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Abstract: The maximum likelihood estimator (MLE) for the unknown
parameter vector in logistic regression is well known to be biased. There
are many different approaches to reduce this bias including bias correction,
adjustment of the score function or of the data itself, jackknifing, penaliz-
ing the likelihood, exact logistic regression, and the discriminant function
approach. These approaches, as well as many different simulation studies
comparing them, are reviewed here. Since the studies use very different
parameter settings and sometimes contradict each other, no general recom-
mendations can be given. However, most studies find that the bias of the
MLE is substantial for small to medium samples, that the bias-corrected
estimators tend to overcorrect in very small samples, and that Firth’s esti-
mator, when considered, is the best choice.
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1. Introduction

Although the maximum likelihood estimator (MLE) in logistic regression is
asymptotically unbiased, it has been known for decades that its bias can be
considerably large for small and moderate samples (Cox and Snell, 1968; An-
derson and Richardson, 1979; Schaefer, 1983; Cordeiro and McCullagh, 1991).
Accordingly, aiming at bias reduction, there are many proposals for alternative
estimators and simulation studies comparing subsets of these estimators. Some
studies shortly review results for selected approaches to correct for bias from
certain points of view (Zorn, 2005; Heinze, 2006; Gao and Shen, 2007). We try to
give a comprehensive review of the various approaches, estimators, and results
of simulation studies, and a comparison of these.

2. Logistic regression model and maximum likelihood estimation

Consider the logistic regression model

Yi|xi1, . . . , xip ∼ Ber(πi),
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log
(

πi

1 − πi

)
= β0 + β1xi1 + · · · + βpxip,

with the design matrix X = (x1, . . . ,xn)T ∈ R
n×(p+1) consisting of n obser-

vations of p covariates with xi = (1 xi1, . . . , xip)T , Yi the corresponding obser-
vations of a binary target variable Y, i = 1, . . . , n, and β = (β0, β1, . . . , βp)T ∈
R

p+1 the unknown parameter vector (Fahrmeir et al., 2013, pp. 270–273) which
is usually estimated using maximum likelihood (ML). The maximum likelihood
estimator (MLE) β̂ML is calculated by numerically solving the score equations

s(β) = ∂�(β)
∂β

=
n∑

i=1
xi(yi − πi) = 0

where

�(β) = logL(β) =
n∑

i=1
[yi log(πi) − yi log(1 − πi) + log(1 − πi)]

is the log-likelihood with likelihood

L(β) =
n∏

i=1
f(yi | β) =

n∏
i=1

πyi

i (1 − πi)1−yi

(Fahrmeir et al. 2013, pp. 279–283; Tutz 2011, pp. 63–66). The MLE exists if
and only if there is no complete separation

∃β : xT
i β > 0, if yi = 1 and xT

i β < 0, if yi = 0

or quasicomplete separation

∃β �= 0 : xT
i β ≥ 0, if yi = 1 and xT

i β ≤ 0, if yi = 0, i = 1, . . . , n,

(Albert and Anderson, 1984; Santner and Duffy, 1986).

3. Bias of the MLE

Under relatively weak regularity conditions (Fahrmeir and Kaufmann, 1986) the
MLE β̂ML exists asymptotically and is a consistent estimator for β for n → ∞.
Moreover, under the same conditions, it holds that the MLE is asymptotically
normally distributed and unbiased

β̂ML
a∼ N

(
β,F−1(β)

)
where

F (β) =
n∑

i=1
xix

T
i πi(1 − πi) = XTWX,
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with the information matrix W = diag{π1(1 − π1), . . . , πn(1 − πn)}. However
in finite samples the MLE is biased due to the combination of the unbiasedness
of the score function Eβ (s(β)) = 0 and its curvature s′′(β) �= 0 (Firth, 1993).
The bias

b(β) = Eβ

(
β̂ML

)
− β

of the MLE is of order O(n−1) (McCullagh and Nelder, 1989, p. 119) and can’t
be expressed in closed form. There are many expressions for the first order term
b(1)(β)/n in the representation

b(β) = b(1)(β)
n

+ b(2)(β)
n2 + b(3)(β)

n3 + · · ·

of the bias (Cox and Snell, 1968; Anderson and Richardson, 1979; McLachlan,
1980; Schaefer, 1983; Copas, 1988; McCullagh and Nelder, 1989; Cordeiro and
McCullagh, 1991; O’neill, 1994; Park and Choi, 2008). Here we will use the
expression given by Cordeiro and McCullagh (1991)

b(β) =
(
XTWX

)−1
XTWξ,

with ξ a vector with components

ξi = zii

(
πi −

1
2

)
, i = 1, . . . , n, (1)

and zii the ith diagonal element of

Z = X
(
XTWX

)−1
XT .

The expression is known to be equivalent to the expressions given by the other
previously mentioned authors except for McLachlan (1980) and O’neill (1994).
Bias approximations to a higher order are for example given by Bowman and
Shenton (1965) and Cordeiro and Barroso (2007). These approximations will
not be considered further since they are neither specifically determined for the
logistic regression model nor compared in any simulation study for logistic re-
gression.

Cordeiro and McCullagh (1991) also show that the bias vector b(β) and the
parameter vector β are approximately collinear which implies that the MLE is
biased away from the origin. Under further assumptions, it holds that

b(β) ≈ p + 1
n

β,

so the bias is approximately proportional to β (Cordeiro and McCullagh, 1991).
A different approach is given by Sur and Candès (2019) who characterize

the asymptotic bias of the MLE for normally distributed covariates under the
assumption

lim
n→∞

Var(XT
i β) = γ2
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with fixed signal strength γ by an equation system with three unknowns (α, σ, λ)
that is solvable if and only if the MLE exists. Then the bias of the MLE can be
quantified by the solution (α∗, σ∗, λ∗) in a statistical sense:

1
p + 1

p∑
j=0

(
β̂ML,j − α∗βj

)
a.s.→ 0.

