX
˘‰

is the characteristic
function of F . Therefore, it could also be classified as a method based on com-
paring characteristic functions. Jitkrittum et al. (2016) denote the degrees of
freedom of the χ2 distribution for both tests as J 1. They use a modification of
the test statistic with regularization parameter γn:

TME/SCF “ nZ̄T
n pSn ` γnIq

´1Z̄n,

to obtain a higher stability of the matrix inversion. The asymptotic distribu-
tion under the null hypothesis stays the same as long as γn Ñ 0 for n Ñ 8.
Simulations on high-dimensional text and image data show that the tests are
comparable to the state-of-the-art quadratic-time MMD test of Gretton et al.
(2012b), but in contrast to the MMD tests return human-interpretable fea-
tures explaining the test results. The test statistics depend on the set of test
locations V and the kernel parameter σ. Jitkrittum et al. (2016) propose to
set θ “ tV, σu “ arg maxθ λn “ arg maxθ μ

TΣ´1μ, where λn “ nμTΣ´1μ

with μ “ EF1,F2pZ1q, and Σ “ EF1,F2

”

pZ1 ´ μq pZ1 ´ μq
T
ı

is the popula-
tion counterpart of TME{SCF . Since a dependency between θ and the data
used for testing would affect the null distribution, it is proposed to split the
dataset in half and first use one half Dtr of D “ pD1,D2q for optimizing
θ via gradient ascent on T tr

ME/SCF (in theory one should maximize λn but μ

and Σ are unknown) and then perform the actual test using the test statistic
T te

ME/SCF on the other half Dte of the dataset. Convergence of the test statis-
tic to λn is guaranteed for n Ñ 8 over all kernels in a family of uniformly
bounded kernels (e.g. Gaussian kernel class) and all test locations in an ap-
propriate class. Jitkrittum et al. (2016) use the isotropic Gaussian kernel class
Kg “ tKσ : px, yq Ñ expp´p2σ2q´1}x ´ y}2

2q|σ ą 0u, where σ is constrained
to be in a compact set and V “ tV| any two locations are at least ε distance
apart, and all test locations have their norms bounded by ζu, where V is the
set of test locations as defined above. The authors conduct experiments to com-
pare their proposed ME and SCF tests with the versions from Chwialkowski
et al. (2015) (ME and SCF with σ optimized by grid search and random test
locations) as well as with the quadratic-time and linear-time version of the
MMD test (Gretton et al., 2012a) and the standard two-sample Hotelling’s T 2

test. The newly proposed SCF test outperforms ME in terms of power and also
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as the (quadratic-time) MMD test, while the linear-time MMD test performs
worst. The quadratic-time MMD test becomes computationally infeasible for
p P r5, 1500s and n “ 10000. The observed type I error rate is too high for
Hotelling’s T 2 in high dimensions since an accurate estimation of the covariance
matrix gets more difficult. The performance of the linear-time MMD test drops
quickly with increasing dimension p, while the ME and SCF test with optimiza-
tion show the slowest decrease in power with increasing dimension. On real data
(text data/ image data) sometimes the ME test performs best and sometimes
the ME and SCF test both perform well. Additionally, the learned location can
be interpreted (e.g. by counting how often a specific word or pixel is chosen as
a test location and looking at those that are chosen more often). The number
of test locations J has to be chosen manually.

Other modifications to MMD There are several other modifications that
do not aim at reducing the computational cost but focus on other aspects.
Danafar et al. (2014) present a regularized Maximum Mean Discrepancy test
for the comparison of multiple distributions. The regularizer is set provably op-
timal for maximal power such that there is no need for tuning by the user. The
presented test is consistent under conditions on second moments. It has higher
asymptotic power and higher power in small samples than the MMD and ker-
nel Fisher discriminant analysis (KFDA) tests (Moulines, Bach and Harchaoui
(2007), see below), but still a computational cost of OpN2q. Experiments show
higher relative efficiency, compared to MMD and KFDA.

Cheng, Cloninger and Coifman (2020) propose a new kernel-based MMD
statistic that can be made more powerful to distinguish certain alternatives when
distributions are locally low-dimensional. The idea is to incorporate local covari-
ance matrices and to construct an anisotropic kernel. The test’s consistency is
proven under mild assumptions on the kernel, as long as }f1 ´ f2}

?
n Ñ 8. A

finite-sample lower bound of the testing power is derived under the assumption
that the distributions are continuous, compactly supported, and have densities
w.r.t. the Lebesgue measure, and that 1 ă p ! minpn1, n2q. A set of refer-
ence points or a reference distribution and a covariance field, respectively, are
required to conduct the test. Under the same assumptions as for consistency,
Cheng, Cloninger and Coifman (2020) show that convergence of the power to 1
is at least as fast as OpN´1q. The cost for computing one empirical estimate of
the test statistic is OpNNRq, where NR is the number of reference points.

Kirchler et al. (2020) propose a two-sample testing procedure based on a
learned deep neural network representation. Instead of the kernel function that
gives a feature representation, deep learning is used to obtain a suitable data
representation. Kirchler et al. (2020) aim to overcome the problem that the
MMD test depends critically on the choice of the kernel function and therefore
“might fail for complex, structured data such as sequences and images, and other
data where deep learning excels”. At the same time, they want to improve the
classifier two-sample test of Lopez-Paz and Oquab (2017) (see Section 3.10) that
needs a train/test split of the data. The new test instead first maps the data onto
a hidden layer of a deep neural network that was trained on an independent,
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auxiliary dataset. This transformed data is then compared using the MMD test
statistic of Gretton et al. (2012a) or a variant of it, or alternatively using the
kernel FDA test (Harchaoui, Bach and Moulines, 2008) (see below). The cor-
responding procedures are called Deep Maximum Mean Discrepancy (DMMD)
test and Deep Fisher Discriminant Analysis (DFDA) test, respectively. For the
class of deep ReLU networks with a tanh activation function in the final layer,
an asymptotic test based on an asymptotic normal or χ2 distribution of the
DMMD and DFDA test statistic is presented. For this, the covariance matrix
of the learned feature map must exist and for DFDA it additionally must be
invertible. Consistency of the tests can be shown under several assumptions on
the neural network and its training and the assumption that the transfer task
on which the deep neural network is fitted is not too far from the original task.
There are no explicit directions on how to choose the transfer task since the
theoretically optimal choice depends on the true distributions and the Bayes
rate for the transfer task. So, if there is enough data, splitting is the safe way
that guarantees the similarity of transfer and original task.

The new test of Song and Chen (2023) makes use of common patterns in
moderate and high dimensions. It is aimed at solving the curse of dimensionality
for kernel two-sample tests. It takes into account the variance-covariance matrix
of the first two terms in (9). The test is implemented in the R package kerTests
(Song and Chen, 2021). There are two corner cases in which the test statistic
is not well-defined. In general, two conditions on the kernel and data are made
that are usually fulfilled if there is no major outlier in the data and if one uses
a Gaussian kernel with the median heuristic as described below. Under these,
an asymptotic normal distribution for the test statistic is shown.

Choice of kernel function and parameters All methods described so far
depend on a kernel function. The choice of this kernel function is nontrivial.
Although there are many proposals on how to choose it, the optimal choice re-
mains an open problem (Muandet et al., 2017).
In general, as stated at the beginning, characteristic kernels are preferred since
they ensure that the MMD is zero if and only if the two distributions coin-
cide. Details on conditions for kernels being characteristic are given in Sripe-
rumbudur et al. (2009), Sriperumbudur, Fukumizu and Lanckriet (2011) and
Simon-Gabriel and Schölkopf (2018). Concrete examples are listed in Table 3.1
of Muandet et al. (2017). Still, the class of characteristic kernels is large and
leaves some room for decision.
Probably the most popular class of characteristic kernels are radial basis func-
tion (RBF) kernels. But even within this class, there are different proposals on
how to choose the RBF kernel parameter. A heuristic for the choice of the kernel
size for the RBF kernel is to set its parameter σ to the median distance between
points in the pooled sample. The empirical MMD is zero both for a kernel size
of zero and an infinitely large kernel size (Gretton et al., 2006).
A simulation study conducted by Gretton et al. (2006) shows that for low sam-
ple sizes, the threshold based on Pearson curves performs better in terms of
type I error, while for high sample sizes, the Bootstrap threshold is preferred
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due to the lower computational cost. In a simulation study, all in all, the method
outperforms competing methods (t-test, Friedman-Rafsky Kolmogorov-Smirnov
generalization (Friedman and Rafsky, 1979), Biau-Györfi test (Biau and Gyorfi,
2005), Hall-Tajvidi test (Hall and Tajvidi, 2002), or is at least close to the best-
performing method (Gretton et al., 2006).
Later, Gretton et al. (2012b) propose to choose the kernel such that the test
power is maximized for a given significance level. Therefore a kernel is selected
from a particular family K of kernels. This family is defined as

K “

#

K : K “

d
ÿ

u“1
βuKu,

d
ÿ

u“1
βu “ D,βu ě 0 @u P t1, . . . , du

+

with a constant D ą 0 and tKuudu“1 a set of positive definite functions Ku :
X ˆ X Ñ R which are assumed to be bounded, i.e. |Ku| ď C @u P t1, . . . , du.
Then each kernel K P K corresponds to exactly one RKHS HK and the test
statistic becomes

{MMD
2
pHK , F1, F2qU,l “

d
ÿ

u“1
βuηupF1, F2q “ EpβThq “ βT η,

where
ηu “ EXX1Y Y 1 rhKuppX,Y q, pX 1, Y 1

qqs

and h “ phK1 , . . . , hKd
qT , β “ pβ1, . . . , βdqT , and η “ pη1, . . . , ηdqT P Rd. The

authors here make use of the asymptotically unbiased linear-time estimate of
Gretton et al. (2012a) given in (10). To maximize the Hodges and Lehmann
asymptotic relative efficiency (i.e. the power at a given significance level α) for
the test based on the asymptotic normal distribution of the linear-time statistic,
the following quadratic optimization program needs to be solved:

min
!

βT
´

Q̂ ` λmI
¯

β : βT η̂ “ 1, β ľ 0
)

,

if η̂ has at least one positive entry. Q̂ is a linear-time empirical estimate of the
covariance matrix Covphq and

η̂ “ p{MMD
2
pHK1 , F1, F2qU,l, . . . , {MMD

2
pHKd

, F1, F2qU,lq.

The optimization is performed on a training set of m points pXi, Yiq, i “

1, . . . ,m, and this training set and the data points used for testing are disjoint.
In particular, all estimates needed for the optimization are calculated from this
training data. If no entry of η̂ is positive, a single base kernel Ku with the
largest η̂u{σ̂Ku,λ is arbitrarily selected since it is unlikely that the test statistic
computed on the test data will exceed the always positive threshold.

σ̂K,λ “

c

βT
´

Q̂ ` λmI
¯

β “

b

σ̂2
K ` λm}β}2

2
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is a regularized standard deviation estimate.
Gretton et al. (2012b) conducted simulations that show that their strategy for
choosing an optimal kernel yields better results than other strategies, such as
the aforementioned heuristic of setting the kernel size to the median distance
between points in the aggregate sample or the strategy of maximizing the MMD
test statistic proposed by Sriperumbudur et al. (2009). Their method is only
outperformed by choosing the kernel with the highest ratio η̂u{σ̂Ku,λ if a single
best kernel exists. Otherwise, if a linear combination of kernels is needed, that
strategy fails and the proposed optimal choice performs better in terms of power.
Another proposal for choosing the kernel is made by Liu et al. (2020) where deep
kernels are used. The proposed kernel has the form

Kωpx, yq “ rp1 ´ εqκpφωpxq, φωpxqq ` εsqpx, yq,

where φω is a deep neural network with parameters ω that extracts features,
and κ is a simple kernel (e.g. Gaussian with lengthscale σφ) on those features.
q is a simple characteristic kernel on the input space and 0 ă ε ă 1. This allows
for an extremely flexible choice of kernels that can learn complex behavior. The
parameters ω are selected by maximizing the ratio of the MMD to its variance,
which asymptotically maximizes the power of the test. This is done in a similar
train-test manner as in Gretton et al. (2012b), but here the proportion of the
data assigned to the train set is optimized as well. Also, an improved estimator
of the variance of the MMD estimator as proposed by Sutherland (2019) is used.
This approach can be understood as a generalization of the evaluation of the
accuracy of classifiers proposed by Lopez-Paz and Oquab (2017), but instead of
cross-entropy, the test power is maximized.
The learning of the deep kernel is performed using minibatches of size m if
the dataset is large. For each minibatch, the cost is OpmE ` m2Cq with the
term mE typically dominating for moderate m. Here, E denotes the cost of
computing an embedding φω and C the cost of computing the deep kernel.
Testing is performed as a permutation test as proposed by Sutherland et al.
(2017), instead of using the asymptotic distribution like proposed before, i.e.
approximating the null distribution by drawing nperm new samples X 1 and Y 1

from the pooled sample and calculating the test statistic on these samples. The
permutation approach takes OpNE ` N2C ` N2npermq time.
It is shown theoretically that for reasonably large n and if the optimization
process succeeds, the found kernel generalizes nearly optimally instead of just
overfitting to the training data. Furthermore, the resulting test is compared
to the one proposed by Gretton et al. (2012b) and the SCF and ME tests
(Chwialkowski et al., 2015; Jitkrittum et al., 2016) as well as the classifier two-
sample tests of Lopez-Paz and Oquab (2017) and Cheng and Cloninger (2022)
in terms of type I error and power on several synthetic and real-world datasets.
Liu et al. (2020) find that all tests keep the nominal type I levels and that the
deep kernel MMD test generally has the highest power across a range of settings.
The MMD test along with different choices for kernels and many other kernel-
based methods is implemented in the R package kernlab (Karatzoglou, Smola
and Hornik, 2022; Karatzoglou et al., 2004).
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3.9.2. Other kernel-based methods

Kernel Fisher discriminant analysis test Moulines, Bach and Harchaoui
(2007) propose test statistics based on kernel Fisher discriminant analysis (ker-
nel FDA). It is assumed that the kernel function is bounded for all probability
measures P and that the RKHS associated with the kernel is dense in L2pPq.
Additionally, assumptions are made on eigenvalues of covariance matrices of
both distributions. Both assumptions on the kernel are needed in the proof of
consistency for the test, but only the first of each assumption is needed to show
asymptotic normality. The resulting asymptotic normal distribution is indepen-
dent of the kernel and an additional regularization parameter that must be
chosen.

