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Abstract: Dual systems estimation is a capture–recapture approach to
population estimation restricted to two captures of the population. When
applied to human populations, the population captures may be existing in-
complete listings of the population, as provided by census and administra-
tive datasets. In contrast to much capture-recapture analysis, dual systems
applications in official statistics are usually concerned with estimating the
distribution of a human population, over combinations of covariates, such
as age, sex, ethnic group and small geographic area, rather than focussing
primarily on the total population count. We synthesise theory and methods
for Bayesian dual systems estimation for this problem, which we refer to
as small domain population estimation. We primarily work within a model
framework that combines a general model for the covariate distribution,
such as an unrestricted multinomial in the case of categorical covariates,
with hierarchical logistic models for the probability of inclusion on the lists.
We explore the issue of dependence between the two lists which leads to a
well-known identifiability problem. We illustrate the use of informative pri-
ors for the degree of dependence expressed as an odds ratio, or for certain
aggregate level population totals. Although progress can be made using
informative priors, the underlying identifiability problem means that infer-
ences are sensitive to prior choices. We relate our approach to the popular
log-linear modelling approach to capture-recapture analysis and note that
the latter is primarily a re-parameterisation of our model set-up, though
with a specific implied prior for the total population in the case of Poisson
log-linear models.
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Notation

N Total population size.
Y List inclusion cell indicator, taking values in

Y = {(1, 1), (1, 0), (0, 1), (0, 0)}.
X Covariate vector, taking values x ∈ X .
Lj List inclusion indicator for List j, j ∈ {1, 2}.
Ycom Complete population vector of list inclusion cells, with realised

value ycom.
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Xcom Complete population covariate matrix, with realised value xcom;
For q covariates Xcom is an N × q random matrix and xcom is an
N × q matrix.

nobs Number of people recorded on at least one list.
xobs Observed covariate values.
yobs Observed list inclusion cells.
Dobs Observed data.
X(0,0) An (N−nobs)×q matrix of covariate values for the group missed

by both lists.
x[k] The kth covariate combination in a aggregated population struc-

ture.
K Number of covariate combinations in an aggregated population

structure.
Mk,y Count of people with covariate level x[k] in list inclusion cell y.
Mk,+ Population count for the kth covariate combination;

∑
y Mk,y.

Mobs
k,+ Observable count of people recorded on at least one list at the

kth covariate combination;
∑

y �=(0,0) Mk,y.
M.,y Vector of counts for list inclusion cell y; (M1,y,M2,y, . . . ,MK,y)′.
Mcom {Mk,y, k ∈ {1, . . . ,K}, y ∈ Y}. Counts for the complete popula-

tion, by covariate combination and list inclusion cell.
βj Parameter vector for probability model for inclusion in List j,

j ∈ {1, 2}.
β Full parameter vector for both coverage models; (β′

1,β
′
2)′.

ρ(x) List inclusion dependence odds ratio for covariate setting x.
ρ Vector of dependence odds ratio parameters; may be a vector

of odds ratios for different groups or covariate combinations or a
vector of parameters of a model relating odds ratios to covariates.

p(0,0)(β,θ) Population averaged probability of being missed by both lists, for
a model assuming conditionally independent list inclusion.

p(0,0)(β,θ,ρ) Population averaged probability of being missed by both lists, for
a model which allows conditionally dependent list inclusion, with
dependence parameterised by the odds ratio parameters, ρ.

φ̃j(x,βj) List inclusion probability for List j; Pr(Lj = 1)|X = x,βj).
φy(x,β) Probability of being in list inclusion cell y, given covariate combi-

nation X = x, assuming conditionally independent list inclusion;
Pr(Y = y|X = x,β).

φ(x,β) Vector of cell inclusion probabilities;
(φ(1,1)(x,β), φ(1,0)(x,β), φ(0,1)(x,β), φ(0,0)(x,β))′.

φy(x,β,ρ) Probability of being in list inclusion cell y, given covariate com-
bination x, for a model that allows conditionally dependent list
inclusion with the dependence parameterised by the odds ratio
parameters, ρ.

θ Parameter vector for covariate distribution.
η; ηk,y Vector of covariate combination and list inclusion cell probabili-

ties in the multinomial log-linear model; Probability for covariate
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combination x[k] and list inclusion cell y, in the multinomial log-
linear model.

λ Parameter vector for log(η) in the multinomial log-linear model.
μ;μk,y Vector of expected cell counts, for the Poisson log-linear model;

Expected count for list inclusion cell y for covariate combina-
tion x[k].

ξ Parameter vector for log(μ) in the Poisson log-linear model.
TNorm(m,σ, a, b) Truncated normal distribution, with mean parameter m, stan-

dard deviation parameter σ, lower and upper truncation points
a and b, respectively.

g subscript Indicates a parameter or observable pertains to the gth sub-
population, as in θg and Mg,k,y which refer to the covariate dis-
tribution parameter vector for the gth population and the count
of people in sub-population g, with covariate combination x[k]
and in list inclusion cell y, respectively.

1. Introduction

Capture–recapture methods are widely used population estimation methods
that use two or more listings of a population, in conjunction with statistical
modelling, to estimate the size of the group not captured by any of the lists,
and hence, the population size. The methods are used in ecology (Seber, 1982;
Link and Barker, 2009, chapter 9), epidemiology (International Working Group
for Disease Monitoring and Forecasting, 1995) and, increasingly in the esti-
mation of the number of victims of human rights violations (Lum, Price and
Banks, 2013; Manrique-Vallier, Price and Gohdes, 2013; Cruyff, van Dijk and
van der Heijden, 2017; van Dijk, van der Heijden and Kragten-Heerdink, 2016;
Silverman, 2020). Variants of the method are also commonly used by national
statistics offices for estimating the size and distribution of human populations
across dimensions such as age, sex, area and ethnic group. In this setting, the
methods are commonly referred to as dual and multiple systems estimation and
have, to date, generally been restricted to estimation of closed populations. His-
torically, official statistical applications of capture-recapture have concentrated
on inferring the population from two sources (dual systems estimation), such as
a census and a follow-up survey.

With the increasing availability of population listings based on administrative
data, there is growing interest among official statisticians in the use of admin-
istrative lists for population estimation, either in combination with, or, as an
alternative to, a traditional census (Statistics New Zealand, 2019). Although the
use of administrative lists for population estimation increases the potential for
multiple systems approaches to be applied, in practice the number of sources of
administrative data that cover the full population age-range remain limited. For
example, an administrative list sourced from education data could be expected
to have good coverage of the young people but relatively poor coverage for older
age groups. A list based on tax records may have good coverage of the working
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age and older population but may have poor coverage of children. Thus, dual
systems approaches remain of interest in official population estimation. While
our set-up is primarily formulated for a data structure based on two large but
incomplete population listings, such as provided by a traditional census dataset
and an administrative list, or by two administrative lists, it also accommodates
the census plus survey scenario, as we discuss in Appendix D of Supplementary
Material (Graham et al., 2023).

Capture-recapture applications in official statistics differ from those in other
areas because rather than estimation of the total population size being the pri-
mary focus, as is often the case in ecological, epidemiological and human rights
applications, in official statistics it is usually necessary to estimate the distribu-
tion of the population across combinations of covariates, such as age, sex, ethnic
group and location. These “small domain” population estimates are an impor-
tant input to central and local government planning and resource allocation
decisions. Our focus is on small domain population estimation when only two
partial listings of the population are available. The problem is a missing data
problem: if in addition to the number of people missed by both lists we could
learn the covariate values for all such individuals, we would have complete co-
variate information for the population, and population estimation would amount
to counting the number of people with each covariate combination of interest.
Our estimation task can, therefore, be characterised as estimating the covariate
distribution of the group missed by both available population lists.

We take a Bayesian approach to inference which is well-suited to the missing
data characterisation of the problem and to small domain estimation. Small
domain estimation often benefits from hierarchical modelling, which fits very
naturally with the Bayesian approach to inference (see, for example, Gelman
et al. (2014, chapter 5)).

While drawing on existing Bayesian and frequentist literature on popula-
tion estimation, the paper is not intended as a comprehensive literature review
and is more in the nature of a synthesis of important ideas in population esti-
mation, viewed from a Bayesian perspective, with particular emphasis on the
two-list situation. Where it seems helpful, we note connections between our ap-
proach and the frequentist literature on capture-recapture methods. However,
we do not attempt formal comparisons with non-Bayesian methods. The pa-
per is intended for those interested in exploring Bayesian theory and methods
for small domain population estimation. There is already an extensive litera-
ture on frequentist inference for capture-recapture studies, though this is not
generally focussed on small domain population estimation. Standard references
for frequentist approaches to population estimation include Seber (1982) and
International Working Group for Disease Monitoring and Forecasting (1995),
emphasising ecological and epidemiological applications, respectively.

Although official statistics is the most obvious application area for Bayesian
small domain dual systems estimation, applications in epidemiology and human
rights are also possible. For example, if in addition to estimating the overall case-
load for a particular disease, case numbers by age, sex, and small geographic
area is an important consideration, the methods discussed in this paper are
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relevant. One reason to consider geographic variation in case numbers is to help
plan the provision of treatment services.

There have been several recent applications of Bayesian capture-recapture
analysis in the human rights area (Manrique-Vallier, 2016; Manrique-Vallier,
Ball and Sulmont, 2019; Sadinle, 2018; Silverman, 2020; Tuoto, Di Cecco and
Tancredi, 2022). Although these applications utilise multiple population lists
and focus on estimation of the total population, they illustrate the potential
of Bayesian approaches to population estimation which automatically provide
measures of uncertainty and provide a framework for incorporating prior infor-
mation. Other work on Bayesian population estimation using capture-recapture
methods includes George and Robert (1992); Madigan and York (1997); Fien-
berg, Johnson and Junker (1999); Tancredi and Liseo (2012); Tancredi, Steorts
and Liseo (2020) and Di Cecco, Di Zio and Liseo (2020a). The early papers of
George and Robert (1992) and Madigan and York (1997), concentrate on meth-
ods for multiple lists, with few covariates. Madigan and York (1997) adopt a
graphical modelling approach to explore dependencies between lists. They em-
phasise direct evaluation of the posterior distribution, using marginal likelihood
for the population size, obtained by integrating the likelihood over the prior dis-
tribution of other model parameters. However, Madigan and York (1997) note
that Monte Carlo methods are likely to be necessary as the estimation prob-
lems become larger and more complex. Madigan and York (1997) also promote
Bayesian model averaging, to combine inferences from multiple models.

George and Robert (1992) propose the Gibbs sampler as a computational
framework for Bayesian population estimation from multiple lists, though in
the simple case without covariates. In this case, the Gibbs sampler alternates
between sampling from the conditional posterior for the population size given
the list capture probabilities and sampling from the conditional list coverage
probabilities given the population size. The Gibbs sampler is an appealing com-
putational framework for population estimation because it is readily adapted
to deal with problems such as missing data, measurement error and linkage
error, that are likely to be encountered in practice, particularly as more use
is made of administrative data. Several subsequent authors have adopted the
Gibbs sampler as the basic computational engine for Bayesian population esti-
mation. Fienberg, Johnson and Junker (1999) introduce random effects in the
form of a Rasch model to allow for heterogeneity in capture probabilities over
individuals, in the absence of covariates. Manrique-Vallier (2016) also adopt
the Gibbs sampling framework to implement a Dirichlet Process mixture model
for multiple systems estimation that allows for heterogeneity in capture prob-
abilities that is not accounted for by covariates. They formulate the problem
of population estimation from multiple incomplete lists using a missing data
perspective that is similar to the approach taken in this paper. Both Fienberg,
Johnson and Junker (1999) and Manrique-Vallier (2016), assume list inclusion
is independent conditionally on latent individual level variables. The flexibility
of Gibbs sampling for population estimation is exploited by Di Cecco, Di Zio
and Liseo (2020a), who use Gibbs sampling in a multiple list problem with ad-
ditional missing data due to some lists not operating in some sub-populations.
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While we discuss the Gibbs sampler for population estimation, we also consider
an alternative approach to obtaining the posterior predictive distribution of the
covariate values for the group missed from both lists, made possible by recent
advances in Bayesian computation.

Many of the above-cited references deal with inference from multiple lists and
have a corresponding focus on modelling the dependence between inclusion on
the lists. With our focus on the two-list case, there is less scope for modelling
association between inclusion on the lists, and the modelling focus is on the
association between list inclusion and covariates.

In estimation of human populations, record linkage of two or more lists re-
places the physical capture or sighting methods of ecology as the mechanism
for determining the number of lists that record a given individual. The papers
by Tancredi and Liseo (2012) and Tancredi, Steorts and Liseo (2020) present
a Bayesian approach to population estimation in which record linkage is dealt
with by treating the links as unknowns, and, effectively, imputing a new linked
data structure on each iteration of a Gibbs sampler. Though conceptually ap-
pealing, with large datasets the computational implications of re-establishing
the linked dataset on each iteration of a Gibbs sampler are substantial. This
approach also requires access to the identifying variables used to perform the
record linkage, such as components of name and date of birth. For confiden-
tiality reasons, these variables are usually not available to analysts using linked
data for population estimation. Sadinle (2018) provides a potential solution by
proposing an alternative, two-stage, approach to Bayesian population estima-
tion in which, firstly, a Bayesian record linkage procedure draws linked data
structures from the posterior for the true linkage structure, and secondly, pop-
ulation estimation is conducted for each linkage structure generated in the first
stage. Sadinle (2018) uses the direct posterior computation method for total
population size developed by Madigan and York (1997), but does not consider
small domain population estimation.

We assume a more traditional approach to record linkage, whereby lists are
linked by a process, typically involving a mix of deterministic and probabilistic
linkage methods (Fellegi and Sunter, 1969), that result in a single linked dataset.
We develop Bayesian theory and methods for dual systems population estima-
tion assuming linkage error is absent. However, in practice, there is likely to be
some error in the linkage process. While progress has been made on methods
for adjusting for linkage error in frequentist dual systems estimation (Ding and
Fienberg, 1994; Di Consiglio and Tuoto, 2015, 2018; de Wolf, van der Laan and
Zult, 2019), we leave discussion of integrating linkage error adjustment with
Bayesian dual systems estimation for future work.

The structure of the remainder of the paper is as follows. In Section 2, we in-
troduce the basic structure of the problem and establish notation. In Sections 3
to 5, we set up the structure of Bayesian inference for dual systems estimation by
formulating the dual systems likelihood with covariates (Section 3), discussing
prior specifications (Section 4), and describing the computation of the poste-
rior (Section 5). We present examples to illustrate and compare approaches
to Bayesian small domain dual systems estimation in Section 6. In Section 7,
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we review options for Bayesian dual systems estimation when inclusion on the
two lists cannot be assumed conditionally independent given covariates. The
latter is a standard assumption in dual systems estimation. In Section 8, we
present a Bayesian view of another approach to population estimation that has
been popular in frequentist applications: log-linear modelling. We relate the
log-linear modelling approach to the approach developed in Sections 3 to 5. Fi-
nally, in Section 9, we briefly summarise the paper and suggest some priorities
for further development of Bayesian small domain population estimation. In
Supplementary Material (Graham et al., 2023), we present technical details of
likelihood and other derivations, and in Appendix D of Supplementary Material
(Graham et al., 2023), we show how our approach to Bayesian dual systems
estimation accommodates the situation where one of the lists is an area based
cluster sample survey.

In the interests of reproducibility we illustrate the methods with simulated
data examples. An R package implementing the methodology in the paper is
available from https://github.com/lvarn/BDSE.git.

2. Basic set-up and notation

We consider a population of N individuals, each with a set of attributes (covari-
ates) Xi, for i ∈ {1, . . . N}. N is an unknown that we seek to estimate, however,
our overall objective is to estimate the distribution of the population across the
covariate combinations. We let L1 and L2 denote indicators for inclusion on the
two lists, and define the list coverage probabilities (i.e. probability of inclusion
on the list given inclusion in the target population) as

φ̃1(x,β1) = Pr(L1 = 1|X = x,β1) (1)
φ̃2(x,β2) = Pr(L2 = 1|X = x,β2). (2)

Note that, β1 and β2 will typically refer to parameter vectors of models that
relate list inclusion to covariates, whereas φ̃j(x,βj), j ∈ {1, 2}, refers to the
list inclusion probability for a particular setting of covariates, implied by the
model parameterised by βj . We use similar notational conventions throughout
the paper. We will model list inclusion using logistic models, so

φ̃j(x,βj) = Pr(Lj = 1|X = x,βj) = invlogit(βj,0 + xTβj,1), j ∈ {1, 2},

where invlogit(.) denotes the inverse logit function, and βj = (β′
j,0,β

′
j,1)′, for

j ∈ {1, 2}, and, where needed, we assume any interaction or non-linear terms
required for modelling dependence of list inclusion on covariates are included
in X. We let β = (β′

1,β
′
2)′ denote the full vector of model parameters for both

coverage models.
An individual in the target population may be included on both, one or

neither of the two lists. We let Y denote the cell in the cross-classification of
list inclusion indicators to which an individual belongs. Thus, Y can take the

https://github.com/lvarn/BDSE.git


Bayesian dual systems estimation 9

values in Y = {(1, 1), (1, 0), (0, 1), (0, 0)}, and we denote the probability of each
of the list inclusion cells by

φy(x,β) = Pr(Y = y|X = x,β), y ∈ Y.

Note that, in general, the list inclusion cell probabilities may depend on other
parameters, in addition to the parameters of the list coverage models, however,
until Section 7, we make the assumption of conditional independence of list
inclusion, given covariates, that is often invoked in dual systems estimation.
This implies the list inclusion cell probabilities can be obtained directly from
the list coverage models as follows:

φ(1,1)(x,β) = φ̃1(x,β1) φ̃2(x,β2) (3)
φ(1,0)(x,β) = φ̃1(x,β1) (1 − φ̃2(x,β2)) (4)
φ(0,1)(x,β) = (1 − φ̃1(x,β1)) φ̃2(x,β2) (5)
φ(0,0)(x,β) = (1 − φ̃1(x,β1)) (1 − φ̃2(x,β2)). (6)

This is illustrated in Table 1. We denote the full vector of list inclusion cell
probabilities, corresponding to covariate combination X = x, by φ(x,β) =(
φ(1,1)(x,β), φ(1,0)(x,β), φ(0,1)(x,β), φ(0,0)(x,β)

)′. For an individual with co-
variates X = x, we model list inclusion cell Y as a categorical random vari-
able with probability vector φ(x,β), or, equivalently, as multinomial over the
four possible cells, with size parameter equal to one and probabilities given by
φ(x,β). Hence,

[Y |X = x,β] ∼ Categorical(φ(x,β)).

Table 1

Probability model for the population distribution at covariate setting X = x, under the
conditional independence assumption.

List 2
1 0

List 1 1 φ̃1(x,β1) φ̃2(x,β2) φ̃1(x,β1) (1 − φ̃2(x,β2))
0 (1 − φ̃1(x,β1)) φ̃2(x,β2) (1− φ̃1(x,β1)) (1− φ̃2(x,β2))

Individuals with Y = (0, 0) do not appear in the observed data which is the
union of the three cells (1, 1), (1, 0), and (0, 1). Thus, the list inclusion cell Y
is both the outcome of interest and indicator for missing-ness. The dependence
between cell location and missing-ness means the missing-ness mechanism can-
not be ignorable (Rubin, 1976) and some care must be taken in setting up the
likelihood function, as discussed below.

The assumption of conditional independence of list inclusion given covari-
ates, X, has two aspects. Firstly, it rules out direct causal dependence between
inclusion on the two lists, such as would be the case if inclusion on List 1, di-
rectly affected the probability of inclusion on List 2. In ecological applications,
an example of causal dependence is the phenomenon of animals becoming trap
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shy following a negative experience of an initial capture. In the human context,
an analogous situation would arise if a negative experience of participation in
List 1 (e.g. a census) makes List 1 participants less willing to provide data to
List 2 (e.g. an administrative list), due, for example to distrust of government
engendered by the negative experience of participation in List 1. In situations
with more than two lists modelling such behavioural responses to capture is
possible (Pledger, 2000).

Secondly, the conditional independence assumption, requires that, condi-
tional on included covariates, inclusion probabilities are homogeneous over in-
dividuals for at least one of the lists. To see this suppose that conditionally on
covariates X and Z, list inclusion is conditionally independent. That is

Pr(Y = (l1, l2)|X = x,Z = z) =
Pr(L1 = l1|X = x,Z = z) Pr(L2 = l2|X = x,Z = z), ∀(l1, l2,x, z) (7)

where we have omitted dependence on model parameters, to save space. Now,
suppose Z is unobserved so that estimation can condition only on the observed
covariates X. The joint list inclusion probabilities given only the observed co-
variates X are

Pr(Y = (l1, l2)|X = x)

=
∑
z

Pr(L1 = l1, L2 = l2|X = x,Z = z) Pr(Z = z|X = x), ∀(l1, l2,x)

=
∑
z

Pr(L1 = l1|X = x,Z = z) Pr(L2 = l2|X = x,Z = z) Pr(Z = z|X = x),
∀(l1, l2,x).

(8)

Now suppose that, in fact, conditionally on X, inclusion on one of the lists, List
1 say, does not depend on Z so that, within levels of X, inclusion probabilities
for List 1 are homogeneous with respect to Z. From (7) this implies

Pr(Y = (l1, l2)|X = x)

=
∑
z

Pr(L1 = l1|X = x) Pr(L2 = l2|X=x,Z = z) Pr(Z = z|X = x), ∀(l1, l2,x)

= Pr(L1 = l1|X = x)
∑
z

Pr(L2 = l2|X = x,Z = z) Pr(Z=z|X=x), ∀(l1, l2,x)

= Pr(L1 = l1|X = x) Pr(L2 = l2|X = x), ∀(l1, l2,x) (9)

That is, given our initial assumption of conditional independence of list in-
clusion given X and Z, we have shown the further assumption of homogeneity
of inclusion probabilities, with respect to Z, within levels of X, for just one of
the lists, implies list inclusion is conditionally independent given only X. The
argument also holds if inclusion probabilities are homogeneous, with respect to
Z, within levels of X, for both lists. Conversely, if inclusion probabilities vary
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with Z, within levels of X for both lists, then (8) implies that list inclusion is not
conditionally independent given only X. It follows that if inclusion probability
depends on Z within levels of X for both lists, Z must be included in the the
analysis in order for the conditional independence assumption to hold. A good
discussion of the two aspects of the conditional independence assumption can be
found in International Working Group for Disease Monitoring and Forecasting
(1995).