This means that the β̂ML,j are centered around α∗βj (Sur and Candès, 2019).

4. Alternative estimators

There are different proposals for alternative estimators to reduce the bias of the
MLE. Some of those have similar motivations and are therefore sorted together
in the overview below. See Table 1 of online Appendix A (Stolte et al., 2024)
for a complete overview of each estimator.

4.1. Bias correction for the MLE

The most obvious way to reduce the bias of the MLE is a bias correction. The
idea behind these estimators is to simply subtract an expression for the bias
from the MLE:

β̂corr = β̂ML −
b(1)

(
β̂ML

)
n

.

This removes the first-order bias. Estimators of this type are defined for each
of the previously mentioned expressions for the first-order bias. Since the ex-
pressions are equivalent the same holds for the corresponding bias-corrected
estimators and therefore we will once again only present the one defined by
Cordeiro and McCullagh (1991)

β̂CM = β̂ML − 1
2

(
XTWX

)−1
XTWξ.

The advantage of this form is that the bias vector can be calculated by taking
it as the vector of coefficients of a weighted linear regression of ξ on X with
weights given by W .

Another bias-corrected estimator β̂
∗
γ,Copas is given by Copas (1988). The

estimator is based on the same principle as the estimators presented so far, but
instead of the MLE, a robust estimator β̂γ and its bias are considered. For this
purpose, in addition to the logistic regression model, it is assumed that there is
a swap of the values 0 and 1 in the target variable with a probability of γ and
the MLE β̂γ is determined based on this assumption.

Sur and Candès (2019) also define a corrected estimator

β̂SC = 1
α̂
β̂ML
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based on their ML theory where α̂ is the solution of their equation system with
an estimator for the signal strength γ inserted. For details see Sur and Candès
(2019).

4.2. Adjusting the score function

Firth A different approach for removing the first-order bias is given by Firth
(1993). The idea here is to rather prevent the emergence of the bias than to
correct the estimator afterwards. In Kosmidis (2014) this idea of preventing
instead of correcting the bias is summarized as implicit methods in contrast to
explicit methods.

To understand the adjustment proposed by Firth (1993) it is helpful to con-
sider a one-dimensional setting β ∈ R. Then a positive curvature of the score
combined with its unbiasedness results in a positive bias. The idea of Firth
(1993) is to reduce this bias by adding a small bias to the score. To achieve this,
at each point β the score function has to be shifted down by the value F (β)b(β)
where −F (β) = s′(β) is the derivative of the score function. This results in the
modified score function

s∗(β) = s(β) − F (β)b(β), (2)

whose zero s∗(β) = 0 provides the estimator β̂Firth. For a parameter vector β
the modified score function is defined analogously to (2) where F (β) is the in-
formation matrix. Substituting the expression given by Cordeiro and McCullagh
(1991) for the bias in (2) yields

s∗(β) = s(β) −XTWξ.

As shown in Firth (1993), this modification removes the first-order bias. Fur-
thermore the estimator β̂Firth is the stationary point of the penalized likelihood

L∗(β) = L(β)|F (β)| 12 ,

so the calculation of β̂Firth is equivalent to calculating the posterior mode us-
ing Jeffreys’ prior (Jeffreys, 1946). For grouped data, Firth’s estimator is also
equivalent to adding a constant to the number of events and non-events for each
group. In the saturated model this constant equals 1/2, in the more general case
it equals hi/2 where hi is the ith hat value, i.e. the ith diagonal element of the
hat matrix H = W

1
2X(XTWX)−1XTW

1
2 (Firth, 1993; Galindo-Garre, Ver-

munt and Bergsma, 2004).
A property that makes Firth’s estimator particularly popular is that it also

exists in the case of separation (Heinze and Schemper, 2002; Heinze, 2006; Zorn,
2005). This has already been observed by Heinze and Schemper (2002) in prac-
tice. However, this property was only formally proven in Kosmidis and Firth
(2021, Corollary 1). In addition, the shrinkage property of the estimator, which
was also observed in some simulation studies Heinze and Schemper (2002), is
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demonstrated there: compared with the MLE, Firth’s estimator is shrunk to-
wards β = 0 relative to a metric based on the expected information matrix,
so β̂Firth typically takes on smaller absolute values than β̂ML (Kosmidis and
Firth, 2021, Theorem 2). From the same theorem follows another frequently
observed property: confidence ellipsoids based on the asymptotic normal distri-
bution of the estimators for the bias-reduced estimator have a smaller volume
than for the MLE.

Firth’s estimator is probably the best-known of the presented alternatives.
It is recommended in various papers (Bull, Mak and Greenwood, 2002; Zorn,
2005; Heinze and Schemper, 2002; Heinze, 2006), in particular, because of its
applicability on separated data. It is mentioned in several textbooks (Tutz, 2011;
Agresti, 2012; Hosmer, Lemeshow and Sturdivant, 2013; Steyerberg, 2019) with
increasing popularity during the last few years (Kosmidis and Firth, 2021).

Puhr et al. (2017) propose two modifications of Firth’s estimator to reduce the
bias in the estimated probabilities. For this purpose, the property of the MLE
is obtained that the average predicted probability is equal to the proportion of
ones in y = (y1, . . . , yn)T . The first modification β̂FLIC changes the estimate of
the intercept so that this property applies again. For the second modification,
an additional indicator variable, which distinguishes between the original and
the artificially added observations, is introduced in the calculation of Firth’s
estimator by adjusting the data with hi/2. The MLE is then determined using
this additional covariable.