Tests based on symmetric kernels Fromont et al. (2012) present testing
procedures based on a general symmetric kernel. Critical values of the tests are
chosen by a wild Bootstrap or permutation Bootstrap approach. An aggregation
method enables overcoming the difficulty of choosing a kernel and/or kernel
parameters. It is demonstrated that the aggregated tests may be optimal in
a classical statistical sense and non-asymptotic properties are shown for the
aggregated tests. Therefore, the assumption is made that densities exist with
respect to some non-atomic σ-finite measure and are square-integrable. A kernel
needs to be chosen, but suggestions for this choice are given. An alternative test
based on the conditional distribution of the test statistic given the sample is
shown to be an exact level α test.

Findings on kernel and distance-based tests I Two important findings
regarding kernel- and distance-based tests are given in Sejdinovic et al. (2013)
and Ramdas et al. (2015).

Sejdinovic et al. (2013) establish a relationship between the energy test and
the MMD test by showing that the energy statistic can be seen as a special
case of MMD for a certain kernel function. For that, they give a generalized
form of the energy statistic by replacing the Euclidean norm with other norms.
They also determine the class of distributions for which these tests are consistent
against all alternatives. In simulations, they show that the energy test is inferior
regarding power. They make the same assumptions as Székely and Rizzo (2004)
for the introduction and analysis of the energy statistic.

Ramdas et al. (2015) show that tests based on kernel embeddings or based
on distances between pairs of points are not well-behaved for high-dimensional
data, in contrast to general belief. Instead, they show that the power decreases
at least polynomially in dimension for fair alternatives.

ME and SCF test based on L1 distance Scetbon and Varoquaux (2019)
present a test using the L1 instead of the L2 distance between kernel-based
distribution representatives and define new ME and SCF test statistics based
on that. They show that a sequence of Borel measures converges weakly towards
a measure if and only if the Lq, q ě 1, distance of their mean embeddings to
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the mean embedding of that measure converges to zero, i.e. that the Lq, q ě 1,
distance metrizes weak convergence. They also show that their L1 version rejects
the null hypothesis better than the L2 version under H1 with high probability.
The new tests are shown to be consistent for N Ñ 8 and n1{N Ñ const,
and the asymptotic distribution of the test statistic is shown to be a Nakagami
distribution.

Kernel-based quadratic distance Chen and Markatou (2020) introduce a
generalization of the MMD statistic to kernel-based quadratic distance. They
give a review of two-sample tests that includes some of the tests presented here
in less detail and also a review of the MMD literature that is not as detailed as
that from Muandet et al. (2017). The test from Chen and Markatou (2020) is
based on the kernel-based quadratic distance introduced by Lindsay et al. (2008)

dKpF1, F2q “

ż ż

Kps, tq dpF1 ´ F2qpsq dpF1 ´ F2qptq

with a nonnegative definite kernel K. An estimator is presented that relies on
an appropriately centered kernel. Its limiting distributions under the null and
the alternative and the exact variance under the null can be derived. How-
ever, those cannot be used for the construction of a critical value since the null
distribution is an infinite sum that depends on eigenvalues of the centered ker-
nel. Optimal tuning parameters can be chosen based on the ideas of Lindsay,
Markatou and Ray (2014) for the one-sample test. Moreover, an extension to
the k-sample problem is presented. The practical calculation of the test statistic
under the assumption that the common distribution under H0 belongs to a fam-
ily of parametric distributions as well as the concrete form of the test statistic
under a normal assumption are shown. Alternatively, a nonparametric calcula-
tion is possible by using the mixing distribution of F1 and F2, or its empirical
counterpart, as the centering distribution for the kernel. Corresponding critical
values for these two versions can be calculated by a parametric or nonparametric
Bootstrap or in both cases with a permutation procedure.

Findings on kernel and distance-based tests II Zhu and Shao (2021)
present situations in which the energy and MMD permutation tests are inconsis-
tent. They show that the class of two-sample tests based on inter-point distances
(generalized energy statistics) including MMD with Gaussian or Laplacian ker-
nels and the energy statistic as well as the generalized energy statistic using the
L1 instead of the Euclidean distance are inconsistent when two high-dimensional
distributions correspond to the same marginal distributions but differ in other
aspects. Additionally, they derive the limiting distribution of a test statistic
based on inter-point distances under low and medium sample sizes for increas-
ing dimensions. They also show that under HDLSS and HDMSS, the energy
statistic and MMD test are consistent if the sum of component-wise means or
variances are not too small. On the other hand, if the sum of component-wise
mean and variance differences are both of order op

?
p{

?
n1n2q, then these tests

suffer from a substantial power loss under HDLSS and have trivial power under
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HDMSS. Under HDLSS, they have trivial power if additionally, the sum over
squared covariance differences is oppq. The L1-norm-based test also experiences
a power drop under HDLSS and has trivial power under HDMSS if the marginal
univariate distributions are the same. Under HDLSS, it has trivial power when
the distributions have the same bivariate marginal distributions. For the anal-
ysis, Zhu and Shao (2021) make assumptions on the existence of means and
variances and additional moment and weak dependence assumptions on the
components of X and Y . Zhu and Shao (2021) argue that in low dimensions the
L1-norm is not suitable since an L1 distance of zero does not imply F1 “ F2.

Bayesian kernel test Zhang et al. (2022) define a Bayesian kernel paired two-
sample test based on modeling the difference between kernel mean embeddings
in the RKHS. Their test is based on the framework of Flaxman et al. (2016)
and automatically selects kernel parameters relevant to the problem. The use
of a kernel allows for the use of the test beyond Euclidean spaces. In contrast
to most other methods, they do not need the assumption that samples are
independent of each other, but only the assumptions on the kernel as for the
MMD. The test is conditional on the choice of the family of kernels. Zhang
et al. (2022) focus on Gaussian RBF kernels in their analysis. The test statistic
is based on the Bayes factor. Zhang et al. (2022) propose to model the witness
function with a Gaussian process prior under the alternative model and to use
a Gaussian noise model for the empirical witness vector given the bandwidth
parameter. They derive the posterior distribution of the bandwidth parameter if
it is unknown with a Gamma(2,2) prior under both null and alternative models
and marginalize over it so that this parameter no longer has to be selected.

Kernel measure of multi-sample dissimilarity (KMD) Huang and Sen
(2023) define a nonparametric kernel measure of multi-sample dissimilarity
(KMD). Denote the dataset membership of each point in the pooled sample
tZ1, . . . , ZNu by tΔ1, . . . ,ΔNu. If ni

N Ñ πi P p0, 1q for N Ñ 8 such that
ř

i πi “

1 then tpΔi, ZiquNi“1 can approximately be seen as an i.i.d. sample from pΔ̃, Z̃q

with distribution μ specified by PpΔ̃ “ iq “ πi, i “ 1, . . . ,M and Z̃|Δ̃ “ i „ Fi.
Let pZ̃1, Δ̃1q, pZ̃2, Δ̃2q i.i.d. samples from μ and pZ̃, Δ̃q, pZ̃, Δ̃1q „ μ with Δ̃, Δ̃1

conditionally independent given Z̃. Denote by K a kernel function over the space
t1, . . . , ku, e.g. the discrete kernel Kpx, yq :“ 1px “ yq. Then the kernel measure
of multi-sample dissimilarity (KMD) is defined as

ηpF1, . . . , Fkq :“
E
“

KpΔ̃, Δ̃1q
‰

´ E
“

KpΔ̃1, Δ̃2q
‰

E
“

KpΔ̃, Δ̃q
‰

´ E
“

KpΔ̃1, Δ̃2q
‰ .

It has a lower bound of 0 that is attained if and only if the k distributions
coincide and an upper bound of 1 that is attained if and only if all distributions
are mutually singular. Monotonicity of η for location and scale alternatives for
k “ 2, X “ Rp, p ě 1 and log-concave distributions is shown such that values
of KMD in p0, 1q can be interpreted reasonably. Moreover, it is a member of
the multi-distribution f -divergence as defined by García-García and Williamson
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(2012) (see Section 3.6.2) and therefore fulfills all properties of the f -divergences.
An estimator of η can be defined as follows. Given the pooled sample Z1, . . . , ZN

and the corresponding sample memberships Δ1, . . . ,ΔN let G be a geometric
graph on X such that an edge between two points Zi and Zj in the pooled
sample implies that Zi and Zj are close, e.g. the K-nearest neighbor graph
with K ě 1 or the MST. Denote by pZi, Zjq P EpGq that there is an edge in G
connecting Zi and Zj . Moreover, let oi be the out-degree of Zi in G. Then an
estimator for η is defined as

η̂ :“
1
N

řN
i“1

1
oi

ř

j:pZi,ZjqPEpGq
KpΔi,Δjq ´

1
NpN´1q

ř

i‰j KpΔi,Δjq

1
N

řN
i“1 KpΔi,Δiq ´

1
NpN´1q

ř

i‰j KpΔi,Δjq
.

This estimator is consistent and asymptotically normally distributed under as-
sumptions similar to those of Deb and Sen (2021) on the geometric graph and
for characteristic kernel functions. The k-sample test based on KMD is shown
to be consistent against all alternatives where at least two distributions are
unequal and Huang and Sen (2023) provide a complete characterization of the
asymptotic power and detection threshold of the test for X “ Rp and assuming
that Pi has a density w.r.t. the Lebesgue measure. Under H0 the permutation
and unconditional distribution of the estimator of KMD are both asymptotically
normal and if X is a Euclidean space and the common distribution under H0
has a Lebesgue density and under assumptions on the graph, the asymptotic
null distribution is distribution-free. The test can be seen as a generalization
of the two-sample statistic of the K-nearest neighbor test of Schilling (1986)
and Henze (1988) or Petrie (2016). It could therefore also be assigned to the
class of graph-based tests. It is implemented in the R package KMD (Huang,
2022). For the K-nearest neighbor graph (with K ě 1 fixed) the calculation of
η̂ has computational complexity OpKN logNq. The use of the nearest neighbor
graph rather than MST is recommended because of flexibility and computa-
tional convenience. Moreover, they recommend to use K “ 1 for K-NN graph
for estimation of η. For testing, larger values of K are recommended.

3.10. Methods based on binary classification

Classifier tests of Friedman The idea of measuring divergence between two
distributions via separation and the misclassification error can be traced back
as far as the 50’s and 60’s (Rao, 1952; Ali and Silvey, 1966). Later, Friedman
(2004) brings up the idea of using a binary classifier to distinguish between
distributions generating the two datasets. For that, a binary classifier is trained
on the pooled dataset D “ tpXi, 1qu

n1
i“1 Y tpYi,´1qu

n2
i“1 “: tpZi, LiquNi“1. This

binary classifier provides scores si for the confidence that sample i belongs to
the first dataset (Li “ 1). The scores for the first and the second datasets can be
seen as random samples from respective probability distributions with densities
f` and f´. Thus, a univariate two-sample test for equality of these densities,
i.e. H0 : f`psq “ f´psq, e.g. chi-squared, Kolmogorov-Smirnov, Mann-Whitney,
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or t-test, can be used to compare the distributions. To perform such a test,
there are two options. First, the data are split into a training and test set and
only the training set is used to train the classifier while the test set is used to
perform the test, making use of the known null distribution of the respective test
statistic. Second, all observations are used for training the classifier as well as for
testing. Then the null distribution of the test statistic from the univariate test is
not valid. Instead, a permutation test is performed by randomly permuting the
labels and calculating the test statistic values for the classifiers trained on the
permuted data. The empirical p1 ´ αq-quantile of these statistics can then be
used as the critical value. The power of the test highly depends on the classifier
but is likely not very sensitive to the choice of the univariate test statistic.
The sensitivity in the choice of the classifier can be exploited to obtain a higher
power by choosing a classifier that fits the differences of distributions that are of
particular interest. Moreover, depending on the classifier, the differences in the
distributions can further be examined after a rejection of the null hypothesis,
e.g. for decision trees.

Classifier two-sample tests (C2ST) The general idea of Lopez-Paz and
Oquab (2017) is to use a binary classifier for classifying to which of two datasets
a sample belongs (here labeled by 0 and 1). If the datasets are generated from
the same distribution, the accuracy should be close to chance level, otherwise,
the classifier should be able to distinguish between the two distributions and
hence the accuracy should be higher than chance level. A Classifier Two-Sample
Test (C2ST) based on these considerations learns a representation of the data
on the fly, and its test statistic is in interpretable units. Moreover, the predictive
uncertainty allows interpreting where the distributions differ.
For the definition of the test statistic, w.l.o.g. assume that n1 “ n2 and that
two samples are given over the same sample space. The C2ST then consists of
five steps:

1. Construct the dataset

D “ tpXi, 0qu
n1
i“1 Y tpYi, 1qu

n2
i“1 “: tpZi, Liqu

N
i“1

consisting of the samples from both datasets labeled with their member-
ship to the two datasets.

2. Shuffle D at random and split it into a disjoint training and test set Dtr

and Dte with nte “ |Dte|.
3. Train a binary classifier f : X Ñ r0, 1s on Dtr such that fpziq is an estimate

of the conditional probability distribution ppLi “ 1|Ziq.
4. Calculate the C2ST statistic on Dte

T̂C2ST “
1
nte

ÿ

pZi,LiqPDte

I

„

I

ˆ

fpZiq ą
1
2

˙

“ Li

j

,

which is the accuracy on the test set. I denotes the indicator function. The
accuracy should be close to chance level if F1 “ F2 and should be greater
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than chance level for F1 ‰ F2, since then the classifier should identify
distributional differences between the two samples.

5. Calculate a p-value using the null distribution of the C2ST statistic, which
is approximately Np

1
2 ,

1
4nte

q.

Maximizing the power of a C2ST is a trade-off between a large training set, to
optimize the classifier, and a large test set nte, to better evaluate the perfor-
mance of the classifier.
The test statistic is interpretable as the percentage of samples that are correctly
classified. Furthermore, the values fpziq along with the true labels li explain
which samples were correctly or wrongly classified and with how much confi-
dence. This provides information on where the two distributions differ. Using
the classification-based approach also inherits the interpretability of the classi-
fier to explain which features are most important for distinguishing between the
two distributions.
In a simulation study, Lopez-Paz and Oquab (2017) compare C2ST using a
neural network and C2ST using a K-NN classifier against the Wilcoxon-Mann-
Whitney test, KS test, and Kuiper test for one-dimensional data, and addi-
tionally the MMD test, ME test and SCF test for one-dimensional as well as
multi-dimensional data. They repeat the experiments from Jitkrittum et al.
(2016). In all cases, C2ST shows a good performance. They observe that C2ST
is better or nearly as good as SCF and MMD in the multi-dimensional case and
nearly as good as the Kuiper and the ME test in the one-dimensional case.
Cai, Goggin and Jiang (2020) argue that disadvantages of the C2ST are that
the use of train/test data for estimating the prediction accuracy makes the test
less efficient in data utilization and can slow down the computation. They show
that a more powerful test can be derived by not using the prediction accuracy
directly (see below). The test is implemented in the R package Ecume (Roux de
Bezieux, 2021).