In multiple list problems, several authors relax the assumption of homoge-
neous capture probabilities by introducing latent variables to account for un-
observed heterogeneity (Pledger, 2000; Fienberg, Johnson and Junker, 1999;
Manrique-Vallier, 2016; Silverman, 2020). With two lists, there is less scope for
such modelling, due to the intrinsic identifiability issues related to the group
missed by both lists (i.e. the (0, 0) group) being unobservable. Consequently,
in this paper, we generally rely on conditioning on observed covariates to con-
trol heterogeneity of list inclusion probability, although some possibilities for
relaxing the conditional independence assumption using informative priors are
considered in Section 7.

In addition to the assumption of conditional independence of list inclusion,
we make the other standard assumptions of dual systems estimation, notably
that the population is closed over the period spanned by the enumeration dates
for the two lists (usually achieved by making the nominal enumeration date
identical for the two lists), the lists are linked without error and there is no
over-coverage on either list. For simplicity, we also assume that covariates are
recorded consistently on the two lists. Consequently inclusion on either list is
sufficient for individual’s covariate values to be observed. Note that, we assume
the covariates are defined for all individuals in the population, whether or not
they are included on one or more of the lists.

3. Population data generating model and observed data likelihood

3.1. Unit-record population data structure

Given the total population size, N , we can imagine the population dataset
comprising N records each containing the covariate values for an individual in
the population. We call this the unit-record population structure or dataset.
Appended to each record is the list inclusion cell Y . Thus, if q columns are re-
quired to describe the covariate values, the unit-record population data set is an
N × (q+1) matrix. We assume the unit-record population covariate structure is
generated as N independent draws from some q-dimensional covariate distribu-
tion, H(θ), and, conditionally on the covariates, X = x, the list inclusion cell Y
is drawn, independently over individuals, as a categorical random variate with
probability vector φ(x,β), that satisfies (3)–(6).

Given N and the coverage and covariate distribution model parameters (β,θ),
the data generating model we adopt is

[Xi|β,θ, N ] indep∼ H(θ), i ∈ {1, . . . , N}, (10)
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[Yi|Xi = xi,β,θ, N ] indep∼ Categorical(φ(xi,β)), i ∈ {1, . . . , N} (11)

or, equivalently,

p(ycom,xcom|N,β,θ) =
N∏
i=1

p(yi|xi,β) p(xi|θ)

=

⎛
⎝ ∏

i:yi �=(0,0)

φyi(xi,β) p(xi|θ)

⎞
⎠

⎛
⎝ ∏

i:yi=(0,0)

φ(0,0)(xi,β) p(xi|θ)

⎞
⎠

(12)

where xcom is a realisation of the complete N × q population covariate matrix,
Xcom, and ycom = (y1, . . . , yN ) is a realisation of the complete population vector
of list inclusion cells, Ycom. The ith element of Ycom pertains to the same
individual as the ith row of Xcom, with a similar correspondence holding between
the realised values ycom and xcom. The products in (12) refer to subsets of the
target population satisfying the condition indicated in the subscript. We follow
similar notational conventions subsequently. In (12), we write p(x|θ) for the
joint covariate probability density or probability mass function evaluated at the
realised value x with the understanding that the covariates are i.i.d draws from
H(θ). In general, X may include both discrete and continuous covariates. Note
that, the covariate distribution depends on θ but not β, while the conditional
distribution for cell locations, given the covariates, depends on β, but not θ.
The model defined by (10) and (11) is a model for the complete data that
would be observed if it were, somehow, possible to observe the covariate values
for the group that is, in fact, missed by both lists. Since these covariate values
cannot be observed, the likelihood for the model parameters is not given by
the complete-data likelihood (12), but is, instead, obtained by integrating the
complete data likelihood (12) over the unobserved covariate values for the group
with y = (0, 0).

Let xobs denote the observable rows of xcom, that is, the rows of xcom cor-
responding to elements of ycom with y �= (0, 0). Similarly, let yobs denote the
elements of ycom that are not equal to (0, 0). Thus, if ycom = ((1, 1), (0, 1), (0, 0),
(1, 0))′, yobs = ((1, 1), (0, 1), (1, 0))′ and xobs is the matrix comprising rows 1, 2
and 4 of xcom. The observed data is denoted by Dobs = (yobs,xobs), and the
likelihood by p(Dobs|N,β,θ). We let nobs denote the number of individuals
recorded in the observed data, so yobs is a vector of length nobs and xobs is
an nobs × q matrix. Conditional on N , there are N(0,0) = N − nobs individuals
in the target population that are not recorded in the observed data. However,
given only the observed data, it is unknown which rows in xcom are occupied by
the covariate values for the N − nobs unrecorded individuals, and the covariate
values for this group are unknown. We use the notation x(0,0) to refer to the
unobserved covariate values for the group missed by both lists.

In Appendix A of Supplementary Material (Graham et al., 2023), we show
that the observed-data likelihood (i.e. the likelihood for the model parameters,
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based on the data actually observed) is

p(Dobs|N,θ,β) =
(

N

N − nobs

)
p(0,0)(β,θ)N−nobs

∏
i:yi �=(0,0)

φyi(xi,β) p(xi|θ)

(13)

∝ N !
(N − nobs)!

p(0,0)(β,θ)N−nobs
∏

i:yi �=(0,0)

φyi(xi,β) p(xi|θ),

(14)

where p(0,0)(β,θ) is the population-averaged probability of being missed by both
lists, defined formally as:

p(0,0)(β,θ) =
∫

φ(0,0)(x,β) p(x|θ) dx

=
∫

(1 − φ̃1(x,β1)) (1 − φ̃2(x,β2)) p(x|θ) dx, (15)

assuming conditionally independent list inclusion.
In the simple case without covariates, (14) reduces to the standard capture-

recapture likelihood used by several other authors (Fienberg, 1972; Pledger,
2000; Link and Barker, 2009), though simplified to the two list setting. Accom-
modating covariates in the dual systems estimation likelihood is a non-trivial
extension to the no covariate case because of the need, firstly, to consider the
covariate distribution and, secondly, to integrate over the distribution of the
covariates for the unobserved component of the population. We note that our
individual-level model described by (10) and (11), does not imply multinomial
sampling of the population into the four possible cell locations because the
dependence of cell probabilities on covariates implies the list inclusion cell prob-
abilities vary over individuals. Consequently, our complete-data likelihood (12)
differs from that adopted by some other authors (e.g. see King et al. (2016,
Section 2)).

From (13), the observed data likelihood can be written as

p(Dobs|N,θ,β) =
[(

N

N − nobs

)
(1 − p(0,0)(β,θ)nobsp(0,0)(β,θ)N−nobs

]
[ ∏

i:yi �=(0,0)

φyi(xi,β)p(xi|θ)
1 − p(0,0)(β,θ)

]
. (16)

The first term in (16) is a binomial probability for observing nobs people given a
total population size N and probability of observation (1− p(0,0)(β,θ)), and the
second term is the conditional likelihood for (β,θ) which is constructed from the
likelihood contributions of the observed records, explicitly conditioned on the
fact of being observed. More formally the conditional likelihood can be defined
as

LC(Dobs|β,θ) =
∏

i:yi �=(0,0)

p(yi,xi|Yi �= (0, 0),β,θ)
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=
∏

i:yi �=(0,0)

p(yi|Yi �= (0, 0),Xi = xi,β,θ) p(xi|Yi �= (0, 0),β,θ)

=

⎛
⎝ ∏

i:yi �=(0,0)

φyi(xi,β)(
1 − φ(0,0)(xi,β)

)
⎞
⎠

⎛
⎝ ∏

i:yi �=(0,0)

(
1 − φ(0,0)(xi,β)

)
p(xi|θ)

(1 − p(0,0)(β,θ))

⎞
⎠

(17)

=
∏

i:yi �=(0,0)

φyi(xi,β) p(xi|θ)
1 − p(0,0)(β,θ) (18)

which is the second term in (16). The decomposition of capture-recapture like-
lihoods into a binomial probability for the number of individuals recorded on at
least one list and the conditional likelihood based only on the data for recorded
individuals has been noted elsewhere (Sandland and Cormack, 1984; Huggins
and Hwang, 2011). Since N appears only in the binomial probability component
of (16), it seems clear that information in the data concerning the total popu-
lation size is concentrated in nobs. However, nobs is only informative regarding
total populations size in conjunction with the other model parameters, through
p(0,0)(β,θ). The structure of (16) suggests the information concerning the list
coverage model and covariate distribution parameters is contained primarily in
the conditional likelihood, since these parameters contribute to the binomial
probability for nobs only through p(0,0)(β,θ).

A version of the conditional likelihood has proven useful in frequentist capture-
recapture analyses, because maximising the conditional likelihood yields close
approximations to the maximum likelihood estimates for coverage model pa-
rameter estimates (Sanathanan, 1972; Huggins and Hwang, 2011; Cormack and
Jupp, 1991). Estimates of the population size then follow as the number of in-
dividuals observed in the data multiplied by the reciprocal of the conditional
maximum likelihood estimate of the probability of inclusion in the data. This
basic strategy has been extended to accommodate coverage probabilities that
vary with covariates by Huggins (1989) and Alho (1990), by maximizing the
first product in (17),

L̃c(Dobs|β) =
∏

i:yi �=(0,0)

φyi(xi,β)(
1 − φ(0,0)(xi,β)

) , (19)

which arises from conditioning on covariate values as well as the event of being
recorded on at least one list. However, the emphasis in these papers remains on
the estimation of the total population size rather than small domain estimation.

It seems a reasonable conjecture that the partial conditional likelihood,
L̃c(Dobs|β), is a good approximation to the likelihood for β. However, in con-
trast to the approach adopted in this paper, which uses the full likelihood (14)
or the complete conditional likelihood (18), frequentist applications based on
the partial conditional likelihood (19) do not permit inference on the covariate
distribution parameters. Although inference for these parameters is generally
of lesser interest than the coverage model parameters and the population esti-
mates, in our approach they play an important role in determining the posterior
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predictive distribution of the covariates for the group missed by both lists, as we
discuss in Section 5.3. In addition, although not considered in this paper, mod-
elling the covariate distribution is useful for extending dual systems estimation
to deal with issues such as covariate missing-ness and measurement error.

The decomposition of the likelihood into a binomial probability for nobs and
a conditional likelihood that explicitly conditions on the event of being observed
is suggestive of an alternative data generating model in which the number of
people to be recorded on at least one list is first generated from a binomial
distribution with size parameter N , and the nobs people to be observed are
then distributed over covariate and list inclusion cell (excluding the (0, 0) cell),
under a model that is appropriately conditioned on the event of being observed.
In Appendix A of Supplementary Material (Graham et al., 2023), we present an
alternative derivation of the likelihood, (14), or, equivalently, (16), motivated
by this conceptual data-generating model.

3.2. Aggregated population data structure

If covariates are restricted to be categorical, the population can be aggregated
to counts at the level of covariate combinations. Thus, instead of a unit-record
structure, if there are K unique covariate combinations, the population dataset
can be viewed as a K × (q + 4) matrix with the first q columns recording the
covariate values that label the rows and the final four columns recording counts
in the (1, 1), (1, 0), (0, 1) and (0, 0) cells, for each covariate combination. The
counts in the final four columns sum to N. However, the counts in the (0, 0)
column are not observed for any covariate combination. We let x[k] denote the
kth covariate combination, so for y ∈ Y, φy(x[k],β) = Pr(Y = y|X = x[k],β)
denotes the probability of list inclusion cell y, for the kth covariate combination.
We let φ(x[k],β) = (φ(1,1)(x[k],β), φ(1,0)(x[k],β), φ(0,1)(x[k],β), φ(0,0)(x[k],β))′
denote the vector of list inclusion probabilities for the kth covariate combi-
nation. The probability of the kth covariate combination is denoted θk, and
θ = (θ1, . . . , θK)′ is the K-vector of probabilities for the covariate combinations,
so Pr(X = x[k]|θ) = θk. The population-averaged probability of being missed
by both lists is p(0,0)(β,θ) =

∑
k φ(0,0)(x[k]) θk. We let Mk,y denote the number

of people in the population with covariate level x[k] and list inclusion cell y,
Mk,+ =

∑
y Mk,y, the total population count at the kth covariate combination,

Mobs
k,+ =

∑
y �=(0,0) Mk,y the observable count of people recorded on at least one

list at the kth covariate combination, and M.,y = (M1,y,M2,y, . . . ,MK,y)′ the
K-vector of counts for list inclusion cell y. The unobserved counts are M.,(0,0),
and we note that nobs =

∑
k M

obs
k,+ =

∑
k,y �=(0,0) Mk,y, and (N − nobs) =∑

k Mk,(0,0) = N −
∑

k,y �=(0,0) Mk,y = N −
∑

k M
obs
k,+. The observable data is

Dobs = (M.,(1,1),M.,(1,0),M.,(0,1)).
If a Multinomial(N,θ) model is adopted for the counts by covariate combina-

tion, and a second multinomial model is adopted for the allocation of covariate
combination counts to the four possible combinations of list inclusion indicators



16 P. Graham et al.

at each covariate combination, we have the model:

[(M1,+, . . . ,MK,+)|N,θ] ∼ Multinomial(N,θ) (20)

[(Mk,(1,1),Mk,(1,0),Mk,(0,1),Mk,(0,0))|Mk,+,β] indep∼
Multinomial(Mk,+,φ(x[k],β)), k ∈ {1, . . . ,K} (21)

In this model, it is clear from (21) that there is multinomial sampling of individ-
uals into the list inclusion cells, within levels of the covariates. In Appendix A.2
of Supplementary Material (Graham et al., 2023), we show that the observed-
data likelihood that follows from the model given by (20) and (21) is

p(Dobs|N,β,θ) =

N !
(N − nobs)!

[∏
k,y �=(0,0)

(
φy(x[k],β) θk

)Mk,y∏
k,y �=(0,0) Mk,y!

]
p(0,0)(β,θ)(N−nobs) (22)

∝ N !
(N − nobs)!

[ ∏
k,y �=(0,0)

(
φy(x[k],β) θk

)Mk,y

]
p(0,0)(β,θ)(N−nobs),

(23)

which, by comparison with (14), is an aggregated data version of the likelihood
derived under the individual-level model.

From (22) it is easily seen that the likelihood can also be written as:

p(Dobs|N,β,θ) ∝(
N

nobs

)
(1 − p(0,0)(β,θ))nobs p(0,0)(β,θ)(N−nobs) ×

[
nobs!∏

k,y �=(0,0) Mk,y!
∏

k,y �=(0,0)

(
φy(x[k],β) θk

(1 − p(0,0)(β,θ)

)Mk,y
] (24)

∝
(

N

nobs

)
(1−p(0,0)(β,θ))nobsp(0,0)(β,θ)(N−nobs)

∏
k,y �=(0,0)

(
φy(x[k],β) θk

(1−p(0,0)(β,θ)

)Mk,y

(25)

which is the product of the Binomial probability for nobs, and the conditional
likelihood for (β,θ), in keeping with the decomposition of the likelihood for the
unit-record population structure given in (16).

4. Prior specification

The parameters of our population model are the population size, N , the cov-
erage model parameters, β = (β′

1,β
′
2)′, and the parameters of the covariate

distribution, θ. We assume a priori independence for parameter blocks, that is
p(N,β,θ) = p(N) p(β) p(θ).
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One option for the prior for the total population size is a discrete uniform,
which requires only specification of prior limits on the possible population size.
In official statistics applications with good information on births, deaths and
migration, updating of historical population estimates through straightforward
demographic accounting should often provide a good basis for setting plausible
bounds on the total population size. Other possibilities for setting informative
priors for the total population size include the Poisson and Negative Binomial
distributions. However, because these distributions imply that variance increases
with the expectation, they may yield a prior variance that does not co-coincide
with prior uncertainty about the population size. Another possibility is the
Conway-Maxwell-Poisson distribution (Shmueli et al., 2005), which can model
under-dispersion as well as over-dispersion with respect to the Poisson distribu-
tion.

A traditional and popular choice of prior for N , intended to be uninforma-
tive, is the Jeffreys’ prior: p(N) ∝ 1/N . Di Cecco (2019) suggests Rissanen’s
“universal prior for the integers” (Rissanen, 1983) as an alternative uninforma-
tive prior. This prior has the form p(N) ∝ 2log∗(N), where log∗(N) is the sum
of positive terms in the sequence {log2(N), log2(log2(N)), . . .}.

We model the parameters of the coverage models for Lists 1 and 2 indepen-
dently, and so, adopt the prior specification p(β) = p(β1)p(β2). In realistic appli-
cations, some components of the parameter vectors for the list coverage models
such as small area effects, may be modelled hierarchically, meaning that they
are modelled as draws from a distribution with parameters that are themselves
treated as unknowns that are assigned priors and estimated in the posterior
computation, along with all other parameters. The use of hierarchical coverage
models is illustrated in Section 6. However, regardless of the structure of the
coverage models, setting priors for parameters of logistic regression models is a
standard task in Bayesian statistics (Gelman et al., 2008).

For the general covariate case, including both continuous and categorical co-
variates, we have, so far, left the covariate distribution unstructured. While there
are clearly a variety of modelling options, the categorical distribution over a set
of possible covariate combinations provides a very general model. Under this
model, the N covariates vectors are assumed to be sampled independently from
a Categorical(θ) distribution, or, equivalently, a Multinomial(1,θ) distribution,
over the number of covariate combinations considered possible. If this model
is adopted, the conjugate Dirichlet distribution is a standard and convenient
choice of prior for θ. In the presence of continuous covariates or categorical co-
variates with a large number of possible categories (e.g. small area geography,
single year of age), it may be necessary to restrict the possible combinations in
some way. One such restriction is to use only the covariate combinations rep-
resented in the observed data. If this restriction is adopted and an improper
Dirichlet prior with parameters set uniformly to zero is assumed, the model for
the covariate distribution is similar to that underpinning the Bayesian bootstrap
(Rubin, 1981). However, while potentially helpful in restricting the number of
possible covariate combinations, the restriction to observed covariate combina-
tions is not necessary and may be unduly restrictive. For example, it may be
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prudent to allow all ages within a range, to occur in all geographic areas, even
though, in some areas no individuals are recorded for some ages. For small ar-
eas and smaller age-groups (e.g. older ages) it is possible that both lists have
failed to record individuals at particular ages, even though they are present
in the population. The set of allowed covariate combinations can be extended
beyond those represented in the observed data, by giving positive prior probabil-
ity to unobserved covariate combinations. This can be achieved by using proper
Dirichlet distributions defined over a set of observed and unobserved covariate
combinations that are deemed possible.

In the case of categorical covariates and a aggregated data structure, a Dirich-
let prior is also the natural choice of prior for θ in the multinomial model (20).
In the examples considered in this paper, we use proper but weak Dirichlet prior
distributions for the parameters of the covariate distribution.

5. Bayesian inference for the target population

Obtaining counts for population subgroups (e.g. counts by age, sex, ethnic group
and area), or other statistics for the target population, would be straightforward
if the number of individuals in the target population missed by both lists and
the covariate values for this group were known. For a unit-record population
structure, let X(0,0) denote the (N − nobs) × q matrix of unobserved covariate
values for the group missed by both lists. Inference for target population counts
and other population statistics follows from the posterior predictive distribution
for X(0,0). For the aggregate population structure, inference for target popula-
tion counts follows from the posterior predictive distribution for the unobserved
counts for the (0,0) cells, by covariate combination, M.,(0,0).

For the unit-record population structure, appending a draw from the poste-
rior predictive distribution of X(0,0) to the observed covariate matrix xobs, and,
for completeness, appending (N − nobs) (0, 0) entries to the observed vector
of cell inclusion indicators, yobs, produces a realisation of the complete data,
Dcom = (Ycom,xobs,X(0,0)). For each simulated completed dataset, tabulations
and other analyses can be conducted; repeating this for some number of simu-
lations, and storing results, builds a sample from the posterior predictive distri-
bution for the quantities of interest. This stored sample of results can be used
for inference. For example, 95% credible intervals can be straightforwardly ap-
proximated by locating the 2.5% and 97.5% quantiles of the stored distribution
for each quantity of interest (e.g. population counts). These intervals represent
uncertainty due to the missing covariate information for the group missed by
both lists and from estimation of the model parameters, including the total
population size.

Both the number of people missed by both lists and the values of the covari-
ates in X(0,0) are unknown. Consequently, rather than computing the posterior
predictive distribution of the missing data directly as p(X(0,0)|Dobs), it is con-
venient to concentrate on the joint posterior distribution of the missing data
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and the total population size:

p(X(0,0), N |Dobs) =
∫ ∫

p(X(0,0), N,β,θ|Dobs) dβ dθ

=
∫ ∫

p(X(0,0)|N,β,θ,Dobs) p(N,β,θ|Dobs) dβ dθ (26)

=
∫ ∫

p(X(0,0)|N,β,θ,Dobs) p(N |β,θ,Dobs) p(β,θ|Dobs) dβ dθ.

(27)

Assuming we can sample from the joint posterior for the coverage model
and covariate distribution parameters, p(β,θ|Dobs), we could simulate the joint
posterior p(X(0,0), N |Dobs) by simulating the components of the integrand (27),
proceeding from right to left, as described in Algorithm 1. (In Algorithm 1, and
subsequently, numerical superscripts enclosed in parentheses indicate iteration
number and not exponents.) Focusing on the generated values of X(0,0) and
N implicitly simulates the integration in (27), which is simply notation for
marginalising the joint posterior for the unknowns (X(0,0), N,β,θ) with respect
to (β,θ).

Obtaining the joint posterior p(N,β,θ|Dobs), in (26), is, in general, difficult.
However, by approximating the prior for N by a continuous distribution, we
use the probabilistic programming language Stan (Stan Development Team,
2021) to obtain an approximation to the joint posterior for (N,β,θ) for some
of the examples considered in Sections 6 and 7. When employing the posterior
decomposition in (26) to obtain the posterior predictive distribution for X(0,0),
Algorithm 1 is simplified to two steps: the first drawing values of (N,β,θ)
jointly from p(N,β,θ|Dobs) and the second drawing X(0,0) from the conditional
posterior predictive distribution, as in step (iii) of Algorithm 1.