Kenne Pagui et al. Another estimator based on an adjustment for the score
function is proposed in Kenne Pagui, Salvan and Sartori (2017). The motiva-
tion for this estimator is to preserve the equivariance of the MLE, which the
estimators presented so far do not do. As a result, the entire estimation process
does not have to be carried out again when the data is reparameterized. This is
achieved by correcting for the median.

For the derivation of the estimator, the case β ∈ R is considered first. By sub-
tracting a representation for the median M(s(β)) the score function is modified
in such a way that the resulting modified score function s̃(β) is median-unbiased
to third order. Now, if β̂KPSS is the unique solution of s̃(β) = 0, the events
s̃(β) ≤ 0 and β̂KPSS ≤ β are equivalent, since the score function is strictly
decreasing in β as follows from the relationship

−s′(β) = F (β) = 1/Var(β̂ML) > 0.

So it follows directly that β̂KPSS is also median-unbiased to third order, i.e. it
holds

Pβ

(
β̂KPSS ≤ β

)
= 1

2 + O
(
n−3/2

)
.

Since there is no definition of the multidimensional median, by means of which
this approach could be generalized for multidimensional parameter vectors β,
Kenne Pagui, Salvan and Sartori (2017) choose a different approach instead.
They set up a system of estimation equations whose solution for each component
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βj , j = 0, . . . , p, gives the same estimator as the estimate in the one-dimensional
case when using the profile score function up to and including the terms of
order O(n−1). This means that the estimate for βj in the multidimensional case
is approximately the same as the estimate in the one-dimensional case if the
MLEs are inserted for the remaining parameters βr, r �= j, in the adjusted score
equation. The resulting modified score vector then consists of the components

s̃j = sj −
p∑

a=0
a�=j

γjasa + Mj , j = 0, . . . , p, where

Mj = −κ1j + κ3j/(6κ2j),

κ1j = −1
2

p∑
a,b,c=0
a,b,c �=j

ν−1
ab (νj,a,b − γjcνa,b,c),

κ2j = νj,j −
p∑

a=0
a�=j

γjaνj,a,

κ3j = νj,j,j

p∑
a,b,c=0
a,b,c �=j

[−3γjaνj,j,a + 3γjaγjbνj,a,b − γjaγjbγjcνa,b,c],

γja =
p∑

b=0
b �=j

ν−1
ab νj,b,

νj,s = νjs = −Fjs(β) =
n∑

i=1
xijxisπi(1 − πi) and

νj,s,t =
n∑

i=1
xijxisxitπi(1 − πi)(1 − 2πi),

j, s, t ∈ {0, . . . , p}, a ∈ {0, . . . , p} \ {j}.

β̂KPSS is defined as the solution of s̃(β) = 0. The resulting estimator is equiv-
ariant under reparametrizations that transform each component βj separately.
It holds that

Pβ

(
β̂KPSS,j ≤ βj

)
= 1

2 + O
(
n−3/2

)
.

Equivalently, β̂KPSS can be calculated by solving the equation system

s(β) + F (β)M1(β) = 0 (3)

with vector M1(β) consisting of elements M1j(β) = Mj/κ2j , j = 0, . . . , p. The
equation system (3) is asymptotically solvable if the MLE exists. Further general
statements on the solvability are not known.



146 M. Stolte et al.

Properties, tests and estimation Both estimators β̂Firth, β̂KPSS presented
in this chapter preserve the asymptotic properties of the MLE, i.e. they are
asymptotically unbiased, efficient and N(β,F−1(β))-distributed. Therefore, the
same tests and confidence intervals as for the MLE that utilize these proper-
ties can be used. The two estimators can each be calculated using Iteratively
Weighted Least Squares (IWLS) or, equivalently, using a quasi-Fisher scoring
algorithm (Kosmidis, Kenne Pagui and Sartori, 2020).

4.3. Penalizing the likelihood

In addition to bias, highly correlated covariates also lead to unstable or infinitely
large estimates in ML estimation. For highly correlated covariates, a ridge esti-
mator (Schaefer, Roi and Wolfe, 1984) is often used instead of the MLE. How-
ever, in general, the ridge estimator is no longer asymptotically unbiased. Gao
and Shen (2007) therefore propose a combination of Firth’s estimator and the
ridge estimator. This estimator β̂SG, which they call the double penalized MLE,
is determined as the maximum of the double penalized likelihood, which results
from the further addition of the ridge penalty to the penalized likelihood L∗(β)
according to Firth (1993). The corresponding double-penalized log-likelihood is
given as

�∗∗(β) = �(β) + 1
2 log |F (β)| + k||β||22,

where k is the ridge parameter. If, in addition to the assumptions of the logistic
regression model, it is assumed that the entries of the design matrix are bounded
by a constant, the estimator β̂SG is asymptotically consistent and has the same
asymptotic distribution as the MLE. The estimator can be determined using
a Newton-Raphson algorithm. The ridge parameter k is chosen such that the
prediction error is minimized (Gao and Shen, 2007).