Regression based test Kim, Lee and Lei (2019) derive a test that is in-
tended for high-dimensional and complex data. A regression approach is used
so the test can efficiently handle different types of data structures depending
on the chosen regression model. Local differences can be identified with statis-
tical confidence. The test gives a general framework for both global and local
two-sample problems and for high-dimensional and non-Euclidean data. It is
assumed that the densities of both distributions exist. The idea of the test is
similar to that in other approaches based on binary classification. The equiva-
lent null hypothesis based on regression for a binary outcome that determines
the membership of data points is that the regression function does not depend
on the features. The test statistic measures the empirical distance between the
regression function PpY “ 1|X “ xq and the class probability PpY “ 1q which
both take values in p0, 1q. The power of the test can be related to the mean
integrated squared error (MISE) of the chosen regression estimator. The null
distribution of the test statistic is unknown and depends on the regression model
and the distribution of the data. Therefore, a permutation test is performed.
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Kim, Lee and Lei (2019) use Fisher’s LDA as the regression method and show
optimality under the assumption of normal distributions with equal covariance
matrices. In general, a train/ test split is required for the method. Kim, Lee
and Lei (2019) assume that the MISE is smaller than a positive constant times
an op1q term and that the permutation critical value is uniformly bounded by
this term up to some constant factor with high probability. Then, the proce-
dure yields a level α test, and for sufficiently large N and for sufficiently large
differences between the distributions, the type II error of the test is bounded.
Kim, Lee and Lei (2019) use a linear smoother as the regression method (e.g.
kNN regression, kernel regression, or local polynomial regression) for theoretical
analysis. The convergence rates can be used for calculations on test errors. Note
that the authors call their test regression-based, but model PpY “ 1|X “ xq

like in many of the other classification approaches.

Test based on the logit function of a classifier Cheng and Cloninger
(2022) follow a slightly different approach for using a binary classifier network to
distinguish between data from two different distributions. They train a classifier
network and use the difference between both datasets of the provided logit func-
tion as the test statistic. An advantage of using networks is that the algorithm
scales to large samples. Also, the use of networks is motivated by generalizing
discriminative networks used in generative adversarial networks (GANs) from
the goodness-of-fit problem to two-sample problems.
For the calculation of the test statistic, it is assumed w.l.o.g. that N “ n1 ` n2
is an even integer. Then the test is performed via the following steps:

1. Split the dataset D constructed as in Lopez-Paz and Oquab (2017) into
two halves used as training and test set with nte

1 and nte
2 denoting the

number of samples from datasets one and two, respectively, in the test
set.

2. Training: Train a binary classification neural network on the training set
using softmax loss. This gives estimated class probabilities

Ppl “ 0|zq “
exppuθpzqq

exppuθpzqq ` exppvθpzqq
,

Ppl “ 1|zq “
exppvθpzqq

exppuθpzqq ` exppvθpzqq

with uθpzq and vθpzq activations in the last hidden layer of the network
and θ the network parametrization. The logit is then defined as

fθ “ uθ ´ vθ

3. Testing: The test statistic is computed as

T̂CC “
1
nte

1

ÿ

xPX1,te

fθpxq ´
1
nte

2

ÿ

yPX2,te

fθpyq

with fθ parametrized by a trained neural network and X1,te and X2,te

denoting the subsets of the test set corresponding to the first and the
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second dataset. The critical value τ is calculated by a permutation test
where the labels on the test set are randomly permuted mperm times and
the test statistic is recomputed each time using the permuted labels. τ is
set to the empirical p1 ´ αq-quantile of these test statistics.

The test statistic can be viewed as estimating the symmetric KL divergence
KLpF1, F2q ` KLpF2, F1q (see Section 3.6.2).
Under the assumption that the training is terminated after a fixed number of
epochs, the overall complexity of the test is OpNq. Under certain assumptions
regarding the neural network and the densities of F1 and F2, the test is asymp-
totically consistent. Moreover, a reduction of the needed network complexity for
densities on or near low-dimensional manifolds in ambient space is shown.
In a simulation, the test is compared to the one proposed by Lopez-Paz and
Oquab (2017) and to different kernel choices for the MMD test, where the ker-
nel bandwidth is chosen as the median of the pairwise distances among all
samples, as proposed in Gretton et al. (2012a). Cheng and Cloninger (2022) ob-
serve better performance of their test than for the C2ST and in certain settings
(especially high dimensional data) also than for the MMD tests.

Test based on classification tree Yu et al. (2007) describe a two-sample
test motivated by candidate gene association studies from the perspective of
supervised machine learning. The estimated prediction error of a classification
tree is used as a test statistic. A simulation study shows that the nominal type
I error holds, but the power is sensitive to the chosen estimator for prediction
error. The .632` estimator results in the best overall performance. One advan-
tage of the use of classification trees is that it enables the use of missing data
since a tree can handle them via the use of surrogate variables.

Direction-projection-permutation (DiProPerm) test Wei et al. (2016)
concentrate on the HDLSS setting and propose the so-called direction-projection-
permutation (DiProPerm) test as a tool to assess whether a binary linear classi-
fier detects statistically significant differences between high-dimensional distri-
butions. The main idea is to work directly with the one-dimensional projections
induced by the binary linear classifier. According to Wei et al. (2016), consis-
tency is a nontrivial property in the HDLSS asymptotic regime, but certain
variations of DiProPerm are consistent. In HDLSS settings, for ease of inter-
pretability linear classifiers are preferable to more complicated ones like ran-
dom forests. The test statistic is a univariate two-sample statistic applied to
the projection onto the normal vector of a separating hyperplane. A permuta-
tion test is performed. In general, the choice of the classifier is open, but Wei
et al. (2016) recommend using the distance weighted discrimination (DWD)
classifier (Marron, Todd and Ahn, 2007). Also, different test statistics can be
chosen (e.g. difference in means, t-test statistic, AUC). The theoretical analysis
is performed only for the centroid projection direction and on the mean differ-
ence (MD) statistic and the t-statistic because these have simple closed-form
expressions. Similar assumptions are needed for HDLSS asymptotic theory as
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in Biswas and Ghosh (2014). Under these assumptions, the test is only shown
to be consistent for the alternative of unequal means. The proof of consistency
is performed only under certain alternatives (equal means, different covariance
matrices) and only for centroid-t-statistic, while the test based on centroid-MD
is inconsistent in this setting. Montero-Manso and Vilar (2019) mention that the
test is not distribution-free. The test is implemented in the R package diproperm
(Allmon, Marron and Hudgens, 2021).

Classification probability test Cai, Goggin and Jiang (2020) present a test,
called the Classification Probability Test (CPT), based on estimates of classifi-
cation probabilities from a classifier trained on the samples. It can be applied
whenever there is an appropriate classifier to consistently estimate the classifi-
cation probabilities. In contrast to other classification-based tests, this test is
not based on classification accuracy. Instead of testing H0 : F1 “ F2 directly,
the idea is to equivalently test for hypotheses on the joint distribution of the
data points and their dataset labels. For this, the odds ratio (OR) of proba-
bilities that the label of a given feature point is one is used as a proxy for the
likelihood ratio (LR) since LR “ OR ¨ const in this case. Since the test is an
approximation of the LR test, asymptotically there should be no loss of infor-
mation in contrast to the classification accuracy test proposed by Kim et al.
(2021). For the test, it is assumed that a consistent estimator of the classifi-
cation probability is given. According to Cai, Goggin and Jiang (2020), more
research is needed on sufficient conditions for that. In addition, the assumption
is made that the density functions of both distributions exist. A permutation
test is performed. The test statistic estimates the KL divergence whenever the
law of large numbers holds. An advantage of the test is that it does not need
any density or density ratio estimation but only class probability estimates that
can be obtained efficiently by different classification algorithms. The test per-
formance generally depends on the underlying distribution and the classifier.
Under the condition of uniform consistency for the estimation of class prob-
abilities, the test is asymptotically most powerful. This uniform consistency
condition is strong and artificial. Therefore, a second test is proposed based on
more heuristic arguments that the two-sample test is equivalent to determining
if the mapping of observations to class probabilities is a constant function. For
this test, the variance of the estimated class probabilities is considered as a test
statistic and again a permutation test is performed. In both cases, a classifier
has to be chosen. Cai, Goggin and Jiang (2020) propose to choose it by K-fold
cross-validation which is computationally intensive. Cai, Liu and Xia (2013) do
not mention it, but probably some sort of training set is needed to train the
classifier in the first step.

Testing for deviation of classification accuracy from chance Kim et al.
(2021) analyze a general test based on checking if the accuracy of a classifier
is significantly different from chance and compare it with Hotellings T 2 test.
If the true error remains by at least ε ą 0 better than chance as p,N Ñ 8,
then the permutation test is consistent. It is also computationally efficient. The
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permutation test offers exact control of the type I error rate and is consistent
if the number of permutations is greater than p1 ´ αq{α. A test based on a
Gaussian approximation is also shown to be consistent. It is simple but has
no finite sample guarantee. Kim et al. (2021) focus their analysis on tests for
Gaussian or elliptical distributions. For performing the test, a train/ test split
is required.

Test based on random forests Hediger, Michel and Näf (2022) provide
a two-sample test based on the classification error of random forests that is
applicable for any distribution. It requires almost no tuning, but for an asymp-
totic version of the test, both train and test sets are required. Alternatively,
an out-of-bag (OOB) based permutation test can be performed. OOB statistics
can be used to increase the sample efficiency compared to the test based on a
holdout sample. The variable importance measures of the random forest provide
insights into sources of distributional differences. The test is implemented in the
R package hypoRF (Hediger, Michel and Näf, 2021).

Critique on accuracy based test Rosenblatt et al. (2021) criticize tests
that analyze whether the estimated accuracy of a classifier is significantly better
than chance level. Such tests can be underpowered compared to a “bona fide
statistical test” and are also computationally more demanding. They examine
candidate causes for low power, including the discrete nature of the accuracy
test statistic, the types of signals that accuracy tests are designed to detect,
the inefficient use of data, and a suboptimal regularization. For the analysis,
they assume that the number of samples is in the order of the dimension or
smaller. They demonstrate that in the high-dimensional regime accuracy tests
never have more power than two-sample location or goodness-of-fit (GOF) tests.
Problems with accuracy tests are that data splitting reduces the effective sample
size, required regularization for testing seems to differ from that for predicting,
and discretization makes the permutation tests conservative. The last point
can not be captured in theoretical analyses as it decreases with sample size.
Therefore, they recommend choosing a two-sample location or GOF test over
an accuracy test and using appropriate regularization. For the use of accuracy
tests, they recommend using larger test sets, regularization, and resampling with
replacement. The results are fully based on a simulation study. No theoretical
results are provided.

3.11. Distance and similarity measures for datasets

Distance and similarity based on metafeatures Feurer, Springenberg
and Hutter (2015) define a distance measure between datasets. They intend to
use it for speeding up Sequential Model-based Bayesian Optimization (SMBO)
for hyperparameter tuning by using configurations that performed well on sim-
ilar datasets for initialization (meta-learning). Under the assumption that each
dataset Dpiq can be described by a set of K metafeatures mi “ pmi

1, . . . ,m
i
Kq
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they propose two distance measures. The first one uses the q-norm of the dif-
ference between metafeatures of the datasets

DFqpDpiq,Dpjq
q “ }mi

´ mj
}q.

The second one measures similarity w.r.t. performance of different hyperparam-
eter settings by using the negative Spearman correlation between ranked results
of a fixed set of n hyperparameter settings θl, l “ 1, . . . , n, on both datasets

DFcpDpiq,Dpjq
q “ 1 ´ CorprgD

piq
pθ1q, . . . , gD

piq
pθnqs, rgD

pjq
pθ1q, . . . , gD

pjq
pθnqsq,

with gD
piq denoting the target function. In the context of finding the most similar

of the datasets for which the hyperparameters have already been tuned to a
new dataset for which the tuning has not yet been performed, the distance
from the old datasets to the new one cannot be calculated, since the gD

piq
pθlq

are not known for this new dataset. Instead, the distances are estimated using
regression to learn a function mapping from pairs of metafeatures

`

mi,mj
˘

to DFcpDpiq,Dpjqq based on the metafeatures and pairwise distances of the old
datasets. Feurer, Springenberg and Hutter (2015) suggest 46 metafeatures found
in the literature. These metafeatures can be categorized into

• simple metafeatures (describe basic dataset structure, e.g. number of fea-
tures),

• PCA metafeatures,
• information-theoretic metafeatures (measure entropy),
• statistical metafeatures (use descriptive statistics to characterize dataset,

e.g. kurtosis or dispersion of label distribution),
• landmarking metafeatures (are based on running several fast machine

learning algorithms that can capture different properties of the dataset,
e.g. linear separability).

Gromov-Hausdorff distance of metric measure spaces Mémoli (2017)
defines a distance between datasets via the Gromov-Hausdorff metric between
metric measure spaces. The idea is to represent data as a metric space en-
dowed with a probability measure (metric measure space) and then determine
the distance between these metric measure spaces. Given two metric measure
spaces pX , dX , μX q and pY , dY , μYq corresponding to the two datasets, denote
by UpμX , μYq the collection of all couplings between μX and μY , i.e. of all
measures μ over X ˆ Y such that the push-forward of μ (i.e. the measure
μ ˝ f1pAq “ μpf´1pAqq for some measurable function f) for the first canon-
ical projection π1 is equal to μX , μ ˝ π´1

1 “ μX , and analogously μ ˝ π´1
2 “ μY .

Then the Gromov-Wasserstein distance of order q (Mémoli, 2011) is defined as

dGW,ppX ,Yq :“ 1
2 inf

μPUpμX ,μY q

ˆ
ż ż

|dX px, x1
q ´ dYpy, y1

q|
q

μpdx ˆ dyqμpdx1
ˆ dy1

q
˘1{q

.
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This means that the function px, y, x1, y1q ÞÑ |dX px, x1q´dYpy, y1q|q is integrated
over the measure μ b μ for any μ P UpμX , μYq and the infimum with respect to
μ is determined (Mémoli, 2017). For q ě 1 this defines a proper distance on the
collection of isomorphism classes of metric measure spaces (Mémoli, 2011, 2017).
The calculation in practice remains unclear. Also the choice of the metrics dX
and dX might be nontrivial in practice.