Algorithm 1 Simulating the posterior predictive distribution for the covariate
values for the group missed by both lists.

for t in {1, . . . , T} do
step (i): draw (β(t), θ(t)) from p(β, θ|Dobs) using (28) in Section 5.1;
step (ii): draw n(t) from p(N |β(t), θ(t),Dobs) using (33) in Section 5.2;
step (iii): draw x(t)

(0,0) from p(X(0,0)|N = n(t),β(t), θ(t)) using (36) in Section 5.3;

store n(t),x(t)
(0,0)

end for

In the case of a population data structure aggregated to covariate combina-
tions, the missing data required to complete the population are the counts for the
(0, 0) cells by covariate combination, that is M.,(0,0). As noted above, inference
for the target population then follows from the posterior predictive distribution
of M.,(0,0), which can be obtained by replacing the individual covariate values
X(0,0) with M.,(0,0) in (27) and Algorithm 1. Assuming the data-generating
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model given by (20) and (21), the conditional posterior predictive distribution
for M.,(0,0) is a multinomial, defined in Section 5.3.

We discuss the components in the joint posterior distribution of the un-
knowns, namely, p(β,θ|Dobs), p(N |β,θ,Dobs), and p(X(0,0)|N,β,θ,Dobs) or
p(M.,(0,0)|N,β,θ,Dobs), in Sections 5.1, 5.2, and 5.3, respectively, and in Sec-
tion 5.4, we present a Gibbs sampler as an alternative approach to simulating
the joint posterior of the unknowns.

5.1. Computation of the posterior for the coverage model and
covariate distribution parameters

The first step in using (27) to generate the posterior predictive distribution of
the covariates for the group missed by both lists is to draw from the posterior
for the parameters of the coverage models and covariate distribution, (β,θ),
which is the marginalisation of the joint posterior p(N,β,θ|Dobs) over N :

p(β,θ|Dobs) =
∑
n

p(N = n,β,θ|Dobs)

∝ p(β) p(θ)
∑
n

p(Dobs|N = n,β,θ) Pr(N = n), (28)

since the parameters β, θ and N are assumed to be a priori independent. Then,
from (28) and (16), the marginal likelihood for (β,θ), is

p(Dobs|β,θ) ∝
∑
n

p(Dobs|N = n,β,θ) Pr(N = n)

=
∏

i:yi �=(0,0)

φyi(xi,β) p(xi|θ)
(1 − p(0,0)(β,θ)) ×

∑
n

(
n

n− nobs

)
(1 − p(0,0)(β,θ))nobs

(
p(0,0)(β,θ)

)(n−nobs) Pr(N = n).
(29)

In the special case of the Jeffreys’ prior for N , we can write Pr(N = n) ∝ 1/n,
and the marginal likelihood for (β,θ) becomes

p(Dobs|β,θ) ∝⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
nobs

∏
i:yi �=(0,0)

φyi(xi,β) p(xi|θ)
(1 − p(0,0)(β,θ)) ×∑

n

(n− 1)!
(nobs − 1)!(n− nobs)!

(1 − p(0,0)(β,θ))nobs
(
p(0,0)(β,θ)

)(n−nobs)
(30)

= 1
nobs

∏
i:yi �=(0,0)

φyi(xi,β) p(xi|θ)
(1 − p(0,0)(β,θ))

∝
∏

i:yi �=(0,0)

φyi(xi,β) p(xi|θ)
(1 − p(0,0)(β,θ)) , (31)
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since the summand in (30) is the probability mass function for a Negative-
Binomial (nobs, 1−p(0,0)(β,θ)) distribution, implying the summation reduces to
one. The right hand side of (31) is the conditional likelihood for (β,θ) defined
in (18). Thus, the marginal likelihood for (β,θ) obtained under the Jeffreys’
prior for N is equivalent to the conditional likelihood for (β,θ).

For priors on N , other than the Jeffreys’ prior, the complete conditional
likelihood in (18) could be used to approximate the likelihood for (β,θ), defined
in (29), in an otherwise fully Bayesian analysis. That is, we could approximate
p(β,θ|Dobs) by

pC(β,θ|Dobs) ∝ p(β) p(θ) LC(Dobs|β,θ) (32)

and use pC(β,θ|Dobs) in (27). Clearly, the approximation is exact when the
Jeffreys’ prior is adopted for the population size, and, when other priors are
adopted, is in error to the extent that the prior for N differs from the Jeffreys’
prior.

In general, sampling from p(β,θ|Dobs) is not straightforward, however we
have implemented the approach based on the conditional likelihood in the
Bayesian modelling language, Stan (Stan Development Team, 2021), and an
example is given in Section 6.

5.2. Computation of the conditional posterior for the population
size

The second step in generating the posterior predictive distribution of the covari-
ates for the group missed by both lists is to draw from the conditional posterior
of the total population size which, from (14), is given by

p(N |θ,β,Dobs) ∝ p(N) N !
(N − nobs)!

(
p(0,0)(β,θ)

)N−nobs
. (33)

For the improper Jeffreys’ prior, p(N) ∝ 1/N , the conditional posterior (33)
is proportional to a Negative-Binomial probability mass function with parame-
ters (nobs, 1−p(0,0)(β,θ)) (see Appendix B of Supplementary Material (Graham
et al., 2023) for details). We note that choosing p(N) ∝ 1/N leads to the con-
ditional posterior mean E(N |Dobs,θ,β) = nobs/(1− p(0,0)(β,θ)), which is also
the MLE for N conditional on (β,θ). This is consistent with the notion of the
Jeffreys’ prior as a representation of lack of prior information.

For bounded priors on N , the right hand side of (33) can be obtained by direct
evaluation for each value of N within the prior bounds, and the posterior for N
can therefore be simulated by sampling directly from the discrete distribution
implied by (33). Alternatively, rejection sampling or Metropolis-Hastings meth-
ods (Gelman et al., 2014, pp. 261–292) could be applied to obtain draws from
(33), however, because the latter approach can take some time to converge to the
target distribution, it may not prove practical to include a Metropolis-Hastings
step to correct approximations to (33) in step (ii) of Algorithm 1.
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5.3. Computation of the conditional posterior for the covariate
values of the group missed by both lists

Given draws from the posterior for the coverage model and covariate distribution
parameters and the population size, the final step in simulating the posterior
predictive distribution of the covariate values for the group missed by both lists
is to draw from the conditional posterior predictive distribution

p(X(0,0)|N,β,θ,Dobs) =
p(X(0,0),Dobs|N,β,θ)

p(Dobs|N,β,θ) , (34)

in the case of a unit-record population structure, or

p(M.,(0,0)|N,β,θ,Dobs) =
p(M.,(0,0),Dobs|N,β,θ)

p(Dobs|N,β,θ) (35)

in the case of an aggregate population structure. The denominator of (34) and
(35) is the likelihood given by (13) in the unit-record case, and by (23) in the
aggregated case, assuming the data generating model given by (20) and (21).

Straightforward evaluation of (34), given in Appendix C of Supplementary
Material (Graham et al., 2023), shows that the conditional posterior predictive
distribution of the covariate values for the group missed by both lists is given
by

Pr(X(0,0) = x(0,0)|N,β,θ,Dobs) =
(N−nobs)∏

i=1

φ(0,0)(xi,β) p(xi|θ)
p(0,0)(β,θ) (36)

where p(xi|θ) = H(xi|θ), the population covariate distribution evaluated at xi.
That is, conditional on N , the posterior predictive distribution for X(0,0) is
equivalent to (N − nobs) independent draws from

p(X|Y = (0, 0),β,θ) ∝ φ(0,0)(X,β) p(X|θ),

which is a weighted version of the population covariate distribution where the
weights are the probability of being missed by both lists for the specific covari-
ate value. Therefore, the generation of the covariate values for the Y = (0, 0)
group compensates for the selection bias inherent in the observed data covariate
distribution, which by definition, under-represents covariate values predictive of
being missed by both lists.

For an aggregate population structure, generated under the model given by
(20) and (21), we show, in Appendix C of Supplementary Material (Graham
et al., 2023), that the conditional posterior predictive distribution of the unob-
served counts M.,(0,0) is given by

Pr(M.,(0,0) = m.,(0,0)|N,β,θ,Dobs)

= (N − nobs)!∏
k mk,(0,0)!

∏
k

(
φ(0,0)(x[k],β) θk

p(0,0)(β,θ)

)mk,(0,0)

. (37)
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Since (N−nobs) =
∑

k Mk,(0,0), and p(0,0)(β,θ) =
∑

k φ(0,0)(x[k]) θk, (37) is the
probability mass function of a K-category multinomial with size parameter (N−
nobs) and category probabilities φ(0,0)(x[k],β) θk/p(0,0)(β,θ), for k ∈ {1, . . .K}.

5.4. The Gibbs sampler for small domain dual systems estimation

Gibbs sampling or data augmentation (Tanner and Wong, 1987; Gelman et al.,
2014, pp. 275–292) provides an alternative to steps (i) to (iii) of Algorithm 1 for
computing the joint posterior for the population size and covariate values for
the group missed by both lists. The Gibbs sampler alternates between imputing
the unobserved covariate values for the group missed by both lists conditional
on the model parameters, using (33) and (36) (or (37) in the case of an ag-
gregated population structure), and sampling from the posterior distribution of
the parameters, conditional on the completed data formed by augmenting the
observed data with imputed values of the missing data, X(0,0) or M.,(0,0). This
approach to posterior computation extends readily to situations with complica-
tions such as measurement error and sporadic missing-ness of covariate values
for individuals captured on at least one list, by adding additional imputation
steps.

For small domain dual systems estimation, the unknowns are (X(0,0), N,β,θ),
or, if the data is aggregated to covariate combinations, (M.,(0,0), N,β,θ). We
describe the Gibbs sampler for the former case, but adaptation to the aggre-
gated data case is immediate, using obvious substitutions. Rather than sim-
ulating the joint posterior p(X(0,0), N,β,θ|Dobs) directly, using the decom-
position in Algorithm 1, the Gibbs sampler proceeds by alternately sampling
from the, full conditional posterior distributions: (i) p(X(0,0), N |β,θ,Dobs); (ii)
p(β|X(0,0), N,θ,Dobs); (iii) p(θ|X(0,0), N,β,Dobs). The Gibbs sampling algo-
rithm for obtaining a Monte Carlo approximation to p(X(0,0), N,φ,θ|Dobs) is
given in Algorithm 2. The algorithm describes the updating steps for a sin-
gle Gibbs sampler chain, but in practice, multiple parallel chains are usually
run to facilitate checking for convergence of the sampler (Gelman et al., 2014,
pp. 281–288).

Note that, in step (i) of the Gibbs sampler in Algorithm 2, we update
(X(0,0), N) jointly using the decomposition

p(X(0,0), N |β,θ,Dobs) = p(X(0,0)|N,β,θ,Dobs) p(N |β,θ,Dobs),

and so, make use of (36) and (33), rather than alternating between the full con-
ditional distributions p(N |θ,β,X(0,0),Dobs) and p(X(0,0)|θ,β,Dobs, N). This
is because, conditional on the observed data and X(0,0), the total number of
records in the population is known, implying that N is known. Consequently,
simulating N conditionally on the observed data supplemented by X(0,0) would
mean N was fixed at its initially generated value. Fienberg, Johnson and Junker
(1999) discuss a similar issue.

Updating the list coverage model parameters (step (ii), line 4 in Algorithm 2)
and the covariate distribution parameters (step (iii), line 5) of the Gibbs sam-
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Algorithm 2 A single Gibbs sampler chain for dual systems estimation.
1: Initialise β → β(0), θ → θ(0).
2: for t in {1, . . . , T} do
3: step (i): Draw (x(t)

(0,0), n
(t)) by drawing

(a) n(t) from p(N |θ(t−1),β(t−1),Dobs)) using (33) and
(b) x(t)

(0,0) from p(X(0,0)|N = n(t), θ(t−1),β(t−1),Dobs) using (36);

Create an (n(t) − nobs) vector y(t)
(0,0) with each element equal to (0, 0);

Set

ycom,(t) = (yobs,′ ,y(t),′
(0,0))

′

xcom,(t) =
(

xobs

x(t)
(0,0)

)

Dcom,(t) =
(
ycom,(t),xcom,(t)).

4: step (ii): Draw β(t) from

p(β|θ(t−1), n(t),Dcom,(t)) = p(β1|n(t),Dcom,(t)) p(β2|n(t),Dcom,(t))

using (39).
5: step (iii): Draw θ(t) from p(θ|β(t), n(t),Dcom,(t)).
6: Store x(t)

(0,0), n
(t),β(t), and θ(t).

7: end for
8: Discard first B of T iterations as burn-in; use the remaining T −B iterations for inference.

pling algorithm amount to reasonably standard Bayesian computations since
they are conditional on the completed population data. Updating the coverage
parameters in step (ii) decomposes into separate updates for List 1 and List 2
coverage model parameters, since, with ycom,(t) and xcom,(t) defined as in step
(iii) of Algorithm 2, and recalling that β = (β′

1,β
′
2)′, we can write

p(β|θ(t−1), n(t),ycom,(t),xcom,(t)) ∝ p(β) p(ycom,(t)|xcom,(t), N,β)

= p(β1) p(β2)
∏

i:ycom,(t)
i =(1,1)

φ̃1(xcom,(t)
i ,β1) φ̃2(xcom,(t)

i ,β2)

×
∏

i:ycom,(t)
i =(1,0)

φ̃1(xcom,(t)
i ,β1) (1 − φ̃2(xcom,(t)

i ,β2))

×
∏

i:ycom,(t)
i =(0,1)

(1 − φ̃1(xcom,(t)
i ,β1)) φ̃2(xcom,(t)

i ,β2)

×
∏

i:ycom,(t)
i =(0,0)

(1 − φ̃1(xcom,(t)
i ,β1)) (1 − φ̃2(xcom,(t)

i ,β2)).

(38)

Rearranging (38) we have

p(β|θ(t−1), n(t),ycom,(t),xcom,(t)) =
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⎢⎢⎢⎢⎣
p(β1)

∏
i:ycom,(t)

i ∈{(1,1),(1,0)}

φ̃1(xcom,(t)
i ,β1)

×
∏

i:ycom,(t)
i ∈{(0,1),(0,0)}

(1 − φ̃1(xcom,(t)
i ,β1))

⎤
⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎣
p(β2)

∏
i:ycom,(t)

i ∈{(1,1),(0,1)}

φ̃2(xcom,(t)
i ,β2)

×
∏

i:ycom,(t)
i ∈{(1,0),(0,0)}

(1 − φ̃2(xcom,(t)
i ,β2))

⎤
⎥⎥⎥⎥⎦ , (39)

which clearly comprises distinct components for β1 and β2, implying the poste-
rior for β decomposes as the product of the posterior for β1 and β2, as indicated
in line 4 of Algorithm 2. Further details of the updates for the logistic coverage
model parameters will depend on model specifications such as whether some
parameters are modelled hierarchically. Since there is no conjugate prior for
parameters of logistic regression models, draws from the conditional posterior
for the coverage model parameters cannot be obtained directly and instead
are usually drawn using a Metropolis-Hastings algorithm (Gelman et al., 2014,
pp. 278–280). Nevertheless, posterior simulation for logistic regression models
is a standard Bayesian inference problem. This is illustrated in the examples in
Section 6.

Details of the updating step for the covariate distribution parameters will,
of course, depend on the model adopted for the covariate distribution. If the
covariate distribution is modelled as N independent draws from a categorical
distribution with parameter θ, and a Dirichlet(α) prior distribution is adopted
for θ, the conditional posterior for θ is also Dirichlet but with parameters up-
dated to α+(M (t)

1,+, . . . ,M
(t)
K,+)′, at the tth iteration of the sampler, where M

(t)
k,+

is obtained by adding the simulated count for the (0, 0) cell for the kth covariate
combination to the number of people observed with the kth covariate combina-
tion, i.e. M (t)

k,+ = Mobs
k,+ +M

(t)
k,(0,0). The same holds for the aggregated population

structure where counts by covariate combination are modelled by a multinomial
as defined in (20).

6. Example: population estimation by single year of age, sex and
geographic area

In order to illustrate the ideas and methods presented thus far, we consider
an example based on simulated but realistic data. The example considered has
a structure similar to problems faced by national statistical offices, who are
charged with describing the structure of the total population by demographic
variables, such as age, sex and area.

In Section 6.1, we outline the process of simulating realistic population data
and describe the simulated dataset used for the demonstrations in this section.
In Section 6.2, we estimate the population using the approaches discussed in
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Section 5. In Section 6.3, we consider the issue of model misspecification and il-
lustrate the use of posterior predictive model checking to help diagnose problems
with model specification.

6.1. Creating the simulated populations

The simulated target populations are constructed in four steps:

(i) For a target population of size N , N records with the desired covariates
are drawn with replacement from a covariate distribution. The covariate
distribution is based on the joint frequency distribution of demographic
covariates (age, sex and area) in the 2013 New Zealand census. We set N =
1,000,000. Each individual in the target population is then represented by
their covariates vector;

(ii) The coverage model for each of the two lists is specified by assigning pop-
ulation coverage patterns by age, sex and area. Logistic regression models
were chosen for the coverage models, and therefore, this step amounts to
specifying the form and coefficients of the linear component of the list in-
clusion probabilities φ̃j(x,βj) = invlogit(x′βj), for j ∈ {1, 2}. The vector
x includes predictor functions (such as interactions and basis functions).
The exact models will be discussed below;

(iii) The coverage models are then applied to the covariates of the N selected
records in the target population to obtain list inclusion probabilities for
each record, namely, φ̃j(xi,βj), for j ∈ {1, 2}, and i ∈ {1, . . . , N};

(iv) Finally, list inclusion indicators, for each record in the target population,
are drawn independently from Bernoulli distributions with probability
parameters set to the list inclusion probabilities obtained in step (iii):
[Li,j |Xi = xi,βj ] ∼ Bernoulli(φ̃j(xi,βj)), j ∈ {1, 2}, and i ∈ {1, . . . , N}.

The list inclusion cell, Y , and corresponding probability, φy(x,β), y ∈ Y, is
then derived, for each record in the target population, from the generated list
inclusion indicators and the corresponding marginal probabilities, according to
(3)–(6).

The simulated observed data are obtained from the simulated target popu-
lation by dropping all records with both list inclusion indicators equal to zero,
that is, with list inclusion cell (0, 0). For model fitting and analysis, the target
population and the observed data are aggregated by unique covariate combina-
tions.

In the examples considered in this section, the data is simulated using a
clustered design, where individuals in the population are clustered within geo-
graphic areas. We use ai ∈ {1, . . . , A} to denote the area for individual i, and x̌i

to denote their other covariates. Then, the full covariates vector for individual
i becomes xi = (ai, x̌′

i)′. The following data generating model is used for each
individual, i ∈ {1, . . . , N}, in the target population:

[Xi|θcensus] ∼ Categorical(θcensus)
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[Li,j |Xi = xi,βj ]
indep∼ Bernoulli

(
φ̃j(xi,βj)

)
, j ∈ {1, 2}

φ̃j(x′
i,βj) = invlogit(βj,0,ai + x̌′

i βj,1)

βj,0,ai

indep∼ N(βj,0, σ
2
j ),

where βj =
(
βj,0,1, . . . , βj,0,A,βj,1

)′ is the vector of parameters of the coverage
model for List j, which includes random area effects for the A areas and the
covariate coefficients vector.

We simulate a target population of size one million, spread across 11,929
covariate combinations. The covariate combinations range in size from 1 to 2,734,
and the median of the covariate combination counts is 36; in fact, approximately
95% of the covariate combinations have a count smaller than 200. Therefore,
this example illustrates a small domain population estimation problem. The
covariate combinations are based on single year of age (truncated at age 89), sex
(male and female) and 67 geographic areas. The area variable is included in the
coverage models as an area-specific intercept; age is included as bases of a cubic
spline with internal knots set to {5, 15, 25, 35, 45, 55, 65, 75}, and sex is included
as a binary variable. The coverage model also includes interactions between sex
and the age spline terms. We set the coverage model parameter vectors, β1 and
β2, to achieve pre-set overall coverage rates (approximately 70% for each list,
and 90% for both lists combined). Summaries of the simulated target population
and the observed data are plotted in Figures 1 and 2.

In Figure 1, the observed and target counts are plotted by single year of
age and sex, marginalized over area. In Figure 2, the relative differences of the
observed and target counts are plotted for each area, marginalized over age
and sex. (Relative differences are plotted instead of absolute counts because the
areas have high variability with respect to size.)

Figures 1 and 2 demonstrate the lists have appreciable under-coverage with
respect to the target population. In order to estimate the size and structure of
the target population, dual systems estimation needs to estimate and adjust for
this under-coverage.

6.2. Estimating the target population from observed data

In this section, we apply the approaches discussed in Section 5 to estimate the
simulated target population described in Section 6.1. Given the observed data
(i.e. individuals observed on at least one of the two lists), the estimation problem
is to infer the total population size, N , and the distribution (over the covariates)
of the subset of the population missed by both lists, i.e. X(0,0) for the unit-record
population structure, or equivalently, M.,(0,0), for the aggregated population
structure. We adopt the Jeffreys’ prior for the total population size N . Priors
for other model parameters are discussed below.

For the examples in this section, we use samplers implemented for the aggre-
gated population structure. We demonstrate three approaches:
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Fig 1. Target counts (in gray) and observed counts (in blue) by single year of age (truncated
at 89) and sex, marginalized over area, for each of the two lists.

Fig 2. Relative differences of the counts observed on each list, by geographic area, marginalized
over age and sex. The relative difference for any given area is the difference between the
observed and target counts relative to the target counts. The vertical blue line at zero signifies
no difference between the observed and target counts.

(i) The marginal likelihood approach, where we approximate (or sample from)
the posterior distribution p(β,θ|Dobs), which is the full parameter pos-
terior p(N,β,θ|Dobs) marginalised over N . Since we have adopted the
Jeffreys’ prior for N , the marginal likelihood for (β,θ) is the marginal
likelihood given in (31). We use the probabilistic programming software,
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Stan (Stan Development Team, 2021) to implement this approach; Stan
uses Hamiltonian Monte Carlo (HMC) which is a highly efficient approach
to Markov Chain Monte Carlo (MCMC) posterior computation.

(ii) The full observed likelihood approach, where we approximate the poste-
rior distribution of all the parameters, p(N,β,θ|Dobs). We also implement
this approach in Stan and, since the sampler in Stan allows only contin-
uous parameters, we use a continuous approximation to the prior for the
population size N ; that is, we let p(N) ∝ 1/N , but do not restrict N to
be integer-valued.