4.4. Adjusting the data

One approach to reduce the bias in estimation for grouped data is to adjust the
data itself. The origin of this approach is described in Elgmati et al. (2015):
Anscombe proposed the so-called empirical logistic transformation

Zi =
niȲi + 1

2
ni − niȲi + 1

2

in 1956 with ni and Ȳi the group size and arithmetic mean of the target variable
in the ith group, i = 1, . . . , G, and noticed that this leads to almost unbiased
estimates for βi. Later Cox proved that 1/2 is in fact precisely the constant whose
addition removes the first-order bias in the empirical logistic transformation.
The MLE after the addition of 1/2 to the number of ones and zeros in the
grouped case is denoted by β̂Haldane in the following. For large group sizes ni,
the bias of β̂Haldane,i is only of order 1/n2

i (Agresti, 2012, p. 195).
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An alternative transformation, which can also be found associated with bias
reduction sometimes (Heinze and Schemper, 2002; Galindo-Garre, Vermunt and
Bergsma, 2004), is given by Clogg et al. (1991). They suggest to use the MLE
after adding Ȳ (p + 1)/G events and (1 − Ȳ (p + 1))/G non-events in each of
the G groups. However, this does not shrink the MLE in the direction of the
equiprobability model β = 0, but in the direction of the independence model,
i.e. the intercept is not shrunk.

4.5. Jackknifing

The bias of the MLE can not only be estimated by an analytic approximation
but also by jackknifing. The multi-step jackknife estimator for β is given as

β̂M = β̂ML + n− 1
n

n∑
i=1

(
β̂ML − β̂−i

)
, (4)

where β̂−i denotes the MLE if the ith observation is omitted (Bull, Hauck and
Greenwood, 1994). Here, the MLE is corrected with the mean deviation of the
MLEs when omitting one observation from the MLE in the total sample. The
estimators β̂−i can be determined iteratively. If β̂

(0)
−i = β̂ML is used as the

starting value, the estimate in the (k + 1)-st iteration can be written as

β̂
(k+1)
−i = β̂ML +

(
F

(0)
−i

)−1
XT

−ir
(0)
−i +

k∑
t=1

(
F

(t)
−i

)−1
XT

−ir
(t)
−i

with X−i the design matrix without the ith observation and r
(t)
−i = y−i − π̂

(t)
−i

the residual vector in the t-th step, where the entry for the i-th observation
is omitted and π̂

(t)
−i ∈ R

n the vector of predicted probabilities based on β̂
(t)
−i.

The Fisher information matrix is F
(t)
−i = XTW

(t)
−iX with the weight matrix

W
(t)
−i ∈ R

n×n based on π̂
(t)
−i, t = 0, . . . , k. For each iteration and each of the n

vectors β̂
(t)
−i, the data must be run through once for calculating π̂

(t)
−i and F

(t)
−i.

The computational effort is therefore high. Hence, it makes sense to consider
estimators after a few iterations. The correction that results after the first step,
i.e. for the one-step estimator β̂

(1)
−i , is asymptotically negligible. Therefore, at

least two iterations must be performed to reduce the bias. The quantities re-
quired to calculate β̂

(1)
−i are the same for all i, since they are all based on the

same starting value β̂ML. However, the quantities
(
F

(1)
−i

)−1
and r

(1)
−i needed

for the calculation of β̂
(2)
−i are based on the different estimators β̂

(1)
−i for each

i ∈ {1, . . . , n}. This means that to calculate the two-step jackknife estimator,
n matrices of size (p + 1) × (p + 1) must be calculated and inverted. In the
representation

β̂
(2)
−i = β̂

(1)
−i +

(
F

(0)
−i

)−1
XT

−ir
(1)
−i +

[(
F

(1)
−i

)−1
−

(
F

(0)
−i

)−1
]
XT

−ir
(1)
−i
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it can be seen that if the change
(
F

(1)
−i

)−1
−

(
F

(0)
−i

)−1
is small, this large

effort, which arises from the inversion of the updated Fisher matrices, can be
saved in the calculation. This is the motivation behind the approximate two-
step jackknife estimator β̂JA proposed in Bull, Hauck and Greenwood (1994).
To eliminate the additional calculations and inversions of the updated Fisher
matrices, the matrix

(
F

(1)
−i

)−1
is replaced by

(
F

(0)
−i

)−1
in the calculation of

β̂
(2)
−i . The resulting estimator can be written as

β̂JA = β̂ML +
[
n− 1
n

n∑
i=1

xi(Yi − πi)(1 − ai)−1

]

+ n− 1
n

[
n∑

i=1
xi(Yi − πii)(1 − ai)−1

+
n∑

i=1

(
I + πi(1 − πi)(1 − ai)−1xi(xT

i F
−1)

)( n∑
k=1

xk(πik − πk)
)]

with

πik = exp(mik)
1 + exp(mik)

,

mik = xT
k

[
β̂ML − F−1xi(Yi − πi)(1 − ai)−1

]
and

ai = πi(1 − πi)xT
i F

−1xi, i, k = 1, . . . , n,

where all quantities only depend on the MLE and I denotes the identity matrix.
A prerequisite for the existence of the jackknife estimator is the existence of the
MLE. In addition, the existence of the MLE after the removal of each observa-
tion is required, which means that deleting an observation must not result in
separation of the data (Bull, Hauck and Greenwood, 1994).

4.6. Bias correction for the ridge estimator

Based on the same motivation as in Gao and Shen (2007), that with highly
correlated covariables the ridge estimator provides more stable estimates with
less variance than the MLE but is no longer asymptotically unbiased, there are
also approaches for direct bias corrections of the ridge estimator.