Similarity based on method ranking Leite, Brazdil and Vanschoren (2012)
work on meta-learning in situations where it is not possible to evaluate and
compare all combinations of learning algorithms and their possible parame-
ter settings. For that, they develop a new technique called active testing that
intelligently selects the most promising competitor for the next round of cross-
validation based on prior duels between algorithms on similar datasets. There-
fore, they characterize datasets based on the pairwise performance differences
between algorithms. Their idea is that if the same algorithms win, tie, or lose
in comparisons, then the datasets are expected to be similar at least in terms
of effects on learning performance. They propose four ways to calculate dataset
similarity. The first measure, called AT0, is not of interest since it assumes the
same similarity for all pairs of datasets and is only used as a baseline. The
second one, AT1, works as AT0 at the beginning before any tests on the new
data were performed. Then, in each of the next iterations of cross-validation
(CV) on the new data, the similarity is estimated based on the most recent CV
test as follows. All datasets for which the new current best algorithm is better
than the old one are assigned a similarity value of 1, and all other datasets have
a similarity value of 0. An alternative is to set the similarity to the difference
of relative landmarks (performance gain of the new best compared to the old
best) for all datasets for which the new current best algorithm is better than
the old one and then normalize these values to the range between 0 and 1. The
third measure, ATW, works like AT1 but uses all CV tests carried out on the
new dataset and calculates the Laplace-corrected ratio of results in which the
datasets had the same results. The last measure, called ATx, works similarly
to ATW but it is required that all pairwise comparisons yield the same out-
come. In that case, the similarity is set to one, and otherwise to zero. Leite,
Brazdil and Vanschoren (2012) present experiments to compare the different
approaches. The results show that ATW and AT1 provide good performance
using a small number of CV tests. Nonetheless, they believe that the results
could be improved by using classical information-theoretic measures and/ or
sampling landmarks for measuring the dataset similarity.

In Leite and Brazdil (2021), an improved version is presented that outper-
forms the previous active testing data similarity measures. For this, the per-
formance gain of each algorithm on each dataset compared to the current best
algorithm is estimated as the ratio of the performances of these algorithms
divided by the ratio of the runtimes required for training the learners to the
power of a parameter q. The authors recommend q “ 1{32. The performance
gain is estimated as this quantity minus one, if the resulting value is positive,
and zero otherwise. The similarity of datasets is measured via the (weighted or
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unweighted) correlation of these estimated performance gains of all algorithms
on the respective datasets.

Deep dataset dissimilarity measures Calderon Ramirez et al. (2022) de-
fine another set of dataset dissimilarity measure, called the deep dataset dis-
similarity measures (DeDiMs). Their motivation is to asses a distribution mis-
match between labeled and unlabelled data in Semi-supervised deep learning
(SSDL) and therefore to quantify the difference between datasets. In total, four
distances are defined: two Minkowski-based distance measures and two nonpara-
metric density-based dataset divergence measures. The general steps presented
for calculation, given two datasets Da and Db, are as follows:

1. Draw a random subsample of Da and Db of size τ and denote these sub-
samples as Da,τ ,Db,τ .

2. Transform the observation xi‚ P Rp of dataset i P ta, bu using a feature
extractor g to obtain the feature vector hi “ gpxi‚q P Rp1 . This yields the
feature sets Ha,τ , Hb,τ .

For calculating the Minkowski-based distance sets, afterward, the following steps
are performed:

1. Calculate d̂i “ mink }hi ´ hk}q for q “ 1 (Manhatten distance) or for
q “ 2 (Euclidean distance) for each of C samples hi of Ha,τ , where hk

is the closest feature vector from Hb,τ . This yields a list of distances
d
q pDa,Db, τ, Cq “

!

d̂1, . . . , d̂C
)

.
2. Calculate a reference list of distances for the same samples of the dataset

Da to itself (intra-dataset distance) d
q pDa,Da, τ, Cq “

!

ď1, . . . , ďC
)

.
3. Calculate the absolute differences between reference and inter-dataset dis-

tances dc “ |d̂c ´ ďc| as well as their average reference subtracted distance
d̄ and the p-value of a Wilcoxon test on these differences.

This approach can be seen as a method based on inter-point distances. For the
calculation of the density-based distances, the following steps are performed
instead:

1. Compute the normalized histogram for each dimension r “ 1, . . . , p1 in the
feature space to approximate the density function fr,a based on Ha,τ and
fr,b based on Hb,τ .

2. Compute the sum of the dissimilarities between the density functions fr,a
and fr,b for the Jensen-Shannon divergence (dJS) or the cosine distance
(dC): d̂i “

řp1

r“1 δgpfr,a, fr,bq, g “ JS,C for all C samples (assumption:
variables are statistically independent).

3. Compute the intra-dataset distances ď1, . . . , ďC .
4. Calculate the absolute differences between reference and inter-dataset dis-

tances dc “ |d̂c ´ ďc| as well as their average reference subtracted distance
d̄ and the p-value of a Wilcoxon test on these differences.
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This approach can be seen as a method based on comparing density functions
or as a divergence. The dissimilarity measures do not fulfill the conditions of a
metric or pseudo-metric since the distance of a dataset to itself is in general not
exactly zero and symmetry properties are not fulfilled. The distances are eval-
uated in a simulation study with regard to their ability to detect a distribution
mismatch and to increase SSDL performance. Both goals are achieved.

Distance based on optimal transport Alvarez-Melis and Fusi (2020) de-
fine a distance between datasets relying on optimal transport. They motivate
the need for such distances by stating that methods to combine, adapt, and
transfer knowledge across datasets need a notion of distance between datasets
while “the notion of distance between datasets is an elusive one, and quantify-
ing it efficiently and in a principled manner remains largely an open problem”.
They criticize that current methods to quantify the distance of two datasets are
often heuristic, and highly dependent on tuning and on the architecture of a
certain task. Also, many of the other proposals do not take the target variable
into account. Therefore, Alvarez-Melis and Fusi (2020) propose a new distance
between datasets that is model-agnostic, does not involve training, can compare
datasets even if their label sets are disjoint, and has a theoretical footing. Their
empirical results also show a good correlation with how hard a transfer-learning
task is.
The definition of their distance heavily relies on the optimal transport (OT)
problem. Therefore, we define this first in the following. Consider a complete,
separable metric space X and a probability measures α, β P PpX q. The optimal
transport according to Kantorovitch (1958) is defined as

OTpα, βq :“ min
πPΠpα,βq

ż

XˆX
cpx, yq dπpx, yq,

where c : X ˆ X Ñ R` is a cost function, the so-called ground cost, and

Πpα, βq :“ tπ1,2 P PpX ˆ X q|π1 “ α, π2 “ βu

is the set of joint distributions over the product space X ˆ X with marginal
distributions α and β. If X is provided with a metric dX , it is natural to use
this as ground cost. In the special cases of cpx, yq “ dX px, yqq with q ě 1, the
term

Wqpα, βq :“ OTpα, βq
1{q (11)

is the q-Wasserstein distance, for q “ 1 also called Earth Mover’s Distance. Fi-
nite samples as usually given in practice implicitly define discrete measures for
which the pairwise cost can be represented as a cost matrix. The OT then be-
comes a linear program. Solving this is often difficult due to its cubic complexity.
The entropy-regularized problem

OTεpα, βq :“ min
πPΠpα,βq

ż

XˆX
cpx, yq dπpx, yq ` εHpπα b βq,
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where Hpπα b βq “
ş

logpdπ{ dα dβq dπ is the relative entropy and ε gives a
time vs. accuracy trade-off, is more efficient to solve. Based on this, the Sinkhorn
divergence (Genevay, Peyre and Cuturi, 2018)

SDεpα, βq “ OTεpα, βq ´
1
2OTεpα, αq ´

1
2OTεpβ, βq

can be calculated.
Alvarez-Melis and Fusi (2020) define a dataset D as a set of feature-label pairs
z :“ px, yq P X ˆ Y “: Z over a feature space X and a label set Y . They focus
on classification and therefore assume Y to be finite. Moreover, for simplicity,
it is assumed that two datasets D1 and D2 are given whose feature spaces have
the same dimensionality. It is not required as an assumption, but Alvarez-Melis
and Fusi (2020) find it useful to think of samples in datasets as being drawn
from joint distributions F1px, yq and F2px, yq.
To define the distance without relying on external models or parameters, a
metric on Z is needed. Given metrics on X and Y one could define dZpz, z1q “

pdX px, x1qq ` dYpy, y1qqq1{q for q ě 1, but dY is rarely readily available. Since
information about the occurrence of y in relation to feature vectors x is given,
instead the metric in X can be used to compare labels. Let

NDpyq :“ tx P X|px, yq P Du

be the set of feature vectors with label y and ny “ |NDpyq| its cardinality.
The labels are to be represented by their distribution over the feature space
y ÞÑ αypXq :“ PpX|Y “ yq. The set NDpyq can be understood as a finite sample
of that. That given, choosing a distance between labels is equal to choosing a
divergence between the associated distributions. Alvarez-Melis and Fusi (2020)
propose OT as an ideal choice since it yields a true metric, it is computable
from finite samples, and it is able to deal with sparsely supported distributions.
dqX can be used as the optimal transport cost which results in the q-Wasserstein
distance W q

q pαy, αy1 q (see (11)) between labels. With this, the distance between
feature-label pairs can be defined as

dZpz, z1
q :“ pdX px, x1

q
q

` W q
q pαy, αy1 qq

1{q.

This distance can be used in optimal transport to finally define a distance be-
tween measures (i.e. datasets):

dOTpD1,D2q “ min
πPΠpα,βq

ż

ZˆZ
dZpz, z1

q
q dπpz, z1

q

This defines a true metric on PpZq which Alvarez-Melis and Fusi (2020) call
the Optimal Transport Dataset Distance (OTDD).
There are different approaches to represent the distributions αy, depending on
the size of the dataset. In the first approach, the samples in NDpyq can be treated
as support points of a uniform empirical measure so that αy “

ř

xPNDpyq
1
ny

δx.
When applying this, in every evaluation of dZpz, z1q an OT problem needs to be
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solved which yields a total worst-case OpN5 logNq complexity and makes this
approach only feasible for small to medium-sized datasets. For these, e.g. when
p " N , in simulations for N À 5000, it might even be faster than a proposed
second approach. For this second approach, each αy is modeled as a Gaussian
Npμ̂y, Σ̂yq with μ̂y the sample mean and Σ̂y the covariance of NDpyq. Then,
the 2-Wasserstein distance has an analytic form, known as Bures-Wasserstein
distance. The distance defined using this approach is denoted as dOT´N or
Bures-OTDD. It might be the only feasible approach for n " p very large.
It holds dOT´N pD1,D2q ď dOTpD1,D2q ď dUBpD1,D2q for any two datasets,
where dUB is a distribution-agnostic OT upper bound defined by the OT dis-
tance using a certain cost function. For datasets of sizes n1 and n2 with k1
and k2 classes, dimension p and maximum class size m, both distances cause
costs of Opn1n2 logpmaxtn1, n2uqτ´3q for solving the outer OT problem τ -
approximately, and the worst-case complexity for computing label-to-label pair-
wise distances is Opn1n2pp`m3 logm`pm2qq for dOT and Opn1n1p`k1k2p

3 `

p2mpk1 ` k2qq for dOT´N . Under more assumptions and simplifications, addi-
tional speed-ups are possible. To speed up the calculations it is also possible to
use the Sinkhorn divergence with approximate OT solution for the inner OT
problem.
Alvarez-Melis and Fusi (2020) suggest assessing how realistic assumptions such
as the use of Gaussian distributions or the choice of the entropy regulariza-
tion parameters are before using their method, in order to avoid an unreliable
distance estimation. The OTDD can alternatively be seen as an inter-point
distance-based method.

3.12. Comparison based on summary statistics

DataSpheres Johnson and Dasu (1998) aim to develop a fast, inexpensive
method for massive high-dimensional datasets that does not rely on any distri-
butional assumptions. The idea is to generate a so-called DataSphere (map of
the dataset) which is a summary of the data, and compare these DataSpheres.
The DataSphere can be generated in two passes over the data and can also be
further aggregated. It partitions data into sections and represents each section
through a set of summaries, which Johnson and Dasu (1998) call profiles. Then,
tests for these profiles can be used to determine which datasets changed and
where. For these tests, a set of weaker hypotheses that only need the profile
information is used instead of testing if the joint distribution of the variables is
the same for the two datasets.
For the construction of the DataSpheres, the following assumptions are made
for the dataset DT “ pX1‚, . . . , Xn‚q: each Xi P Rp`1 with p “ v ` c consists
of p ` 1 attributes of which c are categorical, v are value attributes and one
attribute is the dataset membership with value 1 or 2. Let Sj “ tXi‚: dataset
membership attribute has value ju, j P t1, 2u and let C be a particular value
of the categorical variables in D. The subpopulation DrCjs is defined as the
tuples in D that have value C in their categorical features and value j in their
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dataset membership attribute. V rCjs is defined as the projection of DrCis to the
value attributes. Now, for each value of C that is present in D, it is examined
if the distribution of V rC1s differs significantly from the distribution of V rC2s.
Therefore, D is partitioned into K layers tD
u

K

“1 that are more homogeneous

than the entire dataset. This is achieved by defining each layer as a set of data
points that are within the same (Mahalanobis) distance range from a center of
the data cloud (defined as the vector of trimmed means). The cutoffs for the
ranges are defined using a fast approximative quantiling algorithm, so each layer
contains the same number of data points. Additionally, directional information
is included through the use of pyramids: a d dimensional set can be partitioned
into 2d pyramids P
˘, i “ 1, . . . , d

P
` “ tXi‚ : |x̃i
| ą |x̃ij |, x̃i
 ą 0, j “ 1, . . . , d, j ‰ �u

P
´ “ tXi‚ : |x̃i
| ą |x̃ij |, x̃i
 ă 0, j “ 1, . . . , d, j ‰ �u

with x̃ the normalized vectors. The tops of all pyramids meet at the center
of the data cloud. A section SpD
, P
˘, Cq is now defined as the data points
with categorical attributes C such that the value attributes lie in layer D
 and
pyramid P
˘. Sections are summarized through sets of statistics, called profiles
P pD
, P
˘, Cq. For a dataset comparison the number of data points, the vector
of means of value attributes, and the covariance matrix are used as statistics in
the profile. A collection of profiles is called data map of a dataset. A data map
can be seen as a representation of the dataset.
The authors propose the use of two different tests. The first test is the multino-
mial test for proportions. It compares the proportion of points falling into each
section within a subpopulation. The second test is the Mahalanobis D2 test
(same as Hotelling’s test), which is used to establish the closeness of the multi-
variate means of each layer within each subpopulation for the two datasets. Both
tests are described in detail by Rao (1973). Two different tests are used since
for passing the tests it is sufficient but not necessary that the joint distribution
in the two datasets is the same.