(iii) The data augmentation (or Gibbs sampler) approach, where we approx-
imate the joint posterior p(M.,(0,0), N,β,θ|Dobs), as described in Sec-
tion 5.4.

Note that, when using the marginal likelihood approach, given draws of β and
θ, the population size N and the counts vector M.,(0,0) are drawn from the con-
ditional posterior distributions (33) and (37) described in Section 5.2 and 5.3,
respectively. This step is straightforward since, under the Jeffreys’ prior the con-
ditional posterior distribution for N is Negative-Binomial, and the conditional
posterior for M.,(0,0) is the multinomial given by (37), and both the Negative-
Binomial and multinomial distributions are easy to sample from. Similarly, when
using the full likelihood approach, given draws of β, θ and N , M.,(0,0), is drawn
from its multinomial conditional posterior (37).

Within the samplers, the coverage models for the two lists are two-level lo-
gistic regression models where the area-specific intercepts are modelled hierar-
chically. For each list j ∈ {1, 2}, area a and covariates vector x̌, the coverage
model is

φ̃j(x,βj) = invlogit(βj,0,a + x̌′ βj,1), ∀(x̌, a) (40)
p(βj,0,a|βj,0, σ

2
j ) = N(βj,0,a|βj,0, σ

2
j ), ∀a, (41)

p(βj,1) = MVN(βj,1|0,Σj), (42)
p(βj,0) = N(βj,0|mj , s

2
j ) (43)

p(σj) = U[lj , uj ], (44)

where the parameters of the prior/hyper-prior distributions are set to Σj =
100 I (where I is the identity matrix), mj = 0, s2

j = 100, and [lj , uj ] = [0.001, 3],
for both lists. The parameters are assumed to be a priori independent. The
covariate coefficients vector for List j, βj,1, includes coefficients for the age spline
terms and sex, and their interactions. The hierarchical model for area effects, in
which the area effects are modelled in (41) as conditionally independent draws
from a common Normal distribution, with mean and variance also treated as
unknowns, permits partial pooling of information across areas, which improves
the precision of the estimates for area effects, particularly for smaller areas.
An alternative would be to include area effects in (40) by replacing βj,0 with
a linear combination of area indicators, to form a single-level logistic model. If
the prior for the logistic model parameters was specified as independent normal
distributions, as in (42), the information used to estimate each of the area
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Fig 3. Estimated covariate combination counts plotted against the true covariate combination
counts, for marginal likelihood approach using Stan (row 1), full likelihood approach using
Stan (row 2), and Gibbs sampler approach (row 3). Target (total) counts are plotted in the
left column and missing counts, i.e. counts of individuals not observed by any list, are plotted
on the right. In each plot, points correspond to covariate combinations. The black points are
the median estimates, while the gray points are the 0.05 and 0.95 quantiles of the posterior
draws.

effects would be limited to the data for the corresponding area. That is, under
the single-level logistic model formulation, with a priori independence assumed
for the area effects, information regarding area effects would not be pooled over
areas. The conditional independence model given by (41) is a convenient and
widely used approach to allowing information to be pooled over areas (Gelman
et al., 2014, Chapter 5).

In Figure 3, we have plotted the posterior median covariate combination
counts against the true covariate combination counts, for the full target popula-
tion (left column) and the subset missed by both lists (right column). The rows
correspond to the marginal likelihood approach, the full likelihood approach,
and the Gibbs sampler approach, respectively. Each point in the plots corre-
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sponds to a unique covariate combination. To indicate the uncertainty in the
estimates, the 0.05 and 0.95 quantiles of the posterior samples for each covari-
ate combination are also plotted (in gray). All three approaches produce similar
posterior distributions demonstrating the approaches are equivalent, and the
estimates are generally centred on the x = y line. Computationally, the Gibbs
sampler, which uses the Metropolis-Hastings algorithm to update parameters,
is run for many more iterations until convergence compared to the Stan (HMC)
sampler. We ran three parallel chains, each for 200,000 iterations for the Gibbs
sampler, including a burn-in of 80,000, and 4,000 iterations for the Stan sampler,
with a burn-in of 1,000. The post-burn-in draws were thinned to get a posterior
sample of approximately 2,000. The convergence diagnostic R̂ was generally less
than 1.05 for the Gibbs sampler and less than 1.02 for the Stan sampler. The
runtimes for the examples presented here were comparable, however, in general,
the Gibbs sampler has lower per-iteration runtime but must run for tens of
thousands of iterations before convergence, while the Stan sampler has higher
per-iteration runtime, but requires fewer iterations until convergence.

To demonstrate the population estimates and credible intervals by selected
dimensions (covariates), in Figure 4, we have plotted the relative differences
of the estimated counts (medians and 90% equal-tail-area credible intervals)
by age and sex, marginalized over area, and in Figure 5, we have plotted the
same for area, marginalized over age and sex. In both cases, we have used the
posterior samples from the Gibbs sampler approach, but the posterior samples
using Stan produce similar results. The 90% credible intervals of the relative
differences overlap with the vertical/horizontal line at zero for most covariate
combinations, implying that the estimated intervals capture the true value for
most covariate combinations.

6.3. Model misspecification and posterior predictive model checking

The results reported above show that the underlying population structure can be
recovered under any of the three computational approaches considered. However,
these results were produced under the unrealistic scenario of a known data-
generating model, i.e. we fitted a model that exactly matched the structure of
the known data generating model. In practice, the data generating model is
never exactly known and the fitted model may be misspecified. However, model
checking can identify defects in the model specification and correcting these
defects can lead to an improved model. The basic premise of posterior predictive
model checking is that, if a fitted model is a reasonable representation of a model
that could have generated the observed data, new data generated from the fitted
model should look much like the observed data, allowing for random variation
(Gelman et al., 2014, Chapter 6).

For Bayesian dual systems estimation, posterior predictive model checking
is easily implemented: (i) For each draw from the joint posterior for the model
parameters and covariate distribution for the group missed by both lists, that
is, p(M.,(0,0), N,β,θ|Dobs), generate predicted list inclusion cell counts by co-
variate combination; (ii) Compare the observed counts against the posterior



32 P. Graham et al.

Fig 4. Relative differences of estimated and true counts, relative to true counts, by single year
of age and sex. Estimated covariate combination totals (which include observed counts) are
plotted in the top row, and estimated covariate combination counts missing from both lists
are plotted in the bottom row.

Fig 5. Relative differences of estimated and true counts, relative to true counts, by geographic
area. Estimated area totals (which include observed counts) are plotted in the left column, and
estimated area counts missing from both lists are plotted in the right column.

predictive distribution for the observable cell counts. If we find that observed
counts often fall in the tail of the corresponding posterior predictive distribu-
tion, the model specification must be called into question. An algorithm for
generating the posterior predictive distribution for the observable list inclusion
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cell counts is given in Algorithm 3.

Algorithm 3 Generating the posterior predictive distribution of list inclusion
cell counts.
1: for t in {1, . . . , T} do
2: step (i): Draw (M(t)

.,(0,0), N
(t),β(t), θ(t)) from p(M.,(0,0), N,β, θ|Dobs)

3: for k in 1, . . . ,K do
4: step (ii): Set M

(t)
k,+ = Mk,(1,1) + Mk,(1,0) + Mk,(0,1) + M

(t)
k,(0,0)

5: step (iii): Draw(
M

pred,(t)
k,(1,1) ,M

pred,(t)
k,(1,0) ,M

pred,(t)
k,(0,1) ,M

pred,(t)
k,(0,0)

)′ ∼ Multinomial
(
M

(t)
k,+,φ(x[k],β

(t))
)

6: step (iv): Set (predicted list counts)

M̃
pred,(t)
k,1 = M

pred,(t)
k,(1,1) + M

pred,(t)
k,(1,0)

M̃
pred,(t)
k,2 = M

pred,(t)
k,(1,1) + M

pred,(t)
k,(0,1)

7: end for
8: end for

In Algorithm 3, an aggregated data structure is assumed but the algorithm is
easily adapted to a unit-record population structure by generating a predicted
list inclusion cell for each record in the simulated population, based on the
recorded covariates for observed records and the predicted covariate values for
the unobserved group. Thus, in the unit-record case, for the tth draw from the
posterior, the predicted list inclusion cell indicators are generated by sampling
from

Y
pred,(t)
i

indep∼ Categorical
(
φ(x(t)

i ,β(t))
)
, i ∈ {1, . . . , N (t)}. (45)

In Algorithm 3, and in the adaptation to unit-record data just described,
we condition on the covariate values for the nobs individuals recorded on the
observed list. This focuses attention on the adequacy of the coverage models,
which, given our adoption of an unstructured multinomial for the covariate dis-
tribution, is likely to be the major source of model uncertainty. However, it is
also possible to include prediction of the covariate distribution in the posterior
predictive simulation by including a step to generate the full covariate distribu-
tion conditional on (N,β,θ) before generating the list inclusion cell counts or
indicators (step (iv) in Algorithm 3). This would facilitate checking aspects of
the modelled covariate distribution.

To illustrate the posterior predictive checking for dual systems estimation and
to explore how model misspecification manifests in posterior predictive checking,
we fitted a misspecified version of the model discussed in Section 6.1, which
omitted the sex by age interaction and modelled age effects using a simplified
spline model with only three knots at ages 15, 25 and 65. Aside from these
changes, the misspecified model had the same structure as the model given
in (40)–(44). In particular, area-level effects were modelled hierarchically. The
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misspecified model was fitted in Stan, using the marginal likelihood for (β,θ)
and assuming Jeffreys’ prior for N . The same uninformative priors that were
used for fitting the correctly specified model were adopted for the misspecified
model.

We computed posterior predictive checks for the counts on each list, and for
each of the three observable list inclusion cells, by covariate combination. Since
the pattern of results was similar for each of the model checking targets, we
report only results for the counts in the (1, 1) cell below.

Several metrics for comparing the posterior predictive distributions with ob-
served counts are presented in Table 2, for different levels of aggregation, be-
ginning with the most granular level in the simulated data, which is area by sex
by single year of age. The metrics reported in Table 2 are:

1. The difference between the posterior predictive median for the number in
both lists and the observed count on both lists, averaged over covariate
combinations (mean diff );

2. The relative median absolute deviation defined as the ratio of the median
(over covariate combinations) of the absolute difference between the pos-
terior predictive median and the observed count for the (1, 1) cell, for the
misspecified model relative to the correctly specified model (rmad);

3. The proportion of covariate combinations for which the posterior predic-
tive 95% intervals include the observed count (coverage). We note that
although we refer to this concept as “coverage” it is not the same con-
cept as frequentist coverage of intervals, which refers to the proportion of
intervals including a target value, under repeated sampling;

4. The average length of the 95% posterior predictive intervals under the
misspecified model divided by the average length of the 95% posterior
predictive intervals under the correctly specified model (rel length).

The latter metric (relative interval length) is not a measure of model-fit but is
included to check whether it is likely that differences in the coverage of poste-
rior predictive intervals could be attributed to differences in the length of the
intervals. For example, excessive interval length can lead to high coverage even
if posterior medians are suggestive of poor fit, and low interval coverage can
result from intervals that are too narrow.

We use relative (to the correct model) measures of median absolute devia-
tion and interval length because the value of these measures naturally increases
as the level of aggregation increases, and the relevant comparison is between
the misspecified and correct model. However, actual values of the mean differ-
ence between posterior predictive medians and observed values are reported in
Table 2, because they show that average differences are small, for both the mis-
specified and correct model, at all levels of aggregation. In practice, we would
not have a known correctly specified model to benchmark model checking re-
sults against, but working with simulated data affords us the opportunity to
gain insight into how posterior predictive checking reveals issues with model
misspecification.
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Table 2

Comparison of posterior predictive checks for the number observed on both lists,
for correct and misspecified models at different levels of aggregation.

granularity measure correct model misspecified model
area, sex, age mean diff(a) 0.224 −0.016
area, sex, age rmad(b) 1.000 1.000
area, sex, age coverage(c) 1.000 0.968
area, sex, age rel. length(d) 1.000 1.000
area mean diff 0.134 −0.127
area rmad 1.000 0.500
area coverage 1.000 1.000
area rel. length 1.000 0.989
sex, age mean diff 0.086 −0.047
sex, age rmad 1.000 3.091
sex, age coverage 0.972 0.500
sex, age rel. length 1.000 0.965
sex, 5 year age mean diff 0.472 −0.444
sex, 5 year age rmad 1.000 10.619
sex, 5 year age coverage 1.000 0.278
sex, 5 year age rel. length 1.000 0.893

(a) Average (over covariate combinations) of the difference between the posterior
predictive median and the observed count of people in the (1, 1) cell;
(b) Ratio of the median absolute deviation of the posterior predictive median from
the observed count for the misspecified model, compared to the correct model;
(c) Proportion of 95% posterior predictive intervals that include the observed count;
(d) Ratio of average length of 95% posterior predictive intervals obtained under the
misspecified model, compared to the correct model.

At the lowest level of aggregation (11,929 combinations of area by sex by
age combinations), there are no real differences between the model checking
metrics for the misspecified and correct models. In particular, the coverage of
the 95% posterior predictive intervals for the misspecified model is 96.8.% Al-
though this is less than the coverage of 100% achieved by the correct model,
96.8% of 95% posterior predictive intervals including target values would not
usually be regarded as indicative of problems with a model. Similarly, when ag-
gregating counts to the area-level, there appears to be little difference between
the misspecified model and correctly specified models. Since the misspecfied
model differed from the correct model only in the specification of the effects of
age and sex, this is not unexpected.

When counts are aggregated to sex by single year of age, resulting in 180 sex
by age combinations, the coverage of the 95% posterior predictive intervals un-
der the misspecified model drops dramatically, to 50.0%, whereas the coverage of
the posterior predictive intervals for the correctly specified model remains high
at 97.2%. The relative length of the posterior predictive intervals under the mis-
specified model is only slightly less than under the correctly specified model and
is unlikely to explain the under-coverage of the posterior predictive intervals for
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the misspecified model. The slightly reduced interval length for the misspecified
model, reflects a small reduction in posterior variance for the coverage model
parameters, due to fitting a model with fewer parameters. The poor coverage of
the posterior predictive intervals for the misspecified model is associated with
the magnitude of the discrepancies between the posterior predictive median and
the observed counts: The median absolute deviation for the misspecified model,
is just over 3 times the corresponding value for the correctly specified model.
However the average difference between posterior medians and the observed
counts remains low for both models, suggesting that although the magnitude of
discrepancies is greater for the misspecified model, there are both positive and
negative discrepancies that average out at close to zero, when averaging over
covariate combinations.

Fig 6. Posterior predictive check for the number observed on both lists, by sex and 5-year age
groups. The sex-age group combinations are indicated on the y-axis: The first character of the
row label indicates sex (0 for male; 1 for female), with the age interval following. 95% and
50% (darker shaded inner interval) posterior predictive intervals are shown for the relative
difference between model predictions and the observed count. For the misspecified model (panel
(b)), only 10 of the 36 95% posterior predictive intervals include the observed value (indicated
by the vertical line at 0.0). For the correct model (panel (a)), all the 95% posterior predictive
intervals include the observed value.

With further aggregation to sex and 5-year age groups, the coverage of the
posterior predictive intervals declines further to 27.8% with the posterior pre-
dictive intervals including observed counts for only 10 of the 36 sex by 5-year
age-group combinations. This is suggestive of serious problems with the mis-
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specified model. In contrast, all 36 of the posterior predictive intervals for the
correctly specified model included the observed count. The median absolute
deviation for the misspecified model is about 10.6 times the median absolute
deviation for the correctly specified model, suggesting the low coverage of the
the posterior predictive intervals obtained under the misspecified model is at-
tributable to problems with the location of these intervals. This is clearly illus-
trated in Figure 6 which shows posterior predictive 95% intervals for the rela-
tive difference between predicted values and the observed values, computed as
(predicted−observed)/observed, for the correct and misspecified models. While
the intervals for the correctly specified model are tightly clustered around the
vertical line, indicating zero relative difference, the intervals for the misspecified
model are more scattered, with the median relative difference exceeding 5% for
several of the sex by 5-year age group combinations. As previously noted, only
10 of the posterior predictive intervals for the misspecified model include the
null value of no difference.

It is interesting that model misspecification appears to have minimal effect
on the model-fit when interest is confined to the most granular level of esti-
mation, yet the mis-fit of the misspecified model becomes clearly apparent at
higher levels of aggregation. At the most granular level (area by sex by age in
our example), the impact of model misspecification is likely small relative to
random variation. As attention turns to more aggregated levels of estimation,
the impact of random variation, relative to the magnitude of the counts be-
comes less, and therefore, the impact of model misspecification becomes more
apparent.

We note that the pattern of the posterior predictive model checking results
for the misspecified and correctly specified models is replicated for population
estimates obtained under the two models. In Table 3, we present similar metrics
to Table 2, for comparing population estimates against true values. Thus, for
example, the coverage measure is now the proportion of the covariate combina-
tions for which the 95% credible interval includes the true population counts.
For estimates by area, sex and age, it can be seen that there is very little differ-
ence between the performance of the misspecified and correctly specified models.
This holds also for estimation by area (aggregating over levels of sex and age).
However, the effect of model misspecification becomes clearly apparent when
aggregating over area to obtain estimates by sex and age. For estimates by
sex and single year of age, the median absolute deviation for the misspecified
model is about three times the corresponding figure for the correctly specified
model. For the misspecified model, the proportion of 95% credible intervals
that include the true count is just less than 54%, whereas the coverage of the
credible intervals for the correctly specified model is 96.7%. The performance
of the misspecified model deteriorates further when age is aggregated to five
year intervals: The median absolute deviation is 5.6 times the corresponding
figure for the correctly specified model, and the coverage of the 95% credi-
ble intervals declines to 30.6%, compared to 97.2% for the correctly specified
model. The contrast in the performance of the 95% credible intervals obtained
under the two models is clearly apparent in Figure 7, which reports credible
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Table 3

Metrics comparing summaries of the posterior distribution for small domain
population counts against true values, at different levels of aggregation, for

correct and misspecified models.

granularity measure correct model misspecified model
area, sex, age mean diff(a) −0.228 −0.268
area, sex, age rmad(a) 1.000 1.000
area, sex, age coverage(a) 0.975 0.969
area, sex, age rel. length(a) 1.000 0.998
area mean diff −1.269 −8.664
area rmad 1.000 0.842
area coverage 0.970 0.970
area rel. length 1.000 0.991
sex, age mean diff −0.414 −3.194
sex, age rmad 1.000 3.000
sex, age coverage 0.967 0.539
sex, age rel. length 1.000 0.968
sex, 5 year age mean diff −1.417 −14.889
sex, 5 year age rmad 1.000 5.580
sex, 5 year age coverage 0.972 0.306
sex, 5 year age rel. length 1.000 0.896

(a) Average (over covariate combinations) of the difference between the posterior
median and the true population count;
(b) Ratio of the median absolute deviation of the posterior median from the true
value, for the misspecified model, compared to the correct model;
(c) Proportion of 95% credible intervals that include the true population count;
(d) Ratio of average length of 95% credible intervals obtained under the misspecified
model, compared to the correct model.

intervals for the relative difference between posterior estimates and the true
values.

From these investigations, we can conclude that posterior predictive model
checking is useful for detecting problems with model fit that are likely to impact
on population estimation. However, it is important to check model performance
at all levels of aggregation for which estimates are likely to be produced. The im-
pact of model misspecification may not be apparent at low levels of aggregation
because the impact of random variation may outweigh biases due to model mis-
specification. Posterior predictive checking can reveal components of the model
specification that need attention. For example our model-checking results re-
vealed no issues at the area level but discrepancies between model predictions
and observed values, by sex and age. In a real data situation, this would clearly
point to problems in the specification of the sex by age effects in the coverage
models.
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Fig 7. Posterior medians and 95% credible intervals, by sex and 5-year age groups, for the
correct (panel (a)) and misspecified (panel (b)) models. Estimates are presented as relative
difference from the true value. The open circles indicate the difference between the posterior
median and the true value, divided by the true value. Interval endpoints are defined similarly.
95% and 50% (darker shaded inner interval) credible intervals are shown. The sex-age group
combinations are indicated on the y-axis: The first character of the row label indicates sex (0
for male; 1 for female), with the age interval following. For the misspecified model only 11 of
the 36 95% posterior predictive intervals include the observed value (indicated by the vertical
line at 0.0). For the correct model, the 95% credible values include the observed value for all
36 sex-age group combinations.

7. Relaxing the conditional independence assumption

7.1. Identifiability considerations

So far we have followed standard practice by assuming conditional independence
between inclusion on the two lists, given covariates. Any attempt to model de-
pendence between inclusion on the two lists must deal with an inherent identifi-
ability issue, related to the group omitted from both lists. If we allow inclusion
on List 2, say, to depend on inclusion on List 1, after controlling for covariates,
then we are saying that, within levels of the covariates, the probability of in-
clusion on List 2 differs for the groups included and omitted from List 1, i.e.
Pr(L2 = 1|X = x, L1 = 1) �= Pr(L2 = 1|X = x, L1 = 0). However, only people
included on List 2 are observable for the group omitted from List 1. Thus, al-
though we observe data from which we can estimate Pr(L2 = 1|X = x, L1 = 1),
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we cannot estimate Pr(L2 = 1|X = x, L1 = 0) directly from the observed data
because, for the L1 = 0 group, only people with L2 = 1 are observed. Intuitively,
therefore, it seems clear that estimating the association between inclusion on
List 1 and inclusion on List 2, is not, directly, supported by the usual data
structure for dual systems estimation. This is the essence of the identifiability
issue that makes moving away from the assumption of conditional independence
difficult.

Some mathematical insight into the identifiability issue can be gained by con-
sidering the marginal likelihood for the coverage model and covariate distribu-
tion parameters, (β,θ), with Jeffreys’ prior for total population size, as given in
(18). Suppose we place no restrictions on the inclusion cell probabilities, except
the requirement that they sum to one, at each covariate setting. Thus we are
removing the conditional independence assumption. The population averaged
probability of being missed by both lists is

p(0,0)(β,θ) =
∫ (

1 − (φ(1,1)(x,β) + φ(1,0)(x,β) + φ(0,1)(x,β))
)
p(x|θ) dx

= 1 −
∫

(φ(1,1)(x,β) + φ(1,0)(x,β) + φ(0,1)(x,β)) p(x|θ) dx.