Wu and Asar (2015) determine the bias of the ridge estimator

β̂Ridge =
(
XTWX + kI

)−1
XTWXβ̂ML

according to Schaefer, Roi and Wolfe (1984) with ridge parameter k and the (p+
1)-dimensional identity matrix I, and define the bias-corrected ridge estimator

β̂WA(k) =
[
I − k2

(
XTWX + kI

)−2
]
β̂ML.
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Its bias bWA(β) is smaller than the bias bRidge(β) of the ridge estimator for
every k > 0 (Wu and Asar, 2015, Theorem 3.1). In addition, conditions can be
specified for k depending on the eigenvalues of the Fisher matrix, under which
this estimator is superior to the MLE or the ridge estimator with regard to the
mean squared error MSE = E

[
||β̂ − β||22

]
(Wu and Asar, 2015, Theorem 3.2

and 3.3). Wu and Asar suggest

kWA = p + 1∑p
j=0[α2

j/(1 + (1 + λjα2
j )1/2)]

as a choice for k with

α = QTβ ∈ R
p+1, where

Λ = diag{λ0, . . . , λp} = QT (XTWX)Q

denotes the spectral decomposition of the Fisher matrix F = XTWX of the
MLE, with eigenvalues λ0 ≥ λ1 ≥ · · · ≥ λp > 0 and Q the matrix of eigenvec-
tors.

In Özkale and Arıcan (2019) a different approach is chosen to reduce the bias
of the ridge estimator, namely jackknifing. However, the usual ridge estimator
is not considered here, but rather its one-step approximation

β̂
(1)
Ridge =

(
XTWX + kIq

)−1
XTWβ̂

(1)
ML

with k > 0 and β̂
(1)
ML the MLE after the first iteration of Iteratively Weighted

Least Squares (IWLS). For this, the weighted jackknife estimator is formed
analogously to (4), with the difference that the estimates for the bias are not
all given the same weight 1/n, but each is weighted with 1 − hii(k),

hii(k) = Wiix
T
i

(
XTWX + kIq

)−1
xi, i = 1, . . . , n.

The first-order approximated jackknifed ridge logistic estimator is thus defined
as

β̂OA =
[
Iq − k2

(
XTWX + kIq

)−2
]
β̂

(1)
ML.

As choices for the ridge parameter, Özkale and Arıcan make three suggestions,
of which they favor k̂H , which is equal to Wu and Asar’s suggestion when using
β̂

(1)
ML instead of the iterated MLE. This choice of ridge parameter corresponds

to the harmonic mean of the individual ridge parameters that minimize the
component-wise MSEs

MSEj = E

[(
β̂j − βj

)2
]
, j = 0, . . . , p.

With this choice, β̂OA corresponds to the estimator from Wu and Asar (2015)
when replacing the usual MLE by its one-step approximation. Özkale and Arıcan
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(2019) also work out analytically in which situations the proposed estimator
is superior regarding the bias or the MSE compared to the estimators β̂

(1)
ML,

β̂
(1)
Ridge as well as the first-order approximated principal components logistic re-

gression estimator and the first-order approximated r-k class estimator (Özkale
and Arıcan, 2019, Theorems 1 to 12). The latter two estimators do not generally
reduce the bias and are therefore not considered here.

4.7. Exact logistic regression

Another method for estimating the parameter vector β is exact logistic regres-
sion which goes back to Cox (Cox and Snell, 1989, pp. 27–30) and is often
recommended as an alternative to the MLE for small samples (Hirji, Tsiatis and
Mehta 1989; Agresti 2012, p. 267; Hosmer, Lemeshow and Sturdivant 2013, pp.
387, 395).

Exact inference with respect to β̃ = (β1, . . . , βp)T uses the permutation dis-
tribution of the sufficient statistics

T0 =
n∑

i=1
Yi and T = (T1, . . . , Tp)T =

n∑
i=1

Yix̃i

with x̃i = (xi1, . . . , xip)T . To estimate a single parameter, the conditional prob-
ability for the associated sufficient statistic is determined given the values of the
sufficient statistics associated with all other parameters. This probability only
depends on the parameter of interest. Consider βp without loss of generality.
Then this probability is given as

f(tp | βp) = P(Tp = tp | T1 = t1, . . . , Tp−1 = tp−1)

= c(t1, . . . , tp) exp(βptp)∑
u:c(t1,...,tp−1,u)≥1 exp(βpu)

with

c(t) = |S(t)|,

S(t) =
{

(y1, . . . , yn)T :
n∑

i=1
yi = t0,

n∑
i=1

yixij = tj , j = 1, . . . , p
}
.

That is, c(t) gives the number of 0-1 vectors y = (y1, . . . , yn)T such that the
sufficient statistics equal the values t0, t1, . . . , tp. With this, a conditional max-
imum likelihood estimator (CMLE) can be determined as the value for βp that
maximizes f(tp | βp). However, this only works as long as tp is neither the
smallest possible value tmin nor the largest possible value tmax. Alternatively,
a median unbiased estimator is given as

β̂exact,p =

⎧⎪⎨
⎪⎩

(β+ + β−)/2, if tmin < tp < tmax

β+, if tp = tmin

β−, if tp = tmax
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with β− such that

Pβ−(Tp ≥ tp | T1 = t1, . . . , Tp−1 = tp−1) = 0.5

and β+ such that

Pβ+(Tp ≤ tp | T1 = t1, . . . , Tp−1 = tp−1) = 0.5.

This estimator exists for all values of tp. For tests and confidence intervals see e.g.
Mehta and Patel (1995). The calculation of the conditional distribution of the
sufficient statistics is very computationally intensive and was almost infeasible
until a recursive algorithm was developed by Hirji, Mehta and Patel (1987).