Constrained minimum (CM) distance Tatti (2007) defines a distance of
two datasets that is based on summary statistics but also takes into account
their correlation. The so-called Constrained Minimum (CM ) Distance can be
computed in cubic time. Tatti (2007) lists several properties that a distance of
datasets should fulfill: First of all, it should be a metric since metric theory is
a well-known area and metrics have many theoretical and practical advantages.
It also should take the statistical nature of the datasets into account, e.g. the
distance should approach zero for an increasing number of data points when both
datasets are generated from the same distribution. Finally, it should be quick to
evaluate since data may be high dimensional. Motivated by these requirements
the CM distance is defined.
For this, first, define a feature function S : X Ñ Rm that maps points from the
sample space X to a real vector. The frequency θ P Rm of S with respect to
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dataset D is the average of the values of S

θ “
1
N

N
ÿ

i“1
SpXi‚q.

Let P be the set of all distributions on X . Then a distribution F P P satisfies
the frequency θ if EF pSq “ θ. Assume that the points in X can be enumerated
as X “ t1, 2, . . . , |X |u. Then each distribution F P P can be represented by a
vector u P R|X | with elements ui “ fpiq. Define a constrained space

CpS, θq “

#

u P R
|X |

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

iPX
Spiqui “ θ,

ÿ

iPX
ui “ 1

+

of distributions satisfying θ. Then, interpreting the distributions as geometrical
objects, CpS, θq is an affine space since the constraints defining it are vector
products. This implies that the constrained spaces for two different frequencies
θ1 and θ2 are parallel. The distance between two parallel affine spaces can be
measured by the shortest segment going from a point in the first space to a point
in the second space, and this segment can be found by taking the points from
both spaces that have the shortest norm. Motivated by this, the Constrained
Minimum (CM) Distance is defined as follows. Given two datasets D1 and D2
pick a vector from each constrained space having the shortest norm

ui “ arg min
uPCpS,SpDiqq

}u}2, i “ 1, 2

and define the CM distance between the datasets as

DCMpD1,D2|Sq “
a

|X |}u1 ´ u2}2.

The vectors u1 or u2 may have negative elements, thus the CM distance is not a
distance between two distributions but rather a distance based on the frequen-
cies of a given feature function motivated by the geometrical interpretation of
the distribution sets. For calculation purposes, the CM distance can be rewritten
as

DCMpD1,D2|Sq
2

“ pθ1 ´ θ2q
T
Cov´1

pSqpθ1 ´ θ2q

with

CovpSq “
1

|X |

ÿ

ωPX
SpωqSpωq

T
´

˜

1
|X |

ÿ

ωPX
Spωq

¸˜

1
|X |

ÿ

ωPX
Spωq

¸T

.

The CM distance fulfills the following properties: DCMpD1,D2|Sq is a pseudo
metric. If D1 and D2 have the same number of items and D1, D2, and D3
are datasets with the same features, then DCMpD1 Y D3,D2 Y D3|Sq “ p1 ´

εqDCMpD1,D2|Sq with ε “
|D3|

|D1|`|D3|
. This means that adding external data

to the original datasets makes the distance smaller. Furthermore, adding extra
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features cannot decrease the distance. Also, for T pωq “ ASpωq ` b with an
invertible N ˆN matrix A and a vector b P RN , it holds that DCMpD1,D2|T q “

DCMpD1,D2|Sq.
Proposals for the choice of a feature function S are means of features or means
and pairwise correlations or frequent itemsets.
For binary data and S chosen as the conjunction function, i.e. S is one if all
components of an observation are one, and zero otherwise, or as the parity
function, i.e. S is one if an odd number of components of an observation are
one, and zero otherwise, the CM distance reduces to a more simple form. In
these cases, it can be calculated as

DCMpD1,D2|Sq “ 2}θ1 ´ θ2}2.

Note that the factor
?

2 instead of 2 that is stated in the original publication of
Tatti (2007) in formula (4) and in Example 3 is not correct as can be seen from
the proof of Lemma 8 from which these formulas follow. From EpS2q “ EpSq “

0.5, it follows that VarpSq “ EpS2q´EpSq2 “ 0.25 and therefore CovpSq “ 0.25I
instead of 0.5I as claimed in Lemma 8.

3.13. Different testing approaches

General Bootstrap test Romano (1989) studies the asymptotic behavior
of some nonparametric tests and shows that under fairly general conditions
Bootstrap and randomization tests are equivalent (i.e. the difference in critical
functions evaluated at the observed data tends to 0 in probability). The results
hold for general applications and the k-sample problem is only one application
among others. A very general test statistic for k-sample problems is presented.
Its exact form is not specified. The test of Bickel (1969) is a special case for
p-dimensional data and k “ 2, the KS test is a special case for p “ 1 and k “ 2.
Romano (1989) shows consistency for Bootstrap and permutation tests under
some assumptions on the weights for the test statistic and on the distributions
of the data.

Weighted Bootstrap test Burke (2000) designs a test using a weighted
Bootstrap method based on independent random variables instead of sampling
from the uniform distribution. Additionally, uniform confidence bands for the
distribution function of multivariate data are constructed. Asymptotically con-
sistent multivariate versions of the KS test and the Cramér-von Mises test are
proposed.

Test based on projections I Ping (2000) considers the two- and k-sample
problem. Projection pursuit-type statistics are used to overcome the sparseness
of data points in high-dimensional space. The limiting distributions of the test
statistics are not tractable and depend on the underlying distribution. Therefore,
the properties of a Bootstrap approximation are examined. An approximation
for statistics based on a number theoretic method is used for computational
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reasons. This number-theoretic method chooses directions for projections from
the unit sphere. The presented tests are projection versions of the KS-test,
CvM-test, and Anderson test. For the theoretical results, only continuous dis-
tributions are considered. Consistency is discussed implicitly by proving that
the test statistics tend to infinity with probability one as ni Ñ 8.

Test based on empirical Bayes factors In Chen and Hanson (2014), empir-
ical Bayes factors constructed from independent Polya tree priors are proposed
as a test statistic for the two-sample problem. From this, p-values can be ob-
tained by permuting the group membership indicator. The test was proposed
to test whether data distributions are the same across several subpopulations.
Initially, it was designed for univariate distributions only but an extension to
multivariate distributions is also provided. Both versions are applicable to the
k-sample problem. The goal of Chen and Hanson (2014) is to design a test that
performs almost as well as the t-test for approximately normal data, but sub-
stantially better for non-normal data. Their test statistic is the ratio of marginal
densities under H1 and H0. The permutation test rejects H0 for large values of
the test statistic. In the limiting case, the test corresponds to the likelihood ratio
test based on normal data. For approximately normal data, it behaves similarly
to a t-test but pronounced data-driven deviations from normality are also taken
into account. Chen and Hanson (2014) are able to give the exact closed-form
expression for the marginal density due to the conjugate property of the Polya
tree. However, this prior is only suitable for continuous data. Chen and Hanson
(2014) center the Polya tree at the normal distribution since they assume that
“many datasets are approximately normal, and therefore centering at normal
can improve power compared to other nonparametric models that assume noth-
ing”. The test of Chen and Hanson (2014) extends the former approaches of
Holmes et al. (2015) and Ma and Wong (2011) to the k-sample problem and to
censored data. According to simulations, their new test has higher power. For
testing, several parameters are chosen via heuristics. The computational cost
is OppN2q in the multivariate case. According to Chen and Hanson (2014), in
their examples computing permutation p-values took less than 5 minutes in each
case, using R on an “old Windows-based laptop”. For Bayes factors based on an
infinite Polya tree, posterior consistency can be shown.

Projections obtained by maximization of a smooth test statistic Zhou,
Zheng and Zhang (2017) propose a test that modifies Neyman’s smooth test and
extends it to the multivariate case based on projection pursue. They use a Boot-
strap method to compute the critical value. Similar to Ghosh and Biswas (2016),
they apply the idea that H0 is equivalent to H0 : uTX “d uTY @u P Sp´1 with
Sp´1 denoting the unit sphere in Rp. They assume that the two sample sizes are
comparable (c0n1 ď n2 ď n1, c0 P p0, 1s) and that n2 ď n1. For the projections
in the directions of each u vector, Zhou, Zheng and Zhang (2017) use multiple
vectors u P Sp´1 and calculate a univariate smooth-type test statistic which
is the supremum norm of a vector of means of several orthonormal functions
applied to values of the distribution function of u evaluated at the cross product
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of u with the observations of the second dataset. The choice of the orthonormal
functions remains unclear. The final test statistic is the (scaled) maximum of
test statistics for different u vectors. H0 is rejected for large values. The limit-
ing distribution of the test statistic may not exist, therefore a Gaussian process
approximation of the test statistic and its estimator are given. Multiplier Boot-
strap is proposed for testing. For the analysis of the test, Zhou, Zheng and Zhang
(2017) make the assumption of absolute continuous distribution functions and
the assumption that the d orthonormal functions from r0, 1s Ñ R are twice dif-
ferentiable, with d ď n1. For n2 Ñ 8, additional assumptions on the maximum
over the supremum norm of each function and its first and second derivative are
made. The assumptions are fulfilled for normalized Legendre polynomials with
d “ oppn2{ logn2q1{9q and for a trigonometric series with d “ oppn2{ logn2q1{4q.
Then the difference between the α level and the type I error of smooth test
tends to zero for n2 Ñ 8. Moreover, power against local alternatives tends
to 1 for n2, d Ñ 8, for normalized Legendre polynomials with d “ opn

1{9
2 q, and

for trigonometric series with d “ opn
1{4
2 q. To show that the test asymptotically

holds the level α for growing n1, n2 and possibly p, two assumptions are re-
quired. First, d ď mintn1, n2, exppC0pqu has to hold for some positive constant
C0. Second, a bound for the maximum over the supremum norm of each of the
first and second derivatives of orthonormal functions that grows with n2 is re-
quired. The choice of d remains open, and according to Zhou, Zheng and Zhang
(2017) in practice an optimal choice of d is also not possible. The computation
of the multivariate test statistic requires solving an optimization problem with
an �2-norm constraint. The best optimizer remains unclear.

Test based on ball divergence Pan et al. (2018) introduce a novel measure
of the difference between two probability measures in separable Banach spaces,
called Ball Divergence. The Ball Divergence is defined as the square of the mea-
sure difference over a given closed ball collection. It is equal to zero if and only
if the probability measures are identical and does not require any moment as-
sumptions. Based on the Ball Divergence, Pan et al. (2018) propose a metric
rank test procedure. Its empirical test statistic is defined based on the difference
between averages of the metric ranks. It is robust to outliers and heavy-tail data.
The distribution of the test statistic converges to a mixture of χ2 distributions
under the null hypothesis, and it converges to a normal distribution with mean
0 and variance depending on the asymptotic proportion of the sample from the
first distribution under the alternative hypothesis. The test does not depend on
the ratio of sample sizes and thus can also be applied to imbalanced data. Pan
et al. (2018) state that existing methods do not take extremely imbalanced data
into account.
The newly proposed test relies on the fact that two Borel probability measures
are identical if they agree on all balls in a separable Banach space (Preiss and
Tišer, 1991). It can be applied for data in separable Banach spaces, which over-
comes the limitation that many Banach spaces are not of the strong negative
type or even of negative type (e.g. Rp with �q metric for 3 ď p ď 8, 2 ă q ď 8)
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such that e.g. the generalized energy distance is not applicable. The square root
of the Ball Divergence is a symmetric divergence, but not a metric since it does
not satisfy the triangle inequality. The testing procedure can be generalized
further to the k-sample problem. A connection to the MMD and to the en-
ergy statistic is shown through a unified framework of variograms. Consistency
against any general alternative can be shown without any additional assump-
tions and independent of the ratio between the smaller and the larger sample
size. Li, Hu and Zhang (2022) conclude that the test by Pan et al. (2018) is
model-free and not constrained by any arguments. The test is implemented in
the R package Ball (Zhu et al., 2021).

Test based on Jackknife empirical likelihood Wan, Liu and Deng (2018)
present a Jackknife Empirical Likelihood (JEL) test that is motivated by the
fact that the energy statistic is zero if and only if the two distributions are equal,
under the assumption that first moments exist. Wan, Liu and Deng (2018) aim
to avoid the problem of an asymptotic distribution that depends on unknown
parameters by using the estimated likelihood method to obtain a distribution-
free asymptotic behavior. Their test statistic is asymptotically χ2

1 distributed for
any fixed dimension. A Jackknife Empirical Likelihood (EL) is used to circum-
vent solving nonlinear constraints for a U-statistic as the main obstacle of the
EL method. The resulting test statistic is the nonparametric jackknife empiri-
cal log-likelihood ratio. To derive its asymptotic distribution, it is assumed that
second moments for }X ´ Y } and for the conditional expectations of }X ´ Y },
}X ´ X 1}, }Y ´ Y 1} exist. Under these assumptions, it can also be shown that
the resulting asymptotic test is consistent against all fixed alternatives. Under
additional assumptions on expectations and on the covariance matrices of X
and Y , the test is also shown to be consistent against contiguous alternatives
H1 : F1 “ p1 ´ δn1,n2qF2 ` δn1,n2Q, where Q is a disturbance distribution and
δn1,n2 “ OpN´1{2q.