Now, suppose we multiply each of φ(1,1)(x,β), φ(1,0)(x,β) and φ(0,1)(x,β) by α
satisfying 0 < α < 1, for each covariate combination x, to obtain new cell prob-
abilities φα,y(x,β), for y �= (0, 0), and φα,(0,0)(x,β) = 1−α

∑
y �=(0,0) φα,y(x,β).

With these modified cell probabilities, the population-averaged probability of
being missed by both lists is

pα,(0,0)(β,θ) =
∫

φα,(0,0)(x,β) p(x|θ)dx

= 1 − α

∫
(φ(1,1)(x,β) + φ(1,0)(x,β) + φ(0,1)(x,β)) p(x|θ) dx

= 1 − α(1 − p(0,0)(β,θ))

and, from (18), the marginal likelihood for (β,θ) is therefore

∏
i:yi �=(0,0)

α φyi(xi,β) p(xi|θ)
α (1 − p(0,0)(β,θ)) =

∏
i:yi �=(0,0)

φyi(xi,β) p(xi|θ)
1 − p(0,0)(β,θ) ,

which is just the marginal likelihood for the original inclusion cell probabili-
ties and covariate distribution parameters. Thus, for any particular value of cell
probabilities {φ∗

(1,1)(x,β), φ∗
(1,0)(x,β), φ∗

(0,1)(x,β), ∀x ∈ X}, the marginal likeli-
hood evaluated at that value of the cell probabilities is identical to the marginal
likelihood evaluated at {αφ∗

(1,1)(x,β), αφ∗
(1,0)(x,β), αφ∗

(0,1)(x,β),∀x ∈ X}, for
all 0 < α < 1, and for any θ. Thus, even though the implications for the
(0, 0) cell probability of multiplying the observable cell probabilities by 0 <
α < 1 may be substantial (e.g. consider α = 0.01), the marginal likelihood
cannot discriminate between {φ∗

(1,1)(x,β), φ∗
(1,0)(x,β), φ∗

(0,1)(x,β),∀x ∈ X},
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and {αφ∗
(1,1)(x,β), αφ∗

(1,0)(x), αφ∗
(0,1)(x),∀x ∈ X}. Moreover, this phenomenon

holds for any realisation of the observable data. Without some restrictions on
the cell probabilities, the observable data cannot identify the cell probabilities.
It can be easily verified that under the conditional independence assumption,
multiplying the two sets of list inclusion probabilities by a constant 0 < α < 1
does lead to different values of the marginal likelihood, assuming Jeffreys’ prior
for N .

While the above argument is specific to the marginal likelihood under the
Jeffreys’ prior for N , it does illustrate the difficulty of learning about the cell
inclusion probabilities from just the observable data. In 7.3, we discuss the use
of an informative prior for sub-population totals to help strengthen inferences
from dependent lists.

7.2. Structuring list inclusion dependence using the odds ratio

Some structure on the cell probabilities is necessary for identifiability but the
model of conditional independence is not the only identifying structure that
can be considered. A natural alternative to the conditional independence model
is a model that maintains the logistic coverage models for each list but in-
troduces a specific parametric form for the association between inclusion on
the lists. This makes the list inclusion cell probabilities dependent on both
the parameters of the marginal list coverage models, β, and parameters of
the model for dependence between inclusion on the two lists. For binary vari-
ables, a standard measure of association is the odds ratio. Accordingly, we let
ρ(x) =

(
φ(1,1)(x,β,ρ) φ(0,0)(x,β,ρ)

)
/
(
φ(1,0)(x,β,ρ) φ(0,1)(x,β,ρ)

)
denote

the odds ratio for list inclusion, for covariate combination x, where ρ is either a
vector of association parameters, which may be odds ratios for each value of x
or the parameters of a model relating the odds ratio to covariates, or a scalar if
a common odds ratio is assumed for all covariate combinations. The conditional
independence model corresponds to the case with ρ(x) = 1,∀x ∈ X . Setting the
odds ratios to other fixed values also yields an identified likelihood.

For a fixed value of ρ(x) �= 1 and marginal coverage probabilities φ̃1(x,β1)
and φ̃2(x,β2), for Lists 1 and 2 respectively, it follows from Lee (1997) that the
probability of inclusion in the (0, 0) cell for covariate combination x is given by
the solution of the quadratic equation

(ρ(x) − 1) φ2
(0,0)(x,β,ρ)

− φ(0,0)(x,β,ρ)
(
1 + (ρ(x) − 1)(2 − φ̃1(x,β1) − φ̃2(x,β2))

)
+ ρ(x)(1 − φ̃1(x,β1))(1 − φ̃2(x,β2)) = 0 (46)

that satisfies

max
(
0, 1 − φ̃1(x,β1) − φ̃2(x,β2)

)
≤ φ00(x,β,ρ)
≤ min

(
1 − φ̃1(x,β1), 1 − φ̃2(x,β2)

)
. (47)
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With φ(0,0)(x,β,ρ) obtained from (46) and (47), the remaining cell proba-
bilities follow easily as

φ(1,0)(x,β,ρ) = (1 − φ̃2(x,β2)) − φ(0,0)(x,β,ρ) (48)
φ(0,1)(x,β,ρ) = (1 − φ̃1(x,β1)) − φ(0,0)(x,β,ρ) (49)
φ(1,1)(x,β,ρ) = φ̃1(x,β1) − φ(1,0)(x,β,ρ) = φ̃2(x,β2) − φ(0,1)(x,β,ρ). (50)

For given values of ρ, all likelihood calculations follow as in the conditional
independence case, but with cell probabilities obtained from (46) and (47) and
(48)–(50) rather than as products of the corresponding marginal probabilities.
Posterior computation using the Gibbs sampler is more complex in the case
of dependent list inclusions because the conditional posterior for the marginal
coverage model parameters does not separate into distinct conditional posterior
distributions for the two marginal coverage models. If the full or marginal like-
lihood is used directly to obtain the posterior for the model parameters only
minor modifications are required to the conditional independence implementa-
tion to compute the cell probabilities case using (46), (47) and (48)–(50)) instead
of the products of the marginal coverage probabilities.

Using any of the approaches to fitting dual systems estimation models con-
sidered in this paper, the sensitivity of population estimates to departures from
conditional independence can be assessed by running additional analyses with
fixed values of the odds ratios. A special case that may suffice for an initial
investigation of sensitivity to dependence is a model with a common odds ra-
tio for each covariate combination. A simple illustration of this idea is given in
Section 7.2.1 below.

As an alternative, or adjunct, to running a series of analyses with fixed val-
ues of the odds ratios (or other measures of association), a more fully Bayesian
perspective leads to placing a prior on the odds ratio parameter(s). In view
of the identifiability issues noted above, we should not expect the data to be
informative about the odds ratios, but adopting a prior for the odds ratio pa-
rameters allows uncertainty concerning the dependence between inclusion on
List 1 and List 2 to be propagated through to population estimation. In the
example considered in Section 7.2.1 below, uncertainty concerning dependence
makes a substantial contribution to uncertainty concerning population size.

If the odds ratio is allowed to vary with covariate combinations, a model
could be formulated such as

log(ρ(x)) = δ0 + x′δ1

and prior distributions specified on the parameters of this model.
Alternatively, a hierarchically structured prior for covariate specific odds ra-

tios could be considered, so that covariate specific odds ratios are modelled as
varying around some common mean. One such hierarchical structure is:

[ρk|ρ0]
indep∼ TNorm(ρ0, τ, dl, du), k ∈ {1, . . . ,K}

ρ0 ∼ TNorm(μ, σ, cl, cu)
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τ ∼ Fτ (51)

where, for simplicity, truncated normal priors have been proposed, with trunca-
tion points cl and cu for the second-level model, and dl and du for the covariate-
level model. Given the identifiability issue, τ must be specified, or assigned a
tight prior, rather than relying on the data to inform the posterior for this pa-
rameter. The model is a way of structuring prior beliefs about the structure
of dependence. For example, if a scenario where the assumption of a common
dependence odds ratio across all covariate combinations was thought unlikely
to hold but odds ratios were nevertheless considered unlikely to vary greatly by
covariate combination, τ could either be set to a modest value or assigned a
prior density concentrated on small values.

In some circumstances the prior for the odds ratio parameters may be in-
formed by analysis external to the dual systems estimation. For example, in
the context of population estimation based on a census and a coverage sur-
vey, Brown, Abbott and Diamond (2006) estimate odds ratios, by small geo-
graphic area, from preliminary analysis of household-level data and extrapolate
the household-level odds ratios to the person-level odds ratios, so that it can be
incorporated in person-level dual systems estimation. In the application Brown,
Abbott and Diamond (2006) describe, the household-level odds ratios can be
estimated because of the existence of an assumed high quality estimate of the
total number of households by small geographic area. For a known population
size, the odds ratio is identified from dual systems data, because the number
of units (households in this case) missed by both lists is known. Consequently,
given known population size, all four cells of the tables cross-classifying list
inclusion indicators are observed and the odds ratios (for households) can be
straightforwardly estimated. We return to this idea in Section 7.3.

Brown, Abbott and Diamond (2006) note that the confidence intervals ob-
tained from person-level dual systems estimation with dependence odds ratios
fixed at the values obtained by extrapolating the household-level odds ratios do
not reflect uncertainty in the household-level odds ratios or the extrapolation
to the person level. From a Bayesian viewpoint, Brown et al’s approach could
be used to inform priors for small area odds ratio parameters, thereby allowing
uncertainty in the estimated odds ratios to be incorporated in the analysis.

By placing a prior on the odds ratio parameters, we are regarding the odds
ratios as model parameters and the joint posterior of the model parameters is
now

p(N,ρ,β,θ|Dobs) ∝ p(N,ρ,β,θ) p(Dobs|N,ρ,β,θ)

The likelihood p(Dobs|N,ρ,β,θ) is as given by (14) or (23) for the unit
record and aggregated population data structures, respectively, except that the
cell probabilities should now be viewed as functions of ρ as well as β = (β′

1,β
′
2)′,

and are obtained from (46) and (47) and (48)–(50). Similarly, the population
averaged probability of being missed by both lists, is now a function of ρ, as
well as β and θ.
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7.2.1. Numerical illustration of dual systems estimation with dependence
parameterised using odds ratio

To illustrate dual systems estimation with dependent list inclusion, we consider
a simple example based on a version of the synthetic dataset described in Sec-
tion 6.1, aggregated over geographic area to produce a dataset with 180 sex
by age combinations and no other covariates. We simulated list inclusion cell
counts, using logistic coverage models with coefficients for sex, age spline and
sex by age spline interaction effects set to the same values used to generate
the synthetic data of Section 6.1. We fixed the odds ratio for the association
between inclusion on the two lists to ρ = 5, for all sex by age combinations, and
generated the cell inclusion counts using (46), (47) and (48)–(50) to define the
cell probabilities for covariate-specific multinomial distributions with size, Mk,+
defined by the sex by age totals in the simulated population dataset of Section 6.
We also generated a second dataset using the same sex by age covariate struc-
ture and marginal coverage models, but assuming conditional independence for
list inclusion.

The assumed dependence odds ratio of 5 represents a moderately strong
degree of dependence between inclusion on the lists. For example, if Pr(L2 =
1|L1 = 0,X = x) = 0.8, then an odds ratio of 5 implies Pr(L2 = 1|L1 = 1,X =
x) = 0.95, whereas if Pr(L2 = 1|L1 = 0,X = x) = 0.6, an odds ratio of 5 implies
Pr(L2 = 1|L1 = 1,X = x) = 0.88. We adopted this moderately high value of
the odds ratio so that any difficulties in recovering the true value of the odds
ratio from the estimated models would be readily apparent.

We fitted a series of models to the synthetic data generated with dependence,
assuming different values for the fixed odds ratio. For each of these models, we
adopted Jeffreys’ prior for N , a Dirichlet(α) prior for the covariate distribution
parameters, with α = 0.01, and Normal(0, 10) priors for all coverage model pa-
rameters. We fitted the model in Stan using the marginal likelihood for (β,θ) to
obtain a sample from the posterior for these parameters, followed by application
of Algorithm 1 to obtain a posterior sample over the completed population. To
obtain the posterior samples for (β,θ) in Stan, we ran five parallel HMC chains
of 2,900 iterations, discarded the first 2,000 iterations as burn in, and thinned
the chains by three to produce a nominal Monte Carlo sample size of 1,500.
These HMC settings ensured R̂ ≤ 1.01 and an effective posterior sample size of
at least several hundred for all parameters.

Figure 8 shows how estimates change as models with different assumed de-
pendence odds ratios are fitted. Population estimates increase as the strength
of the assumed association between inclusion on the two lists increases. Conse-
quently, when the assumed value of the odds ratio is less than the true value
(ρ = 5), the population counts are underestimated, whereas population counts
are over-estimated when the assumed odds ratio is greater than the true value.
The proportion of covariate combinations for which 95% credible intervals for
coverage probabilities or population counts contain the true value varies dra-
matically depending on the distance of the assumed dependence odds ratio from
the true value of 5. For example, when ρ is assumed to equal 1, none of the 95%
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Fig 8. Posterior median (black line) and 95% credible intervals (grey shading) for population
counts for females, by age, expressed as a relative difference between estimated and true
values, for four models fitted with different assumed values of the dependence odds ratio.
The horizontal blue line indicates exact equivalence between estimated and true counts. The
models were all fitted to a dataset generated under an assumption of a common odds ratio
of ρ = 5 for all sex and age combinations. (Results for males are not shown.) Assuming a
dependence odds ratio less than the true value leads to underestimation of the population for
all covariate combinations. Assuming a dependence odds ratio greater than the true value
leads to overestimation of the population.

credible intervals for counts or list coverage probabilities include the true value.
In contrast, when ρ is assumed to equal the true value of 5, 95% credible intervals
for population counts, List 1 coverage probabilities and List 2 coverage proba-
bilities, included 94%, 98% and 90% of the true values, respectively. Posterior
uncertainty increases with the assumed value of ρ.

In spite of the clear differences between the fixed ρ models in terms of their
ability to recover the underlying population structure, a range of posterior pre-
dictive checks similar to those discussed in Section 6.3 suggested each of the fixed
ρ models fitted the observed data equally well. For example, for each of the mod-
els all 95% posterior predictive intervals for the counts of people recorded on
both lists, by sex and age, included the true values. This is a reflection of the
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underlying identifiability problem: observed data cannot discriminate between
different values of ρ and, consequently, models that assume different values for
ρ fit the data equally well.

Given the sensitivity of population estimates to the dependence odds ratio,
illustrated in Figure 8, it may also be of interest to integrate over a plausible
range of uncertainty concerning the odds ratio. This can be achieved by spec-
ifying a prior for ρ and including ρ as a parameter in the model. This can be
conveniently implemented in Stan using either the marginal or full likelihood
approach. For illustration, we considered a truncated normal prior centred at
the true value of ρ = 5, with truncation points set to 0.001 and 9.999 and stan-
dard deviation parameter set to 1.7845 to ensure the prior probability that ρ
was less than one was 0.01. Values of ρ less than one indicate negative depen-
dence, which is possible, but positive dependence is the more common concern
in applications. We ran five parallel HMC chains for 4,900 iterations in Stan,
and discarded the first 3,000 iterations of each chain as burn-in. This produced
adequate convergence with all R̂ statistics less than 1.034. Effective Monte Carlo
sample sizes were at least 140 (after thinning the chains by three). Despite the
apparent convergence of the MCMC procedure, the procedure failed to recover
the true parameter values. For example, ρ was underestimated and the coverage
model intercept parameters were overestimated, as shown in the first row of
Figure 9. Similar results were obtained when we reran the model for 100,000
iterations, discarding the first 50,000 as burn-in, suggesting the results are not
due to the sampler getting trapped around local modes. From Figure 9, it can be
seen that ρ and the two intercept parameters are clearly highly correlated in the
posterior and it seems likely these high correlations make it difficult for the sam-
pler to concentrate near the underlying parameter values. The underestimation
of ρ and overestimation of the intercept parameters leads to a substantial un-
derestimation of the population for all sex by age groups, as shown in Figure 11
(first column).

For comparison, we also fitted a model with a much tighter truncated nor-
mal prior for ρ, TNorm(5, 0.4295, 0.001, 9.999), which assigns prior probability
of 0.95 to the interval (4.03, 5.97). Under this prior, the posterior obtained us-
ing the marginal likelihood approach, implemented in Stan assuming Jeffreys’
prior for N , did recover the true model parameters, as shown in the second
row of Figure 9. Consequently, credible intervals for sex and age-specific counts
are approximately centred on the true values as shown in the first column of
Figure 12.

An alternative approximation to the posterior can be obtained by observing
that the joint posterior for the model parameters can be written as

p(N, ρ,β,θ|Dobs) = p(N,β,θ|Dobs, ρ) p(ρ|Dobs),

and since we do not expect the data to be informative with respect to the
odds ratio, a reasonable approximation to the joint posterior for the model
parameters, is therefore

p(N, ρ,β,θ|Dobs) ≈ p(N,β,θ|Dobs, ρ) p(ρ). (52)
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Fig 9. Joint posterior distribution of the odds ratio (ρ) and the intercept parameters of
the list coverage models, obtained from fitting a dependent dual systems model in Stan,
under a TNorm(5,1.7845,0.001,9.999) prior for ρ (top row), and a much less diffuse
TNorm(5,0.4295,0.001,9.999) prior for ρ (bottom row). All coverage model parameters were
assigned N(0, 3) priors. The data were generated from a model with the odds ratio set to 5
for all 180 covariate combinations. Areas of higher density are indicated by darker shading.
The true parameter values are represented by the solid lines drawn perpendicular to the axes.
The posterior under the more diffuse TNorm(5,1.7845,0.001,9.999) prior for ρ fails to re-
cover the true parameters values. The posterior is more nearly centred on the true parameter
values under the tighter TNorm(5,0.4295,0.001,9.999) prior for ρ. This prior also results in
a substantial reduction in posterior variance for all three parameters. Note that scales differ
for each plot to accommodate the different locations of the posterior distribution.

That is, we approximate the posterior for ρ by the prior for ρ because the
lack of information in the data concerning ρ suggests the posterior should be
similar to the prior. The decomposition in (52) is equivalent to the posterior
arising from a “cut model” in which the data is not allowed to inform the pos-
terior for one or more parameters, that is, the feedback from the data is cut
for some parameters, ρ, in this case (Plummer, 2015; Carmona and Nicholls,
2020). The cut model approximation to the posterior can be implemented by
looping over draws from the prior for ρ and, for each sampled value of ρ, fit-
ting a dependent dual systems model with the odds ratio set to the sampled
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Fig 10. Approximate joint posterior distribution of the odds ratio (ρ) and the intercept pa-
rameters of the list coverage models, obtained from fitting a dependent dual systems model
using a cut model, whereby values of ρ are repeatedly drawn from the prior and coverage model
parameters estimated conditional on the generated ρ value. The prior for ρ is not updated by
the data. The top row shows results under a TNorm(5,1.7845,0.001,9.999) prior for ρ, while
the bottom row shows results for the less diffuse TNorm(5,0.4295,0.001,9.999) prior for ρ.
Jeffreys’ prior was assumed for the total population size and all coverage model parameters
were assigned N(0, 10) priors. The data were generated from a model with the odds ratio set
to 5 for all 180 covariate combinations. Areas of higher density are indicated by darker shad-
ing. The true parameter values are represented by the solid lines drawn perpendicular to the
axes. Using the cut model, posterior distributions are approximately centred on the underlying
parameter values for both priors. The less diffuse prior for ρ results in a substantial reduction
in posterior variance for all three parameter.

value. The collection of generated values of ρ and other parameters constitutes
a sample from the approximate posterior (52). We implemented this procedure
for 1,000 draws from the prior for ρ for both the TNorm(5,1.7845,0.001,9.999)
and TNorm(5,0.4295,0.001,9.999) priors. For each draw from the prior for ρ, we
ran a dependent dual systems model in Stan, for 4,000 iterations (including a
burn-in of 3, 500, and stored the parameter values obtained on the last itera-
tion. This procedure produces a sample from the approximate posterior in (52).
Results are summarised in Figure 10. Posterior correlations between the model
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intercept parameters remain very high, but the posterior samples are located
close to the underlying population values. Graphs of population estimates by
sex and age are presented in Figures 11 (diffuse prior) and 12 (tight prior), for
the fully Bayesian approach (left column) and the cut model (right column).
The plots suggest that the cut model posterior is centred approximately on the
true values, for both priors. (Note that the scales of the y-axis are different in
the two sets of plots.) The cut model approach appears to be a more reliable
method than fully Bayesian modelling in Stan for fitting dependent dual systems
models that include a non-degenerate prior on the dependence parameter.

Fig 11. Population estimates by sex and age, under fully Bayesian (first column)
and cut model (second column) versions of dependent dual systems models under the
TNorm(5, 1.7845, 0.001, 9.999) prior for the dependence odds ratio ρ, assuming Jeffreys’ prior
for the total population size. Estimates are expressed as relative difference from true values.
The shaded area represents an equal-tail-area 95% credible interval, and the solid black line
represents the posterior median, transformed to relative difference from the true population
counts. The full Bayesian approach appears to underestimate at all ages, for both males and
females.

We note that the preceding analyses are intended only as illustrations of
the sensitivity of population estimation to assumptions concerning dependence
between inclusion on the two lists and to highlight some difficulties in obtaining
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Fig 12. Population estimates by sex and age, under fully Bayesian (first column)
and cut model (second column) versions of dependent dual systems models under the
TNorm(5, 0.4295, 0.001, 9.999) prior for the dependence odds ratio ρ, and assuming Jeffreys’
prior for the total population size. Estimates are expressed as relative difference from true
values. The shaded area represents an equal-tail-area 95% credible interval, and the solid
black line represents the posterior median, transformed to relative difference from the true
population counts. Both full Bayesian and cut model implementations of the model appear to
recover the underlying population counts.

posterior distributions for models that are not fully identified. In reality, we
would not have the luxury of being able to centre the prior for ρ on a known true
value, and would be dependent on prior information to determine a reasonable
prior.