4.8. Discriminant function approach

The discriminant function approach to estimating odds ratios was known be-
fore logistic regression. The approach exploits the fact that the logistic regression
model is equivalent to the usual linear discriminant analysis model if the covari-
ables in the two groups with Yi = 0 and Yi = 1 are normally distributed with
different expectations but the same variances. Using this relationship, estima-
tors for β that only depend on estimators for the expectation and covariance
matrix of the normal distribution in each group can be derived. The approach
was no longer used over time due to the disadvantage of requiring a distribu-
tion assumption for the covariables in X. In case of non-normally distributed
covariables such as binary covariables, the estimates are again biased away from
the origin (Hosmer, Lemeshow and Sturdivant, 2013, pp. 20–21, 45-46).

Lyles, Guo and Hill (2009) consider the approach again and show that the
distributional assumptions can be relaxed for the case that only one of the
regression parameters βj is of interest. Let Xj denote the j-th covariable for
this section, X−j the remaining covariables and xj resp. x−j the associated
realizations. Under the assumption that a linear regression model

E[Xij | Yi = yi,Xi,−j = xi,−j ] = α∗ + β∗yi + (γ∗)Txi,−j , (5)

holds for the j-th covariate with parameters α∗, β∗ ∈ R and γ∗ ∈ R
p−1, where

i.i.d. N(0, σ2) distributed errors are assumed, the estimator

β̂LGH,samp,j = β̂∗
j /σ̂

2

and the Uniformly Minimum Variance Unbiased Estimator (UMVUE)

β̂LGH,UMV U,j = n− p− 5
n− p− 3 β̂

∗
j /σ̂

2

are defined where β̂∗ denotes the ordinary least squares (OLS) estimator for β∗

and σ̂2 is the variance estimator in the linear model (5).
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5. Comparison of estimators in the literature

The results of various simulation studies regarding the previously introduced
estimators are presented below. The focus in this summary is on the results
regarding bias, although this is not the main focus for some of the studies.
Statements that something is observed for “small” n (sample size) or p (number
of covariates) are always to be understood in the context of the respective sim-
ulation study. In addition, all findings apply conditionally to the fact that no
separation is detected in the data set, as long as the opposite is not explicitly
stated. An overview of the parameter settings used in the individual simulation
studies can be found in Table 2 of the online Appendix B (Stolte et al., 2024).
For more details, please refer to the corresponding publication.

Maximum likelihood estimator In addition to the theoretical considera-
tions, numerous simulation studies deal with the bias of the MLE and, in partic-
ular, investigate possible influencing factors on the size of the bias. In addition
to the bias, many of the simulation studies reveal other weaknesses of the MLE
in finite samples like underestimation (Park and Choi, 2008; Sur and Candès,
2019) or overestimation (Peduzzi et al., 1996) of its true variance, bias in the
resulting estimates of the probabilities πi (King and Zeng, 2001; Lyles, Guo
and Greenland, 2012), strong deviation of the distribution of the MLE from the
normal (van Smeden et al., 2016) and conservativeness and very low power for
tests like the Wald test (Peduzzi et al., 1996; Courvoisier et al., 2011). However,
these problems will not be discussed further, as this would go beyond the scope
of this review.

As early as 1979, Anderson and Richardson showed in a small simulation
study that if the sample size n is small, a serious bias of the MLE can be ob-
served. This dependency of the bias on the sample size is confirmed in all men-
tioned simulation studies. However, there is disagreement about which values
of n are to be considered as “small”, which is already reflected in the param-
eter settings of the individual studies (cf. Table 2, online Appendix B, Stolte
et al., 2024). It seems to depend in particular on the specific data structure
(Courvoisier et al., 2011). Schaefer (1983) observed shortly after Anderson and
Richardson that a large number of covariables p also leads to a higher bias. Fur-
thermore, he notes that the bias is higher at an angle between the parameter
vector β and the eigenvector to the smallest eigenvalue of XTX of 90◦ than
at an angle of 0◦ and that collinearity increases the variability and bias of the
MLE. The connection between bias and collinearity is also confirmed in other
simulation studies (Bull, Greenwood and Hauck, 1997; Courvoisier et al., 2011),
but this effect cannot be observed in others (van Smeden et al., 2016). Vari-
ous studies confirm the theoretically derived fact from Cordeiro and McCullagh
(1991) that the bias points away from the origin and that the magnitude of the
bias is approximately proportional to the size of the true coefficients (Bull, Mak
and Greenwood, 2002; Nemes et al., 2009; van Smeden et al., 2016).

A well-known rule for the sample size in relation to the number of covariates,
which can also be found in the context of the bias of the MLE, is the so-called
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rule of ten. This goes back to Peduzzi et al. (1996) and states that from a
number of ten events per covariable (events per variable, EPV) problems in
ML estimation are negligible. According to Vittinghoff and McCulloch (2007),
five EPV are sufficient. The authors in van Smeden et al. (2016), on the other
hand, observe that a noticeably larger number is required depending on the data
structure. For β �= 0, the bias of the MLE decreases in terms of EPV, but it
does not quite reach zero even for 150 EPV. According to the authors, the way
in which separation is handled also has a major impact on simulation results.
Courvoisier et al. (2011) also observe that 10 EPV is generally not sufficient, but
that the sample size, number, and correlation of the covariates and the true size
of β are also decisive. According to King and Zeng (2001), in close connection
with the rule of ten, a strong bias can generally be observed if the proportion
of ones in the target variable Y is small.

Another factor that seems to affect the bias is the distribution of the co-
variates. In general, larger problems occur with binary covariates than with
continuous (Vittinghoff and McCulloch, 2007). In addition, imbalance in binary
covariates seems to increase the bias (Hirji, Tsiatis and Mehta, 1989; Heinze and
Schemper, 2002; Vittinghoff and McCulloch, 2007).