Test based on projection averaging for Cramér-von Mises statistic
Kim, Balakrishnan and Wasserman (2020) introduce a generalization of the
Cramér-von Mises test to the multivariate two-sample problem via projection
averaging. They show that the test is consistent against all fixed alternatives
and minimax rate optimal against a certain class of alternatives. Moreover, it
is robust to heavy-tailed data, free of tuning parameters, and computationally
efficient even in high dimensions. The test is shown to have comparable power to
existing high-dimensional mean tests under certain location models for p Ñ 8.
Kim, Balakrishnan and Wasserman (2020) propose a new metric called angu-
lar distance as a robust alternative to the Euclidean distance. This solves the
problem of the energy statistic that requires that first moments exist, which
might be violated for high-dimensional data where outlying observations occur
frequently. By introducing the angular distance, a connection to the RKHS ap-
proach can be made. The newly proposed test statistic is an unbiased estimate
of the squared multivariate Cramér-von Mises statistic and has a simple closed-
form expression. It is invariant to orthogonal transformations, nonnegative, and
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equal to zero if and only if the distributions are equal. Based on this statis-
tic, a permutation test can be performed. It has the same asymptotic power
as the oracle test and asymptotic tests that assume knowledge of the underly-
ing distributions, for fixed and contiguous alternatives. Kim, Balakrishnan and
Wasserman (2020) show that the new test has acceptable power in the con-
tamination model while the energy statistic has very low power. They analyze
the finite-sample power and prove minimax rate optimality against a class of
alternatives that differ from the null in terms of the CvM-distance. They show
that the energy test is not optimal in that context. Moreover, they show consis-
tency in the HDLSS setting under certain conditions. It is also shown that the
multivariate CvM-distance is a special case of the generalized energy statistic
(Sejdinovic et al., 2013) and that it is equal to the MMD associated with the
newly introduced angular distance.
Throughout their analysis, Kim, Balakrishnan and Wasserman (2020) make the
assumption of n1, n2 ě 2. The CvM statistic averages over K projections to
approximate the integral over the unit sphere involved in the calculation of
the CvM statistic. A resulting problem is that in high dimensions exponen-
tially many projections may be required to achieve a certain accuracy. Instead,
Kim, Balakrishnan and Wasserman (2020) give a closed-form expression for the
squared multivariate CvM-distance that depends on the expected angles be-
tween the differences of X and Y under the assumption that βTX and βTY have
continuous distribution functions for λ-almost all β that lie in the p-dimensional
unit sphere, where λ is the uniform probability measure on the p-dimensional
unit sphere. The asymptotic null distribution of the test statistic is derived, but
it is not applicable for calculating critical values. Therefore a permutation test
is used instead. Kim, Balakrishnan and Wasserman (2020) show that the test
is consistent under fixed alternatives if second moments of conditional expecta-
tions of the test statistic are assumed. If the distance between the distributions
diminishes as the sample grows, the additional assumption of quadratic mean
differentiable families and an assumption on eigenvalues is required to achieve
power greater than α. The new test is more robust than the energy distance test
since both can be represented as L2-type differences between distribution func-
tions but the energy distance gives uniform weight to the whole real line while
the CvM statistic gives most weight on high-density regions. Moreover, the CvM
distance is well-defined without moment assumptions in contrast to the energy
distance that requires existing first moments. Kim, Balakrishnan and Wasser-
man (2020) prove that the permutation test is minimax rate optimal against a
class of alternatives associated with the CvM-distance (CvM-distance of at least
ε) and that the energy test is not minimax rate optimal in that context. Addi-
tionally, consistency under the HDLSS setting is shown under assumptions on
the first and second moments. Under the HDLSS setting and additional moment
assumptions (equal covariances, different means) and assumptions on the band-
width parameter of the Gaussian kernel, they also show the equivalence of CvM,
energy statistic, and MMD statistic with the Gaussian kernel. The projection
averaging approach can also be used for other one-dimensional test statistics like
the sign test, Wilcoxon test, and Kendall’s tau. Li and Zhang (2020) note that
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the test by Kim, Balakrishnan and Wasserman (2020) has cubic computational
cost OpN3q.

Test based on projective ensemble Li and Zhang (2020) construct a robust
test through a projective ensemble. The proposed test statistic is a generaliza-
tion of the Cramér-von Mises statistic that has a simple closed-form expression
without tuning parameters. It can be computed in quadratic time and is in-
sensitive to the dimension. Li and Zhang (2020) show that the test based on a
permutation procedure for approximating critical values is consistent against all
fixed alternatives with rate

?
N . Their test does not require a moment assump-

tion and is robust to outliers. The test is a generalization of the robust projection
averaging test by Kim, Balakrishnan and Wasserman (2020) that does not need
the continuity assumption. It is also a member of the class of MMD tests. The
test statistic is nonnegative and equal to zero, if and only if the distributions are
equal. Its limiting distribution is intractable since it depends on the unknown
distributions.

Weighted log-rank-type test Liu et al. (2022) present a weighted log-rank-
type test for the two- and k-sample problem using class of intensity centered
score processes. Their idea is to convert multivariate data into survival data
to make use of the powerful weighted log-rank test. The transformation can
be viewed as a statistic examining the arrival pattern of data at a certain
point in space. The test is computationally simple and applicable to high-
dimensional data. Liu et al. (2022) show consistency against any fixed alterna-
tive for Kolmogorov-Smirnov-type and Cramér-von Mises-type statistics. Criti-
cal values for the tests are obtained by permutations or with a simulation-based
resampling method. A regularity condition on the weight function is required as
well as the existence of a bounded density for the first distribution. The choice of
the weight function and the test set are left open. Three heuristic strategies are
presented to choose the test set. Moreover, a (dis)similarity measure for points
must be chosen. Typically the Euclidean distance is used for that.

Clustering-based k-sample tests Paul, De and Ghosh (2022a) propose dif-
ferent distribution-free k-sample tests intended for the high dimension low sam-
ple size (HDLSS) setting based on clustering the pooled sample. For the tests,
first, the pooled sample is clustered using some clustering algorithm suitable for
high-dimensional data, and then a contingency table of the cluster and dataset
membership is created. The idea behind both tests is that if the datasets come
from the same distribution, the cluster and dataset membership are independent
while if the datasets come from different distributions, the clustering depends on
the true dataset membership. For the first test, the Rand index of the clustering
is used as a test statistic (RI test). It is zero when the clustering is perfect, i.e.
when the cluster membership is a permutation of the true dataset membership.
The Rand index should take higher values when all clusters have similar dis-
tributions of class labels. Therefore, H0 : F1 “ ¨ ¨ ¨ “ Fk is rejected for large
values. The critical value can be calculated using a generalized hypergeometric
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distribution. Due to the discreteness of the Rand index, Paul, De and Ghosh
(2022a) propose to use a randomized test. For the second test, the generalized
Fisher’s test statistic for kˆ� contingency tables is used (FS test). It is intended
to assess whether there is a dependence between the dataset membership and
the cluster. Again, a randomized test using the generalized hypergeometric dis-
tribution to find the critical values is proposed. As a clustering algorithm, Paul,
De and Ghosh (2022a) suggest using K-means based on the generalized version
of the Mean Absolute Difference of Distances (MADD)

ρh,ϕpzi, zjq “
1

N ´ 2
ÿ

mPt1,...,Nuzti,ju

|ϕh,ψpzi, zmq ´ ϕh,ψpzj , zmq| ,

as proposed by Sarkar and Ghosh (2020) for the HDLSS setting. Here, zi, i “

1, . . . , N , denote points from the pooled sample and

ϕh,ψpzi, zjq “ h

˜

1
p

p
ÿ

i“l

ψ|zil ´ zjl|

¸

,

where h : R` Ñ R` and ψ : R` Ñ R` are continous and strictly increasing
functions. Paul, De and Ghosh (2022a) consider hptq “ t and ψptq “ 1´expp´tq
for their examples. The number of clusters has to be chosen in advance for the
RI and FS tests. A natural choice is to set the number of clusters to k. Paul, De
and Ghosh (2022a) also present modified versions of the test where the number
of clusters is estimated from the data using the Dunn index (MRI, MFS test).
Setting the number of clusters to k might fail in the case of multimodal distri-
butions. In that case, a larger number of clusters might be required where then
multiple clusters can correspond to one dataset. Moreover, multiscale versions
of the tests are presented (MSRI, MSFS test) for the case where the number of
clusters is unclear. The RI or FS tests are then performed for different numbers
of clusters and the results are aggregated using a Bonferroni adjustment for
the individual tests. An upper limit for the number of clusters to be considered
must be chosen. Under certain moment assumptions and assumptions on the
functions h and ψ and on the sample size, consistency of the tests under the
HDLSS setting (i.e. p Ñ 8) is shown. The sample size requirements can al-
ready be fulfilled for very low sample sizes like ni “ 4, depending on the α level
and the balance of the sample sizes. Slightly different assumptions are required
for the RI, FS / MRI, MFS / MSRI, and MSFS tests. All presented tests are
implemented in the R package HDLSSkST (Paul, De and Ghosh, 2022b).

4. Summary of data similarity methods

In the following, we give a brief summary of each of the ten classes that we di-
vided the methods into, i.e. (i) comparison of cumulative distribution functions,
density functions, or characteristic functions, (ii) methods based on multivariate
ranks, (iii) discrepancy measures for distributions, (iv) graph-based methods, (v)
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methods based on inter-point distances, (vi) kernel-based methods, (vii) meth-
ods based on binary classification, (viii) distance and similarity measures for
datasets, (ix) comparison based on summary statistics, and (x) different testing
approaches.

4.1. Comparison of cumulative distribution functions, density
functions or characteristic functions

Since each of the cumulative distribution function, the density function (if it
exists), and the characteristic function fully characterizes a distribution, it is
natural to compare distributions by one of these functions. Given two datasets
for which it is of interest to compare the underlying distributions, empirical
versions of the functions can be used.

For univariate distributions, methods of the Kolmogorov-Smirnov (KS) type
are particularly popular. They compare the maximal absolute difference of the
respective cumulative distribution functions of the two datasets to be compared.
The extension of KS-type methods to multivariate distributions is not straight-
forward. This class includes two generalizations, one that uses permutations
(Bickel, 1969) and one that uses partitioning of the sample space (Biau and
Gyorfi, 2005).

For the comparison of datasets based on their empirical density functions,
different approaches to density estimation are utilized (e.g. kernel density esti-
mation in Ahmad and Cerrito (1993); Anderson, Hall and Titterington (1994);
Cao and van Keilegom (2006) or estimation of densities based on partitions in
Ntoutsi, Kalousis and Theodoridis (2008); Ganti et al. (1999); Roederer et al.
(2001); Wang and Pei (2005)) and the resulting estimates of both samples are
then compared using different statistics, e.g. the L2-norm between the estimates.

For comparison of distributions by characteristic functions, usually some type
of distance, e.g. the L2-norm, between the empirical characteristic functions is
used (Alba-Fernández, Ibáñez-Pérez and Jiménez-Gamero, 2004; Alba Fernán-
dez, Jiménez Gamero and Muñoz García, 2008; Li, Hu and Zhang, 2022).

4.2. Methods based on multivariate ranks

In the univariate two-sample problem, nonparametric tests based on ranks are
popular choices. Since Rp does not have a natural ordering, the generalization
of these methods to the multivariate problem is not straightforward. For the
multivariate case, rank-based methods are based either on projecting the mul-
tivariate observations to one-dimensional statistics and ranking those (Ghosh
and Biswas, 2016) or on multivariate generalizations of ranks based on optimal
transport (Ghosal and Sen, 2021; Deb, Bhattacharya and Sen, 2021). Yet an-
other generalization uses graphs to define ranks for multivariate data (Zhou and
Chen, 2023).
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4.3. Discrepancy measures for distributions

There exist various approaches to measure the discrepancy of two distributions.
So-called probability metrics are metrics in the mathematical sense (i.e. they are
positive definite, symmetric, and fulfill the triangle inequality) while discrepancy
measures that do not fulfill the triangle inequality are usually called semimet-
rics or pseudometrics. In general, discrepancy measures that may not fulfill all
metric properties are known as divergences. The best-known class of probability
metrics are integral probability metrics (IPM), also called probability metrics
with a ξ-structure (Zolotarev, 1976, 1984), as introduced by Müller (1997). If
two distributions are equal, any function has the same expectation under both
distributions. Based on this idea, the supremum difference of the integrals under
both distributions over functions belonging to a prespecified set of functions is
evaluated. The choice of this set of functions determines the IPM. Divergences
include the large class of f -divergences, which are also known as Ali-Silvey dis-
tances going back to Ali and Silvey (1966) or as Csiszár’s Φ-divergences going
back to Csiszár (1963). f -divergences use the idea that equal distributions as-
sign the same likelihood to each point. Therefore, they measure how far the
likelihood ratio of the distributions is from one by using a convex continuous
function f that maps a ratio of one to the value zero. The expectation under
the first distribution of this function f applied to the likelihood ratio of the two
distributions to be compared is evaluated. The choice of the function f specifies
the f -divergence. There are several other subclasses of probability metrics and
divergences following a diverse set of approaches (e.g. Rényi, 1961; Zolotarev,
1984; Rachev, 1991; Muñoz et al., 2012; Zhao et al., 2021).

4.4. Graph-based methods

Graph-based methods for comparing distributions are particularly popular in
two-sample testing. Most of these fit in the general framework presented for
example by Arias-Castro and Pelletier (2016) or Mukhopadhyay and Wang
(2020a). The pooled sample consisting of both datasets is used to construct
a graph where each data point corresponds to one node. The methods differ in
how edges between these nodes are inserted. Then, in most cases, the number
of edges that connect points from different datasets, that is the number of ad-
jacent nodes in the graph from different datasets, is counted. One particularly
frequently used example is the K-nearest neighbor graph (Weiss, 1960; Fried-
man and Steppel, 1973; Schilling, 1986; Henze, 1988; Nettleton and Banerjee,
2001; Hall and Tajvidi, 2002; Chen, Chen and Su, 2018; Mondal, Biswas and
Ghosh, 2015), where each point in the pooled sample corresponds to one node.
An edge connects one node to another if the data point corresponding to the
second node is one of the K nearest neighbors of the data point corresponding
to the first node, with respect to some distance measure for the data points. If
the number of edges connecting points from different datasets is high, points of
both datasets are mixed well, so the datasets are similar. If the number is low,
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the datasets are separated well, so they are not similar. Since it is unclear in
general what constitutes a high or low number, this is usually determined via a
permutation approach.

4.5. Methods based on inter-point distances

Many methods for comparing datasets are based on analyzing the distribu-
tions of inter-point distances within and between the datasets. A theoretical
justification for methods based on inter-point comparisons using a univariate
function (e.g. a distance) is given by Maa, Pearl and Bartoszyński (1996). For
two datasets, they consider the two distributions of the in-sample comparisons
(i.e. }X ´ X 1} and }Y ´ Y 1} for all pairs of X, X 1 points from the first dataset
and Y , Y 1 points from the second dataset) and the distribution of the between-
sample comparisons (i.e. }X ´ Y }). They show that the equality of these three
distributions is equivalent to the equality of the distributions of the datasets.
This holds in general for discrete distributions. For the continuous case, some
restrictions on the density function are needed. These include the existence of
expectations and a second condition that is for example fulfilled if one of the
densities is bounded or continuous. Based on this theorem, many approaches
compare the distributions of the within-sample distances and between-sample
distances. The most popular statistic based on this idea is the energy statis-
tic (Zech and Aslan, 2003), which compares the expectations of the distance
distributions within and between samples.