7.3. Using external information from demographic analyses

In some situations, high quality aggregate-level population estimates may be
available prior to small area dual systems estimation. For example, national sta-
tistical offices usually produce regular updates of population estimates. Given a
reliable base population estimate, comprehensive births and deaths registration
and high quality data on external migration, the total population can be easily
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updated by adding births, subtracting deaths and adding net (inward) migra-
tion. With accurate recording of sex and age, this basic accounting approach
to population estimation can be extended to give population estimates by age
and sex. If these accounting-based estimates are regarded as sufficiently accu-
rate that they can be considered known, the remaining task for small domain
population estimation is to estimate the population distribution by small area
and other demographic characteristics (such as ethnic group), within levels of
the assumed known marginal totals. We demonstrate below that, given known
marginal totals, it is possible to recover the true dependence odds ratio pa-
rameters, though under the assumption that they are constant over covariate
combinations within the known margins. In practice, there may be some un-
certainty in accounting based population estimates, arising for example, from
uncertainty in the population used as the base and potential delays in recording
births or deaths or errors in recording age or sex in migration data. Uncertainty
about the aggregate population estimates can clearly be accommodated in the
prior. Indeed, in the case that a prior population estimate is available only for
the total population size, our model set-up already explicitly accommodates
prior uncertainty on N .

To accommodate prior information on sub-population totals, some changes
are needed to the likelihood structure and we discuss these in Section 7.3.1
below.

7.3.1. Incorporating prior information on sub-population totals

Suppose there are G aggregate groups with population totals N1, . . . , NG. We
assume the groups form a mutually exclusive and exhaustive partition of the
population, so N =

∑G
g=1 Ng. We re-define X to refer to the covariates other

than those used to define the G sub-populations, and let θg denote the param-
eters of the distribution of the X covariates within the gth sub-population. For
simplicity, we consider discrete covariates and let

θg,k = Pr(X = x[k]|B = g,θg),

where B is a discrete variable taking values in {1, . . . , G}, representing the
sub-population to which an individual belongs, and θg = (θg,1, . . . , θg,K) is
the probability vector for the K covariate combinations within the gth sub-
population. We also let Mg,k,y denote the number of people in sub-population
g with covariate combination x[k], in list inclusion cell y, Mg,k,+ =

∑
y Mg,k,y,

the total number of people in sub-population g with covariate combination k,
and Mg,+,y =

∑K
k=1 Mg,k,y, the total count in sub-population g in inclusion cell

y. It follows that the number of individuals recorded on at least one list within
sub-population g is ng,obs = Ng −Mg,+,(0,0). It is also convenient to define the
cell inclusion probabilities in a sub-population specific manner as

φg,y(x[k],β, ρg) = Pr(Y = y|B = g,X = x[k],β, ρg), for y ∈ Y,
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where ρg is the dependence odds ratio for the gth sub-population, and β =
(β′

1,β
′
2)′ are the parameters for the models for inclusion on Lists 1 and 2. We

denote the vector of list inclusion cell probabilities corresponding to the kth

covariate combination in sub-population g by

φg(x[k],β, ρg) =
(φg,(1,1)(x[k],β, ρg), φg,(1,0)(x[k],β, ρg), φg,(0,1)(x[k],β, ρg), φg,(0,0)(x[k],β, ρg))′.

The sub-population cell inclusion probabilities are obtained from marginal list
inclusion models and sub-population odds ratios, exactly as described by equa-
tions (46)–(50). The marginal inclusion models are not changed by the existence
of the G sub-populations for which strong prior information on population to-
tals is available, but it is useful to explicitly represent these sub-populations in
the model notation, so we write the model for inclusion in List j as

φ̃g,j(x[k],β) = Pr(Lj = 1|B = g,X = x[k],βj), j ∈ {1, 2}, (53)

whereas, in our previous notation, the sub-population g would have been in-
corporated in x[k]. We can also define a sub-population-averaged probability of
being missed by both lists as

pg,(0,0)(β,θg, ρg) =
∑
k

φg,(0,0)(x[k],β, ρg) θg,k. (54)

To accommodate prior information on the sub-population totals in dual sys-
tems estimation, we regard them as model parameters and the likelihood must
be structured to accommodate them. To recognise the G sub-populations in the
model structure, we assume a product multinomial form for the joint distribu-
tion of the x covariates. The distribution over the inclusion cells is modelled
conditionally on sub-population and covariate combination and is also assumed
to be multinomial. The data model is therefore

[{Mg,k,+, k = 1, . . . ,K}|θg, Ng]
indep∼ Multinomial(Ng,θg), g ∈ {1, . . . , G}

(55)
[(
Mg,k,(1,1),Mg,k,(1,0),Mg,k,(0,1),Mg,k,(0,0)

)
|β,ρ,Mg,k,+

] indep∼
Multinomial

(
Mg,k,+,φg(x[k],β, ρg)

)
,

g ∈ {1, . . . , G}, k ∈ {1, . . . ,K}, (56)

where θ = (θ′
1, . . . ,θ

′
G), and ρ = (ρ1, . . . , ρG)′.

Under the model defined in (56), the likelihood function is

p(Dobs|N1, . . . , NG,θ,β,ρ) =
G∏

g=1

Ng!
(Ng − ng,obs)!∏

k,y �=(0,0)

(
φg,y(x[k],β, ρg) θg,k

)Mg,k,y pg,(0,0)(β,θg, ρg)(Ng−ng,obs).

(57)
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The derivation of (57) is given in Appendix A.4 of Supplementary Material
(Graham et al., 2023), along with the derivation for the case without the re-
striction to categorical covariates and the product multinomial model for the
joint covariate distribution.

For G > 2 a multinomial prior could be adopted for the sub-population
counts, N1, . . . , NG, constrained by the total population count N , so that

p(N1, . . . , NG|N,�) = N !
N1! . . . NG!

∏
g

�Ng
g ,

where � = (�1, . . . , �G), and a hyperprior is placed on the total population
count.

The prior for the covariate distribution parameters could be used to encour-
age pooling of information over the G sub-populations through a hierarchically
structured prior of the form,

p(θ|ζ) =
∏
g

p(θg|ζ),

accompanied by a prior on the hyper-parameters, ζ. However, in the simple
illustration reported below we adopted a simple independence prior

p(θ) =
∏
g

p(θg),

and Dirichlet prior distributions for each of the G sub-population covariate
distribution parameter vectors.

To verify that introducing prior information on specific sub-populations al-
lows dependence odds ratios specific to those sub-populations to be estimated,
we consider a simple example based on a similar data structure to that consid-
ered in Section 7.2, but assume prior information is available for both male and
female population counts. These data were generated under an assumption of
a dependence odds ratio equal to five, for all age-groups for both males and fe-
males. In addition, we consider a second simulated dataset, generated, with the
same sex by age population totals as the data used in Section 7.2, but generated
under an assumption of conditional independence for all ages within the female
group and a common dependence odds ratio of five for all ages within the male
group. The latter data enables us to check, that given strong prior information
on the female and male population sizes, the dual systems estimation model can
adapt to estimate very different common odds ratios for the female and male
groups.

We specified priors for the female and male population totals, via the sex
ratio and the population total. There has been some interest in the literature
in the use of known sex ratios in dual systems estimation, since these may be
stable demographic parameters that could be reliably estimated prior to a dual
systems estimation (Wolter, 1990; Bell, 1993; Elliot and Little, 2000). Elliot and
Little (2000) present a Bayesian model which integrates known sex-ratios with
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dual systems estimation using a bespoke model in which observed counts are
modelled as Normal random variables conditional on the unobserved true counts.
In the Elliot and Little (2000) model, no specific prior information on the total
population size is included in the analysis but estimation is carried out under
the assumption that conditional independence holds for the female group, but
not for the male group. Models with the same assumption were also considered
by Wolter (1990) and Bell (1993), from a frequentist perspective. Consequently,
in addition to models with an informative prior for the population total and the
sex-ratio, we consider models that assume conditionally independent inclusion
for females, in conjunction with an informative prior for the sex-ratio and an
uninformative prior for the female population total. The simulated population of
1,000,000 comprised 513,975 females and 486,025 males. Thus, the true sex ratio
(male to female) for the simulated population was r = Nmales/Nfemales = 0.95.
As in previous examples, the (simulated) observed data was obtained from the
true population by omitting records in the (0, 0) cells for each combination of
sex and age.

We fitted several models, corresponding to different prior assumptions for
the sex-ratio and total populations size. Models were fitted in Stan using the
full likelihood given by (57). Similarly to previous analyses, we adopted inde-
pendent Dirichlet(0.01) priors for the sex-specific, age distribution parameters,
and independent Normal(0,10) priors for all list coverage model parameters.
We adopted independent truncated normal priors for the odds ratio parame-
ters, specifically TNorm(1, 2.19, 0.001, 9.999), for both male and female odds
ratios, for all models except for the models where independence was assumed
for females. Although the prior mode for the TNorm(1, 2.19, 0.001, 9.999) prior
is equal to 1, the prior mean is 2.16 and the prior median is 1.92, because of
the asymmetry of the truncation points. Under the TNorm(1, 2.19, 0.001, 9.999)
prior, the prior probability that the odds ratio exceeds 5 is 0.05. Thus, the prior
is located well away from the underlying true value of 5, and therefore, provides
a useful test of the informative-ness of data with respect to the odds ratio: Infor-
mative data will move the posterior away from the prior towards the true value
of 5. The TNorm(1, 2.19, 0.001, 9.999) prior for the male and female dependence
odds ratios is intended to represent a situation where an analyst believes inde-
pendence is a plausible assumption but wishes to allow for the possibility that
independence does not hold, and is open to the possibility of both negative and
positive dependence. Other prior choices could be made, the log-normal being
a natural alternative to the truncated Normal.

The results reported below are based on posterior samples obtained by thin-
ning the last 900 draws from each of five parallel HMC chains by a factor of
three to yield a nominal posterior sample size of 1500. R̂ statistics were less than
1.02 for all parameters and effective posterior sample sizes were at least several
hundred, though the median (over parameters for a given model) was close to
the nominal size of 1500 for each of the models considered. We used burn-in
periods of 1,000 or 2,000 for models with fixed N or a prior on N , respectively.

Some key summaries are reported in Table 4 for the data generated under
the assumption of conditionally independent list inclusion for females and a
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dependence odds ratio of 5 for males (ρfemale = 1, ρmale = 5), and in Table 5
and Figure 13, for the data generated assuming a dependence odds ratio of 5
for both females and males (ρfemale = ρmale = 5).

Table 4

Posterior summaries for male and female dependence odds ratios, population counts and
sex-ratio (r) under alternative prior settings. The models are all fitted to simulated data

generated under the assumption that dependence odds ratio is equal to 5 for males (ρmale)
and equal to 1 for females (ρfemale). N denotes the total population size, and Nmales and
Nfemales denote male and female counts, respectively. The covariate structure of the data

comprises 180 sex-age combinations.

prior Estimand(a) 2.5% 50% 97.5%
ρmale ∼ TNorm(1, 2.190, 0.001, 9.999) ρmale 4.90 4.96 5.02
ρfemale ∼ TNorm(1, 2.190, 0.001, 9.999) ρfemale 0.99 1.00 1.02
r = 0.95 r 0.95 0.95 0.95
N = 1,000,000 Nmale 486,025 486,025 486,025

Nfemale 513,975 513,975 513,975
ρmale ∼ TNorm(1, 2.190, 0.001, 9.999) ρmale 4.50 4.94 5.38
ρfemale ∼ TNorm(1, 2.190, 0.001, 9.999) ρfemale 0.66 0.99 1.29
r = 0.95 r 0.95 0.95 0.95
N ∼ Normal(1000000, 7812.5) Nmale 477,889 485,871 493,122

Nfemale 505,168 513,606 521,270
ρmale ∼ TNorm(1, 2.190, 0.001, 9.999) ρmale 4.47 4.94 5.38
ρfemale ∼ TNorm(1, 2.190, 0.001, 9.999) ρfemale 0.64 1.00 1.38
r ∼ TNorm(0.95, 0.01, 0.001, 1.999) r 0.93 0.94 0.97
N ∼ Normal(1000000, 7812.5) Nmale 477,208 485,672 493,980

Nfemale 504,639 513,930 523,557
ρmale ∼ TNorm(1, 2.190, 0.001, 9.999) ρmale 4.37 4.92 5.46
ρfemale = 1 ρfemale 1 1 1
r ∼ TNorm(0.95, 0.01, 0.001, 1.999) r 0.92 0.94 0.96

Nmale 475,179 485,372 495,280
p(Nfemale) ∝ 1/Nfemale Nfemale 513,425 513,869 514,264

(a) True values are ρmale = 5, ρfemale = 1, r = 0.95, Nmale = 486,025, Nfemale = 513,975,
N = 1,000,000.

For a model with the total population size and sex ratio fixed at their true
values (N = 1,000,000, r = 0.95), the common odds ratios for both males
and females are estimated well with posterior medians close to the true values
and narrow 95% credible intervals (Tables 4 and 5, panel 1). The posterior
interval for the female odds ratio for the model fitted to the data generated
under an assumption of conditionally independent list inclusion for females is
particularly narrow, presumably reflecting the fact that the prior mode coincides
with the true value in this case. When a modest amount of uncertainty in
the total population size is accommodated in the analysis by a normal prior
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Table 5

Posterior summaries for male and female dependence odds ratios, population counts and the
sex-ratio, (r), under alternative prior settings. The models are all fitted to simulated data

generated under the assumption of a common dependence odds ratio equal to 5 for all ages,
for both the male (ρmale) and female (ρfemale) groups. N denotes the total population size,

and Nmales and Nfemales denote male and female counts, respectively. The covariate
structure of the data comprises 180 age-sex combinations.

prior Estimand(a) 2.5% 50% 97.5%
ρmale ∼ TNorm(1, 2.190, 0.001, 9.999) ρmale 4.87 4.94 5.00
ρfemale ∼ TNorm(1, 2.190, 0.001, 9.999) ρfemale 4.89 4.97 5.04
r = 0.95 r 0.95 0.95 0.95
N = 1,000,000 Nmale 486,025 486,025 486,025

Nfemale 513,975 513,975 513,975
ρmale ∼ TNorm(1, 2.19, 0.001, 9.999) ρmale 4.52 4.90 5.28
ρfemale ∼ TNorm(1, 2.19, 0.001, 9.999) ρfemale 4.18 4.90 5.59
r = 0.95 r 0.95 0.95 0.95
N ∼ Normal(1000000, 7812.5) Nmale 478,244 485,431 492,193

Nfemale 505,544 513,140 520,289
ρmale ∼ TNorm(1, 2.19, 0.001, 9.999) ρmale 4.41 4.90 5.38
ρfemale ∼ TNorm(1, 2.19, 0.001, 9.999) ρfemale 3.94 4.86 5.77
r ∼ TNorm(0.95, 0.01, 0.001, 1.999) r 0.93 0.95 0.97
N ∼ Normal(1000000, 7812.5) Nmale 476,168 485,399 494,512

Nfemale 502,989 512,768 522,165
ρmale ∼ TNorm(1, 2.19, 0.001, 9.999) ρmale 2.36 2.85 3.32
ρfemale = 1 ρfemale 1 1 1
r ∼ TNorm(0.95, 0.01, 0.001, 1.999) r 0.93 0.95 0.96

Nmale 437,356 446,665 455,434
p(Nfemale) ∝ 1/Nfemale Nfemale 471,824 472,069 472,309

(a) True values are ρmale = 5, ρfemale = 5, r = 0.95, Nmale = 486,025, Nfemale = 513,975,
N = 1,000,000.

centred on the true value with standard deviation 7812.5, which implies the
prior probability for the total population is within ±1.0% of the true value of
1,000,000 is 0.8, the true value for the male and female odds ratios are recovered
by the models, though with notably wider credible intervals. The 95% credible
interval for the total population size is virtually identical to the prior 95%
interval (Tables 4 and 5, panel 2). Adding a TNorm(0.95, 0.01, 0.001, 1.999) prior
to the sex ratio leads to a modest further increase in credible interval widths
(Tables 4 and 5, panel 3). Increasing the prior standard deviation on the sex
ratio to 0.02, led to a further modest increase in posterior uncertainty (results
not shown). Centering the priors for the total population size at 990,000 led
to a predictable reduction in estimates of both dependence odds ratios and
population sizes, though credible intervals still included the true values (results
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not shown).
We also fitted a model which assumed independence for females but not

for males, along with a TNorm(0.95, 0.01, 0.001, 1.999) prior for the sex ratio.
For this model, we adopted the Jeffreys prior for the female population size.
Unsurprisingly, when fitted to the data generated under an assumption of in-
dependence for females (Table 4, panel 4) this model recovered the true male
and female population totals, male dependence odds ratio and sex ratio. Age-
specific estimates were also well estimated: for example, 95.2% of the female
credible intervals and 88.9% of the male credible intervals included the true
age-specific counts. However, when fitted to the dataset generated under the
assumption of a common odds ratio of five for all sex by age groups, the de-
pendence odds ratio for males and both the male and female population to-
tals were badly underestimated (Table 5, panel 4). The underestimation for
males, may be partly attributable to the small prior variance adopted for the
sex-ratio parameter. The assumption of conditional independence for females
leads to underestimation for the female group, and a tight prior on the sex
ratio could therefore be expected to lead to underestimation of the male pop-
ulation. However, in fact, the location of the posterior distributions did not
change appreciably when the prior standard deviation on the sex ratio was in-
creased, first to 0.02 and then to 0.05 (results not shown). However, in the lat-
ter case, the posterior variance for both the sex ratio and the male population
count increased markedly. Under the TNorm(0.95, 0.05, 0.001, 1.999) prior for
the sex ratio parameter, r, the equal-tail-area 95% credible intervals for r, ρmale
and Nmale were (0.87 to 1.03), (0.90 to 4.90) and (409, 747 to 484, 996), respec-
tively. These are all considerably wider than the corresponding results obtained
under the TNorm(0.95, 0.01, 0.001, 1.999) prior reported in Table 5 (panel 4).
In contrast, posterior estimates for the female population total were virtually
unchanged by increasing the prior variance for the sex ratio.

Consequences of erroneously assuming conditional independence for the fe-
male group are shown in Figure 13 (panel (d)) for age-specific population es-
timates of males, where it is clear that assuming conditional independence for
females leads to underestimation of the population for males at all age groups.
A similar pattern holds for females, though with notably narrower credible inter-
vals for age-specific population estimates, resulting from the female population
being estimated under an assumption of independence. For both the male and
female groups, the incorrect assumption of conditional independence for the fe-
male group resulted in none of the 95% credible intervals for population counts
by age including the true value.

We emphasise these results pertain to analysis of a single simulated dataset.
A proper simulation study involving analysis of repeated draws of data from the
simulation model would be required to quantify bias in the estimates. Neverthe-
less, the results corresponding to the assumption of independence for females
are instructive and illustrative of the likely impact of erroneous independence
assumptions, when in fact there is appreciable dependence between inclusion on
the two lists. The analysis illustrates the potential for recovering information
on dependence odds ratios, given prior information on certain sub-population
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Fig 13. Posterior medians (black line) and 95% credible intervals (grey shading), for counts
by age, for males, expressed as relative differences from the true value, under different prior
assumptions for population size, N , sex-ratio, r, and the dependence odds ratio, ρ. The blue
horizontal line indicates agreement between estimated and true population counts. All mod-
els were fitted to data generated under an assumption of common dependence odds ratio of
5, for all sex by age combinations. In panel (a), N and r are both set to their true values.
Independent TNorm(1, 2.19, 0.001, 9.999) priors are specified for the male and female depen-
dence odds ratios. Estimated age-specific counts agree closely to the true values. In panel (b),
adding a normal prior for N centred at the true value, with modest standard deviation, leads
to noticeable increases in posterior uncertainty, but credible intervals remain approximately
centred on true values. In panel (c), a truncated normal prior for r, centred on the true value,
with small standard deviation leads to a further small increase in posterior uncertainty. In
panel (d), conditional independence of list inclusion is assumed for the female group, Jeffreys’
prior is adopted for the total female population, a truncated normal prior tightly centred on
the true value is adopted for the sex-ratio and a TNorm(1, 2.19, 0.001, 9.999) prior is adopted
for the male dependence odds ratio. Under this model age-specific estimates for males appear
badly biased with none of the age-specific credible intervals including the true value.

sizes. It seems that dependence odds ratios within sub-populations for which
good prior information on population size is available can be reliably estimated.
However, modest amounts of prior uncertainty in the aggregate totals leads to
considerably more posterior uncertainty in population estimates than is seen for
the independence model.
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7.4. Summarising what can be done to relax the independence
assumption

The non-identifiability of the association between inclusion on the two lists is an
inherent feature of the structure of the dual systems estimation problem. Absent
knowledge of population size, we can never directly compare the proportion of
List 2 individuals captured by List 1 with the proportion of List 2 non-captures
captured by List 1 and vice versa. We can, however, place a prior on some
measure of association between inclusion on the two lists. In principle, Bayesian
inference then proceeds as usual to produce a posterior distribution (Lindley,
1972, p. 46, footnote 34). However, our examples indicate that unless a very
tight prior is placed on the association parameter, inferences are markedly less
precise than under the conditional independence model. In addition, working
with an unidentified likelihood appears to cause numerical issues, even with
a moderately informative prior, and some care has to be taken with model-
fitting. Nevertheless, if there is uncertainty about the assumption of conditional
independence either a sensitivity analysis in which the value of an association
parameter is varied in a series of analyses, or a fully Bayesian analysis with an
informative prior on the association parameter, provide methods for obtaining
a realistic representation of uncertainty concerning population estimates.

If external information is available on the dependence odds ratios, as in
Brown, Abbott and Diamond (2006), it can be used to inform the prior for
the dependence odds ratio. Alternatively, if strong priors on the population size
at some levels of aggregation of covariate combinations can be assumed it is pos-
sible to estimate dependence odds ratios that are assumed to be homogeneous
within those levels of aggregation. Nevertheless, inferences remain sensitive to
the priors for sub-population totals. Our analysis of the model that assumes
conditional independence for females but allows the dependence odds ratio for
males to be estimated illustrates the danger of erroneous prior assumptions of
conditional independence, which can lead to substantial bias. When reliable
prior information on sub-population totals is available, our example suggests it
will often be safer to include this information in dual systems estimation and
allow dependence to be estimated, than to assume conditional independence.