Bias-corrected estimators As mentioned before there are different equiv-
alent expressions for the first-order bias and thus different equivalent bias-
corrected estimators. Various studies have used different of these estimators
often consistent with a first-order bias expression derived in the respective ar-
ticle. The first simulation results for bias-corrected MLEs are provided by An-
derson and Richardson (1979), where the authors compare the estimator they
proposed based on their bias expression with the MLE. However, due to the
limited computing power at the time, the simulation study was small. The au-
thors find that the correction is effective except in extreme cases (like n is small
and few zeros are expected for Y ) and achieves good results from n = 60 on.
If n is small, they observe overcorrection. Schaefer (1983) also compares the
estimator resulting from his bias expression with the MLE. He observed that
the bias-corrected estimator no longer differs from the MLE for n = 200 or
more. On the other hand, for small n, large p, or a true parameter vector that is
orthogonal to the eigenvector for the smallest eigenvalue of XTX, a strong im-
provement can be observed using the correction. The corrected estimator is also
less influenced by collinearity. The latter is also observed in Bull, Greenwood
and Hauck (1997). Bull, Hauck and Greenwood (1994) and Bull, Greenwood
and Hauck (1997) also observe that the bias-corrected estimator overcorrects
when n is small so that the mean bias for the corrected estimator tends to have
the opposite sign to that of the MLE. King and Zeng (2001) focus on the bias
in the estimated probabilities instead of the bias of the parameter estimates,
but the latter is also considered. For β̂CM an improvement over the MLE is
observed. In Bull, Mak and Greenwood (2002) the correction according to Cox
and Snell (1968) is examined. Once again, an overcorrection in small samples is
observed. In contrast to Schaefer (1983), however, even with an n of 200 there
is still a noticeable improvement in terms of bias compared to the MLE. In a
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very small-scale simulation, Matin (2006) investigates under which conditions
the difference between the MLE and β̂Schaefer is large for a dataset where it is
known what the parameters stand for from a medical point of view. Differences
in the odds ratios (OR) that are considerable for small samples are found. In par-
ticular, the difference is large if 1−2π̂i is small on average or if the interquartile
range of these terms is large. Park and Choi (2008) observe for their estimator
that its bias is negligible and that this estimator also has a lower variance than
the MLE, with the gain being higher the smaller n is. However, the variance
estimator for this corrected estimator usually overestimates its true variance.
Maiti and Pradhan (2008) recommend β̂CM among the compared estimators
β̂ML, β̂CM and β̂Firth they compared since it has the smallest bias and usually
also the smallest MSE. No simulation results are known for comparisons of the
estimators according to Copas (1988) and Sur and Candès (2019).

Firth’s estimator The behavior of Firth’s estimator was also frequently ex-
amined. Heinze and Schemper (2002) recommend Firth’s estimator because it
has the lowest bias among the ones they considered (MLE, Firth’s estimator,
adjustment according to Clogg et al. (1991), exact logistic regression). However,
they observe that Firth’s estimator also slightly overcorrects in some cases. Bull,
Mak and Greenwood (2002) also observe the overcorrection in small samples but
state that this is weaker than for the bias-corrected estimators. From a sample
size n of 200, the bias-corrected and Firth’s estimator can no longer be distin-
guished. Firth’s estimator always shows a smaller MSE than the MLE, with the
difference increasing for decreasing n or increasing p. The bias of β̂Firth is on
average closer to zero on all datasets than only on the ones without separation.
On the data sets with separation, Firth’s estimator provides large but finite
estimates. Overall, Firth’s estimator is recommended for routine use, since it is
less biased and more efficient than the MLE and the bias-corrected estimator for
small n and can always be computed. With medium n it is biased to a similar
extent as the bias-corrected estimator and is therefore still less biased than the
MLE, and for large n Firth’s estimator becomes equivalent to the MLE. Firth’s
estimator is also recommended in Heinze (2006) since it can be used for all data
sets, has a low variance, and all nominal test levels are observed to be respected.
Maiti and Pradhan (2008), on the other hand, observe a larger bias for Firth’s
estimator for coefficients that are far from zero (|βj | > 2) than for the bias-
corrected estimator and generally also a higher MSE. They confirm the result
of Bull, Mak and Greenwood (2002) that Firth’s estimator shows a large bias
on data sets with separation. In contrast, Park and Choi (2008) summarize that
the bias of Firth’s estimator is negligible and that it has a smaller variance than
the MLE. In addition, they notice that the bias of its variance estimator is also
negligible. Shen and Gao (2008) also observe a lower bias and MSE for Firth’s
estimator than for the MLE, especially for small n. However, they conclude that
the estimation of the variance via the approximate information matrix overesti-
mates the true variance for small n. In van Smeden et al. (2016) for β̂Firth a bias
close to zero and a lower MSE than for the MLE was detected. In addition, the
mean width of the confidence intervals is observed to be systematically smaller
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compared to those for the MLE. Puhr et al. (2017) also confirm that Firth’s
estimator almost always shows the smallest bias among those considered (MLE,
ridge estimator, Firth’s estimator without and with FLIC or FLAC adjustment,
bayesian estimators according to Elgmati et al. (2015), Greenland and Mansour-
nia (2015) and Gelman et al. (2008)). Even in the most unfavorable situations,
the mean standardized bias is less than 1%. However, the root MSE (RMSE)
is considerably higher than that of the ridge estimator. Kosmidis, Kenne Pagui
and Sartori (2020) observe a very good behavior of Firth’s estimator with regard
to the mean bias and a noticeable reduction in MSE and bias when estimating
the ORs.