4.6. Methods based on kernel (mean) embeddings

Kernel mean embeddings are a standard tool in machine learning. They map
probability distributions to functions in so-called reproducing kernel Hilbert
spaces (RKHS). Similarity between distributions can then be measured in this
RKHS. More precisely, kernel mean embeddings extend feature maps φ as used
by other kernel methods (e.g. in the context of kernel support vector machines)
to the space of probability distributions by representing each distribution F on
the feature space X as a so-called mean function

μF p¨q :“
ż

X
Kpx, ¨q dF pxq “ EF pKpX, ¨qq,

where K : X ˆ X Ñ R is a symmetric and positive definite kernel function
and X „ F a random variable defined on X . When well-defined, the kernel
mean embedding is essentially a transformation of the distribution F to an
element in the reproducing kernel Hilbert space (RKHS) H corresponding to the
kernel K (Muandet et al., 2017). For characteristic kernels, this representation
captures all information about the distribution F . This implies that the distance
of the kernel mean embeddings of two distributions, measured in the metric
that the RKHS is endowed with, is equal to zero if and only if the distributions
coincide (Fukumizu, Bach and Jordan, 2004; Sriperumbudur et al., 2008, 2010).
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Therefore, kernel mean embeddings can be used for comparing distributions.
The difference of the kernel mean embeddings measured in the RKHS metric
is called Maximum Mean Discrepancy (MMD) (Gretton et al., 2006), which is
also the most popular method of this class.

4.7. Methods based on binary classification

The idea behind methods in this class is to perform a binary classification of
the data points from two given datasets and to evaluate the quality of this clas-
sification. More detailed, the data points are labeled with their membership to
the first or second dataset, respectively, and then some binary classification rule
is fitted to the dataset labels on the pooled sample. If this classification rule
performs well (e.g. measured by the classification error) the datasets are consid-
ered to be different in some sense, while for datasets that come from the same
distribution, it is expected that the classification rule does not perform bet-
ter than random guessing. To learn the classification rule, various classification
methods like random forests or neural networks can be utilized and there are
also different proposals on how to evaluate their performance (Yu et al., 2007;
Lopez-Paz and Oquab, 2017; Kim, Lee and Lei, 2019; Cheng and Cloninger,
2022; Hediger, Michel and Näf, 2022). Alternatively, some approaches compare
the whole (one-dimensional) distributions of scores, e.g. predicted probabilities,
obtained from the classification of the data points (Friedman, 2004).

4.8. Distance and similarity measures for datasets

In contrast to defining a distance or similarity measure of the underlying distri-
bution, some methods directly define the distance or similarity of the datasets
themselves, using characteristics that are only indirectly connected to the un-
derlying distributions. These methods are in part defined in the context of meta-
learning. They use for example the correlation between meta-features like the
number of variables in the datasets or other descriptive statistics (Feurer, Sprin-
genberg and Hutter, 2015), or the agreement of the performance of different
learning algorithms on the datasets (Leite, Brazdil and Vanschoren, 2012; Leite
and Brazdil, 2021). Moreover, there are approaches to define distances between
datasets by viewing them as metric measure spaces (Mémoli, 2017) or by using
optimal transport (Alvarez-Melis and Fusi, 2020).

4.9. Comparison based on summary statistics

The idea behind the methods of this class is to first summarize a dataset using
different summary statistics. Then, a distance between these summary statistics
is used as the distance between the datasets. This approach is less complex than
using potentially complicated distances directly on the datasets, and it can also
lead to simpler interpretations.
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4.10. Different testing approaches

Comparing two datasets can be seen as a two-sample problem, i.e. testing for
equality of their distributions. Many of the methods across all classes are intro-
duced as test statistics for two- or k-sample testing. In this class, more two- and
k-sample tests that do not fit in any of the other classes are collected.

5. Approach for comparison of data similarity methods

So far, we classified more than 100 different methods for quantifying the simi-
larity of datasets into ten groups described above. Now, we rate these methods
with regard to their applicability, interpretability, and theoretical properties, in
order to be able to compare them with each other. This comparison can then
facilitate the choice of an appropriate method for the data that researchers have
at hand. For this comparison, we introduce 22 different criteria which are ex-
plained in the following Section 5.1. The procedure for the comparison of the
methods is then described in Section 5.2. Note that the criteria do not include
the performance of the methods, e.g. type I error rates and power for two- and
k-sample tests, as this is hard to formalize, and for many methods, there are
no empirical results yet. Moreover, to our knowledge, there are no neutral com-
parison studies of the methods yet. Rather, when comparisons are provided,
they are usually presented in the context of an article proposing a new method
(e.g. Biswas and Ghosh, 2014; Chwialkowski et al., 2015; Mondal, Biswas and
Ghosh, 2015; Jitkrittum et al., 2016; Petrie, 2016; Chen and Friedman, 2017;
Lopez-Paz and Oquab, 2017; Liu, Li and Póczos, 2018; Liu et al., 2020; Sarkar,
Biswas and Ghosh, 2020). Therefore, we focus on criteria that can be judged
without performing extensive simulations and leave a neutral comparison of the
method performance open for further research.

5.1. Criteria for the comparison of data similarity measures

Applicability Favorable are methods that can be used for general applica-
tions. To judge the applicability, we introduce the following criteria.

Does the method allow incorporation of a target variable in a mean-
ingful way?
Many datasets consist of influencing (independent) variables and a target (de-
pendent) variable. Presumably, in most contexts, it is not reasonable to treat
this target variable in the same way as the influencing variables. Therefore,
dataset similarity measures should also take into account the different role of
the target variable. This criterion is counted as fulfilled if the method explicitly
accounts for a target variable in the datasets.

Does the method work on numeric data? Does the method work on
categorical data?
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Numeric and categorical data are often treated differently. Ideally, dataset sim-
ilarity measures should be able to handle both kinds of data. Each of these
criteria is counted as fulfilled if the method is defined for the respective type of
data.

Does the method work for datasets that have different numbers of
observations?
Some of the methods might not be able to handle different sample sizes. It is
desirable that a method can handle differently-sized datasets. The criterion is
counted as fulfilled if the method is explicitly defined for datasets of different
sizes.

Does the method work if the number of variables exceeds the number
of observations?
The case of more variables than observations might be hard to handle due to
identifiability as well as the curse of dimensionality. However, since it is a com-
mon case in applications like the analysis of high-dimensional gene expression
data, data similarity measures that work even for numbers of variables larger
than the number of observations might be needed. This criterion is counted as
fulfilled if the method can be applied to data where the number of variables
is larger than the number of observations. We do not evaluate how well the
method works in that case, but only if the measure can be applied at all.

Can the method be used to compare more than two datasets at a
time?
In some applications, researchers might be faced with more than two datasets.
In that case, it is useful if multiple datasets can be compared at once. In general,
it is always possible to extend methods comparing two datasets to the k-sample
case for k ą 2 by aggregating the pairwise comparisons. For this criterion, we
check if the method is explicitly defined for more than two datasets.

Can the method be used without a separate training dataset?
In some applications, data can be scarce, e.g. data derived from expensive ex-
periments. In that case, it is undesirable or even impossible to hold out data
for training a model involved in the dataset similarity measure. This criterion
is counted as fulfilled if the method does not require holding out training data.

Is the method independent of further assumptions?
Further assumptions like continuity of distributions or the existence of certain
moments reduce the applicability of a method and are therefore unwanted. This
criterion is fulfilled if there are no explicit or implicit assumptions made that are
not covered by the other criteria. For example, if the method requires numerical
data, this criterion is fulfilled, while it is unfulfilled if continuous data is required.

Is the method free of parameters that need to be chosen or tuned?
Choosing good parameter values often requires good knowledge of the method
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and of the datasets at hand and is therefore often a hard task. Thus, for ease
of application, it is desirable for users that they do not need to choose parame-
ters prior to applying the method. Default parameters or suggestions on how to
choose the parameters are very helpful but do still leave some uncertainty for
the parameter choice. Therefore, the criterion is only counted as fulfilled if the
method has no free tuning parameters to choose.

Is the method implemented?
Implementation of a method highly increases its applicability for practitioners.
This criterion is counted as fulfilled if an implementation in any software is pub-
licly available, e.g. via an R package or as code (e.g. in R, matlab, python, or
others) in any publicly available repository. Otherwise, we count the criterion
as unknown since we cannot guarantee that there is no implementation if we
find none. We searched the publications introducing or reviewing the respec-
tive methods themselves as well as CRAN (https://cran.r-project.org/)
and Bioconductor (https://bioconductor.org/) for implementations of the
methods.

What is the computational complexity of the method?
In times of big data, methods with high-cost complexity might be inapplicable.
Therefore, a low complexity of the method is desirable. A value for this crite-
rion is given if cost complexity is mentioned in the publications introducing or
reviewing the respective methods. For this criterion, we do not decide whether
it is fulfilled or not but simply report the complexity if known since in general
it is unclear which complexities can be counted as “good”. Moreover, usually
only the complexity with regard to the number of observations is given while in
some applications the number of features might be of higher interest.

Interpretability To judge the result of a dataset comparison, the interpret-
ability of the used measure is very helpful. To rate the interpretability of each
measure, we use the following criteria.

Does the measure have interpretable units?
Interpretable units allow the user to judge what an increase in the measure
by one unit means. For example for accuracies given as percentages, one unit
increase can be interpreted as classifying one additional observation in 100 cor-
rectly, or a one unit increase in many graph-based methods can be interpreted
as one additional edge that connects points from different samples. In contrast,
for example, one unit increase in the Lq metric of the density functions is not
interpretable. This criterion is fulfilled if it is intuitively interpretable what an
increase of the measure by one unit means.

Is the measure upper bounded? Is the measure lower bound?
Bounds allow us to set the observed value of a measure into context and thus
to judge if the observed value represents a low or high similarity or distance,
respectively. These criteria are fulfilled if the measure is bounded. If known, the

https://cran.r-project.org/
https://bioconductor.org/
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concrete bounds are provided.

Theoretical properties There are several desirable theoretical properties
that a data similarity measure might have.

Is the measure invariant to rotation/ location change/ homogeneous
scale transformations?
Invariance under certain transformations can be useful since it might for exam-
ple allow to rescale or shift both datasets in the same way without influencing
the similarity values. The criteria are counted as fulfilled if the respective trans-
formation of the datasets does not change the value of the measure.

Does the measure fulfill the metric properties, i.e. is it positive defi-
nite, symmetric, and does it fulfill the triangle inequality?
Metrics are well-known in mathematics and used in many different contexts.
The requirement of positive definiteness ensures that a value of zero is attained
if and only if the datasets, respectively their distributions, coincide. Symmetry
makes sure that the ordering of the datasets, i.e. which one is defined to be the
first or second, does not change their similarity. The triangle inequality holds
if the sum of the distance of one dataset to a second plus the distance of this
second dataset to a third dataset cannot be smaller than the distance directly
between the first and third dataset. Again, each of these criteria is fulfilled if the
measure fulfills the respective property. For symmetry, this is often obvious even
if not explicitly mentioned by the authors. Positive definiteness and the triangle
inequality are counted as unknown if they are not explicitly mentioned in the
publications introducing or reviewing the respective methods. If the measure is
defined for more than two distributions, symmetry and the triangle inequality
are checked for the special case of k “ 2 distributions.

Is the two- or k-sample test based on the data similarity measure
consistent?
This criterion is only applicable to methods for which a two- or k-sample test is
defined. As such tests are defined for many of the presented methods, the testing
performance is of interest. As direct power comparisons of the methods are infea-
sible, only consistency of the test is considered as it can be assessed without sim-
ulations. Following the presented literature, we distinguish between consistency
under the usual limiting regime, i.e. ni Ñ 8, ni{N Ñ πi P p0, 1q, i “ 1, . . . , k,
and p fixed, and high dimension low sample size setup (HDLSS) consistency, i.e.
ni fixed and p Ñ 8. In almost all cases, some additional assumptions on the
distributions or on parts of the test statistic like the graph in graph-based tests
or the kernel in kernel-based tests are required. As these differ fundamentally
from test to test we only check whether there is some proof of consistency under
certain assumptions. In that case, the criterion counts as fulfilled. If there is only
proof for the test to not be consistent under the respective limiting regime, it
is counted as unfulfilled. If there are known conditions under which it is consis-
tent and known conditions under which it is not, it is counted as conditionally
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fulfilled. It is also counted as conditionally fulfilled if consistency is only shown
for a certain variant or special case of the test. If there are no statements re-
garding the consistency of the test in the literature, the criterion is counted as
unknown. For methods for which no test is defined, the criterion is counted as
inapplicable.

5.2. Method comparison procedure

The comparison of all presented methods is performed as follows. For each
method, each of the criteria explained above is checked and the results are
tabulated. If a criterion is fulfilled, the method gets a checkmark in the corre-
sponding row of the criterion. If it is not fulfilled, the method gets a cross for
that criterion. If it is neither described in the literature nor obvious whether the
criterion is fulfilled, the field is left empty (referring to unknown). If a method
has free parameters and a criterion is only fulfilled for certain choices of these
parameters, the check is given in parentheses. For the lower and upper bounds
and the complexity, concrete values are given if known.

In the end, to evaluate how good each method is with regard to our criteria,
we count how many criteria are fulfilled, how many are fulfilled conditionally on
some free parameters, how many are unfulfilled, and for how many it is unclear.
The complexity is not considered in these numbers as it is unclear what a good
complexity is in general. The distinction between criteria that are always fulfilled
and criteria that are fulfilled for certain parameters allows down-weighting the
latter in the comparison. This might be of interest since in many cases there is no
single parameter setting that fulfills all properties that can (in principle) be ful-
filled by some setting. We analyze which of the methods fulfill most of the criteria
as these might be the most promising methods in a general setting. For concrete
data at hand, some of the criteria might be irrelevant. To facilitate finding the
best suiting method we complement this article with an online tool (https://
shiny.statistik.tu-dortmund.de/data-similarity) which allows filtering
by certain criteria that are relevant to the problem at hand.

6. Results of comparison of data similarity methods

In the following, we present the results of the method comparison. First, we
demonstrate the criteria for one example method. Then we give an overview of
the results for all methods. Finally, we present a detailed comparison. All figures
presented are created using R (R Core Team, 2021).

6.1. Example for criteria evaluation: cross-match test

In the following, we check the criteria for one example method, namely the cross-
match test statistic (Rosenbaum, 2005). The cross-match test is a graph-based
method that uses the optimal non-bipartite matching. The optimal non-bipartite

https://shiny.statistik.tu-dortmund.de/data-similarity
https://shiny.statistik.tu-dortmund.de/data-similarity
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Fig 1. Optimal non-bipartite matching for the pooled sample of two example datasets. White
points correspond to the first dataset, black points correspond to the second dataset. Lines
between points indicate edges. Edges between points from different datasets are indicated by
red solid lines, and edges between points from the same dataset by black dashed lines.

matching is the graph where each data point in the pooled sample is connected
to exactly one other data point such that the sum over the edge lengths, i.e.
the distances between the corresponding points, is minimal. In the case of an
odd number of data points, one observation is left out such that the resulting
matching has the lowest sum of edge lengths.