Ultimately, however, if list dependence is a major concern, moving beyond
dual systems estimation to a multiple list approach is likely to reduce sensitivity
to prior assumptions and allow the most flexibility in modelling list dependence.
Though this lies outside the scope of this paper, we note that, with minor
changes in notation, the likelihood derivations in Section 3 hold for the multiple
list case. If we let 0 denote the cell in the multiway cross tabulation of list
inclusion indicators corresponding to being missed by all lists and let

p0(β,θ) =
∫

Pr(Y = 0|X = x,β) pX(x|θ) dx (58)

denote the population averaged probability of that event, then (14) and (23)
hold for the multiple list case, once the sample space of the inclusion cell, Y , is
expanded to accommodate inclusion combinations appropriate for the multiple
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list case: for example, with three lists the possible inclusion combinations are
Y = {(1, 1, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 0)}, with
the last combination corresponding to the 0 cell defined above.

Directly extending the approach to incorporating dependence in dual systems
estimation considered in Sections 7.2 and 7.3 above, to the multiple list case is
difficult because, with multiple lists, a distribution over the cells of a multiway
table may not exist for all combinations of marginal probabilities and odds ratios
(Lee, 1997). However, by introducing a latent multivariate normal variable from
which binary list inclusion indicators are derived as exceedances of a threshold
(or cut-point), copula-style formulations whereby, joint models are constructed
from marginal models for list coverage and models for dependence may be pos-
sible. Zwane and van der Heijden (2005) take a different route to modelling
dependence in a multiple list situations by modelling the joint distribution of
inclusion cells using a particular formulation of the multinomial-logistic regres-
sion model. However, in this approach, the marginal list coverage probabilities
are not directly modelled.

A promising alternative for modelling dependence in multiple list settings
is the latent class formulation considered in Manrique-Vallier (2016), whereby
independence is assumed conditional on a latent variable. Combined with a
Dirichlet Process prior on the latent class variable, which avoids the need to
pre-specify the number of latent classes, this produces a flexible framework for
modelling dependence.

We also note the log-linear modelling approach to dual systems estimation
that we discuss in Section 8 extends very naturally to the multiple list situations.

8. Connections with log-linear modelling of capture-recapture data

Following introductions by Fienberg (1972) and Cormack (1989), log-linear mod-
elling has proved a popular approach to population estimation from capture-
recapture data, particularly when multiple population listings are available. In
that case, log-linear models permit flexible modelling of the dependence between
inclusion on lists. In dual systems estimation, there is less scope for modelling
list dependence, but when all covariates are categorical, log-linear modelling can
be used to model the joint distribution of covariates and list inclusion indica-
tors (Tilling and Sterne, 1999; van der Heijden et al., 2018). This represents a
different modelling strategy to the approach described so far, which separately
models the joint covariate distribution and the conditional distribution of list
inclusion indicators given the covariates. Henceforth, in order to distinguish the
modelling approach developed in previous sections from the log-linear models
discussed in this section, we refer to the former as the “logistic-multinomial”
model, reflecting the logistic models for the marginal list inclusion probabilities,
the multinomial model for the joint distribution of the list inclusion indicators
conditional on covariates and, in the case of categorical covariates, the multino-
mial model for the covariate distribution.

There are close connections between the logistic-multinomial model developed
in sections 2 to 7 and log-linear modelling for capture-recapture data, and we



Bayesian dual systems estimation 61

now consider these connections, by extending the discussion of Huggins and
Hwang (2011, p.3883) to include covariates and considering log-linear modelling
from a Bayesian perspective.

Although originally proposed for the analysis of capture-recapture studies in
the context of a multinomial model (Fienberg, 1972), it has become common
to fit log-linear models under an assumption of independent Poisson cell counts
(Cormack, 1989; Leclerc et al., 2014; van der Heijden et al., 2018, 2022). As
noted by several authors (Sandland and Cormack, 1984; Cormack and Jupp,
1991; Huggins and Hwang, 2011; Tilling and Sterne, 1999), the two formula-
tions are closely related, with the most important difference being the greater
variance of the total population estimate under the Poisson model (Sandland
and Cormack, 1984; Cormack and Jupp, 1991). In frequentist applications of
log-linear modelling to capture-recapture data, parameter and population point
estimates are sometimes obtained by maximising a Poisson log-likelihood, while
confidence intervals are obtained under an assumption of multinomial sampling
(Baillargeon et al., 2007; van der Heijden et al., 2012; Cormack and Jupp, 1991,
p. 914). At first glance, such manoeuvres would appear to have no parallel in
Bayesian inference since Bayesian inference follows directly from the posterior
distribution of unknowns obtained under a specified model for the data. How-
ever, in Section 8.2 we discuss a Bayesian analogue of this procedure, suggested
by well-known connections between Poisson and multinomial models (Gelman
et al., 2014, p. 426).

8.1. Multinomial log-linear models

Using the notation established in Section 3.2, for the case where all covariates
are categorical, suppose there are K possible covariate combinations indexed
by k ∈ {1, . . . ,K} with the kth combination defined by x[k]. The count of
people in the population with X = x[k] and list inclusion cell Y = y is denoted
by Mk,y. We let M.,(0,0) = {Mk,(0,0), k ∈ {1, . . . ,K}} denote the unobserved
counts for the group missed by both lists, by covariate combination, Dobs =
{Mk,y, k ∈ {1, . . . ,K}, y �= (0, 0)}, the observed counts by covariate and list
inclusion combination, and Mcom = {Mk,y, k ∈ {1, . . . ,K}, y ∈ Y} the complete
vector of counts for all 4×K covariate and list inclusion combinations. It is also
useful to recall that nobs =

∑
k,y �=(0,0) Mk,y and N−nobs =

∑
k Mk,(0,0). Let ηk,y

denote the probability that an individual in the target population has covariate
combination x[k] and list inclusion cell y; that is, ηk,y = Pr(X = x[k], Y =
y|η) where η = {ηk,y, k ∈ {1, . . . ,K}, y ∈ Y}. A standard formulation for a
multinomial log-linear model for complete data, Mcom, is

[Mcom|N,η] ∼ Multinomial(N,η)
log(ηk,y) = λ0 + λX

k + λL1
l1(y) + λL2

l2(y) + λXL1
k,l1(y) + λXL2

k,l2(y); k ∈ {1, . . . ,K}, y ∈ Y
(59)

where the superscripts are simply notational devices to indicate parameters cor-
responding to particular covariates or list inclusion indicators or combinations
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thereof. The L1 and L2 superscripts refer to List 1 and List 2 inclusion, re-
spectively, and l1(y) and l2(y) denote specific values of the two list indicators;
we have used a functional notation to emphasize their dependence on the list
inclusion cell y, for instance, l1(y) = 1, when y ∈ {(1, 1), (1, 0)}, and l1(y) = 0,
otherwise. The parameter λX

k is a linear combination of parameters associated
with the values of the variables that define the kth covariate category. λX

k will
usually include product terms representing interactions. As an illustration, in
the case of two covariates, X1 and X2, modelled with an interaction, λX

k would
have the form

λX
k = λX1

k[X1] + λX2
k[X2] + λX1X2

k[X1X2],

where the notation k[.] is used to refer to the specific category of the indi-
cated variable or variables that correspond to the covariate combination k. For
example, if k refers to the covariate combination X1 = 1 and X2 = 2, then
k[X1] = 1, k[X2] = 2, and k[X1X2] = 1, 2. Similarly, the parameters λXL1

k,l1(y) and
λXL2
k,l2(y) expand to a linear combination of specific covariate-list inclusion inter-

actions. In (59), the parameter λ0 is not a free parameter but is used to ensure
the sum of probabilities over the covariate and list inclusion combinations sum
to one (Schafer, 1997, chapter 8).

For identifiability, we let

λL1
0 = λL2

0 = λXL1
k,0 = λXL2

k,0 = 0. (60)

Some identifiability restrictions are also required for the components of λX
k , k ∈

{1, . . . ,K}. These restrictions may set the parameter value associated with some
reference category of a covariate to zero or require that the parameters sum to
zero over the indexes of each covariate.

In (59), notice that there are no superscripts involving both L1 and L2, indi-
cating that the model includes no interaction terms involving L1 and L2. This is
the log-linear model equivalent of the assumption of conditionally independent
list inclusion. It could be weakened by including an L1, L2 interaction, such as
λL1L2
l1(y),l2(y), however, a model including an L1, L2 interaction would give rise to

the same identifiability issues encountered by the dependent logistic-multinomial
model, considered in Section 7, because no cells with L1 = 0 and L2 = 0 are
observed.

It may be desirable to model the effects of covariates with a large number
of levels (such as small area geography, or single year of age) hierarchically.1
For example, parameters indicating small geographic areas could be modelled
as draws from a normal model with mean dependent on area-level covariates.
Priors would then need to be specified for parameters of the hierarchical model.

The likelihood for the multinomial log-linear model is obtained by marginal-
ising the complete data likelihood over the unobserved counts M.,(0,0), The

1We use the term hierarchical in the multilevel modelling sense. In the log-linear modelling
literature, the term hierarchical models often refers to single-level models which respect the
constraint that whenever an interaction term is included in the model, the main effect terms
for the effects involved in the interaction are also included.
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complete data likelihood implied by (59), is

p(Mcom|N,η) =
[

N !∏
k,y �=(0,0) Mk,y!

∏
k,y �=(0,0)

η
Mk,y

k,y

][
1∏

k Mk,(0,0)!
∏
k

η
Mk,(0,0)
k,(0,0)

]
.

(61)
Only the second square-bracketed term in (61) involves M.,(0,0) and this com-
ponent of the complete data likelihood can be written as

1∏
k Mk,(0,0)!

∏
k

η
Mk,(0,0)
k =

(pM
(0,0)(η))(N−nobs)

(N − nobs)!

[
(N − nobs)!∏

k Mk,(0,0)!
∏
k

(
ηk,(0,0)

pM
(0,0)(η)

)Mk,(0,0)
]
, (62)

where pM
(0,0)(η) =

∑
k ηk,(0,0) is the marginal probability of not being recorded

on at least one list, under the multinomial log-linear model. Since the square
bracketed term in (62) is the multinomial probability mass function for M.,(0,0),
with size parameter (N − nobs) and kth element of the probability vector given
by ηk,(0,0)/p

M
(0,0)(η), marginalising (61) over the unobserved counts, M.,(0,0), to

obtain the observed data likelihood for the multinomial log-linear model gives

p(Dobs|N,η) = N !
(N − nobs)!

pM
(0,0)(η)(N−nobs) 1∏

k,y �=(0,0) Mk,y!

Mk,y∏
k,y �=(0,0)

η
Mk,y

k,y

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[(
N

nobs

)
(1 − pM

(0,0)(η))nobspM
(0,0)(η)(N−nobs)

]
×[

nobs!∏
k,y �=(0,0) Mk,y!

∏
k,y �=(0,0)

(
ηk,y

(1 − pM
(0,0)(η))

)Mk,y
] (63)

∝

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[(
N

nobs

)
(1 − pM

(0,0)(η))nobspM
(0,0)(η)(N−nobs)

]
×[ ∏

k,y �=(0,0)

(
ηk,y

(1 − pM
(0,0)(η))

)Mk,y
]
.

(64)

Equation (64) shows the likelihood for the multinomial log-linear model is the
product of a binomial probability for the number of individuals recorded on at
least one list and a conditional multinomial probability for the distribution of
observable counts over covariate and list inclusion cell combinations, conditional
on being observed. Therefore, the likelihood for the multinomial log-linear dual
systems model is proportional to the product of a binomial probability for nobs
and a conditional likelihood based only on the data from individuals observed
on at least one list. Since the logistic-multinomial model for an aggregated data
structure implies

ηk,y = Pr(Y = y|X = x[k],β) Pr(X = x[k]|θ)
= φy(x[k],β) θk; ; k ∈ {1, . . . ,K}, y ∈ Y, (65)
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it is easily verified that substituting for ηk,y in (63) and (64) reproduces the
corresponding forms of the logistic-multinomial likelihood given by (24) and
(25).

Following the approach of Huggins and Hwang (2011), the multinomial log-
linear model and the logistic-multinomial model can be further related by noting
the latter implies

ηk,y =

⎧⎨
⎩θk

(
φ̃1(x[k],β1)

)l1(y) (
φ̃2(x[k],β2)

)l2(y) ×(
1 − φ̃1(x[k],β1)

)(1−l1(y)) (1 − φ̃2(x[k],β2)
)(1−l2(y))

,

=

⎧⎪⎪⎨
⎪⎪⎩
θk
(
1 − φ̃1(x[k],β1)

) (
1 − φ̃2(x[k],β)

)
×(

φ̃1(x[k],β1)
1 − φ̃1(x[k],β1)

)l1(y) (
φ̃2(x[k],β2)

1 − φ̃2(x[k],β2)

)l2(y)

, k ∈ {1, . . . ,K}.

Consequently,

log(ηk,y) = γk + l1(y)× log
(

φ̃1(x[k],β1)
1 − φ̃1(x[k],β1)

)
+ l2(y)× log

(
φ̃2(x[k],β2)

1 − φ̃2(x[k],β2)

)
,

(66)
where γk = log(θk) + log

(
1 − φ̃1(x[k],β1)

)
+ log

(
1 − φ̃2(x[k],β2)

)
is the log of

the joint probability that an individual in the target population has covariate
combination x[k] and is missed by both lists. In the notation of (59), with the
identifiability constraints (60), γk = λ0 + λX

k . Note also that in the logistic-
multinomial parameterisation

log
(

φ̃j(x[k],βj)
1 − φ̃j(x[k],βj)

)
= x′

[k]βj , j ∈ {1, 2},

is the logistic coverage model for inclusion on List j, where x[k] is defined to
include an intercept term and interaction and non-linear terms as required.

Comparing (66) with (59) and equating γk with λ0 + λX
k , and x′

[k]βj with
λ
Lj

1 +λ
XLj

k,1 , for j ∈ {1, 2}, it is clear that the logistic coverage models can be re-
covered from the log-linear model. For example, λLj

1 can be interpreted as the in-
tercept of the logistic coverage model for List j. The logistic-multinomial model
developed in preceding sections places no restriction on θ except that it’s com-
ponents must sum to one. In the log-linear modelling context, this corresponds
to a saturated model for the covariate distribution, meaning that terms for the
highest order interaction between covariates and for all lower order interactions
are included in λX

k . Simpler log-linear models could be considered, and, anal-
ogously, the covariate probabilities, θ, in the logistic-multinomial model could
also be modelled. In view of the connections between the multinomial log-linear
and logistic-multinomial model structures, and the similarity of the likelihoods,
it seems the multinomial log-linear model can be viewed as a re-parameterisation
of the logistic-multinomial model for an aggregated data structure.
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Despite the close connection between the multinomial log-linear and logistic-
multinomial models, posterior inferences obtained under the two models are not
guaranteed to be identical because, in view of the different parameterisations
employed, prior specifications for the two models may differ. For the logistic-
multinomial model, we assumed a priori independence for the three parameter
blocks pertaining to the population total, covariate distribution and list inclu-
sion models, that is p(N,θ,β) = p(N) p(θ) p(β). While this structure could, in
principle, be used to induce a prior on the cell probabilities of the multinomial
log-linear model, using the relation ηk,y = φy(x[k],β) θk, which, in turn, induces
a prior on the log-linear model parameters λ, a more natural approach from a
log-linear modelling viewpoint is to specify a prior on λ directly. A multivari-
ate normal is one candidate. An alternative strategy is to specify a constrained
Dirichlet prior distribution for the cell probabilities, where the constraint is
that the cell probabilities must satisfy the log-linear model. Since the log-linear
model for the cell probabilities (59), can be written in the form

log(η) = Wλ, (67)

where λ is the full vector of log-linear model parameters and W is a design
matrix, the constrained Dirichlet prior can be specified as

p(η) ∝
{∏

k,y η
(αk,y−1)
k,y ; log(η) = Wλ, for some λ

0; log(η) �= Wλ, for any λ.
(68)

The use of this prior for Bayesian log-linear modelling is discussed in Gelman
et al. (2014, pp. 428–431) and Schafer (1997, Chapter 8). In complete data ap-
plications, a constrained Dirichlet prior for η implies the posterior for η is also
a constrained Dirichlet distribution. A recent Bayesian application of multino-
mial log-linear modelling of multiple list capture-recapture data, employing the
constrained-Dirichlet prior is given by Di Cecco, Di Zio and Liseo (2020b).

8.2. Poisson log-linear models

Under the Poisson log-linear model cell counts are assumed to be condition-
ally independent Poisson random variables, given the model parameters. Thus,
a Poisson log-linear model for small domain dual systems estimation can be
written as

[Mk,y|μ] indep∼ Poisson(μk,y); k ∈ {1, . . . ,K}, y ∈ Y
log(μk,y) = ξ0 + ξXk + ξL1

l1(y) + ξL2
l2(y) + ξXL1

k,l1(y) + ξXL2
k,l2(y); k ∈ {1, . . . ,K}, y ∈ Y

(69)

where μ = {μk,y, k ∈ {1, . . . ,K}, y ∈ Y}, and similar notational conventions to
those employed for the multinomial log-linear model (59) are adopted in (69).
Some useful functions of the cell means are the expected total population size
μ++ =

∑
k,y μk,y, the expected number of people missed by both lists μ+,(0,0) =
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∑
k μk,(0,0), and the expected number of people recorded on at least one list,

μobs =
∑

k,y �=(0,0) μk,y = μ++−μ+,(0,0). The Poisson log-linear model implies the
marginal probability of being missed by both lists is pP(0,0)(μ) = μ+,(0,0)/μ++.

In contrast to the multinomial log-linear model, the intercept, ξ0, in the Pois-
son log-linear model is a free parameter. However, the number of parameters
in the multinomial and Poisson log-linear models is the same because the total
population size is not an explicit parameter in the standard Poisson log-linear
model formulation. We note, however, that from standard properties of the Pois-
son distribution (Gelman et al., 2014, p. 585), the model of independent Poisson
counts implies the total population is Poisson distributed with expectation μ++.
Thus, while the Poisson log-linear model does not explicitly condition on the to-
tal population size, it implies a Poisson prior for N , conditional on the expected
cell counts. Therefore, the unconditional prior for the total population size im-
plied by the Poisson log-linear model is p(N) =

∫
Poisson(N |μ++) p(μ) dμ, and

p(μ) may be specified directly or implied by a prior on the vector of parameters
of the log-linear model, ξ. Gelman et al. (2014, pp. 428–431) note that, analo-
gously to the multinomial log-linear model, a constrained generalised Dirichlet
prior is a potential prior for the parameters of a Poisson log-linear model, where
the constraint is that expected cell counts conform to the specified log-linear
model. We use the term generalised Dirichlet distribution to refer to a distribu-
tion with a density of the same form as the Dirichlet but without the restriction
that the elements of the random vector sum to one. Analogously to the multino-
mial log-linear model, the posterior for the Poisson log-linear parameters, under
a constrained generalised Dirichlet prior is also a constrained generalised Dirich-
let distribution. Other prior specifications are, of course, possible; a multivariate
normal model for ξ is a popular and convenient choice.

The observed data likelihood for the Poisson log-linear model is easily ob-
tained because the assumption of independent cell counts which implies

p(Mcom|μ) =
∏
k,y

Poisson(Mk,y|μk,y)

and marginalising over the unobservable counts for group missed by both lists
(y = (0, 0)), for each covariate combination gives the likelihood for the observed
data:

p(Dobs|μ) =
∏

k,y �=(0,0)

Poisson(Mk,y|μk,y)

=
∏

k,y �=(0,0)

1
Mk,y!

exp(−μk,y) μ
Mk,y

k,y

= exp(−μobs)
∏

k,y �=(0,0)

1
Mk,y!

μ
Mk,y

k,y

=
[

1
nobs!

exp(−μobs) μnobs
obs

][
nobs!∏

k,y �=(0,0) Mk,y!
∏

k,y �=(0,0)

(
μk,y

μobs

)Mk,y
]

(70)
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∝
[

1
nobs!

exp(−μobs) μnobs
obs

][ ∏
k,y �=(0,0)

(
μk,y

μobs

)Mk,y
]
. (71)

From (70) it is clear that the Poisson log-linear model log-likelihood factors
as the product of a Poisson probability for nobs, with expectation μobs, and
multinomial probability for the conditional distribution of the cell counts over
the observed cells, and is, therefore, proportional to a Poisson probability for
nobs and a conditional likelihood for the log-linear model parameters. Noting
that the logistic-multinomial model implies

μk,y = N φy(x[k],β) θk, (72)

it is easily verified that substituting for μk,y in (70) and (71) leads to the aggre-
gate data logistic-multinomial model likelihood (25), except that the binomial
probability for nobs in (25) is replaced by the Poisson probability in (71). Thus,
the logistic-multinomial, multinomial log-linear, and Poisson log-linear models
differ only in the probability model for nobs. Cormack and Jupp (1991) and
Huggins and Hwang (2011) have previously noted the similarity of the multi-
nomial log-linear and Poisson log-linear model likelihoods in the case with no
covariates, and Cormack and Jupp (1991) shows that the maximum likelihood
estimators for the coverage model parameters are identical for the Poisson and
multinomial models in that case.

Analogously to the multinomial log-linear model, the Poisson log-linear model
and logistic-multinomial model can be further related by using (72) to rewrite
the model for expected cell counts as

log(μk,y) = γP
k + l1(y) log

(
φ̃1(x[k],β1)

1 − φ̃1(x[k],β1)

)
+ l2(y) log

(
φ̃2(x[k],β2)

1 − φ̃2(x[k],β2)

)

(73)
where γP

k = log(N) + log(θk) + log
(
1 − φ̃1(x[k],β1)

)
+ log

(
1 − φ̃2(x[k],β2)

)
is the log of the expected number of people with covariate combination x[k]

that are missed by both lists. Equating log
(

φ̃j(x[k],βj)
1−φ̃j(x[k],βj)

)
in (73) with ξ

Lj

lj(y) +

ξ
XLj

k,lj(y), for j ∈ {1, 2} in (69), it can be seen that the logistic coverage models
of the logistic-multinomial model can be recovered from the Poisson log-linear
model, however, because of the (slight) difference in likelihoods and different
prior specifications, inferences are not guaranteed to be identical under the
two models. Similarly to the multinomial log-linear model, the agreement be-
tween the logistic-multinomial and the Poisson log-linear models for expected
cell counts is exact when a saturated model for the covariates is adopted for ξXk .