Estimator according to Kenne Pagui, Salvan and Sartori (2017) There
are not many results on the behavior of β̂KPSS . Kenne Pagui, Salvan and Sar-
tori (2017) themselves show in a small simulation that the estimator is nearly
median-unbiased but has a bigger mean bias than Firth’s estimator. Kosmidis,
Kenne Pagui and Sartori (2020) also confirm that the estimator achieves median
unbiasedness very well and also shows a noticeably lower mean bias than the
MLE. However, the mean bias is again stronger than that of Firth’s estimator.

Estimator according to Gao and Shen (2007) Shen and Gao (2007)
show that the estimator β̂SG generally has a lower bias and MSE than the
MLE, especially in smaller samples. However, the bias is higher than that of
Firth’s estimator, especially in small or medium-sized samples. On the other
hand, according to Gao and Shen (2007), the estimator has the lowest MSE and
in larger samples, the two penalized estimators can no longer be distinguished.
As with Firth’s estimator, the approximate information matrix overestimates
the variance for small n.

Adjusting the data Various methods for data adjustment (see Section 4.4
and Table 2 of online Appendix B, Stolte et al., 2024) are compared in Whaley
(1991) for two binary covariates. No general best method can be identified. This
depends on how frequently the event of interest occurs and whether bias or
MSE is considered more important. However, the worst choice in terms of bias
is always ACAC, i.e. the bias-corrected estimator according to Schaefer (1983)
with previous +1/2 adjustment of the data. If n is small, all methods are ob-
served to overcorrect. Especially with small n and small β0 none of the methods
performs well. Heinze and Schemper (2002) consider the adjustment of the data
according to Clogg et al. (1991). They note a tendency to slightly underestimate
the true effect and a larger bias than for Firth’s estimator. However, the bias of
the estimator on the adjusted data is smaller than that of the ordinary MLE.

Jackknifing Jackknife estimators are compared with other methods in Bull,
Hauck and Greenwood (1994) and Bull, Greenwood and Hauck (1997). Both
studies come to qualitatively the same results: the multi-step and the exact two-
step jackknife estimator overcorrect for small n, while the approximate two-step
jackknife estimator behaves similarly to the bias-corrected estimator and does
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not overcorrect that much. From a sample size n of 75, the different correction
methods can no longer be distinguished.

Bias-corrected ridge estimators Wu and Asar (2015) compare their esti-
mator with the MLE and the ridge estimator. They sum up that β̂WA always
has a lower squared bias and a smaller MSE than the MLE and ridge estimator.
Özkale and Arıcan (2019) also compare β̂OA with the previously mentioned es-
timators and with their one-step approximations. They find that β̂OA is always
superior to the MLE and ridge estimator and their one-step approximations
with regard to bias and usually also to β̂WA, except in rare cases such as high
multicollinearity, small n and large ridge parameter k. In addition, β̂WA is more
strongly biased than the approximate ridge estimator. Regarding the MSE, the
MLE is the worst and the ridge estimator is the best. The two corrected ridge
estimators lie in between, with their order depending on the parameter settings.
β̂OA tends to be better for large n and β̂WA for small n, large k and moderate
collinearity.

Exact logistic regression The median-unbiased estimator (MUE) from the
exact logistic regression is recommended by Hirji, Tsiatis and Mehta (1989)
for small and medium-sized samples as well as for sparse data based on their
findings that the MUE is absolutely more accurate than the MLE in all situa-
tions considered, i.e. Pβ

(∣∣∣β̂ − β
∣∣∣ < δ

)
is higher for all δ > 0. In addition, the

MUE also has a smaller MSE on average if both estimators exist. King and
Ryan (2002) state that the conditional MLE (CMLE) of exact logistic regres-
sion overestimates the effect less than the ordinary MLE. However, they sum up
that in the case they are considering, both methods do not provide a particu-
larly good estimate. In Heinze and Schemper (2002) the exact logistic regression
is also considered, whereby the CMLE is calculated if no separation is detected
and the MUE otherwise. They conclude that the exact logistic regression, like
the adjustment according to Clogg et al. (1991), has a bias greater than that
of Firth’s estimator, but smaller than that of the MLE. Heinze and Schemper
(2002) state that the exact logistic regression is often not applicable, due to the
large proportion of the simulated datasets with degenerated conditional distri-
bution of the sufficient statistics, especially for small n and large p.

Discriminant function approach According to Lyles, Guo and Hill (2009),
the discriminant function approach leads to considerably less biased estimates
than the MLE. The UMVUE is even said to be almost unbiased. However, under
the same conditions, Lyles, Guo and Greenland (2012) find a large bias in the
estimated ORs.

6. Conclusion

We have given a comprehensive overview of numerous proposals for estimators
to reduce bias in logistic regression and also of many simulation studies that
compare subsets of those estimators.
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There are several reported properties where studies contradict each other,
e.g., how collinearity influences the bias or what sample size and number of
events per variable (EPV) can be seen as sufficiently large. Except for the fre-
quent recommendation of Firth’s estimator, there is no clear unique recommen-
dation on which of the (other) estimators to use. There are many combinations
of estimators presented in this article that are not directly compared in any sim-
ulation study. The results of various studies are not comparable to each other
due to very different parameter settings (cf. Table 2 of online Appendix B, Stolte
et al., 2024). For more specific recommendations more research comparing all
estimators under unified conditions is needed.

Fortunately, some promising findings are confirmed by many of these studies,
e.g., the bias-corrected estimators overcorrect in very small samples but are
superior to the MLE for moderate sample sizes. Most of the reviewed studies
recommend Firth’s estimator if considered, due to small bias and applicability
with separable data.
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