Figure 1 shows the optimal non-bipartite matching for an example dataset.
The cross-match statistic is given as the number of edges that connect points
from different datasets. For testing, the edge count standardized by the expec-
tation and standard deviation under the null is used. For example, in Figure 1,
the edges connecting points from different datasets are indicated by red and
solid lines. The edge count statistic takes the value two.

We now check the criteria described in Section 5.1 for the cross-match test
statistic.

Applicability:

• Sensible inclusion of target variable? Since the distances of the ob-
servations are taken, all variables are treated the same. ñ Unfulfilled

• Numeric variables? The test is intended for numeric data. ñ Fulfilled
• Categorical variables? Categorical data can lead to ties for which the

statistic is not uniquely defined. ñ Unfulfilled
• Unequal sample sizes permitted? The datasets are pooled, so the

sample sizes do not play a role in calculating the statistic. ñ Fulfilled
• p ą ni permitted? Data is transformed into distances. ñ Fulfilled (see

also Biswas and Ghosh, 2014)
• Applicable to more than two datasets at a time (k ą 2)? The

statistic is defined for exactly two datasets. ñ Unfulfilled
• No additional training data / train test split required? The cal-

culation requires no training step. ñ Fulfilled
• No further assumptions on distributions required? The calculation
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indirectly requires the uniqueness of the optimal non-bipartite matching,
so no ties are allowed. ñ Unfulfilled

• No tuning / choice of additional parameters required? There are
no additional parameters. ñ Fulfilled

• Implemented in any software? The cross-match test is implemented
in the R (R Core Team, 2021) package crossmatch (Heller, Small and
Rosenbaum, 2012). ñ Fulfilled

• Computational complexity? The complexity for calculating the opti-
mal non-bipartite matching is OpN3q, where N denotes the total sample
size, i.e. the size of the pooled sample (Rosenbaum, 2005).

Interpretability:

• Interpretable units? An increase of one unit for the cross-match statistic
can be interpreted as one additional edge in the optimal non-bipartite
matching that connects two points from different datasets. ñ Fulfilled

• Lower bound? If each observation is connected to another observation
from the same dataset, the minimum value of zero is attained.

• Upper bound? If each observation from the smaller of the two datasets is
connected to an observation from the other dataset, the maximum value of
mintn1, n2u is attained, where n1 and n2 are the numbers of observations
in the first and second datasets, respectively.

Theoretical properties:

• Rotation invariant? Distances are rotation invariant, so the optimal
non-bipartite matching and therefore the edge count statistic stays the
same under rotation. ñ Fulfilled

• Location change invariant? Distances are location change invariant, so
the optimal non-bipartite matching and therefore the edge count statistic
stays the same under location change. ñ Fulfilled

• Scale invariant? For a change in scale, all distances change by a constant
factor, so the optimal non-bipartite matching and therefore the edge count
statistic stays the same under scale transformations. ñ Fulfilled

• Positive definite? For more similar datasets, higher values are expected.
ñ Unfulfilled

• Symmetric? The roles of the first and the second datasets are inter-
changeable since the data is pooled. ñ Fulfilled

• Triangle inequality? It is not known whether the triangle inequality is
fulfilled.

• Consistency? Consistency under the usual limiting regime, N Ñ 8,
ni{N Ñ πi P p0, 1q, is shown in the original article of Rosenbaum (2005).
ñ Fulfilled. There is no proof of HDLSS consistency: ñ Unknown
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6.2. General insights from overall results

Figure 2 shows a heatmap of all methods and criteria, where the color of each
field indicates whether a criterion is fulfilled for the respective method. The
methods are ordered first by the highest proportion of fulfilled criteria, then by
the highest proportion of conditionally fulfilled criteria, and then by the lowest
proportion of unfulfilled criteria. We take into account the proportions instead
of absolute numbers of fulfilled criteria since we do not want to give a structural
advantage to methods that define a test or are applicable to numeric data, since
more criteria can be applied to such methods.

There are many graph-based methods at the top. Apart from this, overall
the classes are mostly mixed up. The best method according to the ordering
is the nonparametric (kernel) measure of multi-sample dissimilarity (KMD) of
Huang and Sen (2023) which fulfills 16 out of 21 criteria. It uses the association
between the features and the sample membership to quantify the dissimilarity
of multiple distributions. The estimator for KMD is based on a graph in which
two points of the pooled sample are connected by an edge if they are close
in distance, e.g. the K-nearest neighbor graph. The second best method is the
Energy statistic (Zech and Aslan, 2003; Székely and Rizzo, 2017), which is based
on inter-point distances and compares the mean of between-sample distances to
the means of within-sample distances and fulfills 14 out of 21 criteria and 1
conditionally. Following this method there are three methods that each fulfill 14
out of 21 criteria but none conditionally. These are all graph-based tests, namely
the Friedman-Rafksy test (Friedman and Rafsky, 1979) that uses the minimum
spanning tree, the cross-match test (Rosenbaum, 2005) that uses the optimal
non-bipartite matching, and the graph-based test of Mukherjee et al. (2022)
based on optimal non-bipartite matchings that generalizes the cross-match test
to categorical data and multiple datasets by using the Mahalanobis distance
of a matrix that consists of the pairwise cross-match statistics of all pairs of
datasets.

We can see that certain criteria are fulfilled by most of the methods, such as
applicability to numeric data, unequal sample sizes, and that there is a lower
bound and symmetry. On the other hand, certain other criteria are unfulfilled
for most methods, such as the sensible inclusion of a target variable, applica-
bility to more than two datasets at a time, no further assumptions, no tuning
parameters, and interpretable units. In many cases, it is unknown if a method
is implemented, if it has an upper bound, or if the triangle inequality holds.

Figure 3 shows boxplots of the number of fulfilled criteria for each method,
grouped by classes. The median number of fulfilled criteria ranges from five,
for methods based on binary classification, to eleven for graph-based methods
and methods based on inter-point distances. The number of fulfilled criteria also
varies notably within the classes.

The number of fulfilled criteria on its own gives a first idea of the overall per-
formance of the method with regard to our criteria. However, depending on the
application, the criteria are not equally important, since some criteria might be
mandatory and others negligible. For example, for a dataset comparison where
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Fig 2. Comparison of all methods regarding the theoretical criteria. ni, i “ 1, . . . , k, denote
the sample sizes, k denotes the number of datasets to compare, p denotes the number of
features per dataset.
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Fig 3. Comparison of methods regarding the number of fulfilled criteria, grouped by classes.
The classes are ordered by the median number of fulfilled criteria. n denotes the number of
methods in the respective group.

some of the variables are numeric and others are categorical, a method that can
handle both types of data is required. Further, if the data is not transformed,
the invariance properties of a method might not be of interest.

Therefore, in the following section, a detailed list of criteria is given for
each method. To facilitate the choice and comparison of suitable methods for a
dataset comparison, the online tool (https://shiny.statistik.tu-dortmund.
de/data-similarity) can be used, which allows filtering and sorting of the ta-
bles of Section 6.3 by different criteria. In addition, the tool makes it easy to
search for specific methods and it allows users to hide criteria that are not rel-
evant to their application of interest, in order to make the comparison results
more concise.

6.3. Detailed method comparison

Tables 2 to 11 show which of the methods fulfill which of our criteria and sum-
marize how many of the criteria are fulfilled or unfulfilled for each method. The
cells in the table are filled as explained in Section 5.1. For upper and lower
bounds the criterion is fulfilled if a bound is given, all other criteria are ful-
filled if they have a checkmark or a checkmark within parentheses. Parentheses
around checkmarks mean that parameters can be chosen such that the criterion
is fulfilled. Crosses in parentheses mean that for all but single choices the crite-
rion is not fulfilled. Empty fields mean that it is neither described in literature

https://shiny.statistik.tu-dortmund.de/data-similarity
https://shiny.statistik.tu-dortmund.de/data-similarity
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nor obvious whether the criterion is fulfilled. The complexity is not considered
in the calculation of the score so the maximum number of fulfilled criteria is 21.
For methods that are inapplicable to numeric data, the transformations of rotat-
ing, shifting, or scaling the data are not meaningful. Therefore, the invariance
criteria are inapplicable for such methods. This is denoted by a dash. Similarly,
consistency does not apply as a criterion to methods that do not define any
two- or k-sample procedure. ni, i “ 1, . . . , k denote the sample sizes, N “

ř

ni

denotes the total sample size of the pooled sample, p the number of features,
and k the number of datasets.
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Comparison of approaches based on the comparison of cumulative distribution
functions, density or characteristic functions regarding applicability, interpretability,
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Table 3

Comparison of approaches based on multivariate ranks and probability metrics regarding
applicability, interpretability, and theoretical properties. ˚ assumptions only needed to show

consistency for high dimension low sample size (HDLSS) setting.
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Table 4

Comparison of divergences regarding applicability, interpretability, and theoretical
properties. ˚ holds for square root transformation. ˚˚ holds only in case of α “ 1{2, resp.

s “ 1{2. ˚˚˚ values calculated using the general formula given in Vajda (2009).
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Table 5

Comparison of graph-based methods regarding applicability, interpretability, and theoretical
properties. ˚ no assumptions mentioned in the original articles, but the method implicitly
requires uniqueness of the constructed graph (Chen and Zhang, 2013). ˚˚ K minimum
number of categories, M number of minimum spanning trees. ˚˚˚ for unstandardized

statistic.
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Table 6

Comparison of methods based on nearest neighbors regarding applicability, interpretability,
and theoretical properties. ˚ only in combination with numerical data.
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Table 7

Comparison of methods based on inter-point distances regarding applicability,
interpretability, and theoretical properties. ˚ m denotes the number of random projections.
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Table 8

Comparison of methods based on variations of MMD regarding applicability,
interpretability, and theoretical properties. ˚ for block size B “ rnγ s. ˚˚ L denotes the
number of basis functions for approximating kernels. ˚˚˚ NR denotes the number of

reference points.
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Table 9

Comparison of kernel-based methods other than MMD and of methods based on binary
classification regarding applicability, interpretability, and theoretical properties. ˚

assumptions are only needed for showing properties of the estimator. ˚˚ for K-nearest
neighbor graph. ˚˚˚ for permutation version.
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Table 10

Comparison of distance and similarity measures for datasets and comparison based on
summary statistics regarding applicability, interpretability, and theoretical properties. ˚

combination of numeric and categorical data required. ˚˚ finite sample space required.
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Table 11

Comparison of different testing approaches regarding applicability, interpretability, and
theoretical properties.˚ for RI version.
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No. cond. fulfilled criteria 1 0 0 0 2 0 0 0 0 0 3
No. unfulfilled criteria 3 6 5 7 8 5 5 5 4 6 3
No. NAs 7 8 8 7 6 5 9 5 6 8 4

7. Conclusion

In statistics and machine learning, measuring the similarity between two or more
datasets has widespread applications. Extremely many approaches for quantify-
ing dataset similarity have been proposed in the literature. We examined more
than 100 methods for quantifying the similarity of datasets. The methods were
selected from an extensive literature search by using the following criteria:

• The method is applicable for multivariate datasets.
• The method requires no specific parametric or distributional assumptions

on the underlying distributions of the datasets (e.g. normal distribution).
• The method does not focus on a particular property of the data (e.g.

means), but on the entire dataset or its entire distribution.
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We classified the methods into ten classes based on their main ideas, including

1. Comparison of cumulative distribution functions, density functions, or
characteristic functions

2. Methods based on multivariate ranks
3. Discrepancy measures for distributions
4. Graph-based methods
5. Methods based on inter-point distances
6. Kernel-based methods
7. Methods based on binary classification
8. Distance and similarity measures for datasets
9. Comparison based on summary statistics

10. Different testing approaches.
We presented an extensive review of these methods. For each method, we in-
troduced the underlying ideas, formal definitions, and important properties. An
overview of the methods can be found in Table 1 and a summary of the classes
can be found in Section 4.

Moreover, we compared all these methods with respect to 22 criteria that can
be divided into the three categories applicability (e.g. is the method applicable
to numeric or categorical data), interpretability (e.g. is the statistic bounded),
and theoretical properties (e.g. metric properties). The criteria can be used
to judge which methods are best suited for quantifying the similarity of given
datasets. Overall, we found that graph-based methods had the highest numbers
of fulfilled criteria.

To facilitate the choice of an appropriate data similarity measure for a con-
crete application, we provided detailed comparisons of the methods. More-
over, we designed an online tool (https://shiny.statistik.tu-dortmund.
de/data-similarity) that allows for custom filtering of the criteria and sort-
ing of the methods. Therefore, the online tool can provide more specific guidance
for the choice of a suitable dataset similarity method for concrete data at hand
in addition to the overall comparison presented in this paper. We intend to ex-
pand this online tool over time. Suggestions for new methods to be included, as
well as additional entries for criteria not yet marked as fulfilled or unfulfilled, are
welcome. These can be added as an issue in the GitHub repository (https://
github.com/MariekeStolte/ComparisonToolDatasetSimilarity.git).

Note that the comparison so far does not include the performance of the
methods, e.g. type I error rates and power for two- and k-sample tests. Therefore,
no statements can be made as to whether the methods that perform well in
this theoretical comparison also perform well in practice. There are limited
simulation results on the performance of the methods available in some of the
respective articles.

Moreover, the discussion is restricted to datasets with the same number of
variables since the aspect of comparing datasets with different dimensions is
very rarely discussed in the literature. Further, in the applications we have in
mind the comparison of datasets with different dimensions is also not relevant.

For future research, we plan to incorporate the best-performing methods into

https://shiny.statistik.tu-dortmund.de/data-similarity
https://shiny.statistik.tu-dortmund.de/data-similarity
https://github.com/MariekeStolte/ComparisonToolDatasetSimilarity.git
https://github.com/MariekeStolte/ComparisonToolDatasetSimilarity.git
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a comparison of parametric and Plasmode simulation studies. Within this com-
parison, a critical step is to quantify how far assumptions of the simulations
deviate from a true data-generating process. It is desirable to quantify this
deviation in terms of a dataset similarity or distance rather than in terms of
specific parameters that are changing. Moreover, we plan to conduct an empir-
ical comparison of the methods to evaluate how well the methods perform in
practice and to provide a fair comparison of the method performance.
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