To obtain the posterior predictive distribution for the number missed by both
lists, at each covariate level, and the total population size, under the Poisson
log-linear model, there appear to be two possible approaches. The most obvious
approach is to exploit the assumption of conditionally independent cell counts
which implies

p(M.,(0,0)|Dobs) =
∫

p(M.,(0,0)|Dobs,μ) p(μ|Dobs) dμ
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Algorithm 4 Posterior predictive sampling for the number missed by both lists
under the Poisson log-linear model
1: for t in {1 . . . T} do
2: draw ξ(t) from p(ξ|Dobs)
3: for k in {1 . . .K} do
4: set μ

(t)
k,(0,0) = exp(ξ(t)0 + ξ

X,(t)
k )

5: draw M
(t)
k,(00) ∼ Poisson(μ(t)

k,(0,0)).
6: end for
7: combine M(t)

.,(0,0) = {M(t)
k,(0,0), k ∈ {1, . . . ,K} with Dobs to create Mcom,(t).

8: end for

=
∫ ∏

k

Poisson(Mk,(0,0)|μk,(0,0)) p(μ|Dobs) dμ, (74)

where
μk,(0,0) = ξ0 + ξXk for k ∈ {1, . . . ,K}. (75)

Given a draw from the posterior for the log-linear model parameters ξ, we can
obtain a draw from the posterior for the cell means {μk,(0,0), k ∈ {1, . . . ,K}},
using (75) and a draw from the posterior for the counts of people missed by both
lists, at each covariate combination, by drawing independent Poisson random
variates with expected values equal to these simulated cell means. Repeating
these steps for a sample from the posterior for ξ gives an approximation of
the posterior predictive distribution (74); this approach is described in Algo-
rithm 4.

The posterior for the population counts for aggregations of interest follow
straightforwardly from the observed and the generated counts of the number
missed by both lists. Thus, whereas for the logistic-multinomial or multinomial
log-linear model the total population size is estimated directly as a parameter
of the model, and the corresponding number of people missed by both lists
are distributed across the covariate levels in accordance with the estimated
covariate distribution and coverage models, the estimate for the total population
estimates under the Poisson log-linear model is built up from covariate-specific
estimates.

An alternative approach to obtain the posterior predictive distribution for
the unobserved counts for the group missed by both lists, exploits the idea that
the Poisson model has implications for the total population size. Even though
N is not a parameter of the Poisson log-linear model, it is still an unknown that
we are interested in, so it is reasonable to consider the joint posterior predictive
distribution

p(M.,(0,0), N |Dobs) =
∫

p(M.,(0,0)|N,μ,Dobs) p(N |μ,Dobs) p(μ|Dobs) dμ.

(76)

The posterior for μ is obtained, unconditionally on N , directly from the Poisson
model, i.e. p(μ|Dobs) ∝ p(Dobs|μ) p(μ), and, of course, μ is completely deter-
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mined by the log-linear model parameters ξ, so we could work just as easily
with the posterior for ξ.

The conditional posterior for N is given by

p(N |Dobs,μ) ∝ p(Dobs|N,μ) p(N |μ). (77)

From the well-known relationship between the Poisson and multinomial models
(Gelman et al. (2014, p.426)), conditionally on N , the distribution of the com-
plete vector of observed and unobserved cell counts, Mcom, is multinomial with
size parameter N and cell probabilities given by μ

(∗)
k,y = μk,y/μ++. Noting that,

in this notation, pP(0,0)(μ) =
∑

k μ
(∗)
k,(0,0), it follows from the derivation of the

likelihood for the multinomial log-linear model (64) in Section 8.1 that

p(Dobs|N,μ) ∝ N !
(N − nobs)!

∏
k,y �=(0,0)

(μ(∗)
k,y)

Mk,y

(
pP(0,0)(μ)

)(N−nobs)
, (78)

and consequently,

p(N |Dobs,μ) ∝Poisson(N |μ++) N !
(N − nobs)!

(
pP(0,0)(μ)

)(N−nobs)

∝ 1
(N − nobs)!

(
μ++ pP(0,0)(μ)

)N−nobs
μnobs

++

∝ 1
(N − nobs)!

(
μ++ pP(0,0)(μ)

)N−nobs
. (79)

The right hand side of (79) is proportional to a Poisson probability mass function
with expectation μ++ pP(0,0)(μ), which is the expected number of people missed
by both lists. Thus, to generate a draw from the conditional posterior for N , we
draw N(0,0) ∼ Poisson(μ++ pP(0,0)(μ)), and set N = nobs + N(0,0).

The final step in obtaining the joint posterior for (M.,(0,0), N,μ) using the
decomposition in (76) is to compute p(M.,(0,0)|N,μ,Dobs). From (74), it fol-
lows that p(M.,(0,0)|μ,Dobs) is the product of independent Poisson probabili-
ties. Conditioning on N in addition to Dobs implies conditioning on N −nobs =∑

k Mk,(0,0), since nobs is just the sum of the observed counts. Consequently,
p(M.,(0,0)|N,μ,Dobs) is a multinomial distribution with size parameter (N −
nobs) and probability vector ν = (ν1, . . . , νK)′, where νk = μk,(0,0)/p

P
(0,0)(μ), k ∈

{1, . . . ,K}.
By introducing N as an additional unknown of interest, it becomes clear that

the posterior predictive distribution for the completed population counts Mcom

can be simulated using a version of Algorithm 1, presented, in Appendix E of
the Supplementary Material (Graham et al., 2023). This further highlights the
similarity of inference under Poisson log-linear and logistic-multinomial models,
though the impact of the implied restriction to a conditional Poisson prior for
N , imposed by the Poisson log-linear model is apparent in the derivation of the
conditional posterior for N in (79).
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Given the simplicity of drawing independent Poisson variates for the group
missed by both lists, by covariate combination, as described in Algorithm 4, the
alternative involving explicitly generating the total population size described
above is primarily of theoretical interest but is useful in relating the Poisson
log-linear and logistic-multinomial modelling approaches to small domain dual
systems estimation.

8.3. Comparing estimates under Poisson log-linear model and
logistic-multinomial models

Initially we considered fitting a Poisson log-linear model that mimicked the
logistic-multinomial model fitted to the area (or region) by sex by age data, com-
prising 11,929 covariate combinations, discussed in Section 6. To construct a log-
linear model with an equivalent covariate structure to the logistic-multinomial
model, we formulate a saturated model for the covariates. In log-linear model
notation of (69) this implies

ξXk = ξS
k[S] + ξA

k[A] + ξR
k[R] + ξSA

k[SA] + ξSR
k[SR] + ξAR

k[AR] + ξSAR
k[SAR] (80)

where ξR
k[R] represents the area-specific term (nominally representing local gov-

ernment regions in the simulated data), and the superscripts SA, SR, AR, SAR
denote sex by age, sex by area, age by area, and sex by age by area interaction
terms, respectively. The analogous component of the logistic-multinomial model
is the unstructured multinomial distribution for the covariate distribution.

Components of the Poisson log-linear model involving the list inclusion indi-
cators were modelled using:

ξ
XLj

k,lj(y) = ξ
SLj

k[S],lj(y) + ξ
ALj

k[A],lj(y) + ξ
SALj

k[SA],lj(y) + ξ
RLj

k[R],lj(y), j ∈ {1, 2}, (81)

where the area effects ξRLj

r,1 were modelled as draws from a Normal distribution

ξ
RLj

r,1
indep∼ Normal(ξLj

1 , σ2); r ∈ {1, . . . ,KR}, j ∈ {1, 2}, (82)

where KR is the number of areas (67 in our example). In (81), parameters
with lj(y) = 0 are set to zero, and the superscripts SLj , ALj , SALj , and RLj

correspond to parameters representing sex, age, sex by age interaction, and area
effect on List j coverage, for j ∈ {1, 2}. Note also that the parameter in (69) that
corresponds to the intercept of the List j coverage model, ξLj

1 , has been moved to
centre the model for the area effects on coverage in (82). The parameters ξALj

a,lj(y)
in (81) represent spline models for age effects. Letting Za denote a vector with
entries representing the basis function values for a spline representation of the
age a, ξALj

a,lj(y) = lj(y)×Za
′ψj , for some parameter vector ψj , for j ∈ {1, 2}. We

used the same spline representation of age discussed in Section 6, i.e. a cubic
spline with internal knots set at 10 years intervals. The spline representation of
age is also used to construct the terms, ξSALj

k[SA],lj(y), j ∈ {1, 2}, that correspond
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to the interaction effect of sex and age on list inclusion. Thus, for the sex and
age group denoted (s, a), with s = 0 and s = 1, denoting males and females,
respectively, ξSALj

s,a,lj(y) = lj(y) × s× Za
′ψ̃j , j ∈ {1, 2}.

It proved impractical to fit the Poisson log-linear model defined by (80)–(81)
and (82) to the area by sex by age data due to memory and computation time
issues. Consequently, we considered a simplified version of the full Poisson log-
linear model that omitted the age by area and sex by age by area terms from
the model for the covariates, described in (80), and omitted the sex by age inter-
action effects in the model for coverage effects, in (81). However, computation
times for fitting this simplified model in Stan remained impractically long. For
example, 1000 iterations (of three parallel chains) took over 29 hours and re-
mained far from convergence after discarding the first 500 iterations as burn-in
(the largest R̂ statistic was 4.77). We note that the model implementation in
Stan took advantage of the Q-R decomposition, as recommended in the Stan
user guide (Stan Development Team, 2021, https://mc-stan.org/docs/2_29/
stan-users-guide-2_29.pdf), and this lead to a substantial improvement in
computing time. A comparable logistic-multinomial model took 7.5 hours to
complete 4,000 iterations with strong evidence of convergence after discarding
the first 3000 iterations (largest R̂ < 1.02).

In view of the computational issues encountered in the Poisson log-linear
modelling of the area by age by sex data, we based our comparison of infer-
ence under Poisson log-linear and logistic-multinomial models on a simpler data
structure, similar to that used to explore dependent dual systems estimation in
Section 7, but generated under an assumption of conditionally independent list
inclusion. Thus, our comparison is based on a simulated target population of
1,000,000 with the same distribution over 180 sex by age combinations as the
data used in Section 7, and generated using the same marginal list inclusion
models but assuming conditional independence, of list inclusion.

We fitted a single-level Poisson log-linear model. Letting Msa,y denote the
count for list inclusion cell y, for the covariate combination (sex = s, age = a),
the model structure can be described as:

[Msa,y|μ] indep∼ Poisson(μsa,y)
log(μsa,y) = ξ0 + ξS

s + ξA
a + ξSA

sa + ξL1
l1(y) + ξSL1

s,l1(y) + ξAL1
a,l1(y) + ξSAL1

sa,l1(y)+

ξL2
l2(y) + ξSL2

s,l2(y) + ξAL2
a,l2(y) + ξSAL2

sa,l2(y).
(83)

We set ξ
Lj

0 = 0, for j ∈ {1, 2}. The ξ
Lj

1 parameters correspond to the inter-
cept parameters of the logistic coverage models, for j ∈ {1, 2}. Similarly, we set
ξ
SLj

0 = 0, for j ∈ {1, 2}, so that ξ
SLj

1 represents the effect of female sex on the
probability of inclusion on List j. The parameters ξAL1

a,l1(y) and ξAL2
a,l2(y) represent

spline models for age effects and the spline representation of age is also used
to construct the sex by age by list interaction terms ξ

SALj

sa,lj(y), j ∈ {1, 2}, as
described above for the Poisson log-linear model for the full area by sex by age
data. The other parameters associated with age, ξAa and ξSA

sa are not modelled

https://mc-stan.org/docs/2_29/stan-users-guide-2_29.pdf
https://mc-stan.org/docs/2_29/stan-users-guide-2_29.pdf
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as spline functions, but as distinct parameters for each integer age value, though
we adopt the convention that ξA0 = ξSA

s,0 = 0. Moreover, we set ξS0 = ξSA
0,a = 0,

for identifiability reasons. Note that the model (83) saturates the sex by age
distribution. Including the intercept, ξ0, there are 180 (1 + 1 + 89 + 89) param-
eters for the 180 sex by age combinations in the data. We adopted independent
Normal(0, 3) priors for all model parameters and fitted the model in Stan to
obtain a posterior sample for the log-linear model parameters. The posterior
for the counts of people missed by both lists, by covariate combination, was
obtained as described in Algorithm 4.

The logistic-multinomial model for the sex by age data includes the total
population size, N , as an explicit parameter and can be written

[Mcom|N,θ] ∼ Multinomial(N,θ)

[Msa,y|Msa,+,β] indep∼ Multinomial (Msa,+,φ(s, a,β)) , (84)
s ∈ {0, 1}, a ∈ {0, . . . , 89}, y ∈ Y, (85)

where Msa,+ =
∑

y Msa,y, Mcom = {Msa,+, s ∈ {0, 1}, a ∈ {0, . . . , 89}}, and
φ(s, a,β) =

(
φ(1,1)(s, a,β), φ(1,0)(s, a,β), φ(0,1)(s, a,β), φ(0,0)(s, a,β)

)
, and the

usual conditional independence assumptions are invoked so

φy(s, a,β) = (φ̃1(s, a,β1))l1(y) (φ̃2(s, a,β2))l2(y)

(1 − φ̃1(s, a,β1))1−l1(y) (1 − φ̃2(s, a,β2))1−l2(y).

The list inclusion probabilities are modelled using the logistic models

logit
(
φ̃j(s, a,βj)

)
= βj,0 + sβS

j + Z′
aβ

A
j ,+sZ′

aβ
SA
j , j ∈ {1, 2}. (86)

We adopted Normal(0, 3) priors for all the logistic regression parameters, a
Dirichlet prior for θ—with all Dirichlet parameters set to 0.01—and the Jef-
freys’ prior for the total population size (p(N) ∝ 1/N). We fitted the logistic-
multinomial model in Stan using the full likelihood, to obtain a posterior sample
for (N,θ,β). We then used (36) to obtain the distribution of the covariate values
of the group missed by both lists, as per Algorithm 1.

The Poisson log-linear and logistic-multinomial models produced almost iden-
tical coverage model parameter estimates and population estimates in this ex-
ample. Coverage model parameter estimates are compared in Tables 1 and 2,
in Appendix E of Supplementary Material (Graham et al., 2023), and popu-
lation estimates by age and sex are compared in Figure 14. Population esti-
mates are presented as relative differences from true values, and it can be seen
that the pattern of difference is virtually identical for the Poisson log-linear
and logistic-multinomial models, and that both methods recover the underlying
population structure. The 2.5%, 50% and 97.5% quantiles of the posterior distri-
bution for the total population size N were (999,479, 1,011,030, 1,001,178) and
(999,483, 1,000,323, 1,001,199) for the Poisson log-linear model and the logistic-
multinomial model, respectively.
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Fig 14. Comparison of population estimates by sex and age, for Poisson log-linear (left col-
umn) and logistic-multinomial models (right column). Results are shown as relative difference
from true values. Results for females are shown in the top row and results for males are shown
in the bottom row. The shaded area represents an equal-tail-area 95% credible interval, and the
solid black line represents the posterior median for the relative difference. Estimates are vir-
tually identical for the Poisson and log-linear models and both models recover the underlying
population structure.

The biggest difference between the Poisson log-linear and logistic-multinomial
models was the number of iterations required to achieve convergence and rea-
sonable effective posterior sample sizes. For the logistic-multinomial model we
ran five parallel chains of 2,500 iterations, discarded the first 1,000 iterations
as burn-in and thinned the post-burn-in sample by five, to produce a nomi-
nal posterior sample size of 1,500. These settings produced strong evidence of
convergence after 1,000 iterations with R̂ statistics less than 1.01 for all param-
eters. Over all parameters, the minimum effective Monte Carlo sample size was
1,088 and the median was 1,500, equal to the nominal Monte Carlo sample size.
The total computing time for the logistic-multinomial model was 173.7 seconds.
With the same MCMC settings, the distribution of R̂ convergence diagnostics
for the Poisson log-linear model had a maximum of 1.042, third quartile of 1.025,
median of 1.017 and lower quartile equal to 1.010. The distribution of effective
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Monte Carlo sample sizes has a minimum of 41.0, lower quartile of 60.1, median
of 157.9, third quartile of 220.8 and a maximum of 1,500. For many parameters
of the Poisson log-linear model, the effective Monte Carlo sample size therefore
seems too low for trustworthy posterior inference. The computing time of 91.7
seconds was, however, just over half that required for the logistic-multinomial
model.

To obtain adequate effective posterior sample sizes for the Poisson log-linear
models, we increased the number of iterations to 30,000 with a burn-in period
of 3,000 and thinned by a factor of 90 to again yield a nominal posterior sample
size of 1,500. These MCMC settings yielded a distribution of R̂ statistics with
maximum equal to 1.019, and distribution of effective sample sizes with mini-
mum equal to 759.8, lower quartile equal to 947.5, median equal to 1411, and
upper quartile equal to 1,500. Results reported above for the Poisson log-linear
model are from this longer MCMC run for which the computing time was 524.2
seconds. Thus, although the Poisson log-linear model appears faster per itera-
tion, it took approximately three times as long to produce effective Monte Carlo
sample sizes comparable to (though slightly less than) the logistic-multinomial
model.

Overall, evidence from this example suggests the logistic-multinomial model
provides a more convenient parameterisation than the Poisson log-linear model
for Stan to sample from. However, posterior inferences obtained under the two
models were very similar, suggesting that the different prior specifications im-
plied by the two models have little impact on the posterior, at least in the simple
example considered. Additional details on fitting the Poisson log-linear model
are give in Appendix E of Supplementary Material (Graham et al., 2023).

9. Discussion

Small domain population estimation is fundamentally about estimating the co-
variate distribution of the group not captured on at least one of the observed
lists. The problem is, therefore, inherently a missing data problem to which a
Bayesian approach is well-suited. This is perhaps most obvious in the application
of Gibbs sampling to the population estimation. As discussed in Section 5.4, the
Gibbs sampler alternates between imputing the covariates for the unobserved
group, conditional on the most recent update of the dual systems model parame-
ters, and updating model parameters by drawing from the conditional posterior
that conditions on both the observed data and the most recently imputed set of
covariate values for the unobserved group. While conceptually appealing, with
advances in Bayesian computation, other approaches are possible, such as the
sequential approach of Algorithm 1 whereby the posterior for the model pa-
rameters is first obtained using MCMC, followed by drawing in turn from the
conditional posterior distributions for the total population size and the unob-
served covariates.

The observation in Section 5.1, that under the Jeffreys’ prior the marginal
likelihood for the coverage model and covariate distribution parameters is the
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conditional likelihood, provides an interesting connection between Bayesian and
frequentist approaches, which often make use of a conditional likelihood, albeit
conditioned on observed covariate values. The conditional likelihood is imple-
mented in Stan reasonably easily and is a simple illustration of the idea of
integrating out discrete parameters from the likelihood in order to make use of
the HMC algorithm implemented in Stan. While the equivalence of the marginal
likelihood for the coverage model and covariate distribution parameters under
the Jeffreys’ prior and the conditional likelihood may have been noted previ-
ously, at the time of writing we have been unable to locate a reference to this
equivalence.

Much of the motivation for this paper came from the potential of adminis-
trative data to contribute to estimation of the size and distribution of human
populations and the need for theory and methods for realising this potential.
However, since administrative data may be prone to measurement error, if ad-
ministrative data is to be a part of the future of small domain population es-
timation, further work is required to deal with the problems of measurement
error on administrative lists. With the focus of much work on population esti-
mation being on estimation of the total population size, the issue of covariate
measurement error has not received much attention in the population estima-
tion literature. However, van der Heijden et al. (2018) and van der Heijden
et al. (2022) address the issue of measurement error, or differential reporting
of covariates in different sources, in the context of frequentist log-linear mod-
elling of multiple lists, using the E-M algorithm. There appears clear potential
for incorporating these ideas into the Bayesian approach to population estima-
tion.

Administrative data may also be prone to over-coverage, whereby an ad-
ministrative list includes records for people not in the target population. For
example, people who have emigrated may still have a presence in administrative
data. Such over-coverage poses a serious challenge for dual systems estimation
since lists with over-coverage are not subsets of the target population. Dual
systems estimation cannot be expected to provide good estimates of the target
population in the presence of list over-coverage, because dual systems estima-
tion can only adjust for list under-coverage with respect to the population from
which the lists are drawn. Thus, if list over-coverage is substantial, dual sys-
tems estimation is likely to result in over-estimation of the target population
and, potentially, distorted covariate distributions, depending on the distribu-
tion of list over-coverage, by covariates. However, with good data on migration
and accurate linkage between migration and the administrative list(s) included
in dual systems estimation, the problem of over-coverage due to undetected
out-migration can be minimised. When high quality migration data cannot be
accessed, dual (and multiple) systems estimation methodology needs to be ex-
tended to estimate and adjust for over-coverage. Some work along these lines
has been initiated, from both frequentist (Zhang, 2015, 2019) and Bayesian per-
spectives (Graham and Lin, 2020), however much remains to be done to build
a generally applicable methodology to deal with over-coverage in population
estimation, particularly when only two lists are available.
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Another issue in using large administrative datasets for population estima-
tion is the likely problem of linkage error. When links between individuals truly
recorded on both lists are missed, individuals who should be recorded once in the
(1, 1) cell appear as two separate records, one in each of the (1, 0) and (0, 1) cells.
This leads to over-estimation of the population. On the other hand, erroneous
links between individuals recorded on only one of the lists, lead to underestima-
tion of the population and may introduce covariate measurement error. However,
as noted in Section 1 (Introduction), progress is being made on the problem of
adjusting for linkage error in dual and multiple systems estimations (Ding and
Fienberg, 1994; Di Consiglio and Tuoto, 2015, 2018; de Wolf, van der Laan and
Zult, 2019; Sadinle, 2018), and on the related problem of uncertain identification
of animals in ecological applications (Link et al., 2010; Schofield and Bonner,
2015; Zhang, Bravington and Fewster, 2019). Development of computationally
tractable solutions to incorporating adjustment for linkage error into small do-
main population estimation is, however, likely to require continuing research.
In general, further progress in Bayesian computation remains a priority for in-
creasing the appeal of Bayesian approaches to population estimation and for
unlocking the potential of Bayesian methods and large administrative datasets
to improve the understanding of demographic and geographic distribution of
human populations.

Supplementary Material

Supplement to “Bayesian Dual Systems Population Estimation for
Small Domains”
(doi: 10.1214/23-SS146SUPP; .pdf). Likelihood derivations, extensions and ad-
ditional results.